RANDOM COEFFICIENT CONTINUOUS SYSTEMS: TESTING FOR EXTREME SAMPLEPATH BEHAVIOUR

By

Yubo Tao, Peter C. B. Phillips, and Jun Yu

December 2017

COWLES FOUNDATION DISCUSSION PAPER NO. 2114

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

http://cowles.yale.edu/
Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour

Yubo Tao

Singapore Management University

Peter C.B. Phillips

Yale University, University of Auckland, University of York & Singapore Management University

Jun Yu

Singapore Management University

December 11, 2017

Abstract

This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive behaviour according to specific regions of the parameter space that open up the potential for testing these forms of extreme behaviour. A two-stage approach that employs realized volatility is proposed for the continuous system estimation, asymptotic theory is developed, and test statistics to identify the different forms of extreme sample path behaviour are proposed. Simulations show that the proposed estimators work well in empirically
realistic settings and that the tests have good size and power properties in discriminating characteristics in the data that differ from typical unit root behaviour. The theory is extended to cover models where the random persistence parameter is endogenously determined. An empirical application based on daily real S&P 500 index data over 1964-2015 reveals strong evidence against parameter constancy after early 1980, which strengthens after July 1997, leading to a long duration of what the model characterizes as extreme behaviour in real stock prices.

JEL Classification: C13, C22, G13.

Keywords: Continuous time models; Explosive path; Extreme behaviour; Random coefficient autoregression; Infill asymptotics; Bubble testing.

1 Introduction

Many macroeconomic and financial time series are well described by autoregressive processes with roots that are close to unity but not necessarily constant over time. Motivated by this empirical characteristic, various strands of the literature have sought to extend pure unit root models to more flexible dynamic systems. One approach allows for structural breaks in which the autoregressive coefficient takes a constant value in each regime but changes value in different regimes (e.g. Chong, 2001; Pang et al., 2014; Jiang et al., 2017). Another assumes that the autoregressive coefficient is a continuous random variable or evolves according to a stochastic process (e.g. Granger and Swanson, 1997; Lieberman and Phillips, 2014, 2017b). Yet another allows for a time varying autoregressive parameter to capture evolution in the stochastic process, introduce flexibility, and enhance forecasting capability (Bykhovskaya and Phillips, 2017a,b; Giraitis et al., 2014; Kristensen, 2012).

Complementary to this literature on autoregressive specification is a growing interest in modelling explosive behaviour and collapse, particularly since the events leading up to and following the global financial crisis, where strong upward movements and subsequent major downturns in asset prices have occurred in various markets (Phillips and Yu, 2011). Empirical methods used to model these events have made extensive use of the concepts of mildly explosive and mildly integrated autoregressive processes (see Phillips and Magdalinos, 2007). Thus, Phillips et al. (2011, PWY hereafter), Phillips and Yu (2011), Phillips et al. (2015a,b, PSY hereafter) assume data are generated according to unit root processes in one regime and as mildly explosive processes in another regime; and methods of date-stamping such regime changes have been developed (Phillips et al., 2011, 2015a,b) stimulating new empirical research and improvements in test methodology (e.g. Cavaliere et al., 2016; Phillips and Shi, 2017). Developments in random autoregressive coefficient approaches have also been pursued, with work by Aue (2008), who analyzed
a near-integrated random coefficient autoregressive model, and by Banerjee et al. (2017)
who studied a near-explosive random coefficient autoregressive model.

The present paper contributes to this literature by working with a continuous time
model in which the parameter that measures persistence is randomized. A novel advan-
tage arising from this formulation is that extreme sample path behaviour can be classified
into distinct scenarios that represent various forms of instability and explosiveness. These
scenarios are distinguished parametrically and corresponding hypotheses are formulated
to facilitate empirical testing. Continuous time specification also enables the localizing
coefficients that appear in mildly integrated and mildly explosive processes to be repre-
sented in terms of sampling frequency, which facilitates econometric estimation. These
parameters are of great importance empirically because they control distance from mar-
tingale and unit root behaviour in discrete time models (Banerjee et al. (2017)). This
advantage of continuous systems has been used in other recent work by Chen et al. (2017)
and Wang and Yu (2016) in developing the discrete time methodology of Phillips and
Magdalinos (2007).

Continuous system formulation and high frequency data open up the opportunity to
employ methods such as realized volatility in estimating parameters that are identified in
the quadratic variation process using in-fill asymptotic methods. The two-stage realized
volatility approach employed here naturally accommodates heteroskedasticity in the pro-
cess and allows for consistent estimation of the parameters in the diffusion function under
both stationarity and explosiveness. The approach therefore offers potential for a unified
in-fill limit theory of consistent parameter estimation in random coefficient autoregression.

A further well-known feature of continuous system formulations is that the effects of
initial conditions are naturally incorporated by in-fill asymptotics (as in Phillips , 1987)
without having to specify orders of magnitude or use distant past representations (as in
Phillips and Magdalinos, 2009) which involve additional unknown parameters. Moreover,
continuous systems readily accommodate endogeneity by allowing for dependence between
the random coefficient elements and system shocks. In this respect the present research
relates to recent work on generalized random coefficient autoregressive models in (Hwang
and Basawa, 1998) and localized endogenous stochastic unit root models in (Lieberman
and Phillips, 2017a). Initial condition effects appear directly in the asymptotic theory
and, as is shown in the paper, the endogeneity parameter can be consistently estimated
using realized volatility.

The remainder of the paper is organized as follows. Section 2 introduces a continuous
system with randomized persistence and relates this system to several discrete time models
already used in the literature. The multiple forms of behaviour induced by this system are
described and characterized parametrically. Section 3 proposes a novel two-stage approach to parameter estimation using realized volatility. Asymptotic theory is developed and test statistics for distinguishing different forms of explosive behaviour are proposed in Section 4. Section 5 extends the methodology to the case of endogenous persistence. Section 6 gives the results of Monte Carlo simulations that explore the finite sample performance of the estimators and test statistics. Empirical applications of the model are reported in Section 7 using daily real S&P 500 index data from January 1964 to December 2015. Some empirical applications of the extended model using 5-minute real S&P 500 index data over the period from November 1, 1997 to October 31, 2013 are also discussed. Section 8 concludes. Proofs and other technical material are given in the Appendix.

2 The Model

The model used here is a modified version of the Ornstein-Uhlenbeck process

\[dy(t) = y(t)\tilde{\mu}dt + \sigma dB_\varepsilon(t), y(0) = y_0, \]

(2.1)

where \(B_\varepsilon \) is standard Brownian motion and the sign of the drift parameter \(\tilde{\mu} \) determines stationary \((< 0)\), nonstationary \((= 0)\), and explosive \((> 0)\) behaviour in \(y(t) \), the latter corresponding to a discrete time autoregression with a root that exceeds unity and whose variance grows exponentially with \(t \). In (2.1), the drift parameter \(\tilde{\mu} \) is taken as constant, an assumption that may not be well supported by data over extended periods of time.

The model considered in the present paper extends (2.1) by introducing random shocks to the drift component of (2.1) so that

\[dy(t) = y(t)\tilde{\mu}dt + \tilde{\sigma} dB_u(t) + \sigma dB_\varepsilon(t), y(0) = y_0, \]

(2.2)

where \(B_u(t) \) and \(B_\varepsilon(t) \) are both standard Brownian motions, and \(y_0 \) is independent of \(B_u(t) \) and \(B_\varepsilon(t) \). When \(\tilde{\sigma}^2 \neq 0 \), model (2.2) may be viewed as an Ornstein-Uhlenbeck process with randomized drift or persistence. Initially, we focus on the case of independent noise processes \(B_u(t) \) and \(B_\varepsilon(t) \), and later consider the endogenous case where these processes are dependent.

Model (2.2) is a special case of a general model introduced by Föllmer and Schweizer (1993),

\[dy(t) = y(t)\tilde{\mu}dt + \tilde{\sigma}(t) dB_u(t) + \mu(t)dt + \sigma(t) dB_\varepsilon(t), y(0) = y_0, \]

(2.3)

called an Ornstein-Uhlenbeck process in a random environment. Föllmer and Schweizer (1993) developed a discrete time version of this process in a market equilibrium setting.
that involved both information traders and noise traders and then derived its continuous-
time limit given by the process in (2.3). Persistence in the dynamic model is determined
by the relative proportions of the two types of traders, so random proportions lead to a
randomized degree of persistence in the solution. Information traders contribute nega-
tively to persistence while noise traders contribute positively.

Föllmer and Schweizer (1993) derived the strong solution of (2.2) which takes the
explicit form

\[
y(t) = \exp \left(\tilde{\sigma} B_u(t) + \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) t \right) \left(y(0) + \sigma \int_0^t \exp \left(-\tilde{\sigma} B_u(s) - \tilde{\mu} s + \frac{1}{2} \tilde{\sigma}^2 s \right) dB_z(s) \right)
\]

\[
= \exp \left(\tilde{\sigma} B_u(t) + \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) t \right) y(0) + K(t),
\]

(2.4)

where

\[
K(t) = \sigma \int_0^t \exp \left(-\tilde{\sigma} \left(B_u(t) - B_u(s) \right) \right) + \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t-s) \right) dB_z(s)
\]

\[
\sim \mathcal{MN} \left(0, \sigma^2 \int_0^t e^{2\tilde{\sigma} \left(B_u(t) - B_u(s) \right) + 2 \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t-s)} ds \right),
\]

(2.5)

under independence of \(B_u \) and \(B_z \) and with

\[
E \left\{ K(t)^2 \right\} = \sigma^2 E \left\{ \int_0^t e^{2\tilde{\sigma} \left(B_u(t) - B_u(s) \right) + 2 \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t-s)} ds \right\} = \sigma^2 e^{\frac{2}{2} \left(\tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 \right) t} - 1.
\]

(2.6)

Notably, \(E \left\{ K(t)^2 \right\} \) diverges exponentially when \(\tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 > 0 \).

The exact discrete time model corresponding to (2.2) follows directly from the strong
solution and has the explicit form

\[
y_{t\Delta} = \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) \Delta + \tilde{\sigma} \left[B_{u,t\Delta} - B_{u,(t-1)\Delta} \right] \right\} y_{(t-1)\Delta} + \sigma \int_{(t-1)\Delta}^{t\Delta} \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t\Delta - s) + \tilde{\sigma} \left[B_{u,t\Delta} - B_u(s) \right] \right\} dB_z(s),
\]

(2.7)

where \(t = 1, \ldots, T/\Delta \) and where we write discrete time data in subscripted form. This
model is a random coefficient autoregression (RCAR) of the type considered by Nicholls
and Quinn (1980) in which the autoregressive (AR) coefficient is

\[
\rho_{t\Delta} = \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) \Delta + \tilde{\sigma} \left[B_{u,t\Delta} - B_{u,(t-1)\Delta} \right] \right\},
\]
and is random when $\tilde{\sigma}^2 > 0$.

For the ensuing development it will be helpful to fix the following simpler notation for the discrete system

$$\phi := \tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2, \quad \kappa := \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2, \quad u_{t\Delta} := \frac{B_{u,t\Delta} - B_{u,(t-1)\Delta}}{\sqrt{\Delta}} \sim \mathcal{N}(0,1),$$

$$\rho_{t\Delta} := \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) \Delta + \tilde{\sigma} \left[B_{u,t\Delta} - B_{u,(t-1)\Delta} \right] \right\} = \exp \left\{ \phi \Delta + \tilde{\sigma} \sqrt{\Delta} u_{t\Delta} \right\},$$

$$\eta_{t\Delta} := \int_{(t-1)\Delta}^{t\Delta} \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t\Delta - s) + \tilde{\sigma} \left[B_{u,t\Delta} - B_{u,s} \right] \right\} dB_{\varepsilon,s} \sim \mathcal{N}(0,\gamma_{t\Delta}^2),$$

where $\gamma_{t\Delta} = \sqrt{(e^{2\kappa\Delta} - 1) / 2\kappa}$. Model (2.7) is then

$$y_{t\Delta} = \exp \left\{ \phi \Delta + \tilde{\sigma} \sqrt{\Delta} u_{t\Delta} \right\} y_{(t-1)\Delta} + \sigma \eta_{t\Delta} = \rho_{t\Delta} y_{(t-1)\Delta} + \sigma \eta_{t\Delta}, \quad (2.8)$$

where y_t is initiated at y_0.

Importantly, when the driver Wiener processes B_u and B_ε are independent, data generated from (2.2) is observationally equivalent to data from the continuous system

$$dy(t) = y(t)\tilde{\mu}dt + \sqrt{\tilde{\sigma}^2 y^2(t) + \sigma^2} dB_v(t), \quad y(0) = y_0, \quad (2.9)$$

where $B_v(t)$ is another standard Brownian motion. In the same way, model (2.7) is observationally equivalent to the discrete system

$$y_{t\Delta} = \exp \{\tilde{\mu}\Delta\} y_{(t-1)\Delta} + \sqrt{\tilde{\sigma}^2 y^2_{(t-1)\Delta} + \sigma^2 v_{t\Delta}}, \quad (2.10)$$

where $v_{t\Delta} \sim \mathcal{N}(0,1)$ and $y_{t\Delta}$ exhibits conditional heteroskedasticity. Notably, the conditional variance of the process is $\tilde{\sigma}^2 y^2_{(t-1)\Delta} + \sigma^2$, so that large realizations of the process magnify its variability. This dependence has a substantial bearing on the properties of $y_{t\Delta}$ and the form of its trajectories. Moreover, $y_{t\Delta}$ has a submartingale property when $e^{\tilde{\mu}\Delta} > 1$ and given $y_{(t-1)\Delta} > 0$ because in that case $E_{(t-1)\Delta}(y_{t\Delta}) = e^{\tilde{\mu}\Delta} y_{(t-1)\Delta} > y_{(t-1)\Delta}$.

Assuming $\tilde{\sigma}^2 > 0$, models (2.8) and (2.2) have the following properties: (1) $E(\rho_{t\Delta}) = e^{\tilde{\mu}\Delta}$, which is unity if and only if $\tilde{\mu} = 0$ and exceeds unity if and only if $\tilde{\mu} > 0$; (2) $E(\rho_{t\Delta}^2) = \exp(2\tilde{\mu}\Delta + \tilde{\sigma}^2\Delta) = \exp(2\kappa\Delta)$, which exceeds unity if and only if $\kappa > 0$; (3) $Var(\rho_{t\Delta}) = e^{2\tilde{\mu}\Delta} \left(e^{\tilde{\sigma}^2\Delta} - 1 \right) > 0$; (4) $E(\rho_{t\Delta}^k) = \exp \left(k\Delta \left[\tilde{\mu} + \frac{1}{2} (k - 1) \tilde{\sigma}^2 \right] \right) \rightarrow \infty$ when $k \rightarrow \infty$; (5) As shown in Föllmer and Schweizer (1993), when $\phi = \tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 < 0$, the process is asymptotically stationary but may not have finite second moments. To ensure the existence of second moments, we should impose a stronger condition that $\kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 < 0$. From (2.5), when $\kappa < 0$, it is apparent that the variance of $K(t)$ exists
and converges to $-0.5\sigma^2/\kappa < \infty$ as $t \to \infty$. It then follows that (2.2) is asymptotically covariance stationary; (6) If $\kappa = 0$, the variance of $K(t)$ equals to $\sigma^2 t$ that diverges as $t \to \infty$, which means (2.2) is not asymptotically covariance stationary. Since $\kappa = 0$ implies $\bar{\mu} < 0$ and $\phi < 0$, (2.2) is asymptotic stationarity; (7) If $\phi = \bar{\mu} - \frac{1}{2}\bar{\sigma}^2 \geq 0$, $y(t)$ is no longer asymptotically stationary as shown in Föllmer and Schweizer (1993).

