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Abstract

A commonly used defining property of long memory time series is the power
law decay of the autocovariance function. Some alternative methods of deriving
this property are considered working from the alternate definition in terms of a
fractional pole in the spectrum at the origin. The methods considered involve the
use of (i) Fourier transforms of generalized functions, (ii) asymptotic expansions
of Fourier integrals with singularities, (iii) direct evaluation using hypergeometric
function algebra, and (iv) conversion to a simple gamma integral. The paper
is largely pedagogical but some novel methods and results involving complete
asymptotic series representations are presented. The formulae are useful in many
ways including the calculation of long run variation matrices for multivariate time
series with long memory and the econometric estimation of such models.

Key words and Phrases: Asymptotic expansion, autocovariance function, frac-
tional pole, Fourier integral, generalized function, long memory, long range de-
pendence, singularity.

JEL Classification: C22, C32

1. Introduction

Time series, semiparametric methods, and nonparametrics now form a vast disci-
pline of knowledge whose applications stretch across the sciences and social sciences.
Within this rich scientific domain, multitudinous subfields of research coexist and
interlink, fueled by motorways of fast moving research. Along these busy highways
we repeatedly see signposts to avenues of knowledge where Peter Robinson has left
his mark. One avenue that particularly stands out is time series with long range
dependence, where his work has blazed a preeminent trail for others to follow. His
1990 Econometric Society World Congress paper, published in Robinson (1994), was

∗Partial support is acknowledged from a Kelly Fellowship and the NSF under Grant No. SES
06-47086.
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a masterly overview of the field that introduced many new econometricians to the
field. A few years later, his two 1995 Annals of Statistics papers (Robinson, 1995a,
1995b) pioneered the rigorous development of an asymptotic theory of long memory
parameter estimation and inference that resolved longstanding technical problems.
These contributions laid a new foundation for empirical applications and theoretical
developments, many of which are themselves associated with Peter Robinson and his
students.

It is a great honor to participate in celebrating these remarkable accomplishments
and Peter Robinson’s other achievements. Our first contact dates back to 1972 when
we were both working on the estimation of continuous time systems with discrete
data. Subsequently, we have had regular professional contact in our research, in
conferences, and in various editorial endeavours. Throughout, Peter’s standards of
mathematical rigor, which are now legendary in the profession, his thoroughness in
evaluating research, his fairness in adjudicating credit, and the remarkable quality
of his scientific writing have set paradigms within the profession. This symposium
provides a welcome opportunity for me to thank him for his personal kindness and
for us all to applaud his enormous contributions to the econometrics and statistics
professions over many decades.

My contribution to the symposium selects an elementary aspect of the field that he
has pioneered.and looks at the defining property of long memory time series, which
is conventionally expressed in terms of the power law decay of the autocovariance
function. The goal of the paper is largely pedagogical. In teaching long memory
time series one quickly discovers that the defining property of long memory is not
so elementary to establish, at least with any precision. Indeed, standard texts like
Beran (1994) and Taniguchi and Kakizawa (2000) do not provide a general proof of
the result, but refer readers to Zygmund’s (1958) classic text on trigonometric series,
a gifted monograph and wonderful research tool but one that is beyond the reach
of many students. A second approach, based on Hosking’s (1980) original paper
and later used in the time series text of Brockwell and Davis (1989), deals with a
pure fractional process in which the short memory component is iid and derives the
autocovariance function by direct calculation in this special case using an integral
sourced from Gradshteyn and Ryzhik (1965). That approach falls short of a general
result and additionally requires external source material to resolve the integral. So,
while that approach is elementary, it is also not as easy for classroom use as might
be hoped.

The present paper offers several approaches to obtaining the power law defining
property, some of which are new. The author has found that these approaches are
suitable for classroom exposition when explicit derivations are given to accompany
them. The paper overviews the methods in a form that is intended to be suited to
classroom use. The paper also provides complete asymptotic series representations
of the autocovariogram in the multivariate case, building on some recent work that
has appeared elsewhere (Phillips and Kim, 2007; Lieberman and Phillips, 2007). The
resulting formulae are useful in finding the long run variation matrices for multivari-
ate time series with long memory and in multivariate estimation of long memory
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parameters and cointegrating vectors.
The plan of the paper is as follows. All results are given in Section 2, which

is subdivided into sections that detail alternative mathematical approaches. Some
concluding remarks are made in Section 3. Proofs and other technical material are
placed in the Appendix.

2. Power Law Decay Results

Let Xt be a real-valued covariance stationary m-vector time series generated by the
system

(1− L)da (Xat −EXat) = uat; a = 1, ...,m (1)

where ut = (u1t, . . . , umt)
0 is a covariance stationary process whose spectral density

matrix fuu (λ) ∈ C∞ on [−π, π] and is bounded above zero in the sense of positive
definite matrices at the zero frequency λ = 0. Our primary discussion focuses on
the case where da ∈

¡
0, 12

¢
that corresponds to stationary long run dependence and

this assumption will be maintained below. But some remarks and results on cases
where da = 0, corresponding to short memory series, and the antipersistent case
da ∈

¡
−12 , 0

¢
will be given later in the discussion. The smoothness condition on fuu (λ)

assists in developing a complete asymptotic expansion of the autocovariance function
(acf) defined by a Fourier integral inversion of fuu (λ) . The smoothness condition
may be relaxed, but any critical values of fuu (λ) within [−π, π] may contribute to
the form of the expansion of the acf.

The process Xt is a multivariate fractionally integrated time series (or vector I(d)
process) and each component Xat exhibits long-range dependence whenever da > 0.
Xt reduces to a multivariate ARFIMA process when ut is a vector ARMA process,
but the specification (1) does not require ut to be of this or any other parametric
form.

Let fxx(λ) denote the spectral density of Xt, so that the autocovariance matrix
is given by

Γxx (k) = E(Xt −EXt)(Xt+k −EXt)
0 =

Z π

−π
eikλfxx(λ)dλ =

Z 2π

0
eikλfxx(λ)dλ.

