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Abstract

We analyze a class of games with interdependent values and linear best responses. The
payoff uncertainty is described by a multivariate normal distribution that includes the
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distributions under any multivariate normally distributed signals about the payoff states.
We characterize maximum aggregate volatility for a given distribution of the payoff states.
We show that the maximal aggregate volatility is attained in a noise-free equilibrium in
which the agents confound idiosyncratic and common components of the payoff state, and
display excess response to the common component. We use a general approach to identify
the critical information structures for the Bayes Nash equilibrium via the notion of Bayes
correlated equilibrium, as introduced by Bergemann and Morris (2013b).
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1 Introduction

In an economy with widely dispersed private information about the fundamentals, actions taken
by agents in response to the private information generate individual as well as aggregate volatility
in the economy. How does the nature of the volatility in the fundamentals translates into
volatility of the outcomes, the actions take by the agents. To what extent does heterogeneity in
the fundamentals dampen or accentuates volatility in the individual or aggregate actions? At
one extreme, the fundamental state, the payoff relevant state of the economy could consist of a
common value that affects the utility or the productivity of all the agents in the same way. At
the other extreme, the payoff relevant states could consist of purely idiosyncratic, distinct and
independent, states across the agents.

We analyze these questions in a general class of linear quadratic economies with a contin-
uum of agents while allowing for heterogeneity in the fundamentals, ranging from pure common
to interdependent to pure private values. We restrict our attention to environments where the
fundamentals are distributed according to a multivariate normal distribution. We describe the
payoft relevant state of each agent by the sum of a common component and an idiosyncratic com-
ponent. As we vary the variance of the common and the idiosyncratic component, we change the
nature of the heterogeneity in the fundamentals and can go from pure common to interdependent
to pure private value environments.

The present objective is to analyze how the volatility in the fundamentals translates into
volatility of the outcomes. The nature of the private information, the information structure of
the agents, matters a great deal for the transmission of the fundamental volatility. We therefore
want to know which information structure leads to the largest (or the smallest) volatility of the
outcomes for a given structure in the fundamental volatility. Thus, we are lead to investigate the
behavior of the economy for a given distribution of the fundamentals across all possible infor-
mation or signal structures that the agents might have. By contrast, the established literature
is mostly concerned with the characterization of the behavior, the Bayes Nash equilibrium for a
given information structure.

In earlier work, two of us suggested an approach to analyze the equilibrium behavior of the
agents for a given description of the fundamentals for all possible information structures. In
Bergemann and Morris (2013a) we define a notion of correlated equilibrium for games with in-
complete information, which we call Bayes correlated equilibrium. We establish that this solution
concept characterizes the set of outcomes that could arise in any Bayes Nash equilibria of an
incomplete information game where agents may or may not have access to more information

beyond the given common prior over the fundamentals. In Bergemann and Morris (2013b) we



pursue this argument in detail and characterize the set of Bayes correlated equilibria in the class
of games with quadratic payoffs and normally distributed uncertainty, but there we restricted our
attention to the special environment with pure common values and aggregate interaction. In the
present contribution, we substantially generalize the environment to interdependent values (and
more general interaction structures) and analyze the interaction between the heterogeneity in
the fundamentals and the information structure of the agents. We continue to restrict attention
to multivariate normal distribution for the fundamentals and for the signals, but allowing for
arbitrarily high-dimensional signals. With the resulting restriction to multivariate normal distri-
butions of the joint equilibrium distribution over actions and fundamentals, we can describe the
set of equilibria across all (normal) information structures completely in terms of restrictions on
the first and second moments of the equilibrium joint distribution.

We begin with an exact characterization of the set of all possible Bayes correlated equilibrium
distributions. We show in Proposition 1 that the joint distribution of any BCE is completely
characterized by three correlation coefficients. In particular, the mean of the individual and the
aggregate action is uniquely determined by the fundamentals of the economy. But, the second
moments, the variance and covariances can differ significantly across equilibria. The set of BCE
is explicitly described by a triple of correlation coefficients: (i) the correlation coefficient of any
pair of individual actions (or equivalently the individual action and the average action), (i) the
correlation coefficient of an individual action and the associated individual payoff state, and (ii7)
the correlation coefficient of the aggregate action and an individual state. The description of the
Bayes correlated equilibrium set arises from two distinct set of conditions. The restrictions on
the coefficients themselves are purely statistical in nature, and come from the requirement that
the variance-covariance matrix is positive definite, and thus these conditions do not depend at
all on the nature of the interaction and hence the game itself. It is only the determination of
the moments themselves, the mean and the variance that reflect the best response conditions,
and hence the interaction structure of the game. This striking decomposition of the equilibrium
conditions into statistical and incentive conditions arises as we allow for all possible information
structures consistent with the common prior. Subsequently, in Section 5, we restrict attention to
the subset of information structures in which each agent knows his own payoff state with certainty.
This restriction on the informational environment is commonly imposed in the literature, and
indeed we analyze the resulting implications for the equilibrium behavior. But with respect
to the above separation result, we find that the decomposition fails whenever we impose any
additional restrictions, such as knowing one’s own payoff state.

We then characterize the upper boundary of the Bayes correlated equilibrium in terms of



the correlation coefficients. We show in Proposition 2 that the upper boundary consists of
equilibria that share a property that we refer to as noise-free.! The noise-free equilibria have the
property that the conditional variance of the individual and aggregate action is zero, conditional
on the idiosyncratic and common component of the state. That is, given the realization of the
components of each agent’s payoff state, the action of each agent is deterministic in the sense that
it is a function of the common and the idiosyncratic components only. In fact, this description of
the noise-free equilibria directly links the Bayes correlated equilibria to the Bayes Nash equilibria.
In Proposition 3 we show that we can represent every noise-free Bayes correlated equilibrium in
terms of the action chosen by the agent as a convex combination of the idiosyncratic and the
common component of the state. Thus, a second surprising result of our analysis is that the
boundary of the equilibrium set is formed by action state distributions that do no contain any
additional noise. However as each agent implicitly responds to a convex sum of the components,
each agent is likely to confound the idiosyncratic and common components with weights that
differ from the equal weights by which they enter the payoff state, and hence lead to under or
overreaction relative to the complete information Nash equilibrium.

We show for every Bayes correlated equilibrium, there exists an information structure under
which the equilibrium distribution can be (informationally) decentralized as a Bayes Nash equi-
librium, and conversely. The logic of Proposition 4 follows an argument presented in Bergemann
and Morris (2013a) for canonical finite games and information structures. The additional insight
here is that in the present environment any Bayes correlated equilibrium outcome can be achieved
by a minimal information structure, in which each agent only receives a one-dimensional signal.
The exact construction of the information structure is suggested by the very structure of the
BCE. With the one-dimensional signal, each agent receives a signal that is linear combination
of the common and idiosyncratic part of their payoff state and an additive noise term, possibly
with a component common to all agents. Under this signal structure the action of each agent
is a constant times the signal, and thus the agent only needs to choose this constant optimally.
This construction allows us to understand how the composition of the signal affects the reaction
of the agent to the signal.

With the compact description of the noise-free Bayes correlated equilibrium, we can then ask
which information structure generates the largest aggregate (or individual) volatility, and which
information structure might support the largest dispersion in the actions taken by the agents.
In Proposition 5, we provide very mild sufficient conditions, essentially very weak monotonicity

conditions, on the objective functions such that we can restrict attention to the noise-free equi-
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libria. Any of these second moments is maximized by a noise-free equilibrium, but importantly
not all of these quantities are maximized by the same equilibrium. The compact representation
of the noise-free equilibria, described above, is particularly useful as we can find noise-free equi-
libria by maximizing over a single variable without constraints, rather than having to solve a
general constrained maximization program. In Proposition 8 we use this insight to establish the
comparative statics for maximal individual or aggregate volatility that can arise in any Bayes
correlated equilibrium as we change the nature of the strategic interaction.

With a detailed characterization of the feasible equilibrium outcomes we ask what does in-
terdependence add or to change relative to equilibrium behavior in a model with pure common
values. With pure common values, any residual uncertainty about the common payoff state low-
ers the responsiveness of the agent to the information, it attenuates their response to the true
payoff state. Thus, the maximal responsiveness is attained in the complete information equilib-
rium in which consequently the aggregate volatility is maximized across all possible information
structures, see Proposition 6. At the other end of the spectrum, with pure private values, the
complete information Nash equilibrium has zero aggregate volatility. But if the noisy information
has an error term common across the agents, then aggregate volatility can arise with incomplete
information, even though there is no aggregate payoff uncertainty. Now, the presence of the error
term still leads every agent to attenuate his response to the signal compared to his response if
he were to observe the true payoff state, as a Bayesian correction to the signal. Nonetheless,
we show that as the variance of the idiosyncratic component increases, the maximal aggregate
volatility increases as well, in fact linearly in the variance of the idiosyncratic component, see
Proposition 9. Now, strikingly, with interdependent values, that is in between pure private and
pure common values, the aggregate volatility is still maximal in the presence of residual uncer-
tainty, but the response of the agent is not attenuated anymore, quite to contrary, it exceeds the
complete information responsiveness in some dimensions. In the noise-free equilibrium, whether
implicit in the BCE, or explicit in the BNE, the information about the idiosyncratic component is
bundled with the information about the common component. In fact, the signal in the noise-free
BNE represents the idiosyncratic and the common component as a convex combination. Thus,
even though the signal does not contain any payoff irrelevant information, hence noise-free, the
agent still faces uncertainty about his payoff state as the convex weights typically differ from
the equal weights the components receives in the payoff state. As a consequence, any given
convex combination apart from the equal weigh gives each agent a reason to react stronger to
some component of the fundamental state than he would if he had complete information about

either component, thus making it an excess response to at least some component. Now, if the



excess response occurs with respect to the common component, then we can observe an increase
in the aggregate volatility far beyond the one suggested by the complete information analysis.
Moreover, as Proposition 9 shows there is a strong positive interaction effect with respect to the
maximal aggregate volatility between the variance of the idiosyncratic and the common com-
ponent. This emphasizes the fact that the increased responsiveness to the common component
cannot be understood by merely combining the separate intuition gained from the pure private
and the pure common value case with which we start above.

We proceed to extend the analysis in two directions. First, we constrain the set of possible
information structures and impose the common restriction that every agent knows his own value
but may still be uncertain about the payoff state of the other agents. We show that this common
informational restriction can easily be accommodated by our analysis. But once we impose any
such restriction on the class of permissible information structures, then the separability between
the correlation structure and the interaction structure, that we observe without any restriction,
does not hold anymore. Second, we extend the analysis to accommodate more general interaction
structures. In particular, we consider the case when the best response of every agent is to a convex
combination of the average action and the action of a specific, matched, agent. This allows us in
particular to analyze the case of pairwise interaction, and we consider both random matching as
well as positive or negative assortative matching. The following analysis shows that the current
framework is sufficiently flexible to eventually accommodate an even more ambitious analysis of
general information and network (interaction) structures.

The remainder of the paper is organized as follows. Section 2 introduces the model and
the equilibrium concept. Section 3 offers the analysis of the model with aggregate interaction.
Section 4 establishes the link between information structure and volatility. Section 5 considers
the case of restricted information structures, in particular it assumes that every agent knows his
own payoff state. Section 6 considers the more general interaction structures, and in particular
analyzes the case of pairwise interaction. Section 7 discusses the relationship of our results
to recent contribution in macroeconomics on the source and scope of volatility and concludes.

Section 8 constitutes the appendix and contains most of the proofs.



2 Model

2.1 Payoffs

We consider a continuum of agents, with mass normalized to 1. Agent i € [0, 1] chooses an action
a; € R and is assumed to have a quadratic payoff function which is function of his action a;, the

mean action taken by agents, A, and the individual payoff state, 0; € R:
u; : R = R.

In consequence, agent ¢ has a linear best response function:

a; = rE[A[T;] + E[6;|T}), (1)

where E[-|Z;] is the expectation conditional on the information agent i has prior to taking an
action a;. The parameter r € R of the best response function represents the strategic interaction
among the agents. If r < 0, then we have a game of strategic substitutes, if r > 0, then we have
a game of strategic complements. We shall assume that the interaction parameter r is bounded
above, or r € (—o0, 1).

We assume that the individual payoff state 6; is given by the linear combination of a common

component 0 and an idiosyncratic component AG; :

Each component is assumed to be normally distributed. While 6 is common to all agents, the
idiosyncratic component Af; is identically distributed across agents, independent of the common

component. Formally, we describe the payoff uncertainty in terms of the pair of random variables

(6, A6;): ) 2
() () 2))

It follows that the population average satisfies B, [Af;] = 0, and we denote the average taken
across the entire population, that is across all i, as B;[-]. The common component can be
interpreted as the mean or average payoff state as 6 = ;[0;].