Table 1: Properties of Proposed Model Under Different Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Asymptotically Stationary</th>
<th>Asym. Covariance Stationary</th>
<th>$E(\rho_{t\Delta})$</th>
<th>$E(\rho_{t\Delta}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\mu} + \bar{\sigma}^2/2 < 0$</td>
<td>Yes</td>
<td>Yes</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>$\bar{\mu} + \bar{\sigma}^2/2 = 0$</td>
<td>Yes</td>
<td>No</td>
<td>< 1</td>
<td>$= 1$</td>
</tr>
<tr>
<td>$\bar{\mu} + \bar{\sigma}^2/2 > 0$ & $\bar{\mu} < 0$</td>
<td>Yes</td>
<td>No</td>
<td>< 1</td>
<td>> 1</td>
</tr>
<tr>
<td>$\bar{\mu} = 0$</td>
<td>Yes</td>
<td>No</td>
<td>$= 1$</td>
<td>> 1</td>
</tr>
<tr>
<td>$\bar{\mu} > 0$ & $\bar{\mu} - \bar{\sigma}^2/2 < 0$</td>
<td>Yes</td>
<td>No</td>
<td>> 1</td>
<td>> 1</td>
</tr>
<tr>
<td>$\bar{\mu} - \bar{\sigma}^2/2 \geq 0$</td>
<td>No</td>
<td>No</td>
<td>> 1</td>
<td>> 1</td>
</tr>
</tbody>
</table>

Table 1 summarizes the stationarity properties mentioned above and the respective values of $E(\rho_{t\Delta})$, and $E(\rho_{t\Delta}^2)$ under different regions of the parameter space depending on the values of $\bar{\mu}$ and $\bar{\sigma}^2$. When $\bar{\mu} + \bar{\sigma}^2/2 < 0$, the model is asymptotically covariance stationary with both $E(\rho_{t\Delta}) < 1$ and $E(\rho_{t\Delta}^2) < 1$. Figure 1(a) plots a simulated time series in this case with $\bar{\mu} = -5, \bar{\sigma}^2 = 0.5$ and $\bar{\mu} + \bar{\sigma}^2/2 = -4.75$ where stationary behavioural features of the data are apparent. When $\bar{\mu} + \bar{\sigma}^2/2 = 0$, the model retains asymptotic stationarity but is no longer covariance stationary with $E(\rho_{t\Delta}) < 1$ and $E(\rho_{t\Delta}^2) = 1$. Figure 1(b) plots a simulated time series in this case with $\bar{\mu} = -2, \bar{\sigma}^2 = 4$ and $\bar{\mu} + \bar{\sigma}^2/2 = 0$ where stationarity is again apparent but with more evidence of persistence in the trajectory than in Figure 1(a). It was suggested in Granger and Swanson (1997) that the unit root hypothesis in a STUR random environment might be represented by the expectation $E(\rho_{t\Delta}^2) = 1$. However, the stationary properties of the time series in this case suggest stable and mean recursive trajectories that have greater persistence than when $E(\rho_{t\Delta}^2) < 1$.

When $\bar{\mu} + \bar{\sigma}^2/2 > 0$ and $\bar{\mu} < 0$, the model is asymptotically stationary but is not covariance stationary and $E(\rho_{t\Delta}^2) > 1$. Figure 1(c) plots a simulated time series in this case with $\bar{\mu} = -1, \bar{\sigma}^2 = 3.5$ and $\bar{\mu} + \bar{\sigma}^2/2 = 0.75$. Whereas the expectation $E(\rho_{t\Delta})$ is still less than unity, unstable behaviour is evident in the simulated time series. In particular, the unstable subperiod of growth and collapse in the trajectory mimics bubble phenomena that are observed in actual data, such as that in Figure 6 in the empirical section of the

in Figure 1 of PWY (2011). If \(\tilde{\mu} = 0 \), the model continues to be asymptotically stationary but is not covariance stationary and \(E(\rho_t \Delta) = 1 \), so the model reduces to the stochastic unit root (STUR) model of Granger and Swanson (1997). Figure 1(d) plots a simulated time series in this case with \(\tilde{\mu} = 0, \tilde{\sigma}^2 = 2 \) and \(\tilde{\mu} + \tilde{\sigma}^2/2 = 1 \). Compared to the traditional (nonstochastic) unit root model, unstable behaviour with bubble-like phenomenon in a subperiod of the simulated trajectory is now more evident.

When \(\tilde{\mu} > 0 \), \(E(\rho_t \Delta) > 1 \) and \(\Pr(\rho_t \Delta > 1) > 0.5 \), giving greater probability to the realization of an explosive root than a unit or stationary root. However, unlike the traditional (nonstochastic) explosive AR(1) model which is nonstationary, this model is still asymptotically stationary although not covariance stationary. Figure 1(e) plots a simulated time series in this case with \(\tilde{\mu} = 0.5, \tilde{\sigma}^2 = 2, \tilde{\mu} + \tilde{\sigma}^2/2 = 1.5, \tilde{\mu} - \tilde{\sigma}^2/2 = -0.5 \). Although the trajectory in Figure 1(e) appears similar to those of Figure 1(c) and Figure 1(d), the process exhibits larger variation, as is apparent from the vertical scale of the figure. When \(\tilde{\mu} - \tilde{\sigma}^2/2 > 0 \), the model is asymptotically nonstationary and both moments \(E(\rho_t \Delta) \) and \(E(\rho_t^2 \Delta) \) exceed unity. Figure 1(f) plots a simulated time series in this case with \(\tilde{\mu} = 1, \tilde{\sigma}^2 = 0.5 \) and \(\tilde{\mu} - \tilde{\sigma}^2/2 = 1.25 \). The explosive growth behaviour is clearly evident in the plotted trajectory.

![Figure 1](image-url)

Figure 1: Simulated paths from the proposed model (2.2) when \(\tilde{\mu} \) and \(\tilde{\sigma}^2 \) are in different regions.

The exact discrete time representation of our model is closely related to the near ex-
plosive random coefficient (NERC) model proposed recently in Banerjee et al. (2017) and to the multivariate local STUR model that is studied in Lieberman and Phillips (2017c) which combines deterministic local unit root (LUR) and random STUR component departures from unity. In particular, if Δ is chosen as $1/T^\alpha$ and $y_0 = 0$, then model (2.8) is the same as model (1) in Banerjee et al. (2017); and if Δ is chosen as $1/T$ and $y_0 = 0$, then our (2.8) has the same form as equation (4) in Lieberman and Phillips (2017c). As discussed in Phillips and Magdalinos (2007), the power rate α in the fraction $1/T^\alpha$ controls the degree of mild deviation from a unit root and is typically assumed to lie strictly between zero and unity, which assures that such deviations are localized to unity and exceed the usual local to unity departure of $O(T^{-1})$.

In the standard discrete time modeling framework, the localizing rate parameter α is difficult to estimate, although it is possible to do so at a slowly varying rate (Phillips, 2012). Following the argument used in Wang and Yu (2016) with double asymptotics (i.e., both large span and infill schemes), the discrete time model (2.8), or equivalently (2.10), implies mild deviations from a unit root in which the localizing rate is determined by the sampling frequency Δ, and so there is no need to estimate a separate parameter α. This distinction implies an important advantage of the underlying continuous system framework when it is appropriate in practical work to employ this model using discrete time observations. A further useful difference is that the continuous system allows for flexible initial condition assumptions.

The model reduces to a simple autoregression with a time-invariant coefficient when $\tilde{\sigma}^2 = 0$, in which case $\kappa = \phi = \tilde{\mu}$ and then explosive behaviour applies when $\phi > 0$. Conventional tests for a unit versus an explosive root therefore reduce to testing $\phi = 0$ against $\phi > 0$. This formulation explains the focus on right-tailed unit root testing (Diba and Grossman, 1988), including the recursive methodology used in PWY (2011), Phillips and Yu (2011), PSY (2015a, b) and related work.

In the extended model (2.8), a wider set of dynamic patterns are possible for studying various types of extreme behaviour in realized sample trajectories. More specifically, we consider three cases distinguished by the following typology.

1. Unstable trajectory: $\kappa = \tilde{\mu} + \tilde{\sigma}^2/2 > 0$ which is equivalent to $E(\rho_{t\Delta}^2) > 1$. In this case, the model is covariance nonstationary asymptotically and is capable of generating trajectories with explosive and collapse behaviour;

2. Locally Explosive trajectory: $\tilde{\mu} > 0$ which is equivalent to $E(\rho_{t\Delta}) > 1$. In this case, there is greater probability for an explosive root to be realized in the sample than a unit or stationary root and the model is covariance nonstationary asymptotically. The model is capable of generating both explosive and collapsing behaviour;
3. Explosive trajectory: \(\phi = \tilde{\mu} - \bar{\sigma}^2 / 2 > 0 \). Here the model is nonstationary asymptotically and generates explosive behaviour.

According to this terminology explosive nature implies local explosiveness which implies instability. We characterize all of these cases as various forms of extreme behaviour. Figure 2 shows regions of the parameter space \((\tilde{\mu}, \bar{\sigma}^2)\) that accord with these classifications of sample behaviour.

Figure 2: Various explosive regions of \(\{y_t\} \) characterized by different parameter combinations of \((\tilde{\mu}, \bar{\sigma}^2) \in \mathbb{R} \times \mathbb{R}_+ \). \(S_{un} \) is the region for instability. \(S_{le} \) is the region for local explosiveness. \(S_e \) is the region for explosiveness.

It is helpful to link the above concepts of instability, local explosiveness and explosiveness to some well-known concepts in the stochastic process literature and to those used recently in Kim and Park (2016). Note first that the observational equivalent model (2.10) is a special case of generalized Höpfner and Kutoyants (GHK) diffusion (Höpfner and Kutoyants, 2003):\(^1\)

\[
dX_t = \frac{\tilde{\mu}X_t}{(\bar{\sigma}^2X_t^2 + \sigma^2)^{1-d}} dt + (\bar{\sigma}^2X_t^2 + \sigma^2)^{d/2} dW_t
\]

with \(d = 1 \). In this case, we can easily calculate the scale density \((s'(x))\) and the speed density \((m(x))\) of the model (2.10) as follows:

\[
s'(x) = (\sigma^2 + \bar{\sigma}^2 x^2)^{-\tilde{\mu}/\bar{\sigma}^2} \quad \text{and} \quad m(x) = (\sigma^2 + \bar{\sigma}^2 x^2)^{\tilde{\mu}/\bar{\sigma}^2 - 1}. \quad (2.11)
\]

Thus, the model (2.10) is recurrent if \(\tilde{\mu}/\bar{\sigma}^2 \leq 1/2 \), i.e., \(\phi \leq 0 \). It is positive recurrent (PR) if \(\tilde{\mu}/\bar{\sigma}^2 < 1/2 \), i.e., \(\phi < 0 \). Thus, it is null recurrent (NR) when \(\phi = 0 \) and transient.

\(^1\)The diffusion process studied here is a generalization of Example 2.1 in Kim and Park (2016) by adding a coefficient in front of \(X_t^2 \).
(TR) when $\phi > 0$. Therefore, our definition of explosiveness corresponds to the transient property, which typically applies to processes that trend upwards or downwards and may be rendered recurrent after suitable detrending techniques as discussed by Kim and Park (2016) who considered various notions of mean reversion for financial time series. These authors related the mean-reversion property to the following three conditions:

(ST): the speed measure m is either integrable or barely nonintegrable2;

(DD): The inverse of the scale density $1/s'$ is either integrable or barely nonintegrable;

(SI): square of identity function, i^2, is either m-integrable3 or m-barely nonintegrable.

Kim and Park (2016) showed that when both ST and DD hold, the process has strong mean reversion (SMR) and if only one of ST and DD holds the process has weak mean reversion (WMR). By checking these conditions, we find that model (2.10) satisfies: DD if and only if $\tilde{\mu}/\tilde{\sigma}^2 \leq -1/2$, i.e., $\kappa \leq 0$; ST if and only if $\tilde{\mu}/\tilde{\sigma}^2 \leq 1/2$, i.e., $\phi \leq 0$; and SI if $\tilde{\mu}/\tilde{\sigma}^2 \leq -1/2$, i.e., $\kappa \leq 0$. So in our model the condition that ensures ST is the same as that which ensures SI, and is stronger than that which ensures DD. Thus, if $\kappa \leq 0$, our model has strong mean reversion; if $\phi \leq 0$ but $\kappa > 0$, our model has weak mean reversion; and if $\phi > 0$, our model does not imply mean reversion. Hence, our definition of explosiveness is the same as no mean reversion in Kim and Park (2016). Figure 3 summarizes the mean reversion properties of the process, viz., strong mean reversion (SMR), weak mean reversion (WMR), and no mean reversion (NMR) of the diffusion process (2.10) in different regions of the respective parameter spaces.

3 Model Estimation using Realized Volatility

To estimate the continuous-time model (2.2) based on discretely sampled data, we employ the two-stage estimation procedure proposed by Phillips and Yu (2009). In the first stage we make use of the feasible central limit theory for realized volatility to set up a regression model for estimating $\tilde{\sigma}^2$ and σ^2. In the second stage the in-fill likelihood function is maximized to estimate $\tilde{\mu}$. Consistency and asymptotic distribution theory are established for all estimates.

To explain the estimation method and to establish the large sample theory of the estimators, we assume the time interval $[0, T]$ with span length T can be split into N

2A function m is defined to be barely nonintegrable if there exists some slowly varying function ℓ such that $m\ell$ is integrable.

3The square of the identity function i^2 is defined by $i^2(x) = x^2$; and a function f is defined to be m-integrable if fm is integrable.
Figure 3: Subfigures (a) and (b) characterize the recurrence properties and the mean reversion properties of \(\{y_t\} \) under different combinations of \((\tilde{\mu}, \tilde{\sigma}^2) \in \mathbb{R} \times \mathbb{R}_+\). PR=positive recurrent, NR= null recurrent, TR=transient; SMR=strong mean reversion, WMR=weak mean reversion, NMR=no mean reversion.

The time span of each block is \(h := T/N \) and we assume there are \(M \) observations of \(y_t \) within each block. So in total \(M \times N \) observations on \(y_t \) are available over \([0, T]\) and \(M \times N = T/\Delta \). Further assume that as \(\Delta \to 0 \), \(M \to \infty \) and \(M \times N \to \infty \). Figure 4 illustrates this notation and the sampling scheme.

Figure 4: Notational schematic for individual observations, block divisions, and full sample span

The quadratic variation process \([y]_t\) of \(y(t) \) in (2.2) satisfies \(d[y]_t = (\tilde{\sigma}^2 y_t^2 + \sigma^2) \, dt \), giving

\[
[y]_t = \int_0^t (\tilde{\sigma}^2 y_s^2 + \sigma^2) \, ds.
\] (3.1)

Barndorff-Nielsen and Shephard (2002) showed that quadratic variation may be consistently estimated using realized variance (RV) when \(\Delta \to 0 \). Realized variance and realized quarticity (RQ) are computed using increments \(y_{(n-1)h+i\Delta} - y_{(n-1)h+(i-1)\Delta} \) in the observed
process by means of the following formulae calculated over the \(n \)th block

\[
RV_n = \sum_{i=1}^{M} \left[y_{(n-1)h+i\Delta} - y_{(n-1)h+(i-1)\Delta} \right]^2, \quad n = 1, 2, \cdots, N, \\
RQ_n = \frac{1}{3\Delta} \sum_{i=1}^{M} \left[y_{(n-1)h+i\Delta} - y_{(n-1)h+(i-1)\Delta} \right]^4, \quad n = 1, 2, \cdots, N.
\]

From Barndorff-Nielsen (2002) realized variance has the following asymptotic distribution for large \(M \) within each block

\[
\sqrt{M} \left(\left[y \right]_{(n-1)h}^{nh} - RV_n \right) \xrightarrow{L} \mathcal{MN} \left(0, 2h \int_{(n-1)h}^{nh} (\bar{\sigma}^2 y_s^2 + \sigma^2)^2 ds \right), \tag{3.2}
\]

where \(\mathcal{MN} \) signifies mixed normal and \(\left[y \right]_{(n-1)h}^{nh} = \int_{(n-1)h}^{nh} (\bar{\sigma}^2 y_s^2 + \sigma^2) ds \).

Following the algorithm of Phillips and Yu (2009), the first-stage estimation step aims to estimate \(\theta := (\bar{\sigma}^2, \sigma^2)' \) by least squares using the criterion

\[
\hat{\theta} = \arg \min_{\theta \in \Theta} Q_\Delta(\theta), \tag{3.3}
\]

where

\[
Q_\Delta(\theta) = \Delta \sum_{n=1}^{N} \frac{\left(\log RV_n - \log \left[y \right]_{(n-1)h}^{nh} + \frac{1}{2} s_n^2 \right)^2}{s_n^2},
\]

with

\[
s_n = \max \left\{ \sqrt{2\Delta \frac{RQ_n}{RV_n^2}}, \sqrt{\frac{2}{M}} \right\},
\]

and where \(\Theta \) is a compact subset of \(R^2_+ \) containing the true value \(\theta_0 = (\bar{\sigma}_0^2, \sigma_0^2)' \) as an interior point. The term \(s_n^2/2 \) in the numerator of \(Q_\Delta(\theta) \) is a finite sample correction on the asymptotic theory. In practice, the quadratic variation element \(\left[y \right]_{(n-1)h}^{nh} \) in \(Q_\Delta(\theta) \) can be approximated by Riemann sums as follows

\[
\left[y \right]_{(n-1)h}^{nh} = \int_{(n-1)h}^{nh} (\bar{\sigma}^2 y_s^2 + \sigma^2) ds \approx \Delta \sum_{i=1}^{M} \left\{ \bar{\sigma}^2 y_{(n-1)h+i\Delta}^2 + \sigma^2 \right\}.
\]

In the second stage, \(\tilde{\mu} \) is estimated by maximizing the approximate log-likelihood function, viz.,

\[
\hat{\tilde{\mu}} = \arg \max_{\tilde{\mu}} \frac{1}{MN} \log \ell_{ALF}(\hat{\tilde{\mu}}), \tag{3.4}
\]

\[
\ell_{ALF}(\tilde{\mu}) = \sum_{t=1}^{M \times N} \frac{\tilde{\mu} y_{(t-1)\Delta}}{\bar{\sigma}^2 y_{(t-1)\Delta}^2 + \sigma^2} (y_t - y_{(t-1)\Delta}) - \frac{\Delta}{2} \sum_{t=1}^{M \times N} \frac{\tilde{\mu}^2 y_{(t-1)\Delta}^2}{\bar{\sigma}^2 y_{(t-1)\Delta}^2 + \sigma^2}, \tag{3.5}
\]
giving
\[
\hat{\mu} = \Delta^{-1} \frac{\hat{A}_N}{\hat{B}_N} = \Delta^{-1} \frac{\sum_{t=1}^{M \times N} y_{(t-1)\Delta} (y_{t\Delta} - y_{(t-1)\Delta})}{\sum_{t=1}^{M \times N} \hat{\sigma}^2 y_{(t-1)\Delta}^2 + \sigma^2}.
\] (3.6)

This estimator of \(\hat{\mu} \) has the same form as the weighted least squares estimator used by Hwang and Basawa (2005) in the context of a discrete time RCAR.

