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WEIGHTED MINIMUM MEAN-SQUARE DISTANCE FROM
INDEPENDENCE ESTIMATION

DONALD J. BROWN AND MARTEN H. WEGKAMP

ABSTRACT. In this paper we introduce a family of semi-parametric estimators, suggested
by Manski’s minimum mean-square distance from independence estimator. We establish
the strong consistency, asymptotic normality and consistency of bootstrap estimates of the

sampling distribution and the asymptotic variance of these estimators.

1. INTRODUCTION

Manski (1983) introduced minimum mean-square distance from independence estimation
of semi-parametric econometric models separable in the unobserved exogenous variables ¢,
ie, e = p(X,Y,0) where X is a random vector of observed exogenous variables, Y is a
random vector of observed endogenous variables, 6 is a vector of unknown parameters, ¢is
drawn from a fixed but unknown distribution, and e is stochastically independent of X.
An important special case is the implicit nonlinear simultaneous equations model, where a
reduced form function Y = p~1(X,¢,0) exists. This model is a central topic of this paper.
Manski proved strong consistency of his estimator, but was unable to derive the first-order
asymptotic distribution. The criterion function for Manski’s estimator is the mean-square
distance between the joint empirical cumulative distribution function of ¢ and X and the
product of its marginal cumulative distribution functions. The criterion function for our
estimator is the mean-square distance between the joint empirical cumulative distribution of
¢ and X and the product of its marginal cumulative distribution functions, weighted by a
probability measure on the product space of € and .

These weighted minimum mean-square distance from independence estimators offer tractable

procedures for those applications where the econometrician assumes that ¢ is stochastically
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2 Minimum Distance from Independence Estimation

independent of X and e is drawn from a fixed but unknown distribution. Such is the case for
the continuous random utility model proposed by Brown and Matzkin (1998).

Comparing minimum mean-square distance from independence estimation to maximum
likelihood estimation and GMM, Manski observes that the joint maximization of the likeli-
hood over the product of the parameter space © and the family of possible distributions of ¢ is
often computationally intractable. Also GMM by imposing only a finite number of moment
restrictions cannot use all of the information contained in the independence assumption. In
contrast, weighted minimum mean-square distance from independence estimation only re-
quires that we minimize over the finite dimensional parameter space ©. If 0 is a consistent
estimate of 6y, the true parameter value, then we give sufficient conditions on the mapping
0 — p(x,y,0) for consistent estimation of the true distribution of e.

Since weighted minimum mean-square distance from independence is an extremum estima-
tor, identification in the econometrics literature means that the asymptotic criterion function
has a unique minimum at the truth — see Newey and McFadden (1994). Of course, identi-
fication in the usual statistical sense means that the distribution of data at 8 differs from
that at any other value of 8. As Newey and McFadden note, statistical identification is nec-
essary but not in general sufficient for an extremum estimator to have a unique minimum
(maximum) at the truth. An important exception is maximum likelihood estimation. In
particular, if p(X,Y,6) is nonlinear in 6 then as they point out “primitive conditions for
identification (existence of a unique global minimum) become quite difficult.” In practice,
global GMM identification for nonlinear simultaneous equations models is simply assumed
by the econometrician.

A striking and important feature of weighted minimum mean-square distance from inde-
pendence estimation is that the standard statistical notion of identification is sufficient for
uniqueness of the global minimum. For implicit nonlinear simultaneous equations models,
Brown (1983) and more generally Roehrig (1989) have given sufficient conditions on the prim-
itive p(X,Y, 0) for statistical identification, if ¢ is assumed to be stochastically independent
of X.

Unfortunately, Manski’s regularity conditions for strong consistency of minimum mean-

square distance from independence estimation — see the Corollary on page 314 of Manski
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(1983) — are unattractive in at least two respects. First, he simply assumes the existence
of a unique minimum, a high-level assumption for which he provides no sufficient conditions
on the model’s primitives. Second and more importantly — given our prior discussion of the
Brown and Roehrig results — is his assumption that the sets S(v,n,0) = {(z,y) : (z,y) € S,
x <v, p(x,y,0) <n}, where S is a compact convex subset of Euclidean space and p(z,y,0)
is continuous on S x O, are convex with boundaries having measure zero with respect to
the true fixed but unknown distribution of . A technical assumption difficult to verify in
practice. The latter assumption is crucial for his consistency argument, since it allows him
to invoke a uniform law of large numbers due to Rao (1962).