Given the independence and the symmetry of the idiosyncratic component Af; across agents,
the above joint distribution can be expressed in terms of the variance o2 = 0% + o3, of the
individual state, and the correlation (coefficient) p,, between any two states of any two agents i

and j, 0; and 0;. After all, by construction the covariance of §; and 6, is equal to the covariance



between 6; and 6, and in turn also represents the variance of the common component, or o2 =

[
2.
Poe0 -

0 o 0o PegTh
(5 )= ()0 o))
0 Poo%9 PoeT¢

We assume that the above joint normal distribution, given by (4), is the commonly known
common prior. We refer to the special cases of pyy = 0 and pyy = 1 as the case of pure private
and pure common values. We shall almost exclusively use the later representation (4) of payoff

uncertainty, and only occasionally the former representation (3).

2.2 Bayes Correlated Equilibrium

We now define the main solution concept we will use throughout the paper.

Definition 1 (Bayes Correlated Equilibrium)

The variables (05,0, a;, A) form a symmetric and normally distributed Bayes correlated equilib-
rium (BCE) if their joint distribution is given by a multivariate normal distribution and for all
i and a; :

a; = rE[Ala;] + E[0;]a;]. (5)

We denote the variance-covariance matrix of the joint distribution of (6;,0, a;, A) by V.

3 Bayes Correlated Equilibrium

We now find conditions such that the random variables (6;,0,a;, A). These conditions can be
separated into two distinct sets of requirements: the first set consists of conditions such that the
variance-covariance matrix V of the joint multivariate distribution constitutes a valid variance-
covariance matrix, namely that it is positive-semidefinite; and a second set of conditions that
guarantee that the best response conditions (7) holds. The first set of conditions are purely
statistical requirements. The second set of conditions are necessary for any BCE, and these
later conditions merely rely on the linearity of the best response. Importantly, both set of
conditions are necessary independent of the assumption of normal distributed payoff uncertainty.
The normality assumption will simply ensure that the equilibrium distributions are completely
determined by the first and second moment. Thus, the normality assumptions allows us to

describe the set of BCE in terms of restrictions that are necessary and sufficient.



3.1 Characterization of Bayes Correlated Equilibrium

We begin the analysis of the Bayes correlated equilibrium by reducing the dimensionality of
the variance-covariance matrix. We appeal to the symmetry condition to express the aggregate
variance in terms of the individual variance and the correlation between individual terms. Just
as we described above the variance a% of the common component @ in terms of the covariance
between any two individual payoff states in (4), or a% = pya0a, we can describe the variance of
aggregate action 0% in terms of the covariance of any two individual actions, or 0% = p,,02. We

write p,y for the correlation coefficient between action a; and payoff state 6; of player i:
cov (@i, 0;) 2 pagTaTy.

We denote by p,4 the correlation coefficient between the action a; of agent ¢ and the payoff state
¢; of an arbitrary other agent j:

cov (a;,0;) £ payTa0.

These three correlation coefficients, (paa, Pab)s pa¢), parameterize the whole variance-covariance
matrix. To see why, observe that the covariance between a purely idiosyncratic random variable
and a common random variable is always 0. This implies that both the covariance between the
aggregate action A and the payoff state ; of player j and the covariance between the agent i’s
action, a;, and the common component of the payoff state, 6, are the same as the covariance
between the action of player i and the payoff state 0; of player j, or p,,0,09. Thus we can
reduce the number of variance terms, and in particular the number of correlation coeflicients

needed to describe the variance covariance matrix V without loss of generality.

Lemma 1 (Symmetric Bayes Correlated Equilibrium)
The variables (05,0, a;, A) form a symmetric and normally distributed Bayes correlated equilib-
rium (BCE) if and only if there exist parameters of the first and second moments (Ma, Oas Paas Pahs pa¢)

such that the joint distribution is given by:

0; Hao o5 Po6T5  PapTa0s Pa¢TaT0
0 ~ N Heo PooT PosT PapPa06  PapTa086 (6)
a; Mg, ’ PabTa086 PuapTa08 aZ paaai 7
A o)  \PagTa08 PapTa00  Paa¥s  Paals
and for all 1 and a; :
a; = rE[Ala;] + E[0;]a;]. (7)



Henceforth, we shall therefore refer to the variance of the individual action as the individual
volatility:
ot 8)
to the variance of the average action A as the aggregate volatility:

Paal e (9)

and to the variance of Aa; = a; — A as the dispersion:

(1 - paa)ag' (10)

As for the best response condition (7), with a multivariate normal distribution the conditional

expectations have the familiar linear form:

0; I PagTa00
E| 0 |a |=|m|+t0"| paoi | (ai—ha)
A /J/a paao-g
and we can write the best response condition (7):
¢
Qi = T(lua + paa(ai - ua)) + (“9 + pa@g_(ai - pda))' (11&)
By the law of iterated expectation we obtain:
— _ Mo
Ma—TMa+U9:>ﬂa—1_7,- (12)
Taking the derivative of (11a) with respect to a; we get:
O¢ PapT0
1= — &S0, = . 13
TPaa + Pab oy g 1 — Do ( )

We thus have a complete determination of the first and second moment. Alternatively, we could
obtain these conditions by directly using the best response condition, and applying the law of
iterated expectation (or total expectation and similarly the law of total variance) to obtain the
moment conditions.

Now, for V to be a valid variance-covariance matrix, it has to be positive semi-definite. Now,

we can provide a sharp characterization of the set of parameters that constitute a BCE.
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Proposition 1 (Characterization of BCE)
A multivariate normal distribution of (Qi, 0,a;, A) is a symmetric Bayes correlated equilibrium if

and only if :

1. the mean of the individual action is:

Ko

o =17

2. the standard deviation of the individual action is:

o
O_a: pa@ 0 >0;

1- TPaa N
3. the correlation coefficients p,q; Py, Pag SALisfy the nonnegativity conditions p,,, p,e > 0 and

the inequalities:
(Z) (pa¢)2 < PooLaa> (“) (1 - paa)(l - 1099) > (paé - pa¢>)2' (14)

Proof. The moment equalities (1) and (2) were established in (12) and (13). Thus we proceed
to verify that the inequality constraints (3) are necessary and sufficient to guarantee that the
matrix V is positive semi-definite.

Here we express the equilibrium conditions, by a change of variables, in terms of different

variables, which facilitates the calculation. Let:

1 -1 0
A A 0 0
0 1 -1
0O 0 0 1
Thus, we have that:
AD; 0
9 g /
~N ,MVM') |,
A(li
A It
where
(1= pgg) 75 0 (Pae - Pm) 0a09 0
0 2 0 a
V, & MYM — PogTg 2 PagPaT0 (15)
(Pae - pad)) 0,09 0 (1 - paa) Oq 0
0 pagbo-ao-e 0 paagi



We use V, to denote the variance/covariance matrix expressed in terms of (A#;, 0, Aa;, A). Tt
is easy to verify that V, is positive semi-definite if and only if the inequality conditions (3) are
satisfied. To check this it is sufficient to note that the leading principal minors are positive if and
only if these conditions are satisfied, and thus V| is positive semi-definite if and only if these
conditions are satisfied. =

The orthogonal representation of the random variables, in terms of the idiosyncratic and the
common component, namely Af; and , or Aa; and A, as represented by the variance/covariance
matrix V in (15) is useful in many ways. In particular, it establishes why aggregate variance is
the product of the individual variance o2 and the correlation coefficient p,,,.

There are two aspects of a BCE that we would like to highlight. First, note that condition
(1) of Proposition 1 completely pins down the expected value of the action in terms of the funda-
mentals, which implies that any difference across Bayes correlated equilibria will manifest itself
in the second moments only. Thus, during the rest of the paper we will adopt the normalization
that py = 0, as any change in p, will affect only the expected action of each agent and then by
a constant value across all BCE.

Second, the restrictions on the equilibrium correlation coefficients do not at all depend on
the interaction parameter r. It is easy to see from the proof of Proposition 1 that the restric-
tions on the set of equilibrium correlations are purely statistical. They come exclusively from
the condition that the correlation matrix V is a valid variance/covariance matrix, namely that
V is positive semi-definite matrix. As we will show later, this disentanglement of the set of
feasible correlations and the interaction parameter is only possible when we allow for all possible
information structures, i.e. when we do impose any restrictions on the private information that
agents may have. By contrast, the mean p, and the variance o2 of the individual actions does
depend on the interaction parameter r, as it is determined by the best response condition (7).

We note that in the special case of pure private (or pure common) values the set of outcomes
in terms of the correlation coefficients is only two dimensional. The reduction in dimensionality
arises as the correlation between the average action and the individual state is either zero (as
in the pure private value case) or is in a constant linear relationship to correlation between the
individual action and individual state (as in the pure common value case), and thus redundant

in either case.

3.2 (Geometric Representation of BCE

Before we continue with the analysis, it is useful to visualize the set of feasible Bayes correlated

equilibria, and see how the mechanics of the different constraints change the set of feasible
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equilibria. To visualize the constraints of (14) of Proposition 1 we plot the feasible regions in the
(Paas Pap) SPace, which are the most relevant for volatility, and thus the most relevant for us to
plot. Since this depends on the values of p,, and pgy we do this in several plots.

In Figure 1 we vary pyy and find the full set of feasible equilibria in the (p,4, p,.) sSpace. As
we will show later, for any given p,,, the upper bound on the values of p,, that can be achieved
is found by imposing that the constraints (14) of Proposition 1 bind. We get the following:
‘pgg=0‘

Pee=1/2 Pee=1

1.0 107 10F

0.8 0.8 0.8 -
0.6 0.6 0.6 -
k3 K3 k]
U L U
0.4 0.4 0.4
0.2 0.2 0.2+
0.0 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08

Paa Paa Paa

Figure 1: The set of BCE in the (p,,, pae) space: varying pgg

In Figure 2 we fix py, = 0.5, and impose a linear relationship between the correlation coeffi-
cient p,, and p,q

pa(b = P4,

and plot the equilibrium set for different values of a. As we will show later, the case & = 0 and
a = 1 will be the cases in which agent only responds to variations in the idiosyncratic and the
common component of his payoff state respectively (that is, Af; and 6 separately), while the case
of v = 1/2 is the case in which each agent responds to Af; and  with equal intensity, and thus
only responds to the sum given by 6; (shown in the last plot). More generally, increasing « will
correspond to increasing the information agents have about # and decreasing the information
they have about Ad;.

We can see that the case of « = 0 and o« = 1 is a particular case of analyzing private and
common values, as agent only have information on Ad; and 6 respectively. Thus the similarity
in both of the plots for the cases a = 0 and o = 1 with pyy = 0 and pyy, = 1 respectively. Also,
note that the envelope of the kinks in Figure 2 correspond to the frontier of p,y = 0.5 in the

Figure 1. As we will show next, this will also be a result of the fact that this frontier is given by

13



1.0;

0.8/

0 6’ . Pap=0-pag
3 . | ‘ Pap=-33Pag
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Paa

Figure 2: The set of BCE in the (p,,, p.y) space: varying p,,

"noise-free" equilibria.

3.3 Noise-Free Equilibria

We can decompose the action of each agent in terms of his responsiveness to the components
of his payoff state #;, namely the idiosyncratic component Af; and the common component 6,
and any residual responsiveness has to be attributed to noise. Given the multivariate normal
distribution, the responsiveness of the agent to the components of his payoff state is directly

expressed by the covariance:

cov(a;, Ab;) = %ﬁei], cov(a;, 0) = %. (16)
The action a; itself also has an idiosyncratic and a common component as a; = A + Aa;. The
conditional variance of these components of a; can be expressed in terms of the correlation
coefficients (pm, Pats Pacrs p%), which are subject to the restrictions of Proposition 1.3. By using
the familiar property of the multivariate normal distribution for the conditional variance, we
obtain a diagonal matrix:

(Pao—Pa¢)2
_ 2 [ U= Paa) = 0 . (17)

a 0 p2¢
a
paa Poo

A(Ii
A

Ab;
0

var

If the components A and Aa; of the agent’s action are completely explained by the components

of the payoff state, # and A#;, then the conditional variance of the action components, and a

14



fortiori of the action itself, is equal to zero. Now, by comparing the conditional variances above
with the conditions of Proposition 1.3, it is easy to see that the conditional variances are equal
to zero if and only if the conditions of Proposition 1.3 are satisfied as equalities. Moreover, by
the conditions of Proposition 1.3, in any BCE, the conditional variance of action a; can be equal
to zero if and only if the conditional variances of the components, A and Aa; are each equal to

zero. This suggests the following definition.

Definition 2 (Noise-Free BCE)

A BCE is noise-free if a; has zero variance, conditional on 0 and A6, .