(2)

We seek to exhibit the power law decay property of the elements of Γxx (k) as k →∞.
Using the transfer function of the individual filters (1 − L)da , the spectrum fxx(λ)
has the well-known form (e.g., Hannan, 1970, p.61)

fxx(λ) = Φ(λ)fuu(λ)Φ
∗(λ), Φ (λ) = diag

³
(1− eiλ)−da

´
, (3)

where the affix ∗ signifies complex conjugate transpose. Since

(1− eiλ)θ =

½
|2 sin(λ2 )|θei(λ−π)θ/2 0 ≤ λ < π

|2 sin(λ2 )|θei(π−|λ|)θ/2 −π ≤ λ < 0
.
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individual elements of the spectrum take the following form over [−π, 0) ∪ (0, π]

fxaxb(λ) =

⎧⎪⎨⎪⎩ e
iπ(da−db)

2 |λ|−da−db
¯̄̄
2 sin(λ/2)

λ

¯̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) 0 < λ < π

e−
iπ(da−db)

2 |λ|−da−db
¯̄̄
2 sin(λ/2)

λ

¯̄̄−da−db
e
i|λ|(da−db)

2 fuaub (λ) −π ≤ λ < 0
,

(4)

where the spectrum has a single critical point at λ = 0 that may be approached from
the left or right.

The memory parameters {da} determine the behavior of the spectral matrix
fxx(λ) around the origin and thereby govern the long-run dynamics of Xt, as is

apparent from (4). Note that the phase shift factor e
iπ(da−db)

2 appears even in the
local first order approximation to the cross spectrum fxaxb(λ) in (4), viz.,

fxaxb(λ) ∼
(

e
iπ(da−db)

2 |λ|−da−db fuaub (0) 0 < λ

e−
iπ(da−db)

2 |λ|−da−db fuaub (0) λ < 0
, (5)

so that whenever da 6= db the phase shift factor in (4) or (5) is useful in efficient
semiparametric multivariate estimation of the long memory parameters using local
Whittle procedures (Robinson, 2007a, 2007b; Shimotsu, 2007).

It is sometimes convenient to write the equivalent form of the spectrum over the
interval (0, 2π) as

fxaxb(λ) = e
iπ(da−db)

2 λ−da−db (2π − λ)−da−db
¯̄̄̄
2 sin(λ/2)

λ (2π − λ)

¯̄̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) ,

(6)

in which case the spectrum has critical points whenever da+ db > 0 at the endpoints
λ = {0, 2π} corresponding to the right and left limits to the origin in (4). Lieberman
and Phillips (2007) used (6) in developing a complete asymptotic series expansion for
the acf in the scalar case.

Our purpose is to demonstrate several different methods of obtaining the asymp-
totic power law decay property of Γxx (k) = [(γab (k))] using the form of the spec-
tral density matrix given by (4) and (6). We start with the explicit determination
of γab (k) in the simplest case where the short memory spectrum is constant, viz.,
fuu(λ) = Σu/ (2π) , and Xt is a pure fractional process. We then consider several
alternative methods in the more general case.

Before proceeding further, some general reductions based on (2) and (4) are useful.
Define

gab (λ) =

¯̄̄̄
1− eiλ

λ (2π − λ)

¯̄̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) =

¯̄̄̄
2 sin(λ/2)

λ (2π − λ)

¯̄̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) ,

(7)
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so that gab (λ) ∈ C∞ [0, 2π] . Using (6) and (7) we have

γab (k) =

Z 2π

0
eiλk(1− eiλ)−dafuaub (λ) (1− e−iλ)−dbdλ (8)

= e
iπ(da−db)

2

Z 2π

0
eiλkλ−da−db (2π − λ)−da−db gab (λ) dλ. (9)

Transforming variates in (9) gives

γab (k) =
e
iπ(da−db)

2

k1−da−db

Z 2πk

0
eiww−da−db

³
2π − w

k

´−da−db
gab

³w
k

´
dw, (10)

which in turn suggests that γab (k) = O
¡
k−(1−da−db)

¢
but this reduction does not

reveal the constant or the error magnitude in the asymptotic approximation as k →
∞. The constant is particularly important when a 6= b because, as pointed out in
Phillips and Kim (2007) and as seen below in (12, 39, 40, 42), there is asymmetry in
the covariance asymptotic expansion in this case and the asymmetry is governed by
the value of the constant.

2.1 The exact formula in the pure I (d) case

When ut ∼ iid (0,Σu = (σab)) , the acf γab (k) may be computed directly from the
explicit representation of the components of Xt, viz.,

Xat =
∞X
j=0

(da)j
j!

uat−j , (d)j = d (d+ 1) ... (d+ j − 1) = Γ (d+ j)

Γ (d)
.

Specifically, since (db)j+k = Γ (db + k) (db + k)j /Γ (db) we have

γab (k) =
∞X
j=0

(da)j (db)j+k
j! (j + k)!

σab =
1

Γ (k + 1)

∞X
j=0

(da)j (db)j+k
j! (k + 1)j

σab

=
Γ (db + k)

Γ (db)Γ (k + 1)
2F1(da, db + k; k + 1; 1)σab,

where 2F1(a, b; c; z) =
P∞

j=0

(a)j(b)j
j!(c)j

zj is a hypergeometric series. When z = 1 and

Re (c− a− b) > 0, the series has the closed form expression

2F1(a, b; c; 1) =
Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
(11)

(e.g., Lebedev, p. 244). A simple demonstration of (11) which is useful in lectures
follows from the formula for the beta integral by noting that

(b)j
(c)j

=
Γ (c)

Γ (b)

Γ (b+ j)

Γ (c+ j)
=

Γ (c)

Γ (b)Γ (c− b)

Γ (b+ j)Γ (c− b)

Γ (c+ j)

=
Γ (c)

Γ (b)Γ (c− b)

Z 1

0
tb+j−1 (1− t)c−b−1 dt,
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so that

∞X
j=0

(a)j (b)j
j! (c)j

=
Γ (c)

Γ (b)Γ (c− b)

Z 1

0

⎛⎝ ∞X
j=0

(a)j
j!

tj

⎞⎠ tb−1 (1− t)c−b−1 dt

=
Γ (c)

Γ (b)Γ (c− b)

Z 1

0
tb−1 (1− t)c−b−1−a dt

=
Γ (c)

Γ (b)Γ (c− b)

Γ (b)Γ (c− a− b)

Γ (c− a)

=
Γ (c)Γ (c− a− b)

Γ (c− a)Γ (c− b)
,

giving (11) directly without recourse to integral tables such as Gradshteyn and Ryhzik
(1965), which were employed in Hosking (1980) and Brockwell and Davis (1989).