In this paper, we introduce the family of weighted minimum mean-distance from indepen-
dence estimators which are computationally tractable and identified. Moreover our regularity
conditions for consistency and asymptotic normality are satisfied in many applications. That
is, we show if p(z,y,6) is sufficiently smooth in (z,y,6) and the possible distributions of
have sufficiently smooth densities then our estimators are strongly consistent and asymp-
totically normal. Also, we prove under these assumptions that bootstrap estimates of the
sampling distribution and the asymptotic variance are also consistent.

As conjectured by Manski, the main tools of our analysis are techniques derived from
the theory of empirical processes, necessitated by our non-smooth criterion function. For
instance, see Pakes and Pollard (1989) for a lucid discussion and econometric application
of empirical process theory. Their paper and this paper are related both in method and
economic motivation. An application of their results is the estimation of a discrete random
choice model and an intended application of our results is the estimation of the continuous
random choice model of Brown and Matzkin.

Two significant differences between our paper and the paper of Pakes and Pollard are that
our estimator is an extremum estimator, i.e., we minimize a non-smooth random criterion
function and their estimator is a Z-estimator, i.e., they approximately solve a family of possi-
bly non-smooth random equations. More importantly, Theorem 3.2 in Wegkamp (1999, page
40) employed here subsumes as special cases: M-estimation, Cramer—Von Mises estimation,

regression and weighted minimum mean-square distance from independence estimation. See
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Wegkamp (1995), Andrews (1997, 1999) and Pollard (forthcoming) for similar results. Addi-
tional references on empirical process theory and their statistical applications can be found
in Dudley (1999), Pollard (1984, 1985) and Van der Vaart and Wellner (1996). Econometric
applications can also be found in Andrews (1994).

This paper is organized as follows. We discuss in turn identification, consistency, asymp-
totic normality and resampling. In the final section of the paper we present simulation
results on estimating the random utility model proposed by Brown and Matzkin. An appen-
dix contains a sufficient condition for identifying nonlinear simultaneous equations models

with multiple equilibria.

2. IDENTIFICATION OF MINIMUM DISTANCE FROM INDEPENDENCE ESTIMATORS

Statistical identification is a necessary condition for the asymptotic criterion function of
extremum estimators to have a unique global minimum (maximum). In our case it is also
sufficient. Compactness of the parameter space © and the continuity of the asymptotic
criterion function imply that the optimum is well-separated.

We assume that O is a compact subset of an Euclidean space. Moreover, let X be a subset
of R¥, V be a subset of R and Z = X x ) be a subset of RETK. Then Z = (X,Y) is a
random vector taking values in Z. For all § € ©, p(-,0) is a mapping from Z into R¥.

We define minimum distance from independence estimators, as extremum estimators where
the asymptotic criterion function d(-,-) is a metric on the space of joint cumulative distri-
bution functions (c.d.f.’s) of (X,¢), where ¢ takes values in REX. If H(z,¢) is the joint c.d.f.
of (X,e) and F(x), G(e) the associated marginal c.d.f.’s then d(H(z,¢), F(x)G(e)) = 0 iff
X and ¢ are stochastically independent. In Manski (1983) d is the mean-square distance, in
Brown and Matzkin (1998) d is the metric on the space of c.d.f.’s induced by the Prohorov
metric on the space of measures and in this paper d is the weighted mean-square distance.
Our discussion of implicit nonlinear simultaneous equations models follows the expositions of
Brown (1983), Roehrig (1988) and Brown-Matzkin (1998).