We observe that the above matrix of conditional variances is only well-defined for interdepen-
dent values, that is for pyy € (0,1). For the case of pure private or pure common values, pyy = 0
or pgy = 1, only one of the off diagonal terms is meaningful, as the other conditioning terms, 6
or Af;, have zero variance by definition. Using the equilibrium conditions of Proposition 1.3, we

therefore obtain an explicit characterization of the noise-free Bayes correlated equilibria.

Proposition 2 (Characterization of Noise-Free BCE)
For all pyy € (0,1), the set of noise-free BCE (in the space of correlation coefficients (puqs Pas))

s given by:

{(Paa> Pag) € [0, 1% 2 pap = |\/Paabos V(1 = pgo) (1 = paa)l}- (18)

To visualize the noise-free equilibria in the (p,,, p.0) space we plot them in Figure 3. The set

Pas
1.0

0.8

06X

041

0.2

0.0

Figure 3: The set of noise-free BCE
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of noise-free equilibria is described by the two roots of a quadratic equation, visually separated
by the dashed line in the above illustration. The positive root corresponds to the upper part
of the ellipse, the negative root to the lower part. The kink in the lower segment arises as the
sign of the term inside the absolute value of (19) changes. For our purposes, it is exclusively the
positive root that is of interest. Namely, in the set of all Bayes correlated equilibria it describes
for any given correlation coefficient p,, the highest attainable correlation coefficients of p,, and
Pag Simultaneously. For this reason, we shall refer from now on to the positive root only when

we speak of the noise-free equilibria, that is:

Pas = V Paaloo + \/(1 - p@@)(l - paa)7 Pap = Paaloo> for all Paa € [07 ]-] : (19)

Now, by construction the variance of the individual actions conditional on the components
Ab; and 0 of the payoff state 6; is zero in all noise-free BCE. In other words, the action of each
action has to be a deterministic function of the components Af; and @ only. Given the linearity
of the best response function, and of the conditional expectation in the normal environment,
this suggests that we can express the action a; of each agent as a linear combination of the
components Af; and 6 of the state §;. In fact, we can provide a canonical construction of the
action a; chosen in any noisy free BCE by means of a (convex) combination of the idiosyncratic

component Ad; and the common component # of the individual state 6; :
s:(A) = AAG; + (1 — \)f with A € [0,1]. (20)

We refer to the convex combination of Af; and 6 as a “signal” s, ()), as the present construction
will shortly also lead us to a canonical information structure to decentralize the Bayes correlated
equilibrium as a Bayes Nash equilibrium. In any case, given the convex combination represented
by A, we can then ask how strongly the agent responds to the “signal”, and we denote the
responsiveness by v(\). The next result establishes that the entire set of noise-free Bayes corre-
lated equilibria can be described by a family of functions indexed by A and linear in A#; and 6.
Importantly given ), the action a; of each agent is determined by the realizations of Af; and 6
as follows:

a; = v(N)s; (A) = v (X) (AAG; + (1 — \)) (21)

In addition, the next proposition establishes that for every weight A € [0, 1], we can uniquely

and explicitly determine the responsiveness of the agent to the signal s; (\):

(1 = A)pgg + AL — pgy)
(1—=7)(1 = X)2pgy + A*(1 — pgg)

Given a weight A\, we can then compute the joint distribution of the variables.

v(\) =

(22)
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Proposition 3 (Deterministic and Convex Representation of Noise-free BCE )
Every noise-free BCE is uniquely characterized by \ € [0, 1] and the associated correlation coef-

ficients are:

o — (1 — X)2pgy Py = (1= A)pgg + A1 — pgy) Ps = (1= X)pgo
aa ~ . 2 2 - ) ad — ) ap — .
(1= 2)pgp + A°(1 = pyo) \/(1 — A)2pgg + A (1 = pgy) \/(1 — A)2pge + N*(1 = pgo)
(23)

In the case of pure private or pure common values, pyy = 0 and pyy = 1, respectively, the
payoff uncertainty is described completely by either Af; or @, and in this sense is one dimensional.
In both cases, there are only two possible noise-free equilibria, players either respond perfectly to
the state of the world (complete information) or players do not respond at all (zero information).
By contrast, in the general model with interdependent values, py, € (0, 1), the payoff uncertainty
of each player is described by the pair (AHi, @) and hence each player faces a two dimensional
uncertainty. Unlike the case of pure private or pure common values, there is now a continuum
of noise-free equilibria with interdependent values. The continuum of equilibria arises as each
player may respond to a linear combination of A#; and 6, but the weights may not be equal to 1
as they would be in a complete information world, where 6; is known to be the sum of Af; and
0, namely 6; = Af; + 0.

It is then evident that there is a discontinuity at py, € {0, 1} in what we describe as the set of
noise-free Bayes correlated equilibria. The reason is simple and comes from the fact that as py,
approaches zero or one, one of the dimensions of the uncertainty about fundamentals vanishes.
Yet we should emphasize, that even as the payoff types approach the case of pure common or
pure private values, the part of the fundamental that becomes small can be arbitrarily amplified
by the weight A. For example, as pyy — 1, the environment becomes arbitrarily close to pure
common values, yet the shock Af; still can be amplified by letting A — 1 in the construction
of signal (20) above. Thus, the component Af; acts similarly to a purely idiosyncratic noise in
an environment with pure common values. After all, the component Af; only affects the payoffs
in a negligible way, but with a large enough weight, it has a non-negligible effect on the actions
that the players take. Thus, for the case in which the the correlation of types approach the case
of pure common or pure independent values, there is no longer a sharp distinction between what
is noise and what is fundamentals. Thus, although there is a discontinuity in the set of noise-free
BCE, the upper boundary of the Bayes correlated equilibria described by (19) remains valid even
for pgy € {0,1}. But at the end points pyy € {0, 1}, the set of equilibria will contain noise relative
the fundamental components Af; and 6, as either the idiosyncratic or the common component

of the fundamental state cease to have variance, and hence cannot support the requisite variance
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in the actions anymore.

The above representation of the noise-free Bayes correlated equilibria in terms of a convex
combination of the idiosyncratic and the common component of payoff state naturally suggests a
signal structure that can implement the noise-free Bayes correlated equilibria as the corresponding
Bayes Nash equilibria. We therefore turn our attention now to the relationship between the Bayes
correlated and Bayes Nash equilibria, and will find that the link suggested above extends more

generally beyond the noise-free equilibria.

3.4 Bayes Nash Equilibrium

So far, our solution concept has been the Bayes correlated equilibrium, and we now provide
the connection between BCE and Bayes Nash Equilibrium (BNE). First, consider the Nash
equilibrium under complete information. Here the linear best response game has a unique Nash

equilibrium in which the action of agent i is given by:

0

1—7’

a; = Aﬁz +

and the mean action is given by:

_ M
A
Of course, the Nash equilibrium under complete information is indeed a noise-free Bayes corre-

lated equilibrium, with values given by:

_1—7’ _2—7“

A 5 and U()\)—l_r.

(24)

The value of \* = (1 —r) /(2 — r) will be an important benchmark as we analyze how the infor-
mation structure changes the responsiveness of the agents relative to the complete information
equilibrium. Moreover, if we insert the expression \* in Proposition 3, then we obtain the corre-
lation coefficients that form the joint distribution of the complete information Nash equilibrium,

and we identify the complete information Nash equilibrium outcomes notationally by *.

Corollary 1 (Nash Equilibrium Distribution)

The normal distribution of the complete information Nash equilibrium is:

1. the mean of the individual action:
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2. the standard deviation of the individual action:

* P
O, = 06\/(1 — Pog) + ﬁ;

3. and the correlation coefficients:

. _ Poo .« _ poeT + (1 —1) . _ Poo
paa - 1 2 ’ pa9 - 2 ) ’Oa¢ - 2 ’
(1 = pgg) (1 = 7)2 + pgg V(1= pgg) (1 — )2 + pyy V(L= pgg) (1L = 7)2 + pgy

We observe that the complete information Nash equilibrium could also be achieved by less
than complete information. In particular, if each agent would only receive a one-dimensional
signal s; of the form given by (20) evaluated at \*, and respond with the corresponding intensity
v (A"), then we would also achieve the complete information Nash equilibrium. But the signal s;
would of course constitute a noisy signal in the sense that it would induce a posterior belief over
the payoff state 6; and the components 6 and A#;, but such that the posterior belief would be a
sufficient statistic with respect to the equilibrium action.

To give a complete description of the Bayesian Nash equilibrium we need to specify a type
space or an information structure. While we can allow for any finite-dimensional normally
distributed information structure, for the present purpose, it will suffice to consider the following

one-dimensional class of signals:

where ¢; is normally distributed with mean zero and variance o2. Similar to the definition of the

payoff relevant fundamentals, the individual error term ¢; can have a common component:
5 = Ez [81'],

and an idiosyncratic component:

A
Ag;, =¢; — 2,

while being independent of the fundamental component, so that the joint distribution of the

states and signals is given by:

0 0 o2 0 0
Ag; 0 0 0 (1-p.)o2 0
5 0 0 0 0 Pe02

and o. > 0 and p,. € [0,1] are the parameters of the fully specified information structure
I ={Zi}icp-
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Definition 3 (Bayes Nash Equilibrium)
The random variables {a;}icjo1) form a normally distributed Bayes Nash Equilibrium under in-

formation structure I if and only if the random variables {a;}ico,1) are normally distributed and
a; = E[ez + TA|SZ‘].

In an environment with multi-dimensional signals s;;, with j = 1, ..., J, the definitions would
extend and we would have to specify the variance and correlation of the error of each signal (g;5),
the composition of each signal ();), and also the correlation between the errors of the different

signals:
Sij = )\]Ael + (1 — )\])é + gij-

Yet, as the next result establishes these more general information structures are not needed
in the sense that any distribution over action and payoff state they would induce can already
be achieved with the above one-dimensional class of information structures, see (25) and (26).
Moreover, the entire set of Bayes correlated equilibria can already by decentralized as Bayes

Nash equilibria of these one-dimensional information structures.

Proposition 4 (Equivalence Between BCE and BNE)
The variables (0;,0,a;, A) form a (normal) Bayes correlated equilibrium if and only if there
exists some information structure T under which the variables (0;,0,a;, A) form a Bayes Nash

equilibrium.

One of the important insights from the analysis of BCE is that the set of outcomes that can
be achieved as a BNE for some information structure, can also be described as a BCE. Thus, the
solution concept of BCE allow us to study the set of outcomes that can be achieved as a BNE,
without the need to specify information structures.

The equivalence between Bayes correlated equilibrium and Bayes Nash equilibrium is estab-
lished for canonical finite games and arbitrary information structures in Bergemann and Morris
(2013a) as Theorem 1. The proposition specializes the proof to the environment with linear best
responses and multivariate normal distributed outcomes. The additional result here is that the
entire set of multivariate Bayes correlated equilibria can be decentralized as Bayes Nash equilibria
with the class of one-dimensional information structures given by (25) and (26). In the case of
pure common values Bergemann and Morris (2013b) show that any BCE can be decentralized by
considering a pair of noisy signals, a private and a public signal of the payoff state. By contrast,
in the present general environment this class of binary information structures cannot decentralize

the entire set of BCE, as it is not possible to express all linear combinations of the fundamental
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components by means of the two dimensional class of signals in which only the payoft state 6;

itself receives a private and public error term.

4 Aggregate Volatility and Information

In this Section, we use the characterization of the Bayes correlated equilibria, and in particular,
the characterization of the noise-free equilibria to analyze what drives the volatility of the out-
comes, in particular the aggregate outcome in this class of linear quadratic environments. We
begin with the special case of pure common values in Section 4.1 and then analyze the general
environment in Section 4.2. We focus mainly on aggregate volatility, p,,02, as it is often the
most interesting empirical quantity and this lens keeps our discussion focused, but we also state
results for the individual volatility o2, and the dispersion (1 — p,,)o>.

Before we proceed, we need an auxiliary result which establishes that we can restrict attention
without loss of generality to the noise-free BCE as defined earlier. Given our characterization
of the set of Bayes correlated equilibria, we know that the mean and variance is determined by
the interaction structure and the correlation coefficients, where the later are restricted by the
inequalities derived in Proposition 1. Thus, if we are interested in identifying the equilibrium
with the maximal aggregate or individual volatility, or essentially any other function of the first
and the second moments of the equilibrium distribution, we essentially look at some function

¥ : [-1,1)> = R, where the domain is given by the triple of correlation coefficients: (p,,, fup; Pag)-

Proposition 5 (Maximal Equilibria)
Let Y(paas Pass Pag) be an arbitrary continuous function, strictly increasing in p,, and weakly

increasing in p,,. Then, the BCE that mazximizes 1 is an noise-free BCE.
An immediate consequence of the above result is the following

Corollary 2 (Volatility and Dispersion)
The individual volatility o2, the aggregate volatility p,,02 and the dispersion (1 — p,,) o2 are all

continuous functions of (Paas Pags Pag), StTiCtly increasing in p,, and weakly increasing in p,.