It follows that the exact formula for the acf is

γab (k) =
Γ (db + k)

Γ (db)Γ (k + 1)
2F1(da, db + k; k + 1; 1)σab

=
Γ (db + k)

Γ (db)Γ (k + 1)

Γ (k + 1)Γ (1− da − db)

Γ (k + 1− da)Γ (1− db)
σab

=
Γ (1− da − db)Γ (db + k)

Γ (k + 1− da)Γ (1− db)Γ (db)
σab.

Using the reflection formula Γ (1− d)Γ (d) = π
sin(πd) we deduce the alternate expres-

sion

γab (k) =
Γ (1− da − db)Γ (db + k) sin (πdb)

πΓ (k + 1− da)
σab, (12)

noting the asymmetry alluded to earlier. The large k asymptotic formula for ratios
of gamma functions1 (e.g., Erdélyi, 1953)

Γ (k + a)

Γ (k + b)
=

1

kb−a

½
1 +

(a− b) (a+ b− 1)
2k

+O

µ
1

k2

¶¾
(13)

then gives the following series expansion as k→∞

γab (k) =
σab
π
Γ (1− da − db) sin (πdb)

Γ (k + db)

Γ (k + 1− da)

=
σab sin (πdb)Γ (1− da − db)

πk1−da−db

½
1 +

(da + db − 1) (db − da)

2k
+O

µ
1

k2

¶¾
(14)

From (12) and (14) it is clear that γab (k) is asymmetric and γab (k) 6= γba (k) when
a 6= b. Further, when db = 0, Xbt − E (Xbt) = ubt, and so γab (k) = 0 in view of the
fact that the input process ut is iid and Xt is a pure fractional process.

1A simple way of delivering (13) is to use Stirling’s approximation Γ (z) ∼
(2π)1/2 zz−1e−z 1 +O z−1 , an asymptotic formula that is most easily obtained in lectures
by using a Laplace approximation to the gamma function integral.
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2.2 The Fourier integral approach

Erdélyi (1956) developed a method of finding asymptotic expansions of Fourier
integrals with critical points such as (9) using neutralizer functions that smooth out
the effects of a function in certain domains. Erdélyi’s formulae were used in Lieberman
and Phillips (2007) to extract a complete asymptotic series for the acf γaa (k) in the
scalar case. The same approach may be used here for the cross covariance function
γab (k) , although the resulting formula is more complex as will become apparent.

Let F (w) ∈ C∞ [a, b] , and suppose α and β are not integers. Erdélyi’s result
implies that the integral

I (k) =

Z b

a
eikw (w − a)α−1 (b− w)β−1 F (w) dw (15)

has the following complete asymptotic series representation as k →∞

I (k) = Ia (k) + Ib (k) ,

where

Ia (k) ∼
∞X
n=0

dn

dan

n
(b− a)β−1 F (a)

o Γ (n+ α)

n!kn+α
e
πi
2
(n+α)+ika, (16)

and

Ib (k) ∼
∞X
n=0

dn

dbn

n
(b− a)α−1 F (b)

o Γ (n+ β)

n!kn+β
e
πi
2
(n−β)+ikb. (17)

To apply this formula in the present case we set a = 0, b = 2π, α = β = 1− da − db,
and F (w) = gab (w) . Then

γab (k) = e
iπ(da−db)

2

Z 2π

0
eiλkλ−da−db (2π − λ)−da−db gab (λ) dλ = e

iπ(da−db)
2 I (k) ,

with

I (k) = I0 (k) + I2π (k) ,

and

I0 (k) =
∞X
n=0

dn

dan

h
(2π − a)−da−db F (a)

i
a=0

Γ (n+ 1− da − db)

n!kn+1−da−db
e
πi
2
(n+1−da−db),

I2π (k) =
∞X
n=0

dn

dbn

h
b−da−dbF (b)

i
b=2π

Γ (n+ 1− da − db)

n!kn+1−da−db
e
πi
2
(n−1+da+db)+ik2π.
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Hence

γab (k) = e
iπ(da−db)

2

∞X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

½
dn

dan

h
(2π − a)−da−db F (a)

i
a=0

e
πi
2
(n+1−da−db)

+
dn

dbn

h
b−da−dbF (b)

i
b=2π

e
πi
2
(n−1+da+db)

¾
, (18)

giving a complete asymptotic series for the acf . As shown in the Appendix, some
further simplifications lead to the following result.

Theorem If da + db > 0 and gab (λ) ∈ C∞ [0, 2π], then γab (k) has the following
complete asymptotic series expansion

γab (k) =
∞X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

n
G
(n)
ab (0) e

πi
2
(n+1−2db)

+(−1)n eπi2 (n−1+2db)G(n)ba (0)
o
, (19)

where Gab (w) = (2π −w)−da−db gab (w) . An alternative form for the expansion is

γab (k) = 2 sin {πdb}
∞X
j=0

Γ (2j + 1− da − db) (−1)j

(2j)!k2j+1−da−db

×
(
G
(2j)
ab (0)− (2j + 1− da − db)G

(2j+1)
ab (0)

(2j + 1) ki

)
. (20)

Remarks

(i) As shown in the Appendix, setting n = 0 in (19), the first term in the series
reduces to the simple form

γab (k) =
2fuaub (0)Γ (1− da − db) sin (πdb)

k1−da−db
+O

µ
1

k2−da−db

¶
, (21)

as given in Phillips and Kim (2007).

(ii) When db = 0, it follows from (20) that γab (k) is zero up to terms that are
exponentially small as k →∞. In this case ubt has only short range dependence
and so the covariance of ubt+k with uat is exponentially small as k →∞. Thus,
the asymptotic expansion (20) fully reflects the asymmetry involved in the acf
between long memory Xat and short memory Xbt.