A structure S is an ordered pair (p(X,Y,0), H(x,c)). The structural equations are de-
fined as ¢ = p(X,Y,0). Our model consists of all structures S that satisfy the following

assumptions:
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(I.1) 3! reduced form Y = (X, ¢e,0) such that
e = p(X,1(X,2,0),6).

(I.2) The matriz 0p/dy has full rank a.e.
(I.3) H(z,e) = F(x)G(e) for all (z,e) € X x Y, i.e., X and e are stochastically independent.

(I.4) H(z,e) is absolutely continuous, with respect to Lebesque measure, with positive density.

The following notation will prove useful:

() Ho(s,1) = PLX < 5, p(X,1(X, ¢, 80),6) < 1}.

(ii) F(z) and Gy(e) are the associated marginal c.d.f.’s of Hy(z,¢).
(iii) M(0) = d(Hy(x,¢), F(x)Go(e)).

Given assumption I.1 each structure generates a joint c.d.f. of (X,Y’). Our maintained
assumption is that the observed c.d.f. of Z = (X,Y) is generated by some structure Sy =
(p(X,Y,6y), Hy,(x,¢)) in our model.

Brown (1983, pp. 180, 181) in his seminal paper on identification proved the fundamen-
tal result, Theorem 2.1, for the special case of semiparametric implicit simultaneous equa-
tions models that are only nonlinear in the variables. Subsequently, Roehrig (1988) extended
Brown’s analysis to nonparametric and semiparametric implicit nonlinear simultaneous equa-
tions models. Recently Brown and Matzkin (1998) derived a consequence of Theorem 2.1,
Theorem 2.2, which we use in the identification of a random utility model in the final section
of the paper. The structural equations in this example are nonlinear in both the variables

and the parameters.

Theorem 2.1 (Roehrig (1988, Lemma 3.3, p. 437) ).

Op(x,v(x,¢,6p),)
ox

=0 a.e.

Hy(z,e) = F(x)Gy(e) a.e. iff

Theorem 2.2 (Brown-Matzkin (1998, Theorem 1’, p. 6)). If dp(x,v(x,¢€,6p),0)/0x =0 a.e.,
then
N (x,e,00) _ 9v(x,¢,0)

= a.e.

ox ox
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The identification condition for minimum distance from independence estimators is an

immediate consequence of Theorem 2.1.

Theorem 2.3. ! g is the unique global minimum of M(0) iff V0 # 6y, I(T,E) such that

6,0(33, 7(56767 90)7 9)
ox

(@2)

The following result is well known, but necessary for our proof of consistency. First we

recall the definition of a well-separated minimum.

Definition. 6 is a well-separated minimum of M(0) if infgece.m(6,69)>c1 M(0) > M(6o),

where m is a metric on ©.

Theorem 2.4 (Newey—McFadden (1994, Theorem 2.1, p. 2121)). If Ois compact, M(0) is
continuous on © and Oy is the unique global minimum of M(0), then 0y is a well-separated

minimum of M.

3. CONSISTENCY AND ASYMPTOTIC NORMALITY OF WEIGHTED MINIMUM

MEAN-SQUARE DISTANCE FROM INDEPENDENCE ESTIMATORS

Our main model assumption in this and the next section is that p(X,Y,#) is independent
of X if and only if 8 = 6g. Based on independent observations Z1,...,Z,, we will now
construct an estimate of 6y, and establish its limiting sampling distribution under a set of
regularity conditions. The independence assumption between X and p(X,Y,6p) is equivalent

with
Hy(z,e) = F(x)Gyg(e) V(z,e) € X XY <= 0 = 0.
As a consequence, for any bounded measure p on Z, the criterion function

2(0) = [ (Ho(w.2) = F@)Go(e)]* du(a)

'In the appendix, this sufficient condition for identification is extended to nonlinear simultaneous equations

models with multiple equilibria.
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is minimized at 8 = 6y. Motivated by this observation, we propose to minimize the empirical

counterpart of M (0),

M,y (6) = / (Hyp(2,2) — Fy(2)Gp ()] dps(a, )

over € ©. Here F,,, G,p and H,y are the empirical c.d.f.’s associated with F', Gy and Hy,

respectively, based on the observed data Zi, ..., Z,. For instance,
1 n
Gro(e) = — ZI{P(Zz';H) <e}.
i=1
The resulting minimum is denoted by 6 2 which satisfies

My, (0) < M, (6) for all 6 € ©.