Thus we can already conclude that equilibria that maximize either aggregate volatility or
individual volatility or the dispersion are all noise-free BCE. This means that we can always rep-
resent the individual action as a linear combination of the two sources of fundamental uncertainty,
A; and 0. In the present contribution, we are mostly interested in the narrow interpretation

of Proposition 5 as given by Corollary 2. But clearly, the content of Proposition 5 would be
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relevant if we were to conduct a more comprehensive welfare analysis as the associated objective
functions, in particular if it were linear quadratic as well, would satisfy the mild monotonicity
conditions of Proposition 5. In particular, we note that the conditions of Proposition 5 are silent
about the correlation coefficient p,,, and thus we can accommodate arbitrary behavior, in par-
ticular we can accommodate environments (and payoffs and associated objective functions) with

strategic substitutes or complements.

4.1 Volatility: The Case of Pure Common Values

As a benchmark, it is instructive to recall how the aggregate volatility behaves in a model with

pure common values, pyy = 1, as analyzed in Bergemann and Morris (2013b).

Proposition 6 (Aggregate Volatility with Common Values)
With common values, pyy = 1, the mazimum aggregate volatility across all BCE s given by:
2
2 2 99
ON = P00 = —-
A P ( 1— T)Q
The maximal aggregate volatility is increasing in r and is attained by the complete information

Nash equilibrium.

Thus, with pure common values the maximum aggregate volatility is bounded by the aggre-
gate volatility in the complete information equilibrium and the responsiveness of the agents to
the common state @ is always bounded above by the responsiveness achieved in the complete in-
formation equilibrium. Interestingly, this property is not going to hold anymore in environments
with interdependent values. That is, information structures with less than complete information

will lead to larger aggregate volatility than could be observed with complete information.

4.2 Volatility: Information and Fundamentals

We now establish that in an environment with interdependent values equilibria that maximize
volatility or dispersion are not complete information equilibria, and hence will involve residual
uncertainty from the point of view of each individual agent. With pure common values, any
residual uncertainty about the payoff state inevitably reduces the responsiveness of the individual
agent to the common state, and hence ultimately reduces the aggregate responsiveness. By
contrast, with pure private values, the residual uncertainty might be correlated across agents,
and hence allow for aggregate volatility to arise in the absence of aggregate uncertainty. Still, for

each individual agent the residual uncertainty attenuates the responsiveness to his payoff state
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;. Now, with interdependent values, the interaction between the idiosyncratic and the common
component in the payoff state can correlate the responsiveness of the agents without attenuating
the individual response. It thus allows for aggregate behavior to emerge that cannot arise under
either pure common or pure private values. More precisely, the residual uncertainty about
idiosyncratic component can be present because it is bundled with, but not distinguishable from
information about the common component. But this bundling of information can be achieved
precisely by the convex combinations of the components suggested earlier in the characterization
of the noise-free equilibria, see (20). And importantly, it occurs without the introduction of
additional noise.

Now, if we are concerned with volatility, then by Corollary 2, it is indeed sufficient to consider
precisely these noise-free equilibria in which each agent responds to a linear combination of the
two fundamental sources of uncertainty. As the signal confounds the sources, the agents cannot
disentangle them, and in turn lead the agent to overreact to one component and underreact to
the other. In the noise-free equilibria, the responsiveness of the agent to the fundamentals can
be expressed directly in terms of the weight A\ that the idiosyncratic component receives in the
convex combination:

MO + (1= N0 with X\ €[0,1].

We note that we can use (and interpret) A in two different, but closely related ways. It is either
a parametrization of the noise-free Bayes correlated equilibria as suggested by Proposition 3 or it
is a specific information structure of the form given by (25) that leads to Bayes Nash equilibria
which informationally decentralize the noise-free Bayes correlated equilibria as suggested by
Proposition 4. In either case, the weight A\ is measure of how confounded the idiosyncratic and

the common component are.

Proposition 7 (Responsiveness to Fundamentals)

In any noise-free BCE,
1. A€ (A1) < cov(a;, AG;) > 1;

2. M€ (0,\") <> cov(a;,0) > .

Thus the responsiveness of the action to one of the components of the payoff state is typically
stronger than in the complete information environment. In Figure 4 we plot the responsiveness to
the two components of the fundamental state for the case of py, = 0.5 and different interaction
parameters r. The threshold values A\ simply correspond to the critical value \* for each of

the considered interaction parameters r &€ {—%,0, —l—%}. The horizontal black lines represent
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the responsiveness to common component 6 in the complete information equilibrium which is
equal to 1/(1 — r), and the responsiveness to the idiosyncratic part, which is always equal to
1. By contrast, the red curves represent the responsiveness to the common component along
the noise-free equilibrium, and the blue curves represent the responsiveness to the idiosyncratic

component. Thus if A < A*, then the responsiveness to the common component 6 is larger

1 ~ N —  cov(aiAG), r=0.75
1-0.75

—  cov(a;,@),, r=0.75

cov(aj,Ag)), r=0

cov(a;,@), r=0

cov(aj,A6;),r=-0.75

cov(a;,f), r=—0.75

1+0.75

Figure 4: Responsiveness to Fundamentals for pyy = 1/2

than in the complete information equilibrium, and conversely for Af;. Moreover, we observe
that the maximum responsiveness to the common component is never attained in the complete
information equilibrium or at the boundary value of A, that is at 0 or 1. This immediately implies
that the responsiveness is not monotonic in the informational content. We now provide some

general comparative static results.

Proposition 8 ( Comparative Statics)
For all pgy € (0,1):

1. the mazimal individual volatility maxy o2, the mazimal aggregate volatility maxy p,,0> and

2

> are strictly increasing in r;

the mazimal dispersion maxy (1 — p,,)o

. . . . . 2 2
2. the corresponding weights on the idiosyncratic component, argmax, o,, argmax, P,,0

2

- are strictly decreasing in r;

argmax)\(l - paa)a
3. the corresponding weights on the idiosyncratic component satisfy:
2

a*

argmax, (1 —p,,)02 > argmax, 02 > argmax, p,,0
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Thus, the maximal volatility, both individual and aggregate, is increasing in the level of com-
plementarity . Even the maximal dispersion is increasing in r. In the maximally dispersive
equilibrium, the agents confound the idiosyncratic and aggregate component of the payoff type
and overreact to the idiosyncratic part, this effect increases with r. This implies that the respon-
siveness to the common component @ increases, and hence the overreaction to the idiosyncratic
component A#; increases as well. Moreover, the optimal weight on the aggregate component
increases in r for all of the second moments.

We can contrast the behavior of aggregate volatility with pure common values and with inter-
dependent values even more dramatically. Up to now, we stated our results with a representation
of the payoff uncertainty in terms of the total variance o3 of the payoff state and the correlation
coefficient pyy, see (4). The alternative parametrization, see (3), represented the uncertainty by
the variance a% of the common component , and the variance Jgi of the idiosyncratic component
Af; separately (and then the correlation coefficient across agents is determined by the two vari-

ances terms.) For the next result, we shall adopt this second parametrization, as we want to ask

2
g

f constant, and increase the variance 032_ of the idiosyncratic component Af;, or conversely.

what happens to the aggregate volatility as we keep the variance oz of the common component

Proposition 9 (Aggregate Volatility)

For allr € (—o00,1), the maximal aggregate volatility is equal to

&

i 2 (27)
4 <\/ag +(1- r)agi — 05)

and s strictly increasing without bound in UZZ_. As agi — 0, this converges to the

max { 04,0} =

mf“x {paagg} = O%/(l - 7“)2,

which is also the aggregate volatility in the complete information equilibrium. As 0% — 0, this

converges to
max{p,,o.} = 05,/ (4(1—1)).

In other words, as we move away from the model of pure common values, that is agi =0,
the aggregate volatility larger with some amount of incomplete information. In consequence,
the maximum aggregate volatility is not bounded by the aggregate volatility under the complete
information equilibrium as it is the case with common values. In fact, the aggregate volatility
is increasing without bounds in the variance of the idiosyncratic component even in the absence

of variance of the common component . The latter result in stark contrast to the complete
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information equilibrium in which the aggregate volatility is unaffected by the variance of the
idiosyncratic component. This illustrates in a simple way that in this model the aggregate
volatility may result from uncertainty about the aggregate fundamental or the idiosyncratic
fundamental.

Earlier, we suggested that the impact of the confounding information on the equilibrium
behavior is distinct in the interdependent value environment relative to either the pure private
and pure common value environment. We can make this now precise by evaluating the impact
the introduction of a public component has in a world of pure idiosyncratic uncertainty. By
evaluating the aggregate volatility and ask how much can it be increased by adding a common

payoff shock with arbitrarily small variance, we find from (27) that:

omaxi {puct} o}

Doy log=0 2(1 —r)3/2

More generally, there is positive interaction between the variance of the idiosyncratic and the

common term with respect to the aggregate volatility than can prevail in equilibrium as the

cross-derivative inform us:

O mas {pas%) _ % »
0oy, 00 2 (O’% + (1 - T)O'gi) 3/2 '

Interestingly, for a given variance of the common component, the positive interaction effect as
measured by the cross derivatives occurs at finite values of the variance of the idiosyncratic
component.

We complete our discussion by returning to the special cases of pure common and pure pri-
vate values. In Proposition 6 we showed that with common values the information structure that
maximizes aggregate volatility is always the complete information equilibrium. By contrast, for
pure private values the information structure that maximizes aggregate volatility has to involve
a common error term, as the aggregate volatility would otherwise be zero. By a similar argu-
ment, the information structure that maximizes dispersion with common values has to involve
idiosyncratic noise, as otherwise the equilibrium would trivially have no dispersion. When we
identify the information structures that maximize individual volatility under pure common or

pure private values, the results are more subtle and depend on the nature of the interaction.
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Proposition 10 (Comparative Statics for Common and Independent Values)

1. If pgg = 1 and r > —1, then the maximal individual volatility is achieved in the complete
information equilibrium; and if 1 < —1 then the maximal individual volatility is achieved
2

by a signal with idiosyncratic noise: s; = 0 + ¢;, o, =-r—1

2. If pgg = 0 and v < 1/2, then the mazimal individual volatility is achieved in the complete
information equilibrium; and if r > 1/2 then the mazximal individual volatility is achieved

by a signal with common noise s; = A; +¢, 02 = (2r — 1) /(1 —r).

The result of Proposition 10.1 follows from the analysis in Bergemann and Morris (2013b).
There we show in Proposition 2 that in the model with pure common values, if r < —1 then the
maximal individual volatility requires less than perfect correlation across actions, or p,, = p2, <
1. In fact, in Bergemann and Morris (2013b), we consider an application to large Cournot markets,
and find that the socially optimal information is in fact provided by the noisy information
structure identified in the above Proposition 10.1. More broadly, this indicates that the present
results on individual and aggregate volatility would have direct implications for a more extensive
welfare analysis, one that we do not pursue here.

The above result illustrates that for pure private and pure common value environments, it is
important to consider noisy signals to find the equilibria that maximize aggregate or individual
volatility. Put differently, in the exceptional circumstances of pure private and pure common
values, the noise has to pick up what otherwise, that is in interdependent value environments,
would be picked up by payoff relevant information, as in purification arguments. With interde-
pendent values, the fundamental components 6 and A#; provide enough richness to increase or

decrease the equilibrium correlation of the actions, and thus it is not necessary to recur to noise.

5 A Priori Restrictions on Information Structures

In the analysis of games of incomplete information, the context and the specific application might
suggest natural restrictions on the information structure. For example in oligopoly games, each
firm may know its own marginal cost, but be uncertain about the cost of the competing firms. In
a trading environment, as in Angeletos and La’O (2013), the trader knows his own technology,
but is uncertain about the technology of the other agents. In this section we investigate how
the set of feasible BCE changes given certain a priori restrictions on the information structures.
A particularly relevant and natural restriction is the case in which each agent ¢ knows his own

payoft state #;, which we shall analyze in this section. Of course, all of the information structures
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in which each agent knows his payoff state are contained in the set of unrestricted informa-
tion structures, and thus we shall characterize a subset of BCE that are equivalent in terms of
outcomes to the set of Bayes Nash equilibria in which agents know their own payoff state.