(iii) As shown in the Appendix, the first two terms in the expansion (19) have the
explicit form

Γ (1− da − db) sin {πdb}
πk1−da−db

⎧⎨⎩ωab +
(1− da − db)

³
(da−db)

2 ωab + ω
(1)
ab

´
2k

⎫⎬⎭ , (22)
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where ωab = 2πfuaub (0) and ω
(1)
ab =

P∞
j=−∞ γab (j) j. In the pure I (d) case,

the inputs ut are iid (0,Σ = (σab)) , and we have ω
(1)
ab = 0 because γab (j) = 0

for all j 6= 0, and ωab = σab. In that event we get the simplified formula

σabΓ (1− da − db) sin {πdb}
πk1−da−db

½
1 +

(da + db − 1) (db − da)

2k

¾
, (23)

corresponding to the result (14) obtained directly in that case from the exact
formula for the acf. Thus, the first correction term in the expansion is of order
O
¡
k−2+da+db

¢
and depends on the parameters ωab and ω

(1)
ab in the general case

(22). In the scalar case we have a = b, da = db and ω
(1)
aa =

P∞
j=−∞ γaa (j) j =

0, so that the second term vanishes. Hence, the first correction term in the
expansion in the scalar time series case is of O

¡
k−3+2da

¢
— c.f. Lieberman and

Phillips (2007).

(iv) When a = b, the odd derivatives G(2j+1)ab (0) vanish and we have from (20) the
special case

γaa (k) = 2 sin {πda}
∞X
j=0

Γ (2j + 1− 2da) (−1)j G(2j)aa (0)

(2j)!k2j+1−2da
,

considered in Lieberman and Phillips (2007).

(v) The result (19) continues to hold for da+db < 0 by way of analytic continuation.
To show this, suppose da = −Ja+d0a, db = −Jb+d0b for positive integers Ja and
Jb and with 0 < d0a+ d0b < 1 and d

0
a, d

0
b ∈ (0, 1/2). Then, da+ db = −J + d0a+ d0b

where J = Ja + Jb is a positive integer. We can now write (9) as

γab (k) = e
iπ(da−db)

2

Z 2π

0
eiλkλ−da−db (2π − λ)−da−db gab (λ) dλ

= e
iπ(Jb−Ja)

2 e
iπ(d0a−d

0
b)

2

Z 2π

0
eiλkλ−d

0
a−d0b (2π − λ)−d

0
a−d0b hab (λ) dλ (24)

where hab (λ) = gab (λ)λ
J (2π − λ)J ∈ C∞ [0, 2π] . Applying (19) to (24), we

have

γab (k) = e
iπ(Jb−Ja)

2 e
iπ(d0a−d

0
b)

2

∞X
n=0

Γ (n+ 1− d0a − d0b)

n!kn+1−d
0
a−d0b

n
H
(n)
ab (0) e

πi
2 (n+1−d

0
a−d0b)

+ (−1)n e−iπ(d0a−d0b)eπi2 (n−1+d0a+d0b)H(n)
ba (0)

o
,

where

Hab (λ) = (2π − λ)−d
0
a−d0b hab (λ) = gab (λ)λ

J (2π − λ)J−d
0
a−d0b = λJGab (λ)

(25)
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since Gab (λ) = (2π − λ)−da−db gab (λ) = (2π − λ)J−d
0
a−d0b gab (λ) . Note that

H
(n)
ab (0) =

(
0 n < J

J !G
(n−J)
ab (0) n ≥ J

,

and hence

γab (k) = e
iπ(da−db)

2

∞X
n=0

Γ (n+ 1− d0a − d0b)

n!kn+1−d
0
a−d0b

n
H
(n)
ab (0) e

πi
2 (n+1−d

0
a−d0b)

+ (−1)n e−iπ(d0a−d0b)e
πi
2 (n−1+d

0
a+d

0
b)H

(n)
ba (0)

o
= e

iπ(da−db)
2

∞X
n=J

Γ (n− J + 1− da − db)

n!kn−J+1−da−db

n
H
(n)
ab (0) e

πi
2
(n−J+1−da−db)

+(−1)n+(Ja−Jb) e−iπ(da−db)eπi2 (n−J−1+da+db)H(n)
ba (0)

o
= e

iπ(da−db)
2

∞X
m=0

Γ (m+ 1− da − db)

(m+ J)!km+1−da−db

n
H
(J+m)
ab (0) e

πi
2
(m+1−da−db)

+(−1)m+2Ja e−iπ(da−db)eπi2 (m−1+da+db)H(J+m)
ba (0)

o

= e
iπ(da−db)

2

∞X
m=0

Γ (m+ 1− da − db)

(m+ J)!km+1−da−db

n
H
(J+m)
ab (0) e

πi
2
(m+1−da−db)

+(−1)m e−iπ(da−db)e
πi
2
(m−1+da+db)H(J+m)

ba (0)
o

=
∞X

m=0

Γ (m+ 1− da − db)

(m+ J)!km+1−da−db

n
H
(J+m)
ab (0) e

πi
2
(m+1−2db)

+(−1)m e
πi
2
(m−1+2db)H(J+m)

ba (0)
o
.

=
∞X

m=0

Γ (m+ 1− da − db)

km+1−da−db

n
G
(m)
ab (0) e

πi
2
(m+1−2db)

+(−1)m e
πi
2
(m−1+2db)G(m)ba (0)

o
,

which is (19). Observe that the leading term in the expansion is

γab (k) =
Γ (1− da − db)

J !k1−da−db

n
Gab (0) e

πi
2
(1−2db)

+e
πi
2
(−1+2db)Gba (0)

o
+O

µ
1

k2−da−db

¶
=
Γ (1− da − db)Gab (0) 2 cos

©
π
2 (1− 2db)

ª
k1−da−db

+O

µ
1

k2−da−db

¶
=
Γ (1− da − db) sin {πdb}ωab

k1−da−db
+O

µ
1

k2−da−db

¶
,
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since Gab (λ) = (2π − λ)−da−db gab (λ) , gab (0) = (2π)
da+db fuaub (0) , and there-

fore Gab (0) = fuaub (0) = (2π)
−1 ωab. It follows that

γab (k) =
Γ (1− da − db) sin {πdb}

πk1−da−db
ωab +O

µ
1

k2−da−db

¶
=
Γ (1− da − db) sin {πdb}ωab

kJ+1−d
0
a−d0b

+O

µ
1

kJ+2−d
0
a−d0b

¶
,

showing that the acf still follows power law decay but at a faster rate that takes
into account the antipersistence.