4 Asymptotic Theory

This section derives asymptotic theory for the estimates \(\hat{\sigma}^2 \) and \(\hat{\sigma}^2 \) by assuming \(\Delta \to 0 \) in an infill asymptotic scheme. Let \(\{y_t\}_{t=M\Delta}^{MN\Delta} \) be a discrete sample generated from (2.2) where the true parameter values for \(\tilde{\mu}, \tilde{\sigma}^2, \sigma^2 \) are denoted \(\tilde{\mu}_0, \tilde{\sigma}^2_0, \sigma^2_0 \). Assume that \(\theta_0 = (\tilde{\sigma}^2_0, \sigma^2_0)' \in \text{Int}(\Theta) \) where \(\Theta \) is a compact set in \(\mathbb{R}^2_+ \). Let \(\rho_0 = \exp(\tilde{\mu}_0 \Delta) = E(\rho_{t\Delta}) \), and \(\hat{\rho} = \exp(\hat{\mu} \Delta) \). The following result provides within block infill asymptotics as \(\Delta \to 0 \).

Theorem 4.1. If \(\theta_0 \in \text{Int}(\Theta) \) and \(\Delta \to 0 \),
\[
\frac{1}{\sqrt{\Delta}} \left(\hat{\rho} - \rho_0 \right) \overset{L}{\to} \sqrt{N} \left(\sum_{n=1}^{N} \int_{(n-1)h}^{nh} \frac{\partial \sigma^2(y_s; \theta_0)}{\partial \theta} \frac{\partial \sigma^2(y_s; \theta_0)}{\partial \theta} ds \right)^{-1} \left(\sum_{n=1}^{N} \sqrt{2} \int_{(n-1)h}^{nh} \frac{\partial \sigma^2(y_s; \theta_0)}{\partial \theta} \sigma^2(y_s; \theta_0) dB_s \right),
\]
where \(\sigma^2(y_s; \theta_0) = \tilde{\sigma}^2_0 y_s^2 + \sigma^2_0 \) is the spot variance of \(y(t) \).

Remark 4.1. In discrete time modeling, it is common for the parameters \(\tilde{\sigma}^2 \) and \(\sigma^2 \) to be estimated by MLE or QMLE by imposing ARCH-type innovations, see for example Jensen and Rahbek (2004); Ling and Li (2008); Francq and Zakoïan (2012); Chen et al. (2014). This approach provides consistent estimates and associated asymptotics for \(\tilde{\sigma}^2 \) rather than \(\sigma^2 \) when \(y_t \) is nonstationary. The explanation is that as \(T \to \infty \), the log-likelihood function becomes flat because of the dominating scale effects of \(y_T \) that occur in the direction where \(\tilde{\sigma}^2 \) is fixed and \(\sigma^2 \) varies. Unlike previous work, our approach applies an infill asymptotic scheme which fixes the time span \((T) \) and shrinks the sampling interval \((\Delta) \) to 0. These asymptotics ensure that \(y_T \) is measurable and finite, so that \(\sigma^2 \) continues to play a role in the limit as \(\Delta \to 0 \). With this approach it is possible to consistently estimate both variance parameters and establish their asymptotic properties as in Theorem 4.1.
Corollary 4.1. When $\tilde{\sigma}^2_0 = 0$, we have

$$
\frac{1}{\sqrt{\Delta}} \tilde{\sigma}^2 \xrightarrow{L} \left(\frac{N}{\sqrt{\Delta}} \int_{(n-1)h}^{nh} y_s^4 ds \right)^{-1} \left(\sqrt{2} \sigma^2_0 \sum_{n=1}^{N} \int_{(n-1)h}^{nh} y_s^2 dB_s \right)
$$

It is interesting in practical applications to test the null hypothesis $\tilde{\sigma}^2 = 0$, which corresponds to the special case of no randomness in the persistence properties of $y(t)$. To test this boundary condition hypothesis we apply a modified version of the locally best invariant test (LBI-test) by Lee (1998) for $\tilde{\sigma}^2 = 0$, viz.,

$$
\tilde{Z}_N := \frac{\sum_{t=1}^{M \times N} \left(\tilde{y}^2_{(t-1)\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{z}^2_{t\Delta} \right) \right) \tilde{y}^2_{(t-1)\Delta}}{\sqrt{\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{z}^4_{t\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{z}^2_{t\Delta} \right)^2 \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{y}^4_{(t-1)\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} \right)^2 \right)}}
$$

where $\tilde{y}_{t\Delta} = \frac{y_{t\Delta}}{\sqrt{1 + y_{t\Delta}^2}}$, $\tilde{z}_{t\Delta} = y_{t\Delta} - \tilde{\rho} y_{(t-1)\Delta}$ and $\tilde{\rho} = \left(\frac{\sum_{t=1}^{M \times N} \tilde{y}_{(t-1)\Delta} y_{(t-1)\Delta}}{\sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} \sqrt{\delta + y_{(t-1)\Delta}^2}} \right)^{-1} \sum_{t=1}^{M \times N} \tilde{y}_{(t-1)\Delta} y_{t\Delta}$. Then, as $N \to \infty$,

$$(MN)^{-1/2} \tilde{Z}_N \xrightarrow{D} N(0,1), \text{ under } H_0 : \tilde{\sigma}^2 = 0,$$

and

$$|(MN)^{-1/2} \tilde{Z}_N| \xrightarrow{p} \infty, \text{ under } H_1 : \tilde{\sigma}^2 > 0.$$

Remark 4.2. Note first that we use the self-normalized variable $\tilde{y}_{t\Delta}$ for constructing the test statistic. This is because the normalization ensures that $\tilde{y}_{t\Delta}$ is stationary when $y_{t\Delta}$ is nonstationary, which is crucial for \tilde{Z}_N to converge under the null hypothesis (Lee, 1998; Nagakura, 2009). In fact, the weighting function $1 + y_{t\Delta}^2$ can be replaced by any function $g(x)$ where $g : [0, \infty) \to (0, \infty)$ is a Borel function satisfying $x^2/g(x) \to 1$ as $|x| \to \infty$. In practice, we follow the usual convention by setting the weighting function to be $1 + y_{t\Delta}^2$ as in Hill and Peng (2014) and Horváth and Trapani (2016).

Remark 4.3. The second important component worth noticing is the use of the IV estimate $\tilde{\rho}$ here. Following Chan et al. (2012), the IV estimate

$$\tilde{\rho} = \sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta} y_{t\Delta}}{\sqrt{\delta + y_{(t-1)\Delta}^2}} / \left(\sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta}^2}{\sqrt{\delta + y_{(t-1)\Delta}^2}} \right)^{-1}
$$

is uniformly asymptotically normally distributed for both stationary and nonstationary $y_{t\Delta}$. Further, the IV estimate $\tilde{\rho}$ includes the Cauchy estimator (So and Shin, 1999) as
a special case \((\delta = 0)\), which is known to be asymptotically median-unbiased. This helps improve the finite sample performance of the test statistic which depends explicitly on the residuals.

Remark 4.4. The above test for coefficient constancy remains valid in the presence of correlation between the random coefficient and innovations. When the random coefficients are endogenous the quadratic covariation \(\langle B_u, B_\varepsilon \rangle_t = \int_0^t \gamma_s ds\) and the conditional variance of \(\tilde{\varepsilon}_t\) under the null is \(\text{Var}(\tilde{\varepsilon}_t|y_{(t-1)}\) = \(\sigma^2\), whereas under the alternative \(\text{Var}(\tilde{\varepsilon}_t|y_{(t-1)}\) = \(\tilde{\sigma}^2 + 2\gamma_t \tilde{\sigma} y_{(t-1)} + \sigma^2\). The test may therefore be interpreted as examining evidence for the presence of a relationship between \(\tilde{\varepsilon}_t^2\) and \(y_{(t-1)}^2\) – in other words, a test for conditional heteroscedasticity.

Theorem 4.2. In model (2.2), assume \(\tilde{\sigma}_0^2 > 0\). When \(T \to \infty\) and \(\Delta \to 0\), \(\tilde{\mu} \overset{p}{\to} \tilde{\mu}_0\). Additionally, if \(T \Delta^2 \to 0\), the asymptotic distribution of \(\tilde{\mu}\) is given by

\[
\sqrt{T} \left(\tilde{\mu} - \tilde{\mu}_0\right) \overset{L}{\to} N \left(0, V^{-1}\right), \tag{4.1}
\]

where

\[
V = \begin{cases}
E \left(\frac{y_t^2}{\sigma_0^2 y_t^2 + \tilde{\sigma}_0^2}\right), & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 < 0; \\
\tilde{\sigma}_0^{-2}, & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 \geq 0.
\end{cases}
\]

Remark 4.5. The asymptotics (4.1) hold regardless of the value of \(\tilde{\mu}_0 + \tilde{\sigma}_0^2/2\), which may be less than zero, equal zero, or greater than zero. By contrast, it is well-known that in the case of the pure AR(1) model, the asymptotic theory for the least squares estimator of the autoregressive coefficient depends critically on the true value of the coefficient. However, in the RCAR model asymptotic normality may hold in both the stationary and explosive cases under certain conditions, as discussed in Hwang and Basawa (2005). The above result reinforces this finding and extends applicability to the continuous-time random coefficient model examined here.

The asymptotic theory given in (4.1) suggests that consistent estimation of \(\tilde{\mu}\) requires \(T \to \infty\). In practical work, however, the time span is often short making large span asymptotics less relevant. The following theorem provides infill asymptotics for estimating \(\rho = \exp(\tilde{\mu} \Delta)\), which is useful for testing nonstationarity in a finite time span setting.

Theorem 4.3. In model (2.2), assume \(\tilde{\sigma}_0^2 > 0\). When \(T\) is fixed and \(\Delta \to 0\), \(\hat{\rho} \overset{p}{\to} \rho_0 = 1\) and the asymptotic distribution of \(\hat{\rho}\) is given by

\[
\frac{1}{\Delta} \left(\hat{\rho} - \rho_0\right) \overset{L}{\to} N \left(0, (TV)^{-1}\right). \tag{4.2}
\]
where
\[
\hat{\rho} = 1 + \frac{\hat{A}_N}{B_N} = \frac{\sum_{t=1}^{M \times N} y(t-1)\Delta y(t)\Delta}{\sum_{t=1}^{M \times N} \frac{y(t-1)\Delta}{\hat{\sigma}^2 y(t-1)\Delta + \hat{\sigma}^2}}.
\] (4.3)

Remark 4.6. Although the above result does not deliver a consistent estimate of \(\tilde{\mu} \) with a finite \(T \), the asymptotic theory in (4.2) shows that consistent estimation of \(\rho \) is possible when \(\Delta \to 0 \). This result motivates estimation of \(\beta_\kappa := \exp\{ (\tilde{\mu} + \tilde{\sigma}^2/2) \Delta \} \) and \(\beta_\phi := \exp\{ (\tilde{\mu} - \tilde{\sigma}^2/2) \Delta \} \) instead of the continuous time parameters \(\kappa \) and \(\phi \) when the time span of the data is short.

Proposition 4.1. For model (2.2) with \(T \) fixed and \(\Delta \to 0 \)

\[
\frac{1}{\Delta} \left(\hat{\beta}_\kappa - \beta_\kappa \right) \xrightarrow{L} \mathcal{N} \left(0, (TV)^{-1} \right), \quad \frac{1}{\Delta} \left(\hat{\beta}_\phi - \beta_\phi \right) \xrightarrow{L} \mathcal{N} \left(0, (TV)^{-1} \right).
\]

where
\[
\hat{\beta}_\kappa = \exp\left\{ \left(\tilde{\mu} + \frac{1}{2} \hat{\sigma}^2 \right) \Delta \right\} \quad \text{and} \quad \hat{\beta}_\phi = \exp\left\{ \left(\tilde{\mu} - \frac{1}{2} \hat{\sigma}^2 \right) \Delta \right\}.
\] (4.4)

Remark 4.7. To test different forms of unstable/explosive behaviour, we need to test whether \(\kappa = \tilde{\mu} + \tilde{\sigma}^2/2 = 0 \), or \(\tilde{\mu} = 0 \), or \(\phi = \tilde{\mu} - \tilde{\sigma}^2/2 = 0 \). Testing these restrictions corresponds to testing the hypotheses \(\beta_\kappa = 1 \), or \(\rho = 1 \), or \(\beta_\phi = 1 \). In the spirit of Theorem 4.3 and Proposition 4.1 we can construct the following test statistics and derive their asymptotic distributions as detailed below:

\[
t_\kappa = \left(\frac{1}{\Delta} \sum_{t=1}^{M \times N} \frac{y(t-1)\Delta \Delta}{\hat{\sigma}^2 y(t-1)\Delta + \hat{\sigma}^2} \right)^{1/2} \left(\hat{\beta}_\kappa - \beta_\kappa^0 \right) \xrightarrow{L} \mathcal{N}(0,1),
\] (4.5)

\[
t_\mu = \left(\frac{1}{\Delta} \sum_{t=1}^{M \times N} \frac{y(t-1)\Delta \Delta}{\hat{\sigma}^2 y(t-1)\Delta + \hat{\sigma}^2} \right)^{1/2} \left(\hat{\rho} - \rho_0 \right) \xrightarrow{L} \mathcal{N}(0,1),
\] (4.6)

\[
t_\phi = \left(\frac{1}{\Delta} \sum_{t=1}^{M \times N} \frac{y(t-1)\Delta \Delta}{\hat{\sigma}^2 y(t-1)\Delta + \hat{\sigma}^2} \right)^{1/2} \left(\hat{\beta}_\phi - \beta_\phi^0 \right) \xrightarrow{L} \mathcal{N}(0,1).
\] (4.7)

These three \(t \)-test statistics can be calculated sequentially and compared with the right-tailed critical value of the asymptotic distributions, giving a real-time testing strategy of empirical evidence of instability/explosiveness in the data. Accordingly, the origination and termination dates of different types of extreme behaviour may be estimated.
in the same fashion as Phillips et al. (2015a). More specifically, date estimates can be determined from first crossing times as follows

\[
\hat{r}_{iwe} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\kappa}(s) > Z_{0.95} \}, \quad \text{and} \quad \hat{r}_{iwe}^{if} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\kappa}(s) < Z_{0.95} \},
\]

\[
\hat{r}_{iwe}^{-} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\hat{\mu}}(s) > Z_{0.95} \}, \quad \text{and} \quad \hat{r}_{iwe}^{if} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\hat{\mu}}(s) < Z_{0.95} \},
\]

\[
\hat{r}_{iwe}^{-} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\phi}(s) > Z_{0.95} \}, \quad \text{and} \quad \hat{r}_{iwe}^{if} = \inf_{s \in [\hat{r}_{i-1}^{(we)} f, 1]} \{ s : t_{\phi}(s) < Z_{0.95} \},
\]

where: \(Z_{0.95} = 1.645 \) is the 95% critical value of the standard normal distribution; \(\hat{r}_{iwe}^{*} / \hat{r}_{iwe}^{*} / \hat{r}_{iwe}^{*} \) represent estimates of the origination date of the \(i \)th explosive period; and \(\hat{r}_{iwe}^{*} / \hat{r}_{iwe}^{*} / \hat{r}_{iwe}^{*} \) represent estimates of the termination date of the \(i \)th explosive period. To identify the first unstable/explosive period in the sample, a minimum window is needed to start the recursion. The time-stamping strategy used here is based on the standard normal distribution whereas the PWY and PSY algorithms rely on non-standard unit root and sup unit root distributions.