We say that the variables (6;, 0, a;, A) form a (normal) Bayes correlated equilibrium in which
each agent knows his own payoff state if the joint distribution is given by (6), and in addition,

the best response is conditioning on the action a; and the state 6, :

The set of feasible BCE when each agent knows his payoff state can be described by an
argument similar to the unrestricted case. We simply have to add an additional constraint
that reflects the fact that agent ¢ knows, and hence conditions on, his payoff state #;. From a
qualitative point of view, the most important aspect of restricting the set of possible information
structures is the result that the set of feasible correlations is now no longer independent of the

interaction structure.

Proposition 11 (Characterization BCE Agents Know Own Payoff)
The variables (0;,0,a;, A) form a (normal) BCE if and only if the conditions of Proposition 1
hold and in addition:

PutTa = T0 + TPag 0. (29)

Thus, imposing the restriction that each agent knows his own payoff state adds a restriction
to the characterization of the feasible BCE. But the nature of the restriction is such that the set
of feasible correlations is no longer independent of the interaction structure, represented by r.

We continue to describe the set of feasible correlations in the space of correlation coefficients
(Paas Pap), and can contrast it directly with the case of unrestricted information structures. The
characterization consists of two parts. First, we describe the set of feasible action correlations
P.. When agents know their own payoff state. If each agent only knows his own payoff state, then
the correlation across actions p,, is equal to pyg, P, = Pgo- Since the only information of agent
1 is his payoff state 6;, the actions of two agents can only be correlated to the extent that their
payoft states are correlated. By contrast, if the agents have complete information, the correlation
is given, as established earlier, by p,, = pi,. We find that the set of feasible action correlations
is always between these two quantities, providing the lower and upper bounds. If » > 0, then
the complete information bound is the upper bound, if » < 0, it is the lower bound, and they
coincide for » = 0. Second, we describe the set of feasible correlations between action and state,

Pa0, for any feasible p,,. More precisely, the set of feasible p,, is determined by two functions of
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Paa, Which provide the lower and upper bound for the feasible p,,. We denote these functions by
pte and p' ) as these bounds are achieved by information structures in which the agents either get
a noisy signal of the form given by (25) with either a common error term or with an idiosyncratic
error term. The equilibria with p¢, and p, correspond to Bayes Nash equilibria in which each

agent gets an additional signal of the form defined by (25) earlier:
si=AAG; + (1 = N)f + ¢,

with either a common or an idiosyncratic error term. The value A\ of the convex weight itself is
irrelevant as long as A\ # 1/2, as the agent can always filter the additional information relative
to his knowledge of his own payoff state 6;. For a given p,,, pt, and p’, represent the solutions

of the following equations:

(0= )0 + 1= ) — T 20— ) =0, (30)

Lo i
;((pa9)2 o (1 - rpaa)) = PadV PaaPoo = 0. (31)
Proposition 12 (Bounds on BCE Correlation Coefficients)

1. The action correlation p,, is BCE feasible if and only if p,, € [min{p* ., pge}, max{pk,, poo};

2. For all p,, € [min{p’,, peo}, max{p:,, peo}|, the correlation pair (p,,, pae) s BCE feasible
if and only if
Pas € [min{pzﬁa wa}a maX{pZGa wa}]

In Figure 5, we illustrate the Bayes correlated equilibrium set for different values of the
interaction parameter r with a given interdependency py,y = 1/2. Each interaction value r is
represented by a differently colored pair of lower and upper bounds. For each value of r, the
entire set of BCE is given by the area enclosed by the lower and upper bound. Notably, the
bounds p, (p.,) and pi, (p,,) intersect in two points, corresponding to each agent knowing his
payoff state 6; only (at p,, = pgg = 1/2) and to complete information, at the low or high end of
P.. depending on the nature of the interaction, respectively. In fact these, and only these, two
points, are also noise-free equilibria of the unrestricted set of BCE. When r > 0, the upper bound
is given by signals with idiosyncratic error terms, while the lower bound is given by signals with
common error terms, and conversely for r < 0. With r > 0, as the additional signal contains an
idiosyncratic error, it forces the agent to stay closely to his known payoff state, as this is where

the desired correlation with the other agents arises, and only slowly incorporate the information
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about the idiosyncratic state, thus overall tracking as close as possible his own payoff state 6;,
and achieving the upper bound. The argument for the lower bound follows a similar logic.
Thus the present restriction to information structures in which each agent knows at least his
own payoff state dramatically reduces the set of possible BCE. With the exception of these two
points, all elements of the smaller set are in the interior of unrestricted set of BCE. Moreover,
the nature of the interaction has a profound impact on the shape of the correlation that can arise

in equilibrium, both in terms of the size as well as the location of the set in the unit square of

(pacU pa@)'
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Figure 5: BCE with Prior Information py, = 1/2

Finally, we observe that for the case of pure common or pure private values, the set of Bayes
correlated equilibria when agents know their own payoff state is degenerate. Under either pure
common or pure private values if agents know their own payoff state then there is no uncertainty
left, and thus the only possible outcome corresponds to the complete information outcome. In
consequence, there is then either no aggregate volatility if the payoff states are pure private values
or there is no dispersion in actions if payoff states are pure common values, and correspondingly

Pae = 1, but p,, is either 0 or 1 depending on private or common values.

30



6 Pairwise Interaction

We now extend our model to allow for heterogenous interaction among agents. We shall not
present the most general possible framework, but rather propose a symmetric model of interaction
that includes individual as well as aggregate interaction. In particular, each agent’s best response
is now given by a linear function with weights on the aggregate (or average) action and an
individual action of a specifically matched agent. The interaction with an individual agent is the
result of match between agent i and j, and the matched pair can arise as the result of a random

matching or an assortative matching.

6.1 Statistical Model of Pairwise Interaction

Agent i € [0,1] chooses an action a; € R and is assumed to have a quadratic payoff function
which is function of his action a;, the action taken by his match (a;), the average action A taken

by the entire population and his individual payoff state 6;:
u; s RY > R.
In consequence, we write the best response function of agent ¢ as follows,
a; = r.Bla;|Z;] + raB[A|Z;] + E[0;|Z;]. (32)

If r, = 0 then we have a model of aggregate interactions as previously studied. If r4 = 0 then
there is only pairwise interaction between agents. Of course, we maintain that the payoff states in
the entire population have a given distribution to which the payoff states of particular pairs must
conform to when aggregated. To keep the best responses bounded we assume that |r4|+|r,| < 1.

We will allow for matched agents to be assorted according to their payoff states, thus we

assume that if agents (i, j) are matched, then
cov(6;,6;) = pwag

where the new correlation coefficient p,, has to satisfy p,, € [2pp — 1,1]. Under random
matching, we have that p,, = pyy, yet this will not be the general case and thus p,,,, will be the
parameter of assortative matching. We say there is positive assortative matching if p,, > pgy
and we will say there is negative assortative matching if p,, < pyy-

Thus, given a matched pair of agents (i, j), we can describe the basic uncertainty by:

0; Ko o 3 Pl 3 Pog0 3
‘gj ~ N Ho | » pgogoo-g 0-3 Peeag ) (33)
IE;[0;] I PooT5  PooT%  PoeTs
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where we recall that E;[-| is used to denote the average taken across the entire population, and
thus [;[6;] is the common component of the payoff state of every agent. We assume that the
joint normal distribution given by (33), is the common prior.

We require some additional notation to describe the random variables associated with the

matching of agents. Given a match (i, j) we define:

0+é01+9j 0; — 0,
! 2 2
and subsequently, we use the 4+ and — superscript to denote the average and weighted difference

and 0] =

of any pair of variables that is generated by a pair of matched agents (i, j). Thus, an equivalent

way to describe the basic uncertainty is given by, where we denote by extension A8} = 0 — 0:

0; 0\ [((1—p,.)% 0 0
AgF | ~N ] o], 0 (14 p,, —200)% O . (34)
0 Heo 0 0 PooT

Note that the formulations (33) and (34) are equivalent, yet, by writing the model in terms of
orthogonal random variables we can simplify the analysis and interpret the results in a easier

way. Finally, as shorthand notation, we define,

e

1
Phe = 514 Pop = 2000)s Ppp = (1= 1),

+

and we observe that under random matching p;, = p,,-

6.2 BCE with Pairwise Matching

As before, we will define a BCE with pairwise matching and characterize it.

Definition 4 (Bayes Correlated Equilibrium)
The variables (0;,0;,0,a;,a;, A) form a symmetric and normally distributed Bayes Correlated
Equilibrium with pairwise matching if their joint distribution is given by a multivariate normal

distribution and for every matched agent i (to some j), and for all a; :
a; = TaE[CLj|CLi, 91] + ’I“AE[A|CLZ‘, 91] + E[QZ|CL“ 02] . (35)

With minor abuse of notation, we now refer to V as the larger variance-covariance matrix of
the joint distribution of (6;,60;,0,a;,a;, A). The matrix V can be reduced in its dimensions by
the same use of symmetry and orthogonal random variables as earlier in Lemma 1. Relative to

the benchmark model with aggregate interaction we introduce one new exogenous variable, the
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correlation coefficient p,,, of payoff state between matched agents. We then require two extra
endogenous correlation coefficients to fully specify an equilibrium: (i) the correlation of actions
between matched agents, denoted by p,,, as opposed to the correlation between the action of
an individual and the aggregate action, now denoted by p,4, and (ii) the correlation between
an individual agent’s action and the payoff state of his match, denoted by p,,. As before, the
set of BCE is equivalent to the set of BNE for some information structure by the same general
argument as in Bergemann and Morris (2013a). Analogous to the benchmark model we now
characterize the set of BCE.

Proposition 13

The variables (6;,0;, 0,a,;, aj, A) form a Bayes correlated equilibrium if and only if:

2
1. the indiwidual variance is 02 = [ —L«07¢ )
a 1_Tapau._rApaA

2
; ; 2 . Pa60 .
2. the aggregate variance is 0% = p 4 <1—rapaa—7’AﬂaA> ’

3. the correlation coefficients satisfy:

Pag =0, PanbPos = Pags (36)

e (s — P’ (Pus = a0+ P’
- — 2, +
1— Do 2 Pab pa(p : 1 + Puy — 2paA 2 Pab pa¢ pagﬂ .
1- pcpcp 1 - 2p09 + /Ocpcp

(37)

Note that the characterization proceeds in the same way as in the benchmark model. As
before, the constraints on the feasible correlations are purely statistical, and thus do not depend
on the nature of the interaction structure. Thus it is easy to see that all restrictions on correlations
for the benchmark model must also hold with random matching, as these are purely statistical
constraints. We should add that the separation between statistical constraints and incentives
constraints remains to hold in general linear interaction networks, and thus we could extend the
present analysis to network models such as Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012), but now allowing for incomplete information.

Similar as in the benchmark model with aggregate interaction, we can define a BCE with
matching and under the restriction that each agent i knows his payoff state ;. As before, the

joint distribution of variables is given by (6), and the best response conditions are given by:
a; = raE[aj]ai,Hi] +7’AE[A’0,7;,91'] +E[91’a1,91], \V/’l,va“vel (38)

In this case the characterization of the BCE with matching in which agents know their own

payoff state is given by:
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Proposition 14 (Characterization of BCE when Agents Know Own Payoff State)
The variables (0;,0;,0, a;, a;, A) form a (normal) Bayes correlated equilibrium if and only if the

conditions of Proposition 13 hold and

PabTa = 00 + TaPupTa + TAPugTa- (39)

6.3 BCE with Pairwise Matching: Comparative Statics

The pairwise matching adds some features to our benchmark model which are worth highlighting.
Henceforth we will assume random matching, that is p,, = pgy, unless otherwise noted. First,
the comparative statics with respect to the pairwise interaction parameter r, are distinct from
those with the aggregate interaction parameter r4. For the model with aggregate interaction,
we showed that the volatility (individual, aggregate and dispersion) were monotone increasing
in r4, see Proposition 8. But this is no longer true with respect to the pairwise interaction
rq. We illustrate this in the absence of aggregate interaction, that is we set r4 = 0. In this
case, the maximum individual and aggregate volatility has an interior minimum, and maxima
at the positive and the negative boundary of the interaction, namely at |r,| = 1, as illustrated
by Figure 6 and 7. With individual interaction, we have positive correlation among the actions
with strategic complements, and negative correlation with strategic substitutes. Now, in the
aggregate interaction model, the individual actions cannot all be negatively correlated, but this
restriction is not present anymore at the level of pairwise interaction. Here, as the strategic
substitute property becomes stronger, that is as r, decreases and approaches —1, the individual
agent seeks to respond strongly and negatively to his expectation about the matched agent’s
action. But now, a common error in the information for both agents will introduce positive
volatility among the pair, and in fact across all the pairs, hence allowing for aggregate volatility
even in the presence of strong negative interaction.