2.3 Fourier transforms of generalized functions

This approach is based on the theory of asymptotic expansions of Fourier trans-
forms for generalized functions. Lighthill (1959) developed the theory in chapter 4
of his classic monograph and used this theory in chapter 5 to obtain a corresponding
development for the coefficients of Fourier series. Lighthill’s treatment of asymptotic
expansions for Fourier integrals and Fourier coefficients is masterly and seems to be
rather neglected in statistical asymptotic theory. Some of the theory was used in
Phillips (1985) to obtain tail probability expansions but, to the author’s knowledge,
no other uses of this theory of asymptotic expansions of generalized functions have
appeared in econometrics or statistics. As shown below, the theory is sufficiently
powerful to deliver the complete asymptotic series expansion for the autocovariances
given in Theorem 1 by immediate use of the generalized function expansion formulae.

We start from (4), which we write as

fxaxb(λ) =

⎧⎪⎨⎪⎩ e
iπ(da−db)

2 |λ|−da−db
¯̄̄
2 sin(λ/2)

λ

¯̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) 0 < λ < π

e−
iπ(da−db)

2 |λ|−da−db
¯̄̄
2 sin(λ/2)

λ

¯̄̄−da−db
e
i|λ|(da−db)

2 fuaub (λ) −π ≤ λ < 0
,

and by Fourier inversion we have

γab (k) = e
iπ(da−db)

2

Z π

0
eiλkλ−da−db

µ
2 sin(λ/2)

λ

¶−da−db
e−

iλ(da−db)
2 fuaub (λ) dλ

+e−
iπ(da−db)

2

Z π

0
e−iλk |λ|−da−db

¯̄̄̄
2 sin(λ/2)

λ

¯̄̄̄−da−db
e
i|λ|(da−db)

2 fuaub (−λ) dλ.

Define

Gab (w) =

µ
2 sin(w/2)

w

¶−da−db
e−

iw(da−db)
2 fuaub (w) ,

Hab (w) =

µ
2 sin(w/2)

w

¶−da−db
e
iw(da−db)

2 fuaub (−w) .
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Then even and odd derivatives satisfy G
(2m)
ab (0) = H

(2m)
ab (0) and G

(2m+1)
ab (0) =

−H(2m+1)
ab (0) , so that

γab (k) = e
iπ(da−db)

2

∞X
j=0

G
(j)
ab (0)

j!

Z π

0
eiλkλj−da−dbdλ

+e−
iπ(da−db)

2

∞X
j=0

H
(j)
ab (0)

j!

Z π

0
e−iλkλj−da−dbdλ (26)

= e
iπ(da−db)

2

∞X
j=0

G
(j)
ab (0)

j!

Z π

−π
eiλk |λ|j−da−db h (λ) dλ

+e−
iπ(da−db)

2

∞X
j=0

H
(j)
ab (0)

j!

Z π

−π
e−iλk |λ|j−da−db h (λ) dλ, (27)

where h (λ) = 1, for λ > 0 and 0 for λ < 0. Using Lighthill (1959, equation (13)
p. 33)2 for the Fourier transform of |λ|j−da−db h (λ) (treated as a generalized function)
we have directly thatZ ∞

−∞
e−iλk |λ|j−da−db h (λ) dλ = e−

π
2
i(j+1−da−db)Γ (j + 1− da − db)

kj+1−da−db
. (28)

Further, as shown in Lighthill (1959, theorem 30, p. 72), the same formula (28) pro-
vides an asymptotic representation of the Fourier coefficients of a periodic function
(treated as a generalized function). The error on this asympotic representation is ex-
ponential small in the present case in view of the condition that gab (λ) ∈ C∞ [0, 2π]
in Theorem 1. We may therefore deduce from (27) and (28) the complete asymptotic
series

γab (k) = e
iπ(da−db)

2

∞X
j=0

G
(j)
ab (0) e

π
2
i(j+1−da−db)

j!

Γ (j + 1− da − db)

kj+1−da−db

+e−
iπ(da−db)

2

∞X
j=0

H
(j)
ab (0) e

−π
2
i(j+1−da−db)

j!

Γ (j + 1− da − db)

kj+1−da−db

= e−iπdb
∞X
j=0

G
(j)
ab (0) (i)

j+1

j!

Γ (j + 1− da − db)

kj+1−da−db

+eiπdb
∞X
j=0

H
(j)
ab (0) (−i)

j+1

j!

Γ (j + 1− da − db)

kj+1−da−db
(29)

2Note that since we assume k > 0 in our (28), Lighthill’s sgn(y) = 1 in his equation (13). Note
also that Lighthill defines a Fourier transform using e−2πiλ in place of our e−ιπλ.
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Using G(2m)ab (0) = H
(2m)
ab (0) and G

(2m+1)
ab (0) = −H(2m+1)

ab (0) , we get

γab (k) =
∞X
j=0

G
(j)
ab (0) (i)

j+1

j!

Γ (j + 1− da − db)

kj+1−da−db

n
e−iπdb + (−1)j+1 eiπdb

o

=
∞X

m=0,j=2m

G
(2m)
ab (0) (−1)m

(2m)!

Γ (2m+ 1− da − db)

k2m+1−da−db
1

−i
n
e−iπdb − eiπdb

o

+
∞X

m=0,j=2m+1

G
(2m+1)
ab (0) (−1)m+1

(2m+ 1)!

Γ (2m+ 2− da − db)

k2m+2−da−db

n
e−iπdb − eiπdb

o

= 2 sin (πdb)
∞X

m=0,j=2m

G
(2m)
ab (0) (−1)m

(2m)!

Γ (2m+ 1− da − db)

k2m+1−da−db

+2 sin (πdb)
∞X

m=0,j=2m+1

iG
(2m+1)
ab (0) (−1)m+1

(2m+ 1)!