5 The Model with Endogeneity

This section extends the base model (2.3) by allowing for endogeneity, quantified by the correlation between the random coefficient and the equation innovation. In the discrete time literature Hwang and Basawa (1997, 1998) described this framework as a generalized random coefficient autoregressive model. With stationarity imposed they studied the local asymptotic normality of the maximum likelihood estimator and the weighted least squares estimator of the autoregressive coefficient. Zhao and Wang (2012) considered empirical likelihood estimation of the stationary model and proposed a likelihood ratio test for testing stationary/ergodicity. Lieberman and Phillips (2017b) studied the effects of endogeneity in a multivariate context and derived the asymptotic distribution for the non-linear least squares (NLLS) estimator for the autoregressive coefficient, showing that NLLS is inconsistent for the autoregressive coefficient under endogeneity. To address the inconsistency of NLLS, Lieberman and Phillips (2017a) proposed a non-linear instrumental variable technique and a GMM approach, establishing consistency and deriving the asymptotic distribution for the IV estimator of the autoregressive coefficient.

To incorporate endogeneity in a continuous time random coefficient setting, we rewrite
the model (2.3) as the following continuous time system
\[
\begin{align*}
 dy(t) &= y(t)d\tilde{Z}(t) + dZ(t), \quad y(0) = y_0, \\
 d\tilde{Z}(t) &= \tilde{\mu}dt + \tilde{\sigma}dB_u(t), \\
 dZ(t) &= \sigma dB_v(t),
\end{align*}
\]
(5.1)

where \((B_u, B_v)\) is two dimensional Brownian motion with covariance parameter \(\gamma\) so that the quadratic covariation process satisfies \(d\langle B_u, B_v \rangle_t = \gamma dt\). Then, \(d\langle \tilde{Z}, Z \rangle_t = \gamma \tilde{\sigma} \sigma dt := \omega dt\), where \(\omega = \gamma \tilde{\sigma} \sigma\) is the covariance parameter of \((\tilde{Z}, Z)\). According to Föllmer et al. (1994), the strong solution to this continuous system is
\[
y(t) = \exp\left(\tilde{Z}(t) - \frac{1}{2} \langle \tilde{Z} \rangle_t \right) \left\{ y(0) + \int_0^t \exp\left(- \frac{1}{2} \tilde{Z}(s) - \frac{1}{2} \langle \tilde{Z} \rangle_s \right) d\left(Z(s) - \langle \tilde{Z}, Z \rangle_s \right) \right\}
\]
(5.2)

\[
 = \exp\left(\left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) t + \tilde{\sigma} B_u(t) \right) y(0) + J(t),
\]

where
\[
 J(t) = \sigma \int_0^t \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t - s) + \tilde{\sigma} (B_u(t) - B_u(s)) \right\} dB_v(s)
\]
\[
 - \omega \int_0^t \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t - s) + \tilde{\sigma} (B_u(t) - B_u(s)) \right\} ds
\]
\[
 = K(t) - L(t).
\]

Compared to the model without endogeneity in (2.4), the dynamics of the process are now driven by the process \(J(t)\) instead of \(K(t)\). \(J(t)\) has two components, one being \(K(t)\) and the other depending on the covariance of the random coefficient and the innovation, \(\omega\). The model specified in the system (5.1) is the continuous time limit of the endogenous stochastic unit root (STUR) model of Lieberman and Phillips (2017b) and the covariance parameter \(\omega\) corresponds to the one-sided long-run covariance in the STUR model.

The following proposition shows that the given characterization of instability/explosiveness in the model without endogeneity remains valid for the model with endogeneity.

Proposition 5.1. The sample path characteristics of the process (5.2) may be classified into the following three types,

1. unstable: \(\kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 > 0\);
2. locally explosive: \(\tilde{\mu} > 0\);
3. explosive: \(\phi = \tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 > 0\).
The fact that sample path characteristics of (5.2) are unaffected by endogeneity may be explained intuitively by noting that the model (5.1) is observationally equivalent to the following continuous system
\[dy_t = \tilde{\mu}_t y_t dt + \sqrt{\tilde{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2} dB_v(t), \]
(5.3)
where \(B_v(t) \) is another standard Brownian motion in an expanded probability space. Note that when the variance of \(y_t \) goes to infinity as \(t \) increases, the dominant term in the diffusion function \(\tilde{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2 \) is \(\tilde{\sigma}^2 y_t^2 \), which explains why \(\tilde{\sigma}^2 \) is the key parameter in determining long-run volatility.

Remark 5.1. From the perspective of diffusion process asymptotics, the recurrence and mean reversion characterizations given in Figure 3 also remain valid. This robustness is evident by checking the limit of the scale index function:
\[p = \lim_{y \to \infty} v(y) = \lim_{y \to \infty} \frac{-2\tilde{\mu}y^2}{\sigma^2 + 2\omega y + \tilde{\sigma}^2 y^2} = -\frac{2\tilde{\mu}}{\tilde{\sigma}^2}, \]
which is apparently unaffected by endogeneity in the limit.

We can rewrite the discrete time model in AR(1) format as
\[y_{t\Delta} = \exp \left(\left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) \Delta + \tilde{\sigma} \sqrt{\Delta} u_t \right) y_{(t-1)\Delta} + J_{\Delta}(t) \]
(5.4)
where \(u_t \overset{i.i.d.}\sim N(0, 1) \), and
\[J_{t\Delta} = \sigma \int_{(t-1)\Delta}^{t\Delta} \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t\Delta - s) + \tilde{\sigma} (B_{u,t\Delta} - B_{u,s}) \right\} dB_{\varepsilon,s} \]
\[- \omega \int_{(t-1)\Delta}^{t\Delta} \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t\Delta - s) + \tilde{\sigma} (B_{u,t\Delta} - B_{u,s}) \right\} ds. \]

From earlier derivations we know that
\[E(J_{\Delta}(t)) = \frac{\omega}{\tilde{\mu}} (1 - \exp(\tilde{\mu} \Delta)) = -\omega \Delta + O(\Delta^2), \]
(5.5)
\[\text{Var}(J_{\Delta}(t)) = O(\Delta), \]
(5.6)
Therefore, when standardizing the model by the factor \(1/\sqrt{\Delta} \), the expectation of the correspondingly standardized error process \(J_{\Delta}(t)/\sqrt{\Delta} \) in (5.4) has order \(O(\sqrt{\Delta}) \) as \(\Delta \to 0 \). This means that under infill asymptotics we can consistently estimate the expectation of
the random coefficient, \(\rho_0 = E \rho t_\Delta = \exp(\bar{\mu} \Delta) \). This result is naturally achieved in the continuous time setup with infill asymptotics and contrasts with the inconsistency of least squares estimation in discrete time models with endogeneity (Lieberman and Phillips, 2017b).

As before, we continue to apply the two stage estimation procedure of Phillips and Yu (2009) to estimate the model under endogeneity. Note that the quadratic variation of \(y_t \) now satisfies

\[
\hat{\sigma}^2 = (\hat{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2) dt.
\]

In light of the argument of Remark 4.1 we cannot consistently estimate \(\omega \) and \(\sigma^2 \) in explosive cases under long-span sampling because the signal of \(y_t^2 \) is so strong that it drowns information in the linear and constant terms (i.e., \(2\omega y_t \)). However, infill asymptotics for \(\hat{\theta}^* := (\hat{\sigma}^2, \gamma, \sigma^2) \)' can be developed in the same way as before and the results are summarized in the following theorem.

Theorem 5.1. Assume \(\theta_0^* \in \text{Int}(\Theta^*) \) where \(\Theta^* \) is a compact set in \(R_+ \times [-1, 1] \times R_+ \). As \(T \) is fixed and \(\Delta \to 0 \), we have

\[
\frac{1}{\sqrt{\Delta}} \left(\hat{\theta} - \theta_0^* \right) \xrightarrow{d} \left(\sum_{n=1}^{N} \frac{\int_{(n-1)h}^{nh} \partial \hat{\sigma}^2(y_s; \theta_0^*) \cdot \partial \sigma^2(y_s; \theta_0^*) ds}{\int_{(n-1)h}^{nh} \sigma^4(y_s; \theta_0^*) ds} \right)^{-1} \left(\sum_{n=1}^{N} \int_{(n-1)h}^{nh} \frac{\partial \hat{\sigma}^2(y_s; \theta_0^*) \cdot \sigma^2(y_s; \theta_0^*) dB_s}{\int_{(n-1)h}^{nh} \sigma^4(y_s; \theta_0^*) ds} \right),
\]

where \(\hat{\sigma}^2(y_s; \theta_0^*) = \hat{\sigma}^2 y_t^2 + 2\omega y_t + \sigma_0^2 \) is the spot variance of \(y(t) \).

Remark 5.2. In principle at least, this limit theory enables us to construct a test for endogeneity based on the asymptotic distribution of \(\bar{\gamma} \). However, the limit theory above is hard to implement as this distribution is non-standard and non-pivotal and \(\bar{\gamma} \) is biased when the frequency is low. Instead, to test the most relevant hypothesis of interest \(H_0 : \gamma_0 = 0 \) we propose the likelihood ratio test based on the objective function \(Q_\Delta(\theta^*) \):

\[
LR = \Delta^{-1} (Q'_\Delta - Q_\Delta u) \sim \chi^2(1), \text{ under } H_0 : \gamma_0 = 0.
\]

For consistent estimation of \(\bar{\mu} \), as in the base model, we maximize the following approximated likelihood

\[
\ell_{ALF}(\bar{\mu}) = \sum_{t=1}^{M \times N} \frac{\bar{\mu} y(t-1) \Delta - y_t \Delta}{\hat{\sigma}^2 y(t-1) \Delta + 2\bar{\omega} y(t-1) \Delta + \sigma^2} - \Delta \sum_{t=1}^{M \times N} \frac{\bar{\mu}^2 y(t-1) \Delta}{\hat{\sigma}^2 y(t-1) \Delta + 2\bar{\omega} y(t-1) \Delta + \sigma^2},
\]

where
where \(\hat{\omega} = \hat{\gamma} \sqrt{\hat{\sigma}^2} \), which gives

\[
\hat{\mu} = \Delta^{-1} \frac{\hat{A}_N}{\hat{B}_N} = \Delta^{-1} \frac{\sum_{t=1}^{M \times N} y_{t-1}\Delta \left(y_t - y_{t-1}\Delta \right)}{\sum_{t=1}^{M \times N} \frac{\hat{\sigma}^2}{\hat{\sigma}^2} y_{t-1}\Delta + 2\hat{\omega}y_{t-1}\Delta + \hat{\sigma}^2}.
\] (5.10)

The following theorem provides asymptotic theory for \(\hat{\mu} \) and \(\hat{\rho} := \exp\left(\hat{\mu} \Delta \right) \).

Theorem 5.2. In model (5.1) assume \(\hat{\sigma}^2 > 0 \). When \(T \to \infty \) and \(\Delta \to 0 \), we have \(\hat{\mu} \overset{p}{\to} \mu_0 \). Additionally, if \(T\Delta^2 \to 0 \), we have,

\[
\sqrt{T} \left(\hat{\mu} - \mu_0 \right) \overset{L}{\to} \mathcal{N} \left(0, V^{-1} \right),
\] (5.11)

where

\[
V = \begin{cases}
E \left(\frac{y_t^2}{\hat{\sigma}_0^2 y_t^2 + 2\hat{\omega}y_t + \hat{\sigma}_0^2} \right) & \text{if } \kappa = -\frac{1}{2} \hat{\sigma}^2 < 0 \\
\hat{\sigma}_0^{-2} & \text{if } \kappa = -\frac{1}{2} \hat{\sigma}^2 \geq 0
\end{cases}
\]

Theorem 5.3. In model (5.1), assume \(\hat{\sigma}^2 > 0 \). When \(T \) is fixed and \(\Delta \to 0 \), we have \(\hat{\rho} \overset{p}{\to} \rho_0 \) and its asymptotic distribution is

\[
\frac{1}{\Delta} \left(\hat{\rho} - \rho_0 \right) \overset{L}{\to} \mathcal{N} \left(0, (TV)^{-1} \right),
\] (5.12)

where

\[
\hat{\rho} = 1 + \frac{\hat{A}_N}{\hat{B}_N} = \frac{\sum_{t=1}^{M \times N} \frac{y_{t-1}\Delta y_t}{\hat{\sigma}^2 y_{t-1}\Delta + 2\hat{\omega}y_{t-1}\Delta + \hat{\sigma}^2}}{\sum_{t=1}^{M \times N} \frac{y_{t-1}\Delta}{\hat{\sigma}^2 y_{t-1}\Delta + 2\hat{\omega}y_{t-1}\Delta + \hat{\sigma}^2}}.
\]

According to Theorems 5.2 and 5.3 the estimates \(\hat{\mu} \) and \(\hat{\rho} \) continue to have asymptotic normal distributions under infill asymptotics. This convenient feature allows us to apply the testing procedures proposed in the previous section after making a minor change in the variance of the limit distribution to accommodate endogeneity.

6 Simulations

This section reports the results of Monte Carlo simulations designed to evaluate the performance of the two-stage estimator. We also examine the finite sample adequacy of the asymptotic theory for the test statistics developed in Sections 4 and 5.
The simulations involved 10,000 replications of sample paths generated from model (2.2) under explosiveness with parameter values \(\tilde{\mu} = 1, \tilde{\sigma} = 1, \sigma = 1 \), and with initial condition \(y_0 = 10 \).\(^4\) Since \(\phi > 0 \) this generating process leads to explosiveness. In the first experiment, we set the time span \(T = 5 \), but varied \(\Delta \) from \(1/252 \) to \(1/19656 \) and varied \(M \) from 21, 63 to 252. \(\Delta = 1/252 \) corresponds to daily observations whereas \(\Delta = 1/19656 \) corresponds to 5-minute (high frequency) observations. When \(\Delta = 1/252, M = 21, 63 \) and 252 implies a corresponding block size that is monthly, quarterly, and annual, respectively. When \(\Delta = 1/19656 \), we report the estimation bias and standard errors by holding the number of observations for calculating the realized volatilities \((M) \) constant as in a daily frequency. In panel A of Table 2, we report the bias and the standard errors of the two-stage estimates when there is no endogeneity in the model, i.e. when \(\gamma = 0 \), and in panel B, we report the corresponding results for the model with endogeneity, specifically with \(\gamma = 0.8 \). The bias and the standard errors are computed using 5,000 replications.

Table 2: Bias and standard errors of the two-stage estimates for different \(\Delta \) and \(M \) and a fixed \(T (= 5) \). The parameter values are \(\tilde{\mu} = 1, \tilde{\sigma}^2 = 1, \sigma^2 = 1. \ y_0 = 10. \)

<table>
<thead>
<tr>
<th>Panel A</th>
<th>(\Delta = 1/252)</th>
<th>(\Delta = 1/19656)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M = 21)</td>
<td>(M = 63)</td>
</tr>
<tr>
<td>(\tilde{\mu})</td>
<td>0.0328, 0.4942</td>
<td>-0.0347, 0.4946</td>
</tr>
<tr>
<td>(\tilde{\sigma}^2)</td>
<td>-0.0093, 0.0471</td>
<td>-0.0135, 0.0493</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>4.6415, 13.0303</td>
<td>6.1285, 18.5101</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-0.0375, 0.4952</td>
<td>-0.0414, 0.4958</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-1.3e-04, 0.0020</td>
<td>-1.4e-04, 0.0020</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.0282, 0.4943</td>
<td>-0.0279, 0.4945</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>(\Delta = 1/252)</th>
<th>(\Delta = 1/19656)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M = 21)</td>
<td>(M = 63)</td>
</tr>
<tr>
<td>(\tilde{\mu})</td>
<td>-0.0457, 0.5213</td>
<td>-0.0511, 0.5214</td>
</tr>
<tr>
<td>(\tilde{\sigma}^2)</td>
<td>0.0326, 0.0974</td>
<td>0.0350, 0.1119</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>19.2645, 45.3508</td>
<td>28.3990, 76.9436</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.4179, 0.6293</td>
<td>-0.4519, 0.6521</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-0.0324, 0.5208</td>
<td>-0.0336, 0.5199</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-1.9e-04, 0.0020</td>
<td>-2.0e-04, 0.0020</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.0650, 0.5262</td>
<td>-0.0686, 0.5289</td>
</tr>
</tbody>
</table>

First, from Table 2 it is apparent that when the sampling frequency increases the parameters \(\tilde{\sigma}^2, \gamma \) and \(\sigma^2 \) are all better estimated in terms of bias and standard error. On

\(^4\)We also report bias and standard errors under stationary, unstable, and locally explosive cases in Appendix B

23
the other hand, there is little improvement in the estimation of \(\tilde{\mu} \) because the time span does not change. This finding corroborates the asymptotic theory for \(\tilde{\mu} \) given in Theorem 4.2 and also supports results found in Yu (2012). Furthermore, due to the difference in the convergence rates shown in Theorems 4.1 and 4.2, the bias and the standard errors of \(\hat{\kappa} \) and \(\hat{\phi} \) are mainly determined by those of \(\tilde{\mu} \), which explains why estimation performance of \(\hat{\kappa} \) and \(\hat{\phi} \) does not improve as sampling frequency increases. Finally, bias and standard errors both appear reasonably robust across different values of \(M \).