In Figure 6 we display the maximum individual volatility for the benchmark model, r, = 0,
and the pairwise interaction model, 74 = 0, with random matching for different parameters
ppp Of interdependence, without any restrictions on the information structure. With pairwise
interaction, the maximum individual volatility is in minimal at an interior level of r, = 0, while
with aggregate interaction the maximum individual volatility is always increasing in 74. We
observe in Figure 7 that the aggregate volatility requires a larger absolute level of substitutability
to display increasing aggregate volatility, but eventually as r, — —1, it behaves as the individual
volatility.

Second, as the interaction arises in matched pairs, there is an additional element of uncertainty

for each agent, namely the payoff state of the matched agent. This induces particularly striking
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Figure 7: Maximal aggregate volatility: aggregate vs. pairwise interaction.

results in the pure private value model where the payoff states are independently distributed,
Poe = 0, and the agents know their own payoff state. Under these assumptions, the model with
aggregate interaction has a unique equilibrium, the complete information Nash equilibrium, in
which there is zero aggregate volatility. By contrast, if we impose random matching and pairwise
interactions, ry = 0,7, # 0, then this result does no longer hold true. The agents do not have
complete information anymore when they know their payoff state, as there is still uncertainty
about the payoff state of their matched partner. The residual uncertainty about the specific
payoff state of the matched partner means that it is possible to support equilibria in which the
aggregate volatility of actions is not identically 0, even though there is no aggregate uncertainty
about the payoff states.

In Figure 8 we plot the maximum aggregate volatility for the model with aggregate interac-
tion: r, = 0, and the model with pairwise interaction: 4 = 0, for different parameters of payoff

interdependency, while imposing the informational restriction that each agent knows his own
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Figure 8: Maximal aggregate volatility with known payoff type: aggregate vs. pairwise interac-

tion.

payoff state. Once again, the comparative statics and the behavior of the equilibrium changes
—1,

each agent reacts strongly to the idiosyncratic shock of his partner as he seeks negative correla-

with respect to the interaction parameter r and the payoff interdependency pyy. As r, —

tion. In consequence, the highest aggregate variance is achieved when each agent confounds the
idiosyncratic shock of his partner with the aggregate shock, and thus react very strongly to the
aggregate shock. This also explains the shape of the maximum aggregate volatility with respect
to the pairwise interaction parameter in Figure 8. For an increase in the aggregate volatility to
occur, it is necessary for agents to be positively correlated with the population average, as this
means that for a fixed individual volatility the amount of aggregate volatility is bigger. But,
when r, < 0, then it is optimal for a given agent to be negatively correlated with his partner to
increase the responsiveness of each agent to his signal. Yet, there is a statistical constraint on
how much agents can negatively correlate with their partner and yet positively correlate with the
population average. This restriction imposes a balance on how much the agents can be positively
correlated with the average while still be negatively correlated with their individual partners,
leading to lower aggregate volatility with strategic substitutes than with strategic complements.

Third, the behavior in the pairwise interaction model is in even starker contrast to the
aggregate interaction model if we were to display positive (or negative) assortative matching.
In Figure 9 we remain with the pairwise matching model and pure private values p,y = 1. We
display the maximum aggregate volatility with restricted information structures and unrestricted
information structures, left to right respectively. By comparison with Figure 8, which considers
random matching at a range of Interdepedent values, we find in Figure 9 that we can recover
a very similar pattern of aggregate volatility with assortative matching, ranging from random

matching with p,, = 0 to perfect positive assortative matching p,, = 1 alone, without relying
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at all on correlation in the common component.
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Figure 9: Maximal aggregate volatility for assortative matching with pure private values: re-

stricted vs. unrestricted information structures.

7 Discussion

In this section we review the main results of the paper and at the same time provide a very broad
connection to other papers found in the literature. We will explain how our results connect to

the results found in different papers, and explain how one can understand them in a common

framework.

The Drivers of Responsiveness to Fundamentals A literature in which the responsiveness
to fundamentals has been widely studied is the study of nominal rigidities driven by informational
frictions. Lucas (1972) established informational frictions can cause an economy to respond to
monetary shocks that would not have real effects under complete information. In the model
agents are subject to real and monetary shocks, but only observe prices. Since the unique signal
they observe does not allow them to disentangle the two shocks, the demand of agents (in real
terms) responds to monetary shocks. Thus, even when under complete information there would
be no “real” effects of monetary shocks, as the agents confound the shocks which allows monetary
shocks to have real effects.

In more recent contributions, Hellwig and Venkateswaran (2009) and Mackowiak and Wieder-
holt (2009) both present dynamic models in which the intertemporal dynamics are purely infor-
mational and in which the maximization problem in each period is strategically equivalent to the

one in the present model with aggregate interactions only (r, = 0).
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The informational assumptions in Hellwig and Venkateswaran (2009) are derived from a
micro-founded model. Each agent observes a signal that is a result of his past transaction, thus a
result of past actions and past shocks. The persistence of shocks means that such a signal serves
as a predictor of future shocks. The main feature of the signal is the property that it is composed
of idiosyncratic and common shocks, and hence the informational content of the signal is similar
to the one-dimensional signal analyzed in Section 3.4. They suggest that in empirically relevant
information structure the idiosyncratic shocks might be much larger than the common shocks,
and thus agents have very little information about the realization of the common shocks. Thus,
even when agents have little information about the common shocks, they respond strongly to
the idiosyncratic shock in order to be able to respond to the common shock at all.

By contrast, the informational assumptions in Mackowiak and Wiederholt (2009) are derived
from a model of rational inattention. Here the agents receive separate signals on the idiosyncratic
and common part of their shocks. In consequence, the response to each signal can be computed
independently and the responsiveness to each signal is proportional to the quality of information.
However, the amount of noise on each signal is chosen optimally by the agents, subject to a
global informational constraint motivated by limited attention. Again, motivated by empirical
observations, it is assumed that the idiosyncratic shocks are much larger than common shocks.
This in turn results in agents choosing to have better information on the idiosyncratic shocks
rather than the common shocks. This implies that the response to the common shock is sluggish
as the information on it is poor.

Both papers have very contrasting results on the response of the economy to common shocks,
although the underlying assumptions are quite similar. Note that not only the strategic environ-
ment is similar, but also the fact that agents have little information on common valued shocks.
Their contrasting analysis thus indicates the extent to which the response to the fundamentals

may be driven by the informational composition of the signals.

The Role of Heterogeneous Interactions and the Dimensions of Uncertainty In a
recent paper Angeletos and La’O (2013) demonstrate how informational frictions can generate
aggregate fluctuations in a economy even without any aggregate uncertainty. They consider a
neoclassical economy with trade, which in its reduced form can be interpreted with linear best
responses as in (32) with r4 = 0 and pyy = 0. In their environment, each agent is also assumed to
know his own payoff state. In such a model, but with aggregate rather than pairwise interaction,
there would be a unique equilibrium as the agents would face no uncertainty at all. Yet, given
the pairwise interaction, there is a dimension of uncertainty, which enables aggregate fluctuations

to arise in the absence of aggregate payoff uncertainty. If each agent observes the payoff state of
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his partners through a noisy signal with a common error term, then the aggregate volatility will
not be equal to 0 as each agent responds to same common error term in the individual signal.

Our analysis suggest the emergence of aggregate volatility from the pairwise trading does not
hinge on any particular interaction structure. The only necessary condition for the aggregate
volatility to emerge is the presence of some residual uncertainty. Moreover, even though one might
be skeptical about fluctuations arising merely from common noise error terms, it should be clear
that the same mechanism could explain how the response to a small aggregate fundamental could
be amplified. Thus, it is not necessary to have strong aggregate fluctuations in the fundamentals
or strong aggregate interactions to generate large aggregate fluctuations, but these can arise from
strong local interactions, as in the model of Angeletos and La’O (2013) with pairwise interactions.
More generally, the present analysis also demonstrates that different sources of uncertainty and
their impact on the volatility of outcomes cannot be analyzed independently in the absence of
complete information.

In this paper we have focused on the information structures that are completely exogenous
to the action taken by players, that is, all information agents get is concerning the fundamen-
tals. We could have also considered information structures in which each agent gets a signal
that is informative about the average action taken by other players, and then compute the set
of outcomes that are consistent with a rational expectations equilibrium. The set of feasible
outcomes that are consistent with a rational expectation equilibrium would constitute a subset
of the outcomes when only information on the fundamentals is considered, yet we leave the char-
acterization of such outcomes as work for future research. A recent contribution by Benhabib,
Wang, and Wen (2013) (and related Benhabib, Wang, and Wen (2012)) consider a model with
this kind of information structure. Their model has in its reduced form a linear structure like
the one we have analyzed, yet agents can get a noisy signal on the average action taken by other
players. They show that the equilibria can display non-fundamental uncertainty, which can be
thought of as sentiments. From a purely game theoretic perspective, their model is equivalent to
our benchmark model with common values, but agents only receive a (possibly noisy) signal on

the average action taken by all players.

The Drivers of Co-Movement in Actions One of the first results presented here is the
fact the co-movement in actions is not only driven by fundamentals, but also by the specific
information structure that the agents have access to. Of course, under a fixed information struc-
ture, in which agents receive possibly multi-dimensional signals, the co-movement in the actions
can only change with the interaction parameters. But more generally, by changes in the infor-

mational environment would also lead to changes in the co-movement of actions. Moreover, we
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showed that any feasible correlations structure can be rationalized for some information struc-
ture, independent of the interaction parameters. The importance of the information structure
has been recognized in macroeconomics to offer explanations to open empirical puzzles. For ex-
ample, Veldkamp and Wolfers (2007) provide an explanation of why there is more co-movement
in output across industries than the one that could be predicted by co-movement in TFP shocks
and complementarities in production. They suggest that the sectoral industries might be better
informed about the common shocks than about the idiosyncratic shocks, which in turn would
generate the excess co-movement. They suggest that this information structure might be preva-
lent since information has a fixed cost for acquiring but no cost of replicating and thus different

industries may typically have more information on common shocks than on idiosyncratic shocks.
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8 Appendix
The appendix collects the omitted proofs from the main body of the text.

Proof of Lemma 1. Clearly, we have that p, = u,, as it follows from the law of iterated
expectations. By the previous definition (and decomposition) of the idiosyncratic state 6;, we
observe that the expectations of the following products all agree: E;[a;0] = E;[A0;] = E;[A6)].

This can be easily seen as follows:

E[0;A] = E[0A] + E[A0;A] = E[0A] + E[A - E[A0;]|A]] = E[HA],
=0
where we just use the law of iterated expectations and the fact that the expected value of a

idiosyncratic variable conditioned on an aggregate variable must be 0. Thus:
cov(a;,0) = cov(A, 0;) = cov(A,0) = cov(a;, 0;) = Blaid;] — ity = pasoo0a-

Similarly, since we consider a symmetric Bayes correlated equilibrium, the covariance of the
actions of any two individuals, a; and a;, which is denoted by p,,02, is equal to the aggregate

variance. Once again, this can be easily seen as follows,
E[aiaj] = E[A2] —|— E[AAGJ] + E[A(llA] —I— E[ACLZ‘ACLJ‘] = E[AQ],

where in this case we need to use that the equilibrium is symmetric and thus E[Aa;Aq;] = 0.
Thus, we have

0% = cov(a;, a;) = cov(A, a;) = py,0-. 1

Proof of Proposition 3. From the first order conditions we know that:
a; = E[T’A + 9i|a,~],

and in this case we know that a; = v(\)((1 — \)0 + AAH;), thus A = v(\)((1 — \)f). Multiplying

by a; and appealing to the law of iterated expectations:
a? = BlrAa; + 0;a4)a;],
implies that:
v (1 =) (1= X)?pgg + A2(1 = pgg)) = (1 = X)pgg + M1 = pgy)),
and solving for v(\) yields the expression in (22).
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We can compute the variance and correlation coefficients by inserting (22) and obtain:
5 = V(A)*((1 = X)?pge + A*(1 = pg));
and from
Paa®a = cov(ai, az) = vAE[((1 = N0 + AA0;) (1 = N0 + AAG;)] = v(A)*(1 = A)pgy),
we obtain

D, = (1= X)?pgo .
(1= N)2pgy + AL — pgg)

similarly from
PapTa09 = cov(ai, 0;) = v(NB[((1 = A)0 + AA0;)0:] = v(A)(1 — A)pgg + M1 = pgg),

we obtain:
(1= A)pgg + A1 — pgy)

Pap = 2
\/(1 — A)?pgg + A°(1 — pgy)

)

and finally from
PapTaty = cov(a;, 0) = v(NE[((1 — X)0 + AAG;)0] = v(A)(1 — X)pgy

we obtain:

11—\
Pug = ( )P929 .
\/(1 — A)2pge + A (1 — pgy)

Proof of Proposition 4. (<) We first prove that if the variables (6;,0,a;, A) form a BNE
for some information structure Z; (and associated signals), then the variables (6;,0,a;, A) also
form a BCE. Consider the case in which agents receive normally distributed signals through the
information structure Z;, which by minor abuse of notation also serves as conditioning event.