Γ (2m+ 2− da − db)

k2m+2−da−db

= 2 sin {πdb}
∞X
j=0

Γ (2j + 1− da − db) (−1)j

(2j)!k2j+1−da−db

×
(
G
(2j)
ab (0)− (2j + 1− da − db)G

(2j+1)
ab (0)

(2j + 1) ki

)
,

which corresponds with the earlier expansion (20) obtain by conventional Fourier
expansion methods.

Some further remarks on the approach may be helpful. The asymptotic series
(29) effectively makes use of the replacementZ π

−π
eiλk |λ|j−da−db h (λ) dλ =

Z ∞

−∞
eiλk |λ|j−da−db h (λ) dλ (30)

= ij+1e−
π
2
i(da+db)

Γ (j + 1− da − db)

kj+1−da−db
(31)

which is justified in Lighthill (1959, theorem 30). Observe that the integral on the
left side of (30) may be defined as an ordinary function, while the integral on the
right side is only defined as a generalized function. Lighthill’s proof uses the Fourier
transform for nonperiodic (generalized) functions (as given in (31) above) by noting
that the generalized function corresponding to |λ|α outside of [−π, π] , which we may
consider as |μ|α outside the interval (−kπ, kπ) , is well behaved at infinity because it is
effectively zero outside this interval. Then the function has any number of derivatives
after removing |λ|α and the error of the Fourier transform is exponentially small.

2.4 A gamma function representation

As a final approach, we introduce a simple method that uses little more than the
gamma function to extract the leading term. It is a convenient method for teaching
purposes, avoids the use of integral tables, and involves only elementary methods.
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From (4), (8) and (26) we have

γab (k) =

Z π

−π
eiλk(1− eiλ)−dafuaub (λ) (1− e−iλ)−dbdλ

= e
iπ(da−db)

2

Z π

0
eiλk |λ|−da−db

¯̄̄̄
2 sin(λ/2)

λ

¯̄̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ) dλ

+e−
iπ(da−db)

2

Z π

0
e−iλk |λ|−da−db

¯̄̄̄
2 sin(λ/2)

λ

¯̄̄̄−da−db
e
iλ(da−db)

2 fuaub (−λ) dλ

= e
iπ(da−db)

2

Z π

0
eiλkλj−da−dbGab (λ) dλ+ e−

iπ(da−db)
2

Z π

0
e−iλkλj−da−dbHab (λ) dλ

= e
iπ(da−db)

2

∞X
j=0

G
(j)
ab (0)

j!

Z π

0
eiλkλj−da−dbdλ

+e−
iπ(da−db)

2

∞X
j=0

H
(j)
ab (0)

j!

Z π

0
e−iλkλj−da−dbdλ. (32)

Using Gab (0) = Hab (0) = fuaub (0) and variate transformation, (32) becomes

e
iπ(da−db)

2

∞X
j=0

G
(j)
ab (0)

j!kj+1−da−db

Z kπ

0
eiwwj−da−dbdw

+e−
iπ(da−db)

2

∞X
j=0

H
(j)
ab (0) (−1)

j

j!kj+1−da−db

Z kπ

0
e−iwwj−da−dbdw

=
fuaub (0)

k1−da−db

½
e
iπ(da−db)

2

Z kπ

0
eiww1−da−dbdw + e−

iπ(da−db)
2

Z kπ

0
e−iww1−da−dbdw

¾
+O

µ
1

k2−da−db

¶
. (33)

For s > 0 the gamma integral givesZ ∞

0
e−w(s−i)w1−da−dbdw =

Γ (1− da − db)

(s− i)1−da−db
,

and thenZ ∞

0
eiww1−da−dbdw = lim

s→0

Z ∞

0
e−w(s−i)w1−da−dbdλ =

Γ (1− da − db)

(−i)1−da−db

= Γ (1− da − db) e
πi
2
(1−da−db), (34)

and Z ∞

0
e−iww1−da−dbdw = lim

s→0

Z ∞

0
e−w(s+i)w1−da−dbdλ =

Γ (1− da − db)

(i)1−da−db

= Γ (1− da − db) e
−πi

2
(1−da−db). (35)
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The error magnitude in the use of these gamma integrals in (33) can be determined
by partial integration (or more precisely by using an asymptotic expansion of the
incomplete gamma function) as follows:

e
iπ(da−db)

2

Z ∞

kπ
eiww1−da−dbdw + e−

iπ(da−db)
2

Z ∞

kπ
e−iww1−da−dbdw

= 2

Z ∞

kπ
cos

½
π(da − db)

2
+ w

¾
w1−da−dbdw

= 2

∙½
sin

µ
π(da − db)

2
+ w

¶¾
w1−da−db

¸∞
kπ

− (1− da − db)

Z ∞

kπ

½
sin

µ
π(da − db)

2
+ w

¶¾
w−da−dbdw

= O

µ
1

k1−da−db

¶
,

which leads to an error of smaller order than the leading term upon use of (34) and
(35) in (33).

By combining (33) - (35) we have to the first order

γab (k) =
fuaub (0)Γ (1− da − db)

k1−da−db

n
e
iπ(da−db)

2 e
πi
2
(1−da−db) + e−

iπ(da−db)
2 e−

πi
2
(1−da−db)

o
+o

µ
1

k1−da−db

¶
=

fuaub (0)Γ (1− da − db)

k1−da−db

n
ie−iπdb − ieiπdb

o
+ o

µ
1

k1−da−db

¶
=

fuaub (0)Γ (1− da − db) 2 sin (πdb)

k1−da−db
+ o

µ
1

k1−da−db

¶
, (36)

delivering the leading term of (20) direct methods. The argument may be refined to
produce the complete asymptotic series (20).

3. Concluding Remarks

The generalized function approach to developing complete asymptotic series is mod-
ern and elegant in its use of applied functional analysis. The applications in the
present paper show the power and simplicity of that approach in developing useful
expansions for the autocovariance function of long memory time series. On the other
hand, the proofs do require some working familiarity with generalized function theory
and ideas beyond those which might be expected in normal classroom discussion. A
similar comment applies to the approach based on expanding Fourier integrals with
singularities, where a deeper understanding of asymptotic methods around singular-
ities is required. In this respect, the gamma function approach seems relatively less
demanding and is well suited to the classroom, at least in finding the leading term
in the expansion.
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The expansion formulae given here are useful in many ways including the calcu-
lation of long run variation matrices for multivariate time series with long memory
and the econometric estimation of such models. Some applications along these lines
are given in Lieberman and Phillips (2007), Phillips and Kim (2007) and Shimotsu
(2007).