In the second experiment, we fix \(\Delta = 1/252 \), but vary \(T \) from 30 to 60 and \(M \) from 21, 63 to 252. In Panel A of Table 3, we report the bias and the standard errors of the two-stage estimators across 5,000 simulated samples for the model without endogeneity. The same experiment is repeated for the model with endogeneity and the results are reported in Panel B. Several findings are evident from Table 3. First, as the time span enlarges, sharp reductions occur in the bias and standard error of \(\tilde{\mu} \). Combined with the results of Table 2, this finding suggests that time span, not sampling frequency, is the primary influence on performance of \(\tilde{\mu} \). Second, the bias and standard errors of \(\tilde{\sigma}^2 \), \(\tilde{\gamma} \) and \(\tilde{\sigma}^2 \) do not change significantly as \(T \) increases. Finally, both bias and standard errors are again robust with respect to \(M \).

Table 3: Bias and standard error of the two-stage estimates for different \(T \) and \(M \) and fixed \(\Delta (= 1/252) \). The parameter values are \(\tilde{\mu} = 1 \), \(\tilde{\sigma}^2 = 1 \), \(\sigma^2 = 1 \). \(y_0 = 10 \).

<table>
<thead>
<tr>
<th>Panel A</th>
<th>(T = 30)</th>
<th></th>
<th>(T = 60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 21)</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>(\tilde{\mu})</td>
<td>-0.0058</td>
<td>0.1861</td>
<td>-0.0060</td>
<td>0.1861</td>
</tr>
<tr>
<td>(\tilde{\sigma}^2)</td>
<td>-0.0031</td>
<td>0.0175</td>
<td>-0.0066</td>
<td>0.0179</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>3.8582</td>
<td>11.6119</td>
<td>5.1172</td>
<td>16.6821</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-0.0073</td>
<td>0.1864</td>
<td>-0.0093</td>
<td>0.1862</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-2.3e-05</td>
<td>7.4e-04</td>
<td>-2.4e-05</td>
<td>7.4e-04</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.0042</td>
<td>0.1862</td>
<td>-0.0027</td>
<td>0.1864</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>(T = 30)</th>
<th></th>
<th>(T = 60)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 21)</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>(\tilde{\mu})</td>
<td>-9.7e-04</td>
<td>0.1796</td>
<td>-0.0013</td>
<td>0.1796</td>
</tr>
<tr>
<td>(\tilde{\sigma}^2)</td>
<td>-1.6e-04</td>
<td>0.0188</td>
<td>-0.0035</td>
<td>0.0193</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>12.4166</td>
<td>32.3889</td>
<td>53.4253</td>
<td>81.2221</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-0.2879</td>
<td>0.5323</td>
<td>-0.3136</td>
<td>0.5496</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-0.0010</td>
<td>0.1799</td>
<td>-0.0030</td>
<td>0.1798</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-3.6e-06</td>
<td>7.2e-04</td>
<td>5.0e-06</td>
<td>7.2e-04</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-8.9e-04</td>
<td>0.1797</td>
<td>4.2e-04</td>
<td>0.1800</td>
</tr>
</tbody>
</table>

From Table 2 and Table 3, it is evident that the proposed two-stage method is ef-
fective in estimating \(\tilde{\mu}, \gamma, \tilde{\sigma}^2, \kappa, \rho, \phi\) even in the presence of endogeneity. While the estimate of \(\tilde{\sigma}^2\) is less satisfactory, this outcome is unsurprising because when \(\kappa > 0\), \(y_t^2\) grows exponentially with \(t\). Hence, estimates of \(\gamma\) and \(\tilde{\sigma}^2\) are dominated by the component \(\tilde{\sigma}^2 y_t^2\) in \(\tilde{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2\) when \(t\) is large. More importantly, the three forms of explosive behaviour do not depend on \(\gamma\) and \(\tilde{\sigma}^2\) in that case. Hence, it is expected that the performance of \(\hat{\gamma}\) and \(\hat{\tilde{\sigma}}^2\) will have little impact on the performance of the proposed \(t\)-tests and the time-stamping strategy.

The third experiment is designed to evaluate performance of the test statistics proposed in Remark 4.7. To do so, we simulate 5,000 sample paths from model (2.2) and (5.1) with \(\gamma = 0.8\), and calculate the power and size of the three tests. We set the nominal size to 5%, \(M = 21\) and \(\Delta = 1/252\), but vary the time span \(T\). Results for power and size are reported in Table 4.

Table 4: Power and size of the \(t\) tests under different forms of unstable/explosive behaviour.

<table>
<thead>
<tr>
<th>(T)</th>
<th>(\kappa)</th>
<th>(\tilde{\mu})</th>
<th>(\gamma)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0388</td>
<td>0.2564</td>
<td>0.6580</td>
<td>0.9948</td>
</tr>
<tr>
<td>10</td>
<td>0.0342</td>
<td>0.3304</td>
<td>0.8066</td>
<td>1.0000</td>
</tr>
<tr>
<td>15</td>
<td>0.0366</td>
<td>0.4094</td>
<td>0.8946</td>
<td>1.0000</td>
</tr>
<tr>
<td>30</td>
<td>0.0384</td>
<td>0.5804</td>
<td>0.9840</td>
<td>1.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.0448</td>
<td>0.2608</td>
<td>0.6340</td>
<td>0.9860</td>
</tr>
<tr>
<td>10</td>
<td>0.0410</td>
<td>0.3834</td>
<td>0.8898</td>
<td>0.9998</td>
</tr>
<tr>
<td>15</td>
<td>0.0414</td>
<td>0.5830</td>
<td>0.9750</td>
<td>1.0000</td>
</tr>
<tr>
<td>30</td>
<td>0.0404</td>
<td>0.8382</td>
<td>0.9994</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

The simulation results show that size distortion of the proposed tests for different types of explosive behaviour are very small, and local power rises rapidly as the sample size increases and for greater departures of the true parameters from the null.

Next, we check size and power of the tests under endogeneity. Simulations are generated by setting \(\tilde{\sigma}^2 = 1\) and \(\sigma^2 = 100\) with \(y_0 = 10\) under the sampling scheme \(\Delta = 1/252\), \(M = 21\) and \(T = \{5, 10, 15, 30\}\). Sample paths are generated in 1000 replications for parameter values \(\tilde{\mu} = \{-1, -0.5, 0.5, 1\}\) and for correlation coefficients \(\gamma = \{0, 0.04, 0.08, 0.4, 0.8\}\). The results in Table 5 show that size distortion is very small under all parameter scenarios and that test power grows more slowly as the process becomes more unstable. This phenomenon is due to the structure of the quadratic variation \(\tilde{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2\) under endogeneity. When the process \(y_t\) is more unstable, the signal
from y_t^2 is stronger and a much larger value of ω is needed for the component $2\omega y_t$ in the quadratic variation to enhance the probability of rejecting the null. Also, as expected, the power of the test increases with the increase in sample size.

Table 5: Power and size of the LR test for endogeneity.

<table>
<thead>
<tr>
<th>T</th>
<th>Stationary ($\tilde{\mu} = -1$)</th>
<th>Unstable ($\tilde{\mu} = -0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma = 0$</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.0470</td>
<td>0.0780</td>
</tr>
<tr>
<td>10</td>
<td>0.0440</td>
<td>0.1290</td>
</tr>
<tr>
<td>15</td>
<td>0.0540</td>
<td>0.1960</td>
</tr>
<tr>
<td>30</td>
<td>0.0490</td>
<td>0.3820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>Locally Explosive ($\tilde{\mu} = 0.5$)</th>
<th>Explosive ($\tilde{\mu} = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma = 0$</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.0600</td>
<td>0.0880</td>
</tr>
<tr>
<td>10</td>
<td>0.0460</td>
<td>0.1120</td>
</tr>
<tr>
<td>15</td>
<td>0.0540</td>
<td>0.1210</td>
</tr>
<tr>
<td>30</td>
<td>0.0520</td>
<td>0.1910</td>
</tr>
</tbody>
</table>

The final experiment checks performance of the proposed tests of coefficient constancy, i.e. $H_0 : \tilde{\sigma}^2 = 0$. To do so, we simulate 10,000 sample paths from model (5.1) with different parameter values to cover the various explosive scenarios. Both size and power are calculated. More specifically, we vary $\tilde{\mu}$ from -0.1 to 0.1, $\tilde{\sigma}$ from 0 to 0.2 and $\gamma \in \{0, 0.8\}$ holding $\sigma = 1$, which covers all explosive scenarios. In these experiments, we set nominal size to 5%, $M = 21$ and $\Delta = 1/252$, but vary the time span T to control for sample sizes. Test size and power are reported in Table 6.

Table 6: Power and size of the modified LBI-test for different null models.

<table>
<thead>
<tr>
<th>T</th>
<th>$\tilde{\mu} = -0.1$</th>
<th>$\tilde{\mu} = 0$</th>
<th>$\tilde{\mu} = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tilde{\sigma} = 0$</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>Panel A: $\gamma = 0$</td>
<td>5</td>
<td>0.0490</td>
<td>0.1727</td>
</tr>
<tr>
<td>10</td>
<td>0.0472</td>
<td>0.2845</td>
<td>0.9929</td>
</tr>
<tr>
<td>15</td>
<td>0.0489</td>
<td>0.3449</td>
<td>0.9980</td>
</tr>
<tr>
<td>30</td>
<td>0.0467</td>
<td>0.3908</td>
<td>0.9998</td>
</tr>
</tbody>
</table>

Panel B: $\gamma = 0.8$	5	0.0490	0.5755	0.9435	0.9989	0.0468	0.4338	0.9134	0.9990	0.0501	0.7190	0.9499	0.9989
10	0.0472	0.9262	0.9993	1.0000	0.0495	0.7996	0.9980	1.0000	0.0497	0.9819	0.9995	1.0000	
15	0.0489	0.9861	1.0000	1.0000	0.0458	0.9438	0.9998	1.0000	0.0457	0.9993	1.0000	1.0000	
30	0.0467	0.9895	0.9982	0.9990	0.0472	0.9968	0.9973	0.9975	0.0534	1.0000	0.9996	0.9996	

We also plot the power function of the above tests under different sample sizes in Figure 5, and the performance of the tests can be observed directly in these figures.
Figure 5: Power functions of the tests.
7 Empirical Studies

7.1 Daily data

For practical illustration of our methods with real data, we first used daily S&P 500 real prices over January 2, 1964 to December 31, 2015. Raw data were processed so that each month contained exactly 21 observations, thereby requiring some interpolation and deletion. With this preprocessing, the data amounted to 52-years of the daily S&P 500 real prices with 252 data points within each year and 21 data points within each month. We then set $\Delta = 1/252$, $M = 21$, and $T = 52$ in estimation and testing.

We first applied our estimation, testing, and time-stamping strategies to S&P 500 real prices based on the model with no endogeneity. Following PWY (2011), the initial window is taken as the first 5-year segment of the full sample. For comparison purposes, we also implement the BADF test of PWY and the BSADF test of PSY. The empirical results are shown in Figure 6, where we plot the test statistic sequences under the three forms of explosiveness and the test statistic sequences under the assumption of time-invariant coefficients. We also plot the 95% critical values and the data in each panel.

The last panel in Figure 6 plots the recursive test statistic sequence for testing a time-invariant autoregressive coefficient. The test results suggest that over the initial period of observation the data are well described by a model without time varying coefficients. The test statistic rises as the time period expands and crosses the test critical value in the early 1980s, suggesting mild evidence for time varying coefficients over the 1980s and into the 1990s. Evidence for time variation becomes much stronger from January 1997. This dating coincides well with the estimated origination dates of the three forms of explosive behaviour indicated by the other three panels in Figure 6. For example, the first panel in Figure 6 indicates that real stock prices are not unstable or explosive over the period from January 1964 to January 1997, at which point unstable behaviour is detected which continues until the end of the sample (with a minor break in February 2009). The second panel in Figure 6 indicates that the real prices are not locally explosive between January 1964 to May 1997, at which point locally explosive (submartingale) behaviour is detected. This behaviour is interrupted 3 times over the succeeding period to the end of the sample. Interestingly, three periods of major price escalation in the sample (namely, the second half of 1990s, the pre global financial crisis period, the recovery from the global financial crisis period, the recovery from the global financial crisis period)

\footnote{We used model (2.3) largely because the bias in estimation of ω is relatively large in long-span, low-frequency samples and the bias becomes severe when the process is explosive (c.f., Lieberman and Phillips (2017c)). The methods of the present paper are more relevant in models without endogeneity when high-frequency data are unavailable.}
financial crisis) are all deemed to have local explosiveness which seems to be a reasonable empirical finding. The third panel in Figure 6 indicates that the real price index does not experience explosive behaviour between January 1964 and June 1997, at which point explosive behaviour is detected. Explosive behaviour then lasts for a few years and ends in July 2001, corresponding to the termination of the tech bubble. This panel interestingly suggests a further explosive episode starting in June 2014 and continuing to the end of the sample period. These time horizons for different types of unstable and explosive behaviour are summarized in Table 7.

Table 7: Time Horizons of Unstable and Explosive Episodes Detected by Random Coefficient Autoregressive Models assuming No Endogeneity.

<table>
<thead>
<tr>
<th>Unstable</th>
<th>Locally Explosive</th>
<th>Explosive</th>
</tr>
</thead>
</table>

For comparison purposes, Figure 7 plots the recursive BADF statistic (used in PWY),
the recursive BSADF statistic (used in PSY), and corresponding 95% critical values together with the sample data in each panel. It is clear that both PWY and PSY tests identify explosive behaviour in the second half of the 1990s earlier than the method proposed in the present paper. This early origination date identification is achieved by using a more restrictive reduced form autoregressive model. Interestingly, the PSY test recursion indicates two similar pronounced periods of explosive behaviour, one in the second half of the 1990s and the other at the end of the sample, both matching those identified by methods of the present paper using a more complex modeling framework.

Figure 7: Date-stamping Explosive Periods in the S&P500 Real Price Index with Fixed Coefficient Model.

Figure 8: Date-stamping Explosive Periods in the S&P500 Real Price Index with Time-varying Coefficient Model with Endogeneity.
To address the possible presence of endogeneity, we estimate the more general model in which endogeneity effects are permitted. The results are summarized by the recursions plotted in Figure 8. The period preceding the black solid line in this Figure may be ignored in the analysis because this period is tested to have a fixed autoregressive coefficient for which there is necessarily no endogeneity. First, from the test for endogeneity, it is apparent that the null of exogeneity is rejected almost everywhere throughout the entire sample period, confirming that endogeneity is important in the generating mechanism for this data. From the plotted realized variance graphic in Figure 8 it is apparent that the rejection of exogeneity is closely associated with the behaviour of the quadratic variation of the process. This is explained by the fact that the likelihood ratio statistic is based on an objective function that is constructed using a central limit theorem (CLT) for the realized variance time series. Therefore, the test statistic for endogeneity captures differences in the realized variance estimates using different models, as is shown in Figure 9. Further, from the date calculations shown in Table 8 the horizons of instability and local explosiveness are almost identical to those estimated from the model without endogeneity, which shows the robustness of the empirical results obtained from the fitted model without endogeneity. However, empirical evidence for explosiveness disappears in the fitted model where endogeneity effects are incorporated in the autoregressive response mechanism. These findings indicate that endogeneity feedbacks in the random coefficient autoregressive model framework can play an important role in assessing evidence for various types of instability and explosiveness in the data.

Table 8: Horizons of Unstable and Explosive Behaviour Detected by Random Coefficient Autoregressive Models with Endogeneity.

<table>
<thead>
<tr>
<th>Unstable</th>
<th>Locally Explosive</th>
<th>Explosive</th>
</tr>
</thead>
</table>

7.2 Intra-day data

To further assess evidence for endogeneity and to reduce bias in the estimation of γ, we estimate the same model using 5-minute high-frequency data for S&P 500 real prices over the period from November 1, 1997 to October 31, 2013. Use of this high frequency intra-day data leads to a substantial increase in sample size, accords more closely with infill
asymptotic theory, but has the limitation that the model itself abstracts from possible intra-day effects that are known to be present in ultra high frequency data. On the other hand, use of 5-minute data (rather than even higher frequency observations) helps to mitigate some of these intra-day effects and gives the benefit of bias reduction in estimation of the correlation between the equation errors and the random autoregressive coefficient, thereby improving estimation of the degree of endogeneity in the random coefficient driver variables.