Then in any BNE of the game, we have that the actions of the agents are given by:
a; = rE[A[L;] + Bl6;|Z:], Vi,V (40)

and since the information is normally distributed, the variables (6;, 0, a;, A) are jointly normal as

well. By taking the expectation of (40) conditional on the information set Z! = {Z;, a;} we get:
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In other words, agents know the recommended action they are supposed to take, and thus, we
can assume that the agents condition on their own actions. By taking expectations of (41)

conditional on {a;} we get:
E[ai]ai] = a; = TE[E[A‘IZ, (I,Z'“CLZ'] + E[E[@z\l}, ai]|ai]

where we used the law of iterated expectations. In other words, the information contained in {a;}
is a sufficient statistic for agents to compute their best response, and thus the agents compute
the same best response if they know {Z;, a;} or if they just know {a;}. Yet, looking at (42), by
definition (0;,0, a;, A) form a BCE.
(=) We now prove that if (6;,0, a;, A) form a BCE, then there exists an information structure
TZ; such that the variables (0;,0, a;, A) form a BNE when agents receive this information structure.
We consider the case in which the variables (6;, 0, a;, A) form a BCE, and thus the variables are
jointly normal and
a; = rB[Ala;] + E[b;]a;]. (43)

Since the variables are jointly normal we can always find ¥ € R and A € [-1, —1], such that:
a; = I/()\AQZ + (1 — )\)é + 62'),

where the variables (A, v) and the random variable ¢ are defined by the following equations of
the BCE equilibrium distribution:

v = cov(a;, AD;), v(1—|\|) = cov(a;,8),

and

a; — cov(a;, AO;) Ab; — cov(a;, 0)0
” :
Now consider the case in which agents receive a one-dimensional signal

E =

si 2 2 (MAG + (1— NP +e).

v
Then, by definition, we have that:
a; = vs; = rB[Ala;] + Blf;|a;] = rBlA]|s;| + E[0;|si],

where we use the fact that conditioning on «; is equivalent to conditioning on s;. Thus, when agent
i receives information structure (and associated signal s;): Z; = {s;}, then agent i taking action
a; = vs; constitutes a Bayes Nash equilibrium, as it complies with the best response condition.

Thus, the distribution (6;, 6, a;, A) forms a BNE when agents receive signals Z; = {s;}. B

Proof of Proposition 5. By rewriting the constraints (14) of Proposition 1 we obtain:
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L. ppoPaa — (pa¢)2 > 0;

2. (1 - paa)(l - 1090) - (pa9 - pa¢)2 > 0.

If Y(Puas Pags Pag) is strictly increasing, then in the optimum the above inequality (2) must
bind. Moreover, if the constraint (1) does not bind, then we can just increase p,, and p,4 in
equal amounts, without violating (2) and increasing the value of 1. Thus, in the maximum of
¢» we must have that both bind. Moreover, since 1(py,; fup; Pug) 18 strictly increasing in p,, and

weakly increasing in p,, it is clear that the maximum will be achieved positive root of (18). B
Proof of Proposition 6. If py, = 1, then we must solve:

{ ( Pap00 ) ? }
max Paa * ’
PabPaa 1—7rp,,

such that p,, > p?,. We observe that the objective function is increasing in p,, and p,y, and

thus we must have that the constraint is satisfied as an equality. Thus the problem is equivalent

to:
Paa0
max u———
paae[071] { 1 - rpaa }

Since |r| < 1, we once again have that the objective function is increasing in p,,, thus the

maximum is achieved at p,, = p,y = 1, which is the complete information equilibrium. B

Proof of Proposition 7. Given a noise-free equilibrium parametrized by A we have that:

L y (1 =A)pg + A1 = py)) 7
OBlaf] = v(h. )1 = NP = AL )1y,
OB[as| A0 = v\, po) A = — (=N M =p9) £

(1 =7)(1 = X)2py + A*(1 = pp))

But, note that if A\ < \*, then ﬁ < (1 —)), but then

8E[aj\9] _ (1= N)pgoA + AN*(1 — py)) Ab.
00 (1= )(1 = \)2pg + A2(1—pp))
(1=N?p+ 25(1=pp) 1

S (-0 APt XA pp) T
with strict inequality if A > 0. Thus, the response to the idiosyncratic component is greater than
in the complete information equilibrium if A € (A", 1). For the second part we repeat the same
argument. Note that if A > A", then A > (1 — \)(1 — r), but then
OB [a;| AY;] _ ((1=X)?pgp + (1 = N)A1 — Pe))Ae.
OAb; (T=r) (1= A)2pp+ A2 (1= py))
((1=X)%pp + N°(1 = pgy))
(1 =7)(1 = A)2pg + A*(1 = p))
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with strict inequality if A < 1. B

Proof of Proposition 8. The comparative statics with respect to the maximum are direct
from the envelope theorem. The comparative statics with respect to the argmax are shown by
proving that the quantities have a unique maximum, which is interior, and then use the sign of
the cross derivatives (the derivative with respect to A and r). Finally, the last part is proved by
comparing the derivatives.

(1.) and (2.) We begin with the individual variance, and using (22) we can write it in terms
of A:

(1 = N)pgp + A1 = pyy))
(1 =7)(1 = X)2pgg + A*(1 = pgg))
Poo Chs y:c)2
(1 —r)+a?)?

v(l_Paa))\ a V91— po (44)
Vi -N T

Note that z is strictly increasing in A\, and if A € [0, 1] then x € [0, 00|, and thus maximizing

o = ( )2((1 = N)?pgg + X (1 = pgg))

(1+ 2?03,

where

A
Tr =

with respect to € [0, 00] is equivalent to maximizing with respect to A € [0,1]. Finding the

derivative we get:

do? 2(zy+1) (@3 +Q2r— Dy +(r+ 1)z — (1 - T)y)g2
ox (2241 —1)° ’

od

. d
It is easy to see that -

is positive at x = 0 and negative if we take a x large enough, and thus

the maximum must be in z € (0,00). We would like to show that the polynomial:
(2® + (2r = Dya® + (r+ Dz — (1 —r)y)

has a unique root in = € (0,00). If r > 1/2 or r < —1, we know it has a unique root in = € (0, c0).

For r € [—1,1/2] we define the determinant of the cubic equation:
A = 18abed — 4b%d + b*c® — dac® — 27a*d”.

We know that if A < 0 then the polynomial has a unique root. Replacing by the respective

values of the cubic polynomial we get:
A=4y'2r =11 —7) +y*((2r — 1)*(1+7)> = 18(1 —r?)(2r — 1) = 27(1 — 7)?)) — 4(1 +r)?

using the fact that for r € [—1,1/2] we have that (2r — 1) <0 and 1 + 7 > 0, we know that the

term with y* and without y are negative. We just need to check the term with y2, but this is
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also negative for r € [—1,1/2]. Thus, A < 0, and thus for € [-1,1/2] the polynomial has a
unique root.

Thus, we have that there exists a unique A that maximizes o2. Finally, we have that:

502 —9 (1 - /\)2099 o2
or (1= 7)1 = X)2pgg + A (1 = pgg))

Note that )
ﬁ (1= A)*pgo <0
ON (1= 1) (1 — X)2pgy + A (1 — pgy)) 7
and thus at the maximum:
2 9 2
80a: 022 (1-X 0992 <0,
oro\ OXN((1T=7)(1 = N)2pgp + 2 (1 — pgo))

and thus argmax, o2 is decreasing in r. Finally, we know that \* = % and thus z* = y(1 — 1),

thus we have that:
do? 2021 —7)+ 1) (v*(1 = r)?r +y(1 —7)r)

a 2
r=x* — o, <0
s (1= r)2+1 =) 9

thus, argmax, o2 < \* if and only if 7 > 0.

Next, we consider the aggregate variance p,,02, and write it in terms of A:

( (1 = A)pgg + A(1 = pyy))

(L =7)(1 = X)2pgg + A*(1 — pyg))
P (1 +yx)2 o2

(1 —r)+a2)2

IOaao-z )2<1 - )\)QPQQO%

(45)

where x and y are defined as in (44). Maximizing with respect to x € [0, 0] is equivalent to

maximizing with respect to A € [0, 1]. Finding the derivative we get:

2 2 —
Opaata _  2xy+1) 22+ (z +3r 1) y>03. (46)
oz (x24+1—1r)

Again, we have that (22 + (22 +r — 1) ) has a unique root in (0, c0) Thus, we have that there
g

exists a unique A that maximizes p,,02. Finally, we have that:

apaao—g -9 (1 B )‘)QPHO p 0_2.
or ((1 - 7’)(1 - )‘)2/)09 + )\2(1 - ,000)) e
Note that,
9 (1 —X)?pyy

N =)0 N+ X0 —pag))
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and thus at the maximu

o
Soe 02 is decreasing in r. Finally, we know

that \* = 5=~ and thus 2" = y(1 — r) there we have that:
0paata; 2020 -r)+ DA -r)+y’(1=7) 5 _
—’x:x* - 3 Oy S 07
oz (P(1—=r)+1-r1)

thus, argmax, p,,02 < \*.

Finally, we consider the dispersion, (1 — p,,) 02, expressed in terms of \:

(1 = A)pgg + A1 — pgy))
(L =7)(1 = X)2pgg + A*(1 — pgy))
P (1+ yr)? 2252
(S e

where x and y are defined in (44). As before, maximizing with respect to = € [0, 00| is equivalent

(1- Paa)a?z = )2)\2(1 - ,099)03

to maximizing with respect to A € [0,1]. Finding the derivative we get:

01 = pua)os _ 20y +1) (@® +2(r = Dyz+7—1) ,
oz N (@2 +1—r) Tp-

Again, we have that (2 + (22 + r — 1) y) has a unique root in (0, c0) Thus, there exists a unique

A that maximizes (1 — p,,) 02. Finally, we have that:
(L = 9paa)os _ (1 = X)?pgo 2
o =2 2 2 (1 o paa)ga‘
r (L =7)(1 = A)?pgg + A°(1 = pyg))
Note that 5 )2
1 —
( )"Poo <0,

OA (1= 7)(1 = A\)2pgg + X*(1 = pgp))
22 24 < 0, and thus argmax, (1 — p,,)o> is decreasing in 7. Finally, we
know that \* = == and thus at z* = y(1 — r) we have that:

oot (-0 -0+ )@=+ (=)
O (L —r)+1-7)

thus, argmax, (1 — p,,)o2 > \".

and thus at the maximum

o5 >0,

(3.) Finally, we want to show that argmax, (1 — p,,)02 > argmax, 02 > argmax, p,,0-.
These inequalities follows from comparing the derivatives of (1—p,)o?2, 02 and p,,02 with respect
to A. Since the derivatives satisfy the previous inequalities, the maximum must also satisfy the

same inequalities. W

Proof of Proposition 9. We first solve for max,{p,,02}. By setting (46) equal to 0, we have
that the aggregate volatility is maximized at,
1+y?(1—7r)—1

; .
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Substituting the solution in (45) and using the definitions of = and y we get that the maximum

volatility is equal to:
o3(1 — pgy)?
\/Pe \/Pee (1 —=7)(1— pgy))?

Using the definition of o5 and oy, we get (?77?). It follows from (?7?) that:

2
o

lim max{paa N = %
09—>0 4(1 — 7“)

It is also immediate that O’% /(1 — r)? is the aggregate volatility in the complete information

equilibrium. Thus, we are only left with proving that,

lim max{paa a} = 09/<1 - T>
crgz—>0

The limit can be easily calculated using L’Hopital’s rule. That is, just note that as agi — 0 we

have that:

4(o5 — \/O'% +(1— T)O'gi)Q ~ agi(l — 7“)2/03 + o(agi),

and hence we get the result. B

Proof of Proposition 10. (1.) The solution can be found in Bergemann and Morris (2013b).

The BCE that maximizes the individual variance is given by:

17 TZ _]-7

2
Pab = Paa = 1
-, r<-L

To find the signal that decentralizes such a BCE, just note that when the signal is of the form
s; = 0 +¢;, where ¢; is a purely idiosyncratic noise, then the correlation coefficient of the actions

is given by:

Thus, we have that:

(2.) The solution is provided by the following problem (where we take the limit py, — 0 of

the (14) in Proposition 1):
Pab
max § ————— 5,
PaoPaa 1 — TPaq
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subject to
(1 - paa) > p?L@? Paa > 0.

The constraints will clearly bind at the optimum, thus we have that we need to solve:

=)

max
Paa 11— "Pua
with
Paa = 0.

This yields the following solution:

I

pi@ =1- Paa = ?
%, % <r<l.