Next we describe the set of regularity assumptions, followed by a brief discussion.

(A.1) The parameter space © is compact, and 6 is an interior point.
(A.2) The model is identified.
(A.3) The collection of functions {p(-,-,0) : 6 € ©} is either
— a subset of a finite dimensional space or
— each coordinate of the mapping (z,y) — p(x,y,0) is an element of CE[X x )] 3,
K >0 and X and ) compact, for all # € ©. In this case we require that H(z,¢)
has a bounded density.
(A.4) The random vector ¢ has a continuous c.d.f. G.
(A.5) The mapping 6 — p(z,y,0) is Lipschitz at 6y uniformly in z € X,y € ).
(A.6) The mapping 0 — Dy(x,c) = Hy(x,e) — F(x)Gy(e) is differentiable at 6y in Lo(p), that
is, there exists A € La(p) such that

. . Dg(x,g) — (9 _ 90)’A(£L‘,6) 2 -
\\9—%?\\1—@ / ( 16 — 60| ) du(z,e) = 0.

(A.7) The mapping 6 — M () has a positive definite second derivative matrix V" at 6.

2We will assume without loss of generality that a minimum exists, since otherwise we can always take any

0 € © which minimizes M,, within a constant 1/ n? without affecting the results.
3Each coordinate mapping must have uniformly bounded (by K) partial derivates through order 3 = |/,

and the derivatives of order 3 will satisfy a uniform Holder condition of order a — (3, and with Lipschitz
constant bounded by K. For a complete description of the space C%[X x )], we refer to Dudley (1999), page
252, or Van der Vaart & Wellner (1996), page 154.
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The first assumption A.1 is a standard condition in the literature. The second assumption
A.2 was the main issue in the previous section, where we derived a necessary and sufficient
condition under the assumptions I.1 — 1.4, i.e., Theorem 2.3. Concerning the third assumption
A.3, we observe that the standard compactness conditions for spaces of smooth functions
used in economic theory, e.g. see Mas-Colell (1985), Section K in Chapter 1, are sufficient
to guarantee the third assumption. We note in passing that only certain metric entropy
properties of {p(-,0) : 6 € ©} are needed to conduct our proof; conditions on these spaces
other than A.3 may also give the desired metric entropy property.

Assumptions A.5 and A.6 are implied by pointwise smoothness of the mapping 6 — p(-,0).
It should be noted that A.6 is weaker than pointwise differentiability (cf. Van der Vaart
(1998), Lemma 7.6, page 95, and Chapter 4 in Pollard (forthcoming)).

We are now in the position to state our main results.

Theorem 3.1 (consistency). Under assumptions A1, A2, A3 and continuity of M at 6
(which, is implied by A.7), 8 is strongly consistent, i.e., 6 2 6.

Corollary 3.2. Under the assumptions of Theorem 3.1 and A.5, H ;(x,¢) 2% H(x,€) for
all (x,e) € X x ).

Theorem 3.3 (asymptotic normality). Under the regularity assumptions A.1 — A.3 described
above, \/ﬁ(é—(%) converges to a mean zero, non-degenerate multivariate normal distribution.

The limiting covariance matriz ¥ is 4V WV L, where V is defined in A.7 and

W= / /A(w,s)A’(i, g) [F(x)F(Z)G(min(e, ) + F(min(x, Z))G(e)G(E)+

+ H(min(z, =), min(e,)) — 3H(x,e)H(T,2)] du(x,e) du(T, 2).
The minimum between two vectors x and T should be understood coordinatewise.

Proofs. The aspects of empirical process theory employed in our proofs are generalizations
of two fundamental theorems in probability theory: The Glivenko-Cantelli theorem and
Donsker’s theorem. These results