A similar preprocessing procedure to that used earlier gives 16-years of S&P 500 real prices with 252 data points within each year, 21 data points within each month and 78 data points within each day (6.5 trading hours per trading day). The corresponding settings in the model for this data configuration are $\Delta = 1/19656$, $M = 1638$, and $T = 16$ (with 192 months in total). The model is fitted recursively with high frequency data in this framework allowing for possible endogeneity with an initial window size of 5 years. The empirical results are summarized in Figure 10 on monthly basis.

The recursive test statistic graphics in Figure 10 indicate that, over this sample period and allowing for high frequency fluctuations, the data are unstable but not locally explosive or explosive. Based on the simulation findings in the previous section, estimates of the endogeneity parameter γ can be expected to have reasonably small bias at this
frequency and the t-tests to have good size and power. From the second panel in Figure 10, the t-statistic test for endogeneity always exceeds the 5% critical value of the χ^2 distribution, which reinforces from the 5-minute high-frequency data the evidence in support of endogenous effects on the autoregressive coefficient found in the daily-frequency sample.

8 Summary and Conclusions

This paper introduces a continuous time model for financial data where the persistence parameter is allowed to be random and time varying. The model has an analytical solution and an exact discrete time representation which make analysis convenient for studying the properties of the system that are associated with extreme sample path behavior. The discrete time model relates to some models already in the literature, including the stochastic unit root model (Granger and Swanson (1997); Lieberman and Phillips (2014); Lieberman and Phillips (2017b)) and the near-explosive random coefficient model of Banerjee et al. (2017). The statistical properties of our model reveal three different forms of potential extreme behaviour in generated sample paths: instability, local explosiveness, and explosiveness. These forms of extreme behaviour depend directly on the values of model parameters, including the possible presence of endogeneity in the random autoregressive coefficient.

A novel two-stage estimation method that relies on empirical quadratic variation is developed to estimate the model parameters. Limit theory is developed using an infill asymptotic scheme that provides a convenient basis for testing parameter constancy and the various forms of extreme sample path behaviour. The test statistics all have asymptotically pivotal standard normal distributions which makes implementation of the tests straightforward in practical work. Similar to other recent work in the literature on bubbles, a time-stamping strategy is proposed to detect origination and termination dates of
extreme behavior.

In an empirical application to daily S&P 500 real prices between January 2, 1964 and December 31, 2015. Strong evidence against parameter constancy is found from early 1980 onwards and this evidence strengthens after July 1997, leading to a finding of long durations of parameter instability in the model. Three periods of explosive instability in the data match well with observed periods of major price escalation in the data and these largely overlap with the periods of price exuberance identified in earlier work. Tests for endogeneity in these data provide strong evidence in support of endogenous feedbacks in the random coefficient model framework that materially influence quadratic variation and hence recursive estimates of realized variation in the data. The empirical findings of extreme sample path behaviour in real S&P 500 stock prices are broadly in line with the conclusions of other recent work on stock price exuberance but now provide new evidence against parameter constancy and in support of the role of endogenous feedbacks that influence autoregressive behaviour and the time forms of extreme sample paths.

A Appendix

The proofs of Theorem 4.1, 5.1 and Corollary 4.1 follow directly from Phillips and Yu (2009) and are omitted.

A.1 Proof of Theorem 4.2

Proof. To show the consistency of \(\hat{\mu} \), by (2.8) we have

\[
A_N = \sum_{t=1}^{M \times N} \frac{y(t-1)\Delta (y_t - y(t-1)\Delta)}{\tilde{\sigma}^2 y_t^2 (t-1)\Delta + \sigma^2} = \sum_{t=1}^{M \times N} \frac{y_t^2 (t-1)\Delta (\rho \Delta - 1)}{\tilde{\sigma}^2 y_t^2 (t-1)\Delta + \sigma^2} + \sigma \sum_{t=1}^{M \times N} \frac{y(t-1)\Delta \eta_t \Delta}{\tilde{\sigma}^2 y_t^2 (t-1)\Delta + \sigma^2}.
\]

Note that

\[
\rho \Delta - 1 = \exp\{\phi \Delta + \tilde{\sigma} \sqrt{\Delta} u_t \Delta\} - 1 = \phi \Delta + \frac{1}{2} \tilde{\sigma}^2 u_t^2 \Delta + \tilde{\sigma} \sqrt{\Delta} u_t \Delta + o(\Delta).
\]

Then

\[
A_N = \tilde{\mu} \Delta B_N + A_N(1) + A_N(2) + A_N(3) + o(T),
\]
(A.1)
where
\[A_N(1) \equiv \frac{\Delta}{2} \sigma^2 \sum_{t=1}^{M \times N} y_{(t-1)\Delta}^2 \frac{u_{t\Delta}^2 - 1}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2}, \]
\[A_N(2) \equiv \tilde{\sigma} \sqrt{\Delta} \sum_{t=1}^{M \times N} y_{(t-1)\Delta}^2 \frac{u_{t\Delta}}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2}, \]
\[A_N(3) \equiv \sigma \sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta} \eta_{t\Delta}}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2}. \]

By independence of \(B_u \) and \(B_e \), we know that \((u_{t\Delta}, \eta_{t\Delta})\) is independent of \(y_{(t-1)\Delta} \). This implies that
\[EA_N(1) = EA_N(2) = EA_N(3) = 0. \] (A.2)

Furthermore, we have
\[EA_N^2(1) = \frac{\Delta^2}{4} \tilde{\sigma}^4 \sum_{t=1}^{M \times N} E \left(u_{t\Delta}^2 - 1 \right)^2 E \left[\frac{y_{(t-1)\Delta}^2}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \right]^2 \sim O(T\Delta), \] (A.3)
\[EA_N^2(2) = \tilde{\sigma}^2 \Delta \sum_{t=1}^{M \times N} E \left(u_{t\Delta}^2 \right) E \left[\frac{y_{(t-1)\Delta}}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \right]^2 \sim O(T) \] (A.4)
\[EA_N^2(3) = \sigma^2 \sum_{t=1}^{M \times N} E \left(y_{t\Delta}^2 \right) E \left[\frac{y_{(t-1)\Delta}}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \right]^2 \sim o(T), \] (A.5)
\[EB_N^2 = E \left[\sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta}^2}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \right]^2 \sim O \left(\frac{T^2}{\Delta^2} \right). \] (A.6)

Therefore, as \(\Delta \to 0 \) and \(T \to \infty \),
\[\tilde{\mu} = \Delta^{-1} \frac{A_N}{B_N} = \tilde{\mu}_0 + \frac{A_N(1)}{\Delta \cdot B_N} + \frac{A_N(2)}{\Delta \cdot B_N} + \frac{A_N(3)}{\Delta \cdot B_N} + o_p(1) = \tilde{\mu}_0 + O \left(\frac{1}{\sqrt{T}} \right) \xrightarrow{p} \tilde{\mu}_0. \]

From the proof of consistency, we know that
\[\sqrt{T} \left(\tilde{\mu} - \tilde{\mu}_0 \right) = \frac{\sqrt{T} A_N(2)}{\Delta \cdot B_N} + \frac{\sqrt{T} A_N(3)}{\Delta \cdot B_N} + O(\sqrt{\Delta}) = \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \frac{\tilde{\sigma} y_{(t-1)\Delta}^2 u_{t\Delta}}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} + o_p(1). \]

Note that \(\frac{y_{(t-1)\Delta}^2}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \) is bounded above by \(\tilde{\sigma}^{-2} \). By the ergodic theorem, we know
\[\frac{1}{MN} \sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta}^2}{\sigma^2 y_{(t-1)\Delta}^2 + \sigma^2} \xrightarrow{a.s.} V, \]
where

\[
V = \begin{cases}
E \left(\frac{y_t^2}{\sigma^2 y_t^2 + \sigma^2} \right), & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 < 0; \\
\tilde{\sigma}^{-2}, & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 \geq 0.
\end{cases}
\]

Further, denote

\[
\xi_t := \frac{\tilde{\sigma} y_t^2 (t-1) \Delta u_t \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2},
\]

and observe that \(\xi_t\) is a martingale difference sequence with respect to the filtration \(\mathcal{F}_t := \sigma(B_u(t), B_\varepsilon(t) : t \geq 0)\) as

\[
E (\xi_t | \mathcal{F}_{t-1}) = E \left(\frac{\tilde{\sigma} y_t^2 (t-1) \Delta u_t \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2} \right) = \frac{\tilde{\sigma} y_t^2 (t-1) \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2} E \left(u_t \Delta | \mathcal{F}_{t-1} \right) = 0.
\]

To apply the martingale CLT, we check the stability condition and the Lindeberg condition. First, for the stability condition, the conditional variance of the standardized martingale is

\[
\left\langle \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \xi_t \right\rangle = \frac{1}{MN} \sum_{t=1}^{M \times N} E (\xi_t^2 | \mathcal{F}_{t-1}) = \frac{1}{MN} \sum_{t=1}^{M \times N} E \left(\frac{y_t^2 (t-1) \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2} \right) \mathcal{F}_{t-1} \right) \overset{a.s.}{\to} V.
\]

For the Lindeberg condition, we have for any \(\delta > 0\),

\[
\frac{1}{MN} \sum_{t=1}^{M \times N} E \left\{ \xi_t^2 1 \left(|\xi_t| > \sqrt{MN} \delta \right) \right\} \mathcal{F}_{t-1} \right) \\
= \frac{1}{MN} \sum_{t=1}^{M \times N} E \left\{ \xi_t^2 1 \left(\left(\frac{\tilde{\sigma} y_t^2 (t-1) \Delta u_t \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2} \right)^2 > MN \delta^2 \right) \right\} \mathcal{F}_{t-1} \right) \\
\leq E \left\{ \xi_t^2 1 \left(\frac{\tilde{\sigma}^2 y_t^2 (t-1) \Delta u_t \Delta}{\tilde{\sigma}^2 y_t^2 (t-1) \Delta + \sigma^2} \right)^2 > MN \delta^2 \right\} \mathcal{F}_{t-1} \right) \\
\to 0,
\]

where the limit result comes from the fact that \(u_t^2 \Delta\) is integrable and \(MN \to \infty\). The martingale CLT follows and so as \(T \to \infty\),

\[
\sqrt{T} \left(\hat{\mu} - \tilde{\mu}_0 \right) \overset{L}{\to} \mathcal{N} \left(0, V^{-1} \right).
\]

\[
\square
\]
A.2 Proof of Theorem 4.3

Proof. Similar to the previous proof, by equation (2.10) and the consistency of \(\hat{\theta} \), we have

\[
\hat{\rho} = \rho + \frac{\sum_{t=1}^{T/\Delta} y_{t(1)\Delta}(y_t - \rho y_{t(1)\Delta})}{\sum_{t=1}^{T/\Delta} \frac{y_t^2}{\hat{\sigma}^2 y_{t(1)\Delta}^2 + \sigma^2}} \quad (A.7)
\]

Note that

\[
\rho_{t\Delta} - \rho = \exp\{\phi \Delta + \tilde{\sigma} \sqrt{\Delta} u_{t\Delta}\} - \exp\{\tilde{\mu} \Delta\} = \phi \Delta - \tilde{\mu} \Delta + \frac{1}{2} \tilde{\sigma}^2 (u_{t\Delta}^2 - 1) \Delta + \tilde{\sigma} \sqrt{\Delta} u_{t\Delta} + o(\Delta) \quad (A.9)
\]

which leads to the decomposition

\[
1 = \frac{1}{\Delta} (\hat{\rho} - \rho) = \frac{A_N(1)}{\Delta B_N} + \frac{A_N(2)}{\Delta^2 B_N} + \frac{A_N(3)}{\Delta^2 B_N} + o(\Delta^{-1} B_N^{-1}) \quad (A.10)
\]

where the quantities \(A_N(\cdot) \) are defined in the proof of Theorem 4.2.

By the ergodic theorem

\[
\frac{\Delta}{T} B_N \rightarrow \sum_{t=1}^{T/\Delta} \frac{y_{t(1)\Delta}^2}{\hat{\sigma}^2 y_{t(1)\Delta}^2 + \sigma^2} \xrightarrow{a.s.} V, \text{ i.e. } \Delta B_N \xrightarrow{a.s.} TV, \quad (A.11)
\]

where

\[
V = \begin{cases}
E \left(\frac{y_t^2}{\hat{\sigma}^2 y_{t(1)\Delta}^2 + \sigma^2} \right), & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 < 0; \\
\tilde{\sigma}^{-2}, & \text{if } \kappa = \tilde{\mu} + \frac{1}{2} \tilde{\sigma}^2 \geq 0.
\end{cases}
\]

Further, from the previous proof, we know by the martingale CLT,

\[
T^{-1/2} A_N(2) = \tilde{\sigma} \sqrt{\frac{\Delta}{T} \sum_{t=1}^{T/\Delta} \frac{y_{t(1)\Delta}^2 u_{t\Delta}}{\hat{\sigma}^2 y_{t(1)\Delta}^2 + \sigma^2}} \xrightarrow{L} \mathcal{N}(0, V), \quad (A.12)
\]

when \(\Delta \to 0 \). This is equivalent to \(A_N(2) \xrightarrow{L} \mathcal{N}(0, TV) \). Combining these results gives

\[
\frac{1}{\Delta} (\hat{\rho} - \rho) = \frac{A_N(2)}{\Delta B_N} + o_p(1) \xrightarrow{L} \mathcal{N}(0, (TV)^{-1}).
\]
A.3 Proof of Proposition 4.1

Proof. Under the assumption that $T \to \infty$ and $\Delta \to 0$ with $T\Delta \to 0$, we have

$$
(\hat{\beta}_n - \beta_n) = \exp \left(\hat{\mu}_\Delta + \hat{\sigma}^2 \Delta \right) - \exp \left(\hat{\mu}_\Delta + \hat{\sigma}^2 \Delta \right) = \left(\hat{\mu}_\Delta - \hat{\mu}_\Delta \right) + \frac{1}{2} \left(\hat{\sigma}^2 \Delta - \hat{\sigma}^2 \Delta \right) + O(\Delta^2)
$$

$$
= \left(\hat{\mu}_\Delta - \hat{\mu}_\Delta \right) + \frac{\Delta^{3/2}}{2} \left\{ \frac{1}{\sqrt{\Delta}} \left(\hat{\sigma}^2 - \hat{\sigma}^2 \right) \right\} + O(\Delta^2) = \left(\hat{\mu}_\Delta - \hat{\mu}_\Delta \right) + O(\Delta^{3/2}).
$$

By Theorem 4.3

$$
\frac{1}{\Delta}(\hat{\rho} - \rho) \xrightarrow{L} \mathcal{N}(0, (TV)^{-1}). \quad (A.13)
$$

Then, by Taylor expansion, we obtain

$$
\hat{\rho} - \rho = \hat{\mu}_\Delta - \hat{\mu}_\Delta + (*).
$$

where (*) denotes the remainder term in the Taylor expansion which has order $O(\Delta^2)$. Therefore, by Theorem 4.1 and 4.3 we have

$$
\frac{1}{\Delta} \left(\hat{\beta}_n - \beta_n \right) = \frac{1}{\Delta} (\hat{\rho} - \rho) + O(\sqrt{\Delta}) \xrightarrow{L} \mathcal{N}(0, (TV)^{-1}). \quad (A.15)
$$

The same argument yields the asymptotic result for $\hat{\beta}_\phi$ and details of the proof are omitted. \hfill \Box

A.4 Proof of Modified LBI Test Statistic \tilde{Z}_N

Proof. Under the null, by Chan et al. (2012), we firstly have the following asymptotic distribution result for $\tilde{\rho}$,

$$
\left(\sum_{t=1}^{M \times N} \frac{y_{t(1)\Delta}^2}{\delta + y_{t(1)\Delta}^2} \right)^{-1/2} \left(\sum_{t=1}^{M \times N} \frac{y_{t(1)\Delta}^2}{(\delta + y_{t(1)\Delta}^2)^{1/2}} \right) \times (\tilde{\rho} - \rho) \xrightarrow{L} \mathcal{N}(0, \text{Var}(\varepsilon_{t\Delta})). \quad (A.16)
$$

Then, we know for $y_{t(1)\Delta}$, no matter it is stationary or nonstationary, we have

$$
\tilde{\varepsilon}_{t\Delta} - \varepsilon_{t\Delta} = (\tilde{\rho} - \rho)y_{t(1)\Delta} = o_p(1).
$$

Note $\tilde{y}_{t\Delta}$ is always stationary, by WLLN and ergodic theorem, we can easily show that, for any $p \in \mathbb{Z}_+$ such that $p \leq 4$,

$$
\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{\varepsilon}_{t\Delta}^p \xrightarrow{p} E(\varepsilon_{t\Delta}^p), \quad \frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{y}_{t\Delta}^p \xrightarrow{a.s.} E(\tilde{y}_{t\Delta}^p).
$$
Therefore, for the denominator, we have
\[
\sqrt{\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{\varepsilon}^4_{t\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \varepsilon^2_{t\Delta} \right)^2} \overset{p}{\rightarrow} \sqrt{E(\varepsilon^4_{t\Delta}) - E(\varepsilon^2_{t\Delta})^2} = \text{Std}(\varepsilon^2_{t\Delta}),
\]
\[
\sqrt{\frac{1}{MN} \sum_{t=1}^{M \times N} \tilde{\gamma}^4_{t\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \varepsilon^2_{t\Delta} \right)^2} \overset{a.s.}{\rightarrow} \sqrt{E(\tilde{\gamma}^4_{t\Delta}) - E(\tilde{\gamma}^2_{t\Delta})^2} = \text{Std}(\tilde{\gamma}^2_{t\Delta}).
\]