It is clear that for r < 1/2; the complete information equilibrium is the solution, while for
r > 1/2 the solution will not be the complete information equilibrium. We find the signal that
decentralizes such a BCE with signal s; = Af; + ¢, where ¢ is a common noise, and as the
correlation coefficient across actions is given by:

0.2

1% = £
aa Y
Jg Ug

we find that:
0, r<1/2;

m N

el < 1/2;

1—r>

which completes the argument. l

Proof of Proposition 11. Clearly all constraints from the BCE with unrestricted information
structure must continue to hold. We first prove that in any BCE in which agents know their own
payoff state constraint (29) must hold. The proof is just multiplying (28) by 6;, in which case
we get:

a;f; = B[A0;|a;, 0;] + E[07]a;, 04],

and taking expectations and dividing by oy, we get the result.
We now prove sufficiency. That is, we assume that all conditions of Proposition 11 are
satisfied, but

a; 7é E[QACLZ,HZ] + ’I“E[A|G,i,9i],
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where we note that we already proved that the conditions of Proposition 11 imply that the
variance-covariance matrix of the random variables (6;, 0, a;, A) is positive semidefinite. If p,, = 1
then by definition a; = 6;, which implies that we can use the same argument as in Proposition
1. Thus we assume p,y < 1 and proceed by contradiction. In this case, since (6;,0, a;, A) are

normally distributed we know that there exists constants ¢, and cy such that,
Cati + cb; = rBlAla;, 0;] + B[;|a;, 0,],

We need to prove that if ¢y # 0 or ¢, # 1 then either (29) or (13) (or both) do not hold.
Multiplying the previous equation by a; and taking expectation and later doing the same for 6;
we get,

CoPap00 T CaTa = Pag00 + TPea04a;
CoO9 + CaPupla = 09 + T0qp0q,

and as the system of equations is invertible for ¢, and ¢y, we have a unique solution for these
variables. We know that the solution when (29) and (13) hold is ¢, = 1 and ¢y = 0, thus if ¢y # 0
or ¢, # 1 then either (39) or (13) do not hold. Thus, we obtain sufficiency as well. H

Proof of Proposition 12. From the best response conditions. we have that,

and multiplying by 6; and taking expectations (note that because 6; is in Z;, we have that

PapgTa = 09 + TPay0a- (47)

We also use the fact that

Oa = Pqg006 + TPaalas

and hence inserting in (47) we obtain:

1 1 - Tpa,a
Pag = ;(Pae — P—e). (48)

Thus, the inequalities in (14) can be written as follows,

1 - TPaa
(1= paa) (1 = pgg) > —5((1 = 7)pep — ——2)%, (49)
r Pad
1 1- TPaa
PaaPoo > _g(pae - —)2‘ (50)
r Pab
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For both of the previous inequalities the right hand side is a convex function of p,,. Thus, for
a fixed p,,, inequalities (49) and (50) independently constraint the set of feasible p,, to be in a
convex interval with non-empty interior for all p,, € [0, 1] (it is easy to check that there exists
values of p,, such that either inequality is strict). Thus, if we impose both inequalities jointly, we
will find the intersection of both intervals which is also a convex interval. We first find the set of
feasible p,, and prove that it is always case that one of the inequalities provides the lower bound
and the other inequality provides the upper bound on the set of feasible p,, for each feasible p,,.
For this we make several observations.

First, when agents know their own payoff type there are only two noise-free equilibria, one
in which agents know only their type and the complete information equilibria. This implies that
there are only two pair of values for (p,,, p.g) such that inequalities (49) and (50) both hold with
equality. Second, the previous point implies that there are only two pairs of values for (p,,, Pug)
such that the bound of the intervals imposed by inequalities (49) and (50) are the same. Third,
the previous two points imply that there are only two possible p,, such that the set of feasible
Pao 1s a singleton. These values are p,, € {pgg, pi, }, Which corresponds to the p,, of the complete
information equilibria and the equilibria in which agents only know their type. Fourth, it is
clear that there are no feasible BCE with p,, € {0, 1}. Fifth, the upper and lower bound on the
feasible p,, that are imposed by inequalities (49) and (50) move smoothly with p,,. Sixth, this
implies that the set of feasible p,, is bounded by the values of p,, in which the set of feasible
Pap 1s a singleton. Thus, the set of feasible p,, is in [min{py,, p%, }, max{pyy, pi,}|. Moreover, it
is easy to see that for all p,, in the interior of this interval one of the inequalities provides the
upper bound for p,, while the other inequality will provide the lower bound.

We now provide the explicit functional forms for the upper and lower bounds. To check
which of the inequalities provides the upper and lower bound respectively we can just look at
the equilibria in which agents know only their own type, and thus p,, = pgy. In this case we

have the following inequalities for p,,,

1 1—rp
(1- 099)2 > _2((1 —7)Pap — —09>2>
r Pad
1 1—7rp
2 o 2 o 002
Poo = 2 (Pas —Pae )

As expected it is easy to check that p,, = 1 satisfies both inequalities. Moreover, it is easy to
see that if » > 0 then p,, = 1 provides a lower bound on the set of p,, that satisfies the first
inequality while p,, = 1 provides an upper bound on the set of p,, that satisfies the second

inequality. If » < 0 we get the opposite, p,y = 1 provides a upper bound on the set of p,, that
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satisfies the first inequality while p,, = 1 provides a lower bound on the set of p,, that satisfies
the second inequality. Thus, if » > 0, then the inequality (49) provides the lower bound for p,,
and the inequality (50) provides an upper bound on the set of feasible p,, for all p,,. If r <0
we get the opposite result. Note that the conclusions about the bounds when p,, = pyy can be
extended for all feasible p,, because we know that the bounds of the intervals are different for
all p,. & {pes, P}, and they move continuously, thus the relative order is preserved. Finally, by
taking the right roots (just check which one yields p,y = 1 when p,, = pyy), we define implicitly

the functions p!, and p,

1

(=)l = 1= 7p,) + plgv/ (1= pu) (1= pg) =0,

Lo i

~((p20)” = (1 =7p4)) = Plug\/Pag = 0.
Therefore, for all feasible BCE in which agents know their own type p,, € [min{pg, pi,}, max{pgy, pi.}H.
while the set of p,, is bounded by the functions p, and p¢,. If 7 > 0 then function p’, provides
the upper bound while p¢, provides the lower bound. If » < 0, then the function p¢, provides

the upper bound while p’, provides the lower bound. B

Proof of Proposition 13. We first prove that (36) and (37) is equivalent to V being positive

semi-definite, where now V is given by:

o PooT  Poe%8  Pat¥80a Pap080a Pap080a
ngg ‘73 Peeag PapP00a  Pap000a Pap000a
vV — Peeag Peeag 009‘73 Pap%00a  Pap000a Lap000a (51)
Pa0000a  Pap060a Pay000a 0o PaaTe  PanC
Pap000a  Pag000a PapT00a  Paals o, P
2 2 2

Pap000a  Pap900a PapP00a  PaaTq PaA%q PaA0q

A symmetric BCE with 2 agents is given by a distribution:

0; o} P05 PabT60a  PapT60a

Hj ~ N 0, papapa-g O-g pagoo-;o-a Pa@UHZa ’
Q; Pap9600a  Payp060a Oq Paaq

a; PapT00a PasT00a  Paals o,

where the variance-covariance matrix is positive semidefinite and the best response conditions.
The conditions (37) come from the condition that the variance-covariance matrix is positive

semidefinite. To get a simple expression for the conditions that the variance-covariance matrix
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is positive semidefinite we make some change of variables. We first use the definitions for §;" and
0, and note that:

+ 1 1
— 1 —
0 N ) 71 0 0 0,
1 1 !
(Z:r 0 0 5 5 a;
CL,L-_ 0 0 % _71 CLj

using the linearity normally distributed random variables,

91+ % % 0 0 O—g pgp«pag Pap000a paapo—oo—a % % 0 0
0; 5 7 00 PopT0 o Pap099a  Pag969a : 2 00
var =
(lj_ 0 O % % Pap000a  Paypd00a 0-621 paao-g 0 0 % %
a5 0 0 L 3/ \Pup0s0a Pu060a a0’ 03 0.0 5 F
o2 000
?6(1 + pcpcp) ) 0 (pa9 + patp)eT 0
B 0 2(1=p,,) 0 (Pas = Pay) 75
- Tp0a Ug
(paG + p(up)oT 0 7(1 + paa) 0
00 0'2
0 (paﬂ - pa(p)T 0 7(1 - paa)
Thus, the joint distribution of (0;",0; ,a;",a; )" is given by:
+ %% 200
02‘ ?(1 + pcpcp) ) 0 (paﬂ + pago) 2 “ 0
0:_’ ~ N 07 O ogo ?9(1 - prSo) 0_2 0 (paﬁ N pag&) 002aa )
a, (Pag + Pag) 5 0 (14 Paa) 0
_ Jg0a i
a; 0 (paﬁ - patp)eT 0 7(1 - paa)

and we note that the variance-covariance matrix is positive semidefinite if and only if,
(1 + pgogo)(l + paa) Z (Pae + p(up)27

(1= o) (1 = Pua) = (Pap = Pap)’s

subject to pgg, Pua € [—1,1]. Note that,
cov(A,a*) = paa0t 5 cov(A,01) = puy0a00 3 cov(0,07) = pgeog 3 cov(0,at) = pu0a00,

and that the orthogonal terms yield:

cov(A,a”)=0; cov(A,07)=0 ; cov(0,07)=0 ; cov(f,a”) =0,

ai—&—aj
2

cov(A,a”) = cov(A4, “5%) = I(cov(A,a;) — cov(A,a;)) = 0. Thus the variance-covariance

where we note that cov(A,a™) = cov(A, ) = 3(cov(4,a;) + cov(A,a;)) = pya0oz and

a
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matrix of (97, a 0", at,0, A) is given by:

DL ppn) (Pag — Pup) 7222 0 0 0 0
(Pas = Pap) 2= (1= pyy) 0 0 0 0
0 0 B4 0,)  (Pus+ Pap) ™S5 Pyg0l  PagTa0
0 0 (Pas + Pap)72% %1+ Pos)  PagTaCt  Paac?
0 0 09903 PapPa00 Peagg PapTa00
0 0 PasTa00 Pan0? PasTal0 a0

With one more change of variable, and defining:

AatLat—A . AGT L9t 0,
we find that:
AOT 1 0 -1 0 ot
Aat | [0 1 0 -1 a*
6 | (o0 1 o 0
A 00 O A

Thus, we find that the variance-covariance matrix of (9+, at,o, A) is given by:

%(—2%9 +ppp + 1) %(pae = 2pag t Pay) 0 0
7% (Dap = 2Pap T Pay) B (—200n + Paa +1) 0 0
0 0 03[’09 0a00Pag
0 0 0a00Pu4 TP

This allows us to conclude that the variance-covariance matrix of (Q_, a=,0",at,0, A) is given
by:

% (1~ pyy) (Pag = Pa) #5 0 0 0 0
(Pab = Pag) 5 5 (1= paa) ) 0 0 0 0
0 0 % (2000 + P +1) 25 (Pap — 2Pap + Pap) 0 0
0 0 22 (Pag = 2Pag T Pag) 3 (—2Pan + Paa +1) 0 0
0 0 0 0 o2 pgo Ca00Pqg
0 0 0 0 Ta00Pqg 02pun
(52)

Since all change of variables made are invertible, we know that the variance/covariance matrix
defined by (51) is invertible if and only if (52) is invertible. Yet, since the above matrix is defined

blockwise it is easy to see that it is positive-semidefinite if and only if,
(1 - p(p(p)(l - paa) > (,0&9 - pacp)27
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(1= 2099 + Pop) (1 + Paa = 20a1) = (Pap = 2Pag + Pay)’
and
ParPoo = PZ@

which yields the desired result.

We now prove that, given random variables (6;,6;, 0,a;, aj, A), Proposition 13.1 holds if and
only if

a; = B[0; + roa; + raA|a;].

As usual, the “only if” part is proven by multiplying the best response conditions by a; and

taking expectations. As before, the “if” part is just proven by contradiction. That is, by the

normality of the random variables there exists ¢, such that:
cat; = E[0; + roa; + raAla;].
Multiplying by a; and taking expectations we get,
Ca0a = Pap00 + PaaTa + PaaTa-

But, if Proposition 13.1 is satisfied, then obviously we must have that ¢, = 1. Hence, we get the

result. W

Proof of Proposition 14. The proof is completely analogous to the proof of Proposition 11.
As before, (39) is a necessary condition for the first order conditions to be satisfied, and this can

be obtained by multiplying (35) by 6; and taking expectations. The “if” part can also be done

in exactly the same way by contradiction.Hl
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