4. Appendix

Proof of the Theorem

We start by proving (19). From (18) we have

γab (k) = e
iπ(da−db)

2

∞X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

½
dn

dan

h
(2π − a)−da−db F (a)

i
a=0

e
πi
2
(n+1−da−db)

+
dn

dbn

h
b−da−dbF (b)

i
b=2π

e
πi
2
(n−1+da+db)

¾
. (37)

Observe that

dj

dbj

h
b−da−db

i
b=2π

= (−1)j dj

daj

h
(2π − a)−da−db

i
a=0

, (j = 0, 1, 2, ...)

and

F (2π − w) = gab (2π − w) =

µ
2 sin(w/2)

w (2π −w)

¶−da−db
e−

i(2π−w)(da−db)
2 fuaub (2π − w)

= e−iπ(da−db)
µ
2 sin(w/2)

w (2π − w)

¶−da−db
e
iw(da−db)

2 fuaub (2π − w)

= e−iπ(da−db)
µ
2 sin(w/2)

w (2π − w)

¶−da−db
e
iw(da−db)

2 fuaub (−w)

= e−iπ(da−db)gba (w) ,

in view of the fact that fuaub (2π − w) = fuaub (−w) = fubua (w) and

gba (λ) =

µ
2 sin(λ/2)

λ (2π − λ)

¶−da−db
e
iλ(da−db)

2 fubua (λ) =

µ
2 sin(λ/2)

λ (2π − λ)

¶−da−db
e
iλ(da−db)

2 fuaub (−λ) .

Further, note that

g
(m)
ab (2π) = (−1)m e−iπ(da−db)g(m)ba (0) , (m = 0, 1, 2, ...) ,
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and thus

dn

dbn

h
b−da−dbgab (b)

i
b=2π

=

∙n
b−da−db + gab (b)

o(n)¸
b=2π

=
nX

j=0

µ
n

j

¶µ
dj

dbj

h
b−da−db

i
b=2π

¶³
g
(n−j)
ab (2π)

´
=

nX
j=0

µ
n

j

¶
(−1)j dj

daj

h
(2π − a)−da−db

i
a=0

(−1)n−j e−iπ(da−db)g(n−j)ba (0)

= (−1)n e−iπ(da−db) d
n

dan

h
(2π − a)−da−db gba (a)

i
a=0

.

Letting Gba (w) = (2π −w)−da−db gba (w), equation (37) then becomes

γab (k) = e
iπ(da−db)

2

∞X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

n
G
(n)
ab (0) e

πi
2
(n+1−da−db)

+(−1)n e−iπ(da−db)eπi2 (n−1+da+db)G(n)ba (0)
o
, (38)

giving the stated formula (19).
Next we prove the simplified formula (20). Note that

Gab (w) = (2π −w)−da−db gab (w) =

µ
2 sin(w/2)

w

¶−da−db
e−

iw(da−db)
2 fuaub (w) ,

so that

Gba (w) =

µ
2 sin(w/2)

w

¶−da−db
e−

iw(db−da)
2 fubua (w)

=

µ
2 sin(w/2)

w

¶−da−db
e
iw(da−db)

2 fuaub (−w) = Gab (−w) ,

and then G
(2j)
ba (0) = G

(2j)
ab (0) and G

(2j+1)
ba (0) = −G(2j+1)ab (0) . Observe that when

a = b terms involving the odd derivatives drop out as G(2j+1)aa (0) = −G(2j+1)aa (0) = 0,
leading to the formula for the scalar case discussed in Remark A (iv).

Continuing in the general case and working from (38) above, we have

γab (k) = e
iπ(da−db)

2

∞X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

n
G
(n)
ab (0) e

πi
2
(n+1−da−db)

+(−1)n e−iπ(da−db)eπi2 (n−1+da+db)G(n)ba (0)
o

=
∞X
n=0

Γ (n+ 1− da − db) i
n

n!kn+1−da−db

n
G
(n)
ab (0) e

πi
2
(1−2db) + (−1)n e−πi

2
(1−2db)G(n)ba (0)

o

17



=
∞X
j=0

Γ (2j + 1− da − db) (−1)j G(2j)ab (0)

(2j)!k2j+1−da−db
2 sin {πdb}

+
∞X
j=0

Γ (2j + 2− da − db) (−1)j+1G(2j+1)ab (0)

(2j + 1)!k2j+2−da−dbi
2 sin {πdb}

= 2 sin {πdb}
∞X
j=0

Γ (2j + 1− da − db) (−1)j

(2j)!k2j+1−da−db

×
(
G
(2j)
ab (0)− (2j + 1− da − db)G

(2j+1)
ab (0)

(2j + 1) ki

)
, (39)

giving formula (20). The quantity G(2j+1)ab (0) /i in the second term within the brace
of (39) is real. To see this, observe that

Gab (w) = (2π −w)−da−db gab (w) =

µ
2 sin(w/2)

w

¶−da−db
e−

iw(da−db)
2 fuaub (w) ,

and odd derivatives of
³
2 sin(w/2)

w

´−da−db
at the origin are zero because the function

is symmetric about zero. So odd derivatives of Gab (w) at w = 0 involve only even

derivatives of
³
2 sin(w/2)

w

´−da−db
and odd derivatives of e−

iw(da−db)
2 fuaub (w) . Now odd

derivatives of e−
iw(da−db)

2 at the origin involve odd powers of i(da−db)
2 and therefore

involve a factor of i, whereas even derivatives of fuaub (w) at the origin are real.
Similarly, odd derivatives of fuaub (w) at the origin involve odd powers of i and
therefore a factor of i. Hence odd derivatives of Gab (w) at w = 0 involve a factor of i,
so they are purely imaginary and G(2j+1)ab (0) /i is real. It follows that the coefficients
in (39) are all real.