For numerator, first denote\(\tilde{\xi}_{t\Delta} = \varepsilon^2_{t\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \varepsilon^2_{t\Delta} \right) \) and \(\xi_{t\Delta} = \varepsilon^2_{t\Delta} - \left(\frac{1}{MN} \sum_{t=1}^{M \times N} \varepsilon^2_{t\Delta} \right), \)
then we know \(E(\tilde{\xi}_{t\Delta}) = 0 = E(\xi_{t\Delta}) \) and \(\text{Var}(\tilde{\xi}_{t\Delta}) = \text{Var}(\xi_{t\Delta}) \overset{p}{\rightarrow} \text{Var}(\varepsilon^2_{t\Delta}). \)
\[
\frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} \tilde{\xi}_{t\Delta} = \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} (\tilde{\xi}_{t\Delta} - \xi_{t\Delta}) + \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} \xi_{t\Delta}.
\]

By equation (3.3) in Lee (1998), one can easily show
\[
\frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} (\tilde{\xi}_{t\Delta} - \xi_{t\Delta}) = o_p(1),
\]
and by applying martingale central limit theorem (cf. Hall and Heyde, 1980), we have
\[
\frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \tilde{y}^2_{(t-1)\Delta} \xi_{t\Delta} \overset{L}{\rightarrow} N(0, \text{Var}(\tilde{\gamma}^2_{t\Delta}) \text{Var}(\varepsilon^2_{t\Delta})).
\]

Then combine the results above, we can derive the asymptotic distribution of \(\tilde{Z}_N \) under \(H_0 : \tilde{\sigma}^2 = 0 \) to be
\[
\frac{1}{\sqrt{MN}} \tilde{Z}_N \overset{L}{\rightarrow} N(0,1).
\]

Lastly, under the alternative, one just need to realize that \(\text{Cov}(\varepsilon^2_{t\Delta}, \tilde{y}^2_{(t-1)\Delta}) \) diverges when \(\tilde{\sigma}^2 \neq 0 \), and this leads to the divergence of \(\tilde{Z}_N \) in the end. \(\square \)

A.5 Proof of Proposition 5.1

Proof. It has been proved in Föllmer et al. (1994) that \(y_t \) is strictly stationary and ergodic when \(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 < 0 \). This means that we can still characterize strong explosiveness using \(\phi \equiv \tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \). However, for characterizing weak explosiveness, we need to calculate the second moment of \(y_t \).
The expectation of $J(t)$ is

$$EJ(t) = -\omega \int_0^t E \left(\exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t - s) + \tilde{\sigma} \left(B_u(t) - B_u(s) \right) \right\} \right) ds$$

$$= -\frac{\omega}{\tilde{\mu}} (1 - \exp(\tilde{\mu}t))$$

(A.17)

and so $EJ(t)$ is finite as $t \to \infty$ if and only if $\tilde{\mu} < 0$. Further, to bound the behaviour of $\text{Var}(J(t))$, we apply the Cauchy-Schwartz inequality and Hölder’s inequality to $EJ(t)^2$, giving

$$EJ(t)^2 = E[K(t) - L(t)]^2 \leq 2EK(t)^2 + 2EL(t)^2,$$

$$EJ(t)^2 = EK(t)^2 + EL(t)^2 - 2E(K(t) \cdot L(t))$$

$$\geq EK(t)^2 + EL(t)^2 - 2E(|K(t) \cdot L(t)|)$$

$$\geq EK(t)^2 + EL(t)^2 - 2\left(EK(t)^2 \right)^{1/2} \left(EL(t)^2 \right)^{1/2}$$

$$= \left[(EK(t)^2)^{1/2} - (EL(t)^2)^{1/2} \right]^2.$$

(A.19)

These two inequalities indicate that we only need to calculate $EK(t)^2$ and $EL(t)^2$ to evaluate the upper bound and the lower bound of $EJ(t)^2$. By Itô’s isometry

$$EK(t)^2 = \sigma^2 \int_0^t E \left(\exp \left\{ \left(2\tilde{\mu} - \tilde{\sigma}^2 \right) (t - s) + 2\tilde{\sigma} \left(B_u(t) - B_u(s) \right) \right\} \right) ds = \sigma^2 e^{2\kappa t} - \frac{1}{2\kappa},$$

and

$$EL(t)^2 = \omega^2 E \left(\int_0^t \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (t - s) + \tilde{\sigma} \left(B_u(t) - B_u(s) \right) \right\} ds \right)^2$$

$$= \omega^2 E \left(\int_0^t \int_0^r \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s - r) + \tilde{\sigma} \left(2B_u(t) - B_u(s) - B_u(r) \right) \right\} dsdr \right)$$

$$= \omega^2 \int_0^t \int_0^r \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s - r) + \frac{1}{2} \tilde{\sigma}^2 (2t - s - r + 2\min\{t - s, t - r\}) \right\} dsdr$$

$$= \omega^2 \int_0^t \int_0^r \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s - r) + \frac{1}{2} \tilde{\sigma}^2 (4t - s - 3r) \right\} dsdr$$

$$+ \omega^2 \int_0^t \int_r^t \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s - r) + \frac{1}{2} \tilde{\sigma}^2 (4t - 3s - r) \right\} dsdr$$

$$= \omega^2 \left\{ \frac{e^{2\kappa t} - 2\kappa e^{\tilde{\mu}t} + \frac{1}{2} \tilde{\mu} + \tilde{\sigma}^2}{2\kappa \tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2)} + \frac{e^{2\kappa t} - 1}{\tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2)} \right\}$$

$$= \sigma^2 e^{2\kappa t} - 1 \left\{ \frac{\gamma^2 \sigma^2 e^{2\kappa t} - 4\kappa e^{\tilde{\mu}t} + 2\tilde{\mu} + 2\tilde{\sigma}^2}{\tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2) (e^{2\kappa t} - 1)} \right\}.$$
Note that for $\kappa < 0$

$$EJ(t)^2 \leq 2EK(t)^2 + 2EL(t)^2 \xrightarrow{t \to \infty} \sigma^2 \left(\frac{2\gamma \tilde{\sigma}^2}{\bar{\mu}} - 1 \right) < \infty,$$ \hspace{1cm} (A.20)

showing that, when $\kappa < 0$, $J(t)$ has finite second-order moments as $t \to \infty$. Further, for $\kappa = 0$, by L'Hôpital's rule, we have

$$\lim_{\kappa \to 0} EK(t)^2 = \lim_{\kappa \to 0} \sigma^2 \frac{2te^{2\kappa t}}{2} = \sigma^2 t \xrightarrow{t \to \infty} \infty,$$ \hspace{1cm} (A.21)

and

$$\lim_{\kappa \to 0} EL(t)^2 = \lim_{\kappa \to 0} \sigma^2 \frac{e^{2\kappa t} - 1}{2\kappa} \left\{ \frac{\gamma^2 \tilde{\sigma}^2 2\tilde{\mu} e^{2\kappa t} - 4\kappa e^{\tilde{\mu} t} + 2\tilde{\mu} + 2\tilde{\sigma}^2}{\tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2) (e^{2\kappa t} - 1)} \right\}$$

$$= \lim_{\kappa \to 0} \sigma^2 \frac{e^{2\kappa t} - 1}{2\kappa} \left\{ \frac{4\kappa}{\tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2) (e^{2\kappa t} - 1)} \right\}$$

$$= \frac{2\omega^2}{\mu (\tilde{\mu} + \tilde{\sigma}^2)} < \infty.$$ \hspace{1cm} (A.22)

Combining results (A.21) and (A.22), we obtain

$$EJ(t)^2 \geq \left[(EK(t)^2)^{1/2} - (EL(t)^2)^{1/2} \right]^2 \xrightarrow{t \to \infty} \infty.$$ \hspace{1cm} (A.23)

Lastly, for $\kappa > 0$, we have

$$\lim_{t \to \infty} EL(t)^2 = \lim_{t \to \infty} EK(t)^2 \left\{ \frac{\gamma^2 \tilde{\sigma}^2 2\tilde{\mu} e^{2\kappa t} - 4\kappa e^{\tilde{\mu} t} + 2\tilde{\mu} + 2\tilde{\sigma}^2}{\tilde{\mu} (\tilde{\mu} + \tilde{\sigma}^2) (e^{2\kappa t} - 1)} \right\}$$

$$= \frac{2\gamma^2 \tilde{\sigma}^2}{\tilde{\mu} + \tilde{\sigma}^2} \lim_{t \to \infty} EK(t)^2,$$ \hspace{1cm} (A.24)

and this leads to

$$\lim_{t \to \infty} EJ(t)^2 \geq \left(1 - \sqrt{\frac{2\gamma^2 \tilde{\sigma}^2}{\tilde{\mu} + \tilde{\sigma}^2}} \right)^2 \lim_{t \to \infty} EK(t)^2 \to \infty.$$ \hspace{1cm}

From the results above we know that $EJ(t)$ is finite if and only if $\tilde{\mu} < 0$ and $EJ(t)^2$ is finite if and only if $\kappa < 0$. Further note that $\kappa < 0 \implies \tilde{\mu} < 0$, so then $\text{Var}(J(t)) < \infty$ if and only if $\kappa < 0$. We can now work out the first- and second-order moments of y_t, viz.,

$$Ey_t = E \left[\exp \left(\tilde{\sigma} B_u(t) + \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) t \right) \right] y_0 + EJ(t) = e^{\tilde{\mu} t} y_0 + \frac{\omega}{\tilde{\mu}} (1 - \exp(\tilde{\mu} t))$$ \hspace{1cm} (A.25)
and
\[Ey_t^2 = E \left[\exp \left(2\sigma B_u(t) + (2\tilde{\mu} - \tilde{\sigma}^2) t \right) \right] Ey_0^2 + 2Ey_0 E \left[\exp \left(\tilde{\sigma} B_u(t) + \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) t \right) J(t) \right] + EJ(t)^2 \]
\[= e^{2\kappa t} Ey_0^2 - 2Ey_0 \left(\omega \int_0^t \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s) + \tilde{\sigma} (2B_u(t) - B_u(s)) \right\} ds \right) \]
\[= e^{2\kappa t} Ey_0^2 - 2\omega \int_0^t E \left\{ \exp \left\{ \left(\tilde{\mu} - \frac{1}{2} \tilde{\sigma}^2 \right) (2t - s) + \tilde{\sigma} (2B_u(t) - B_u(s)) \right\} \right\} dsEy_0 + EJ(t)^2 \]
\[= e^{2\kappa t} y_0^2 - 2\omega \int_0^t \exp \left(2\kappa t - (\tilde{\mu} + \tilde{\sigma}^2) s \right) dsEy_0 + EJ(t)^2 \]
\[= e^{2\kappa t} Ey_0^2 - 2\omega \frac{e^{2\kappa t} - e^{\tilde{\mu} t}}{\tilde{\mu} + \tilde{\sigma}^2} Ey_0 + EJ(t)^2. \]

Evidently from these expressions \(Ey_t \) is asymptotically finite if and only if \(\tilde{\mu} < 0 \) and \(Ey_t^2 \) is asymptotically finite if and only if \(\kappa < 0 \). This indicates that \(\text{Var}(y_t) < \infty \) if and only if \(\kappa < 0 \). Therefore, we can still characterize weak explosiveness with \(\kappa \geq 0 \) and semi-strong explosiveness with \(\tilde{\mu} \geq 0 \). \(\square \)

A.6 Proof of Remark 5.2

Proof. Denote \(X_n = \frac{\log RV_n - \log [y_{(n-1)\Delta}]^{\Delta}}{s_n} + \frac{1}{2}s_n^2 \), where \(s_n = \max \left\{ \sqrt{\frac{2\Delta}{RV_n^2}}, \sqrt{\frac{2}{M}} \right\} \), then according to Barndorff-Nielsen and Shephard (2005), we have \(\{X_n\}_{n=1}^N \xrightarrow{L} \mathcal{N}(0, 1) \), as \(\Delta \to 0 \). Note \(N = \frac{T}{M\Delta} \), so when \(\Delta \to 0 \) with \(T, M \) being finite, we have \(N \to \infty \). Therefore, the log-likelihood function for \(\theta = (\tilde{\sigma}^2, \gamma, \sigma^2) \) is given by
\[
\ell_{ur}(\theta) = -\frac{N}{2} \log 2\pi - \frac{1}{2} \sum_{n=1}^N X_n(\theta)^2 + O(\Delta). \tag{A.26}
\]

As \(\ell_{ur}(\theta) \) is based on the standard normal distribution, Wilks’s theorem applies in this case, i.e. under \(\mathcal{H}_0 : \gamma_0 = 0 \), as \(N \to \infty \),
\[
LR = -2 (\ell_r - \ell_{ur}) = \sum_{n=1}^N X_n(\theta_0)^2 - \sum_{n=1}^N X_n(\theta)^2 + o_p(1) = \Delta^{-1} (Q_\Delta(\theta_0) - Q_\Delta(\theta)) + o_p(1) \xrightarrow{L} \chi^2(1), \tag{A.27}
\]
where \(\theta_0 = (\tilde{\sigma}^2, \gamma_0, \sigma^2) \). \(\square \)

A.7 Proof of Theorem 5.2

Proof. The dependence of \(B_u \) and \(B_e \) leads to a complex relationship between \(y_{(t-1)\Delta} \), \(\rho_{t\Delta} \) and \(J_{t\Delta} \) in model (5.4). But with no loss of generality, we know that \(y_t \) can also be
generated from model (5.3) by virtue of the observational equivalence of these mechanisms. Then, by Euler approximation, the discretized model of the process (5.3) is

\[
y_t \Delta - y_{(t-1)} \Delta = \tilde{\mu} y_{(t-1)} \Delta \cdot \Delta + \sqrt{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} \cdot v_t \Delta + o(\Delta), \tag{A.28}
\]

where \(v_t \Delta \sim \mathcal{N}(0, 1)\) due to the nature of the process \(B_v\).

According to (5.10), we have

\[
A^*_N = \sum_{t=1}^{M \times N} \frac{y_{(t-1)} \Delta \left(y_t \Delta - y_{(t-1)} \Delta \right)}{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} = \mu \sum_{t=1}^{M \times N} \frac{y_{(t-1)} \Delta v_t \Delta \cdot \sqrt{\Delta}}{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} + o_p(1)
\]

which leads to

\[
\hat{\tilde{\mu}} = \tilde{\mu} + \frac{C_N}{\sqrt{\Delta B_N}} + o_p(1). \tag{A.29}
\]

Next note that \(E(C_N) = 0\) by virtue of the independence between \(y_{(t-1)} \Delta\) and \(v_t \Delta\), and the variance \(C_N\) is

\[
E(C_N^2) = \sum_{t=1}^{M \times N} E(v^2_{t \Delta}) E \left[\frac{y_{(t-1)} \Delta}{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} \right]^2 \sim O \left(\frac{T}{\Delta} \right). \tag{A.30}
\]

Also note that

\[
E(B_N^*^2) = \left[\sum_{t=1}^{M \times N} \frac{y_{(t-1)} \Delta}{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} \right]^2 \sim O \left(\frac{T^2}{\Delta^2} \right), \tag{A.31}
\]

and then it follows that

\[
\hat{\tilde{\mu}} = \tilde{\mu} + O \left(\frac{1}{\sqrt{T}} \right) p \to \mu. \tag{A.32}
\]

Rewrite equation (A.29) as

\[
\sqrt{T} \left(\hat{\tilde{\mu}} - \tilde{\mu} \right) = \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \frac{y_{(t-1)} \Delta v_t \Delta}{\tilde{\sigma}^2 y_{(t-1)} \Delta + 2\omega y_{(t-1)} \Delta + \sigma^2} + o_p(1). \tag{A.33}
\]

43
and note that \[
\frac{y_{(t-1)\Delta}^2}{\hat{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2}
\] is bounded above by \(\hat{\sigma}^{-2}\). By the ergodic theorem, we have
\[
\frac{1}{MN} \sum_{t=1}^{M \times N} \frac{y_{(t-1)\Delta}^2}{\hat{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2} \xrightarrow{a.s.} V,
\]
where
\[
V = \begin{cases}
E \left(\frac{y_t^2}{\hat{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2} \right) & \text{if } \kappa = \hat{\mu} + \frac{1}{2} \hat{\sigma}^2 < 0 \\
\hat{\sigma}^{-2} & \text{if } \kappa = \hat{\mu} + \frac{1}{2} \hat{\sigma}^2 \geq 0
\end{cases}
\]

Further, denote
\[
\xi_t := \frac{y_{(t-1)\Delta} v_t \Delta}{\sqrt{\hat{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2}}
\]
and observe that \(\xi_t\) is a martingale difference sequence with respect to the filtration \(\mathcal{F}_t := \sigma(B_v(t) : t \geq 0)\) as \(E (\xi_t | \mathcal{F}_{t-1}) = 0\).

To apply the martingale CLT, we check the stability condition and the Lindeberg condition. For the stability condition, the conditional variance of the standardized martingale is
\[
\left\langle \frac{1}{\sqrt{MN}} \sum_{t=1}^{M \times N} \xi_t \right\rangle = \frac{1}{MN} \sum_{t=1}^{M \times N} E (\xi_t^2 | \mathcal{F}_{t-1}) = \frac{1}{MN} \sum_{t=1}^{M \times N} E \left(\frac{y_{(t-1)\Delta}^2}{\hat{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2} \right) \rightarrow V.
\]
For the Lindeberg condition, we have for any \(\delta > 0\)
\[
\frac{1}{MN} \sum_{t=1}^{M \times N} E \left\{ \xi_t^2 \mathbf{1} \left(|\xi_t| > \sqrt{MN} \delta \right) \right\} = \frac{1}{MN} \sum_{t=1}^{M \times N} E \left\{ \xi_t^2 \mathbf{1} \left(\frac{y_{(t-1)\Delta}^2 v_t^2 \Delta}{\hat{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2} > MN \delta^2 \right) \right\} \rightarrow 0,
\]
44
where the limit result comes from the fact that \(v_{1\Delta}^2 \) is integrable and \(MN \to \infty \). From the martingale CLT it follows that as \(T \to \infty \),

\[
\sqrt{T} \left(\hat{\mu} - \tilde{\mu}_0 \right) \overset{L}{\to} \mathcal{N} \left(0, V^{-1} \right).
\]

\[\square\]

A.8 Proof of Theorem 5.3

Proof. Similar to the proof of Theorem 4.3 by substituting equation (A.28) into \(\hat{\rho} \), we obtain

\[
\hat{\rho} - \rho = \hat{\mu} \Delta - \tilde{\mu} \Delta + O(\Delta^2) = \frac{A_N}{B_N^*} - \tilde{\mu} \Delta + O(\Delta^2) = \frac{\sqrt{\Delta C_N}}{B_N^*} + O(\Delta^2). \tag{A.34}
\]

Then, by the ergodic theorem, we have

\[
\frac{\Delta}{T^*} B_N^* = \frac{\Delta}{T} \sum_{t=1}^{T/\Delta} \frac{y_{(t-1)\Delta}^2}{\bar{\sigma}^2 y_{(t-1)\Delta}^2 + 2\omega y_{(t-1)\Delta} + \sigma^2} \overset{a.s.}{\to} V, \text{ i.e. } \Delta B_N^* \overset{a.s.}{\to} TV,
\]

where

\[
V = \begin{cases}
E \left(\frac{y_t^2}{\bar{\sigma}^2 y_t^2 + 2\omega y_t + \sigma^2} \right) & \text{if } \kappa = \hat{\mu} + \frac{1}{2}\tilde{\sigma}^2 < 0 \\
\tilde{\sigma}^{-2} & \text{if } \kappa = \hat{\mu} + \frac{1}{2}\tilde{\sigma}^2 \geq 0
\end{cases}
\]

Further, as proved in the previous section, \(\sqrt{\Delta/T} C_N \overset{L}{\to} \mathcal{N}(0, V) \) by the martingale CLT, which gives \(\sqrt{\Delta C_N} \overset{L}{\to} \mathcal{N}(0, TV) \). Combining these results gives

\[
\frac{1}{\Delta} (\hat{\rho} - \rho) = \frac{\sqrt{\Delta C_N}}{\Delta B_N^*} + O(\Delta) \overset{L}{\to} \mathcal{N}(0, (TV)^{-1}). \tag{A.35}
\]

\[\square\]
Supplementary Simulations

B.1 Performance of Two-stage Estimation: Infill Sampling

Table 9: Bias and standard errors of the two-stage estimates for different Δ and M and a fixed $T (= 5)$. The parameter values are $\tilde{\mu} = -1$, $\tilde{\sigma}^2 = 1$, $\sigma^2 = 1$, $y_0 = 10$.

<table>
<thead>
<tr>
<th>Δ = 1/252</th>
<th>Δ = 1/19656</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>μ</td>
</tr>
<tr>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.2020</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0133</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.0019</td>
</tr>
<tr>
<td>κ</td>
<td>-0.1953</td>
</tr>
<tr>
<td>ρ</td>
<td>-7.9e-04</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.2086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Δ = 1/252</th>
<th>Δ = 1/19656</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>μ</td>
</tr>
<tr>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.2018</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0233</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.0342</td>
</tr>
<tr>
<td>γ</td>
<td>-0.0146</td>
</tr>
<tr>
<td>κ</td>
<td>-0.1901</td>
</tr>
<tr>
<td>ρ</td>
<td>-7.9e-04</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.2134</td>
</tr>
</tbody>
</table>
Table 10: Bias and standard errors of the two-stage estimates for different Δ and M and a fixed $T(= 5)$. The parameter values are $\tilde{\mu} = -0.5$, $\tilde{\sigma}^2 = 1$, $\sigma^2 = 1$. $y_0 = 10$.

<table>
<thead>
<tr>
<th>Panel A</th>
<th>$\Delta = 1/252$</th>
<th></th>
<th>$\Delta = 1/19656$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
<td>$M = 21$</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.1916</td>
<td>0.6547</td>
<td>-0.1918</td>
<td>0.6546</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0058</td>
<td>0.0728</td>
<td>0.0028</td>
<td>0.0746</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.0545</td>
<td>0.7225</td>
<td>0.0738</td>
<td>1.0822</td>
</tr>
<tr>
<td>κ</td>
<td>-0.1887</td>
<td>0.6526</td>
<td>-0.1904</td>
<td>0.6526</td>
</tr>
<tr>
<td>ρ</td>
<td>-7.6e-04</td>
<td>0.0006</td>
<td>-7.6e-04</td>
<td>0.0006</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.1945</td>
<td>0.6588</td>
<td>-0.1932</td>
<td>0.6586</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>$\Delta = 1/252$</th>
<th></th>
<th>$\Delta = 1/19656$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
<td>$M = 21$</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.1764</td>
<td>0.6908</td>
<td>-0.1778</td>
<td>0.6921</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0212</td>
<td>0.1091</td>
<td>0.0208</td>
<td>0.1179</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.4005</td>
<td>4.5552</td>
<td>0.5651</td>
<td>6.9179</td>
</tr>
<tr>
<td>γ</td>
<td>-0.0418</td>
<td>0.2102</td>
<td>-0.0464</td>
<td>0.2301</td>
</tr>
<tr>
<td>κ</td>
<td>-0.1658</td>
<td>0.6952</td>
<td>-0.1674</td>
<td>0.6987</td>
</tr>
<tr>
<td>ρ</td>
<td>-6.9e-04</td>
<td>0.0007</td>
<td>-7.0e-04</td>
<td>0.0007</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.1869</td>
<td>0.6907</td>
<td>-0.1882</td>
<td>0.6904</td>
</tr>
</tbody>
</table>
Table 11: Bias and standard errors of the two-stage estimates for different Δ and M and a fixed $T(= 5)$. The parameter values are $\tilde{\mu} = 0.5, \tilde{\sigma}^2 = 1, \sigma^2 = 1.$ $y_0 = 10.$

<table>
<thead>
<tr>
<th>Panel A</th>
<th>$\Delta = 1/252$</th>
<th>$M = 21$</th>
<th>$M = 63$</th>
<th>$M = 252$</th>
<th>$\Delta = 1/19656$</th>
<th>$M = 21$</th>
<th>$M = 63$</th>
<th>$M = 252$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.0847</td>
<td>0.5591</td>
<td>-0.0861</td>
<td>0.5586</td>
<td>-0.0960</td>
<td>0.5927</td>
<td>-0.0798</td>
<td>0.5786</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>-0.0064</td>
<td>0.0539</td>
<td>-0.0101</td>
<td>0.0561</td>
<td>-0.0161</td>
<td>0.0713</td>
<td>0.0015</td>
<td>0.0062</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.9927</td>
<td>7.9678</td>
<td>2.6250</td>
<td>11.3631</td>
<td>11.5247</td>
<td>109.1634</td>
<td>0.1054</td>
<td>0.8897</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0880</td>
<td>0.5575</td>
<td>-0.0911</td>
<td>0.5570</td>
<td>-0.1041</td>
<td>0.5919</td>
<td>-0.0791</td>
<td>0.5785</td>
</tr>
<tr>
<td>ρ</td>
<td>-3.3e-04</td>
<td>0.0022</td>
<td>-3.4e-04</td>
<td>0.0022</td>
<td>-3.8e-04</td>
<td>0.0023</td>
<td>-1.4e-05</td>
<td>2.4e-05</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0815</td>
<td>0.5620</td>
<td>-0.0810</td>
<td>0.5616</td>
<td>-0.0879</td>
<td>0.5956</td>
<td>-0.0806</td>
<td>0.5787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>$\Delta = 1/252$</th>
<th>$M = 21$</th>
<th>$M = 63$</th>
<th>$M = 252$</th>
<th>$\Delta = 1/19656$</th>
<th>$M = 21$</th>
<th>$M = 63$</th>
<th>$M = 252$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.0864</td>
<td>0.5695</td>
<td>-0.0887</td>
<td>0.5694</td>
<td>-0.1088</td>
<td>1.5743</td>
<td>-0.0747</td>
<td>0.5720</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0399</td>
<td>0.1135</td>
<td>0.0434</td>
<td>0.1294</td>
<td>0.1069</td>
<td>0.3211</td>
<td>0.0037</td>
<td>0.0120</td>
</tr>
<tr>
<td>σ^2</td>
<td>9.9413</td>
<td>32.2082</td>
<td>14.1995</td>
<td>59.1407</td>
<td>66.6901</td>
<td>364.0267</td>
<td>0.7251</td>
<td>2.5128</td>
</tr>
<tr>
<td>γ</td>
<td>-0.2871</td>
<td>0.5485</td>
<td>-0.3113</td>
<td>0.5699</td>
<td>-0.4528</td>
<td>0.6906</td>
<td>-0.0531</td>
<td>0.2409</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0667</td>
<td>0.5769</td>
<td>-0.0670</td>
<td>0.5781</td>
<td>-0.1088</td>
<td>1.5758</td>
<td>-0.0728</td>
<td>0.5726</td>
</tr>
<tr>
<td>ρ</td>
<td>-3.4e-04</td>
<td>0.0023</td>
<td>-3.5e-04</td>
<td>0.0023</td>
<td>-4.1e-04</td>
<td>0.0061</td>
<td>-2.5e-05</td>
<td>7.8e-06</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.1063</td>
<td>0.5678</td>
<td>-0.1104</td>
<td>0.5680</td>
<td>-0.1622</td>
<td>1.5890</td>
<td>-0.0765</td>
<td>0.5714</td>
</tr>
</tbody>
</table>

48
B.2 Performance of Two-stage Estimation: Long-span Sampling

Table 12: Bias and standard errors of the two-stage estimates for different T and M and a fixed $\Delta(=1/252)$. The parameter values are $\tilde{\mu} = -1$, $\tilde{\sigma}^2 = 1$, $\sigma^2 = 1$. $y_0 = 10$.

<table>
<thead>
<tr>
<th>Panel A</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
</tr>
<tr>
<td>μ</td>
<td>-0.0567</td>
<td>0.3556</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0077</td>
<td>0.0482</td>
</tr>
<tr>
<td>σ^2</td>
<td>-4.0e-07</td>
<td>0.0243</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0529</td>
<td>0.3549</td>
</tr>
<tr>
<td>ρ</td>
<td>-2.2e-04</td>
<td>0.0014</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0606</td>
<td>0.3580</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
</tr>
<tr>
<td>μ</td>
<td>-0.0495</td>
<td>0.2795</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0095</td>
<td>0.0517</td>
</tr>
<tr>
<td>σ^2</td>
<td>-3.9e-04</td>
<td>0.0225</td>
</tr>
<tr>
<td>γ</td>
<td>-0.0020</td>
<td>0.0129</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0448</td>
<td>0.2793</td>
</tr>
<tr>
<td>ρ</td>
<td>-2.0e-04</td>
<td>0.0011</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0543</td>
<td>0.2821</td>
</tr>
</tbody>
</table>
Table 13: Bias and standard errors of the two-stage estimates for different T and M and a fixed $\Delta(= 1/252)$. The parameter values are $\tilde{\mu} = -0.5, \tilde{\sigma}^2 = 1, \sigma^2 = 1. y_0 = 10.$

<table>
<thead>
<tr>
<th>Panel A</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.0572</td>
<td>0.3125</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0024</td>
<td>0.0382</td>
</tr>
<tr>
<td>σ^2</td>
<td>2.1e-04</td>
<td>0.0266</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0560</td>
<td>0.3122</td>
</tr>
<tr>
<td>ρ</td>
<td>-2.3e-04</td>
<td>0.0012</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0584</td>
<td>0.3139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>S.E.</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.0440</td>
<td>0.2309</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>0.0036</td>
<td>0.0405</td>
</tr>
<tr>
<td>σ^2</td>
<td>-1.0e-04</td>
<td>0.0243</td>
</tr>
<tr>
<td>γ</td>
<td>-6.8e-04</td>
<td>0.0102</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0422</td>
<td>0.2312</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0458</td>
<td>0.2325</td>
</tr>
</tbody>
</table>
Table 14: Bias and standard errors of the two-stage estimates for different T and M and a fixed $\Delta = 1/252$. The parameter values are $\tilde{\mu} = 0.5$, $\tilde{\sigma}^2 = 1$, $\sigma^2 = 1$. $y_0 = 10$.

<table>
<thead>
<tr>
<th>Panel A</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>-0.0329</td>
<td>0.2198</td>
<td>-0.0330</td>
<td>0.2198</td>
<td>-0.0336</td>
<td>0.2194</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>-0.0021</td>
<td>0.0201</td>
<td>-0.0053</td>
<td>0.0206</td>
<td>-0.0059</td>
<td>0.0236</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.6625</td>
<td>4.8403</td>
<td>0.8266</td>
<td>6.3235</td>
<td>2.7896</td>
<td>23.1726</td>
</tr>
<tr>
<td>κ</td>
<td>-0.0340</td>
<td>0.2197</td>
<td>-0.0357</td>
<td>0.2196</td>
<td>-0.0366</td>
<td>0.2193</td>
</tr>
<tr>
<td>ρ</td>
<td>-1.3e-04</td>
<td>8.7e-04</td>
<td>-1.3e-04</td>
<td>8.7e-04</td>
<td>-1.3e-04</td>
<td>8.7e-04</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.0319</td>
<td>0.2204</td>
<td>-0.0304</td>
<td>0.2204</td>
<td>-0.0307</td>
<td>0.2202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
<th>$T = 30$</th>
<th>$T = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
<td>$M = 21$</td>
<td>$M = 63$</td>
<td>$M = 252$</td>
</tr>
<tr>
<td>$\tilde{\mu}$</td>
<td>0.0150</td>
<td>0.1701</td>
<td>0.0149</td>
<td>0.1701</td>
<td>0.0142</td>
<td>0.1938</td>
</tr>
<tr>
<td>$\tilde{\sigma}^2$</td>
<td>-1.8e-04</td>
<td>0.0214</td>
<td>-0.0034</td>
<td>0.0219</td>
<td>-0.0032</td>
<td>0.0255</td>
</tr>
<tr>
<td>σ^2</td>
<td>2.3272</td>
<td>12.1910</td>
<td>2.8084</td>
<td>15.2721</td>
<td>8.3717</td>
<td>83.5771</td>
</tr>
<tr>
<td>γ</td>
<td>-0.0741</td>
<td>0.2808</td>
<td>-0.0760</td>
<td>0.2880</td>
<td>-0.1056</td>
<td>0.3503</td>
</tr>
<tr>
<td>κ</td>
<td>0.0149</td>
<td>0.1710</td>
<td>0.0132</td>
<td>0.1710</td>
<td>0.0125</td>
<td>0.1949</td>
</tr>
<tr>
<td>ρ</td>
<td>0.6e-05</td>
<td>6.8e-04</td>
<td>6.0e-05</td>
<td>6.8e-04</td>
<td>5.7e-05</td>
<td>7.7e-04</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.0151</td>
<td>0.1700</td>
<td>0.0165</td>
<td>0.1700</td>
<td>0.0158</td>
<td>0.1934</td>
</tr>
</tbody>
</table>
References