First and Second Terms in the Expansion

Since gab (0) = (2π)
da+db fuaub (0) and Gba (0) = (2π)

−da−db gab (0) = fubua (0) , the
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first term in the expansion (19) is

γab (k) = e
iπ(da−db)

2
Γ (1− da − db)

k1−da−db

n
fuaub (0) e

πi
2
(1−da−db)

+e−iπ(da−db)e
πi
2
(−1+da+db)fubua (0)

o
+O

µ
1

k2−da−db

¶
=
Γ (1− da − db)

k1−da−db

n
fuaub (0) e

πi
2
(1−2db)

+e−
iπ(da−db)

2 e
πi
2
(−1+da+db)fubua (0)

o
+O

µ
1

k2−da−db

¶
=
Γ (1− da − db)

k1−da−db

n
fuaub (0) e

πi
2
(1−2db) + e

πi
2
(−1+2db)fubua (0)

o
+O

µ
1

k2−da−db

¶
=

ωabΓ (1− da − db) 2 cos
©
π
2 (1− 2db)

ª
2πk1−da−db

+O

µ
1

k2−da−db

¶
=

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

+O

µ
1

k2−da−db

¶
, (40)

where ωab = ωba = 2πfubua (0) . Expression (40) is the leading term in the expansion
as given in Remark A(i).

Taking the expansion to the second term, we have

γab (k) = e
iπ(da−db)

2

1X
n=0

Γ (n+ 1− da − db)

n!kn+1−da−db

n
G
(n)
ab (0) e

πi
2
(n+1−da−db)

+(−1)n e−iπ(da−db)eπi2 (n−1+da+db)G(n)ba (0)
o
+O

µ
1

k3−da−db

¶
=

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

+e
iπ(da−db)

2
Γ (2− da − db)

2k2−da−db

n
G
(1)
ab (0) e

πi
2
(2−da−db)

−e−iπ(da−db)eπi2 (da+db)G(1)ba (0)
o
+O

µ
1

k3−da−db

¶
(41)

Now

gab (λ) =

¯̄̄̄
2 sin(λ/2)

λ (2π − λ)

¯̄̄̄−da−db
e−

iλ(da−db)
2 fuaub (λ)

gba (w) =

µ
2 sin(w/2)

w (2π − w)

¶−da−db
e
iw(da−db)

2 fubua (w) ,

so

Gba (w) = (2π − w)−da−db gba (w)

=

µ
2 sin(w/2)

w

¶−da−db
e
iw(da−db)

2 fubua (w) ,
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while

Gab (w) = (2π − w)−da−db gab (w)

=

µ
2 sin(w/2)

w

¶−da−db
e−

iw(da−db)
2 fuaub (w) ,

so that

G0ba (0) =
i(da − db)

2
fubua (0) + f 0ubua (0) =

i(da − db)

2

ωba
2π

+ f 0ubua (0)

=
i(da − db)

2

ωba
2π

+ f 0ubua (0)

=
i(da − db)

2

ωba
2π

+
i

2π
ω
(1)
ab

G0ab (0) =
i(db − da)

2
fuaub (0) + f 0uaub (0) =

i(db − da)

2

ωab
2π

+ f 0uaub (0)

=
i(db − da)

2

ωab
2π
− i

2π
ω
(1)
ab

since f 0uaub (w) =
1
2π

P∞
h=−∞ γab (h) e

−ihw (−ih) and then

f 0uaub (0) = −
i

2π

∞X
h=−∞

γab (h)h = −
i

2π
ω
(1)
ab ,

where we define ω(1)ab =
P∞

j=−∞ γab (j) j, which exists by the smoothness condition
on the spectrum fuu. Note that

f 0ubua (0) = − i

2π

∞X
h=−∞

γba (h)h = −
i

2π

∞X
h=−∞

γab (−h)h =
i

2π

∞X
h=−∞

γab (h)h

= −f 0uaub (0) =
i

2π
ω
(1)
ab

f 0uaub (0) = − i

2π

∞X
h=−∞

γab (−h)h =
i

2π

∞X
j=−∞

γab (j) j = −f 0ubua (0) = −
i

2π
ω
(1)
ab .

Hence, G0ba (0) =
i(da−db)

2
ωba
2π +

i
2πω

(1)
ab = −G0ab (0) .
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Using these expresssions in (41), we find that

γab (k) =
ωabΓ (1− da − db) sin {πdb}

πk1−da−db

+e
iπ(da−db)

2
Γ (2− da − db)

2k2−da−db

n
G
(1)
ab (0) e

πi
2
(2−da−db)

−e−iπ(da−db)eπi2 (da+db)G(1)ba (0)
o
+O

µ
1

k3−da−db

¶
=

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

+e
iπ(da−db)

2

Γ (2− da − db)
³
i(da−db)

2
ωab
2π +

i
2πω

(1)
ab

´
2k2−da−db

×
n
e−

πi
2
(da+db) − e−iπ(da−db)e

πi
2
(da+db)

o
+O

µ
1

k3−da−db

¶

=
ωabΓ (1− da − db) sin {πdb}

πk1−da−db

+
Γ (2− da − db)

³
i(da−db)

2
ωab
2π +

i
2πω

(1)
ab

´
2k2−da−db

n
e−πidb − eiπdb)

o
+O

µ
1

k3−da−db

¶
=

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

+
Γ (2− da − db) sin (πdb)

³
(da−db)

2 ωab + ω
(1)
ab

´
2πk2−da−db

+O

µ
1

k3−da−db

¶
=

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

+
Γ (1− da − db) sin (πdb) (1− da − db)

³
(da−db)

2 ωab + ω
(1)
ab

´
2πk2−da−db

+O

µ
1

k3−da−db

¶
=
Γ (1− da − db) sin {πdb}

πk1−da−db½
ωab +

1

2k
(1− da − db)

µ
(da − db)

2
ωab + ω

(1)
ab

¶¾
+O

µ
1

k3−da−db

¶
, (42)

giving (22) in Remark A(iii). In the pure I (d) case we have ω
(1)
ab = 0 because

ω
(1)
ab =

P∞
j=−∞ γab (j) j = 0 as γab (j) = 0 for all j 6= 0. Hence, in that case we get

the simplified formula

ωabΓ (1− da − db) sin {πdb}
πk1−da−db

½
1 +

(da + db − 1) (db − da)

2k

¾
,

corresponding the result (14) obtained directly in that case from the exact formula
for the acf.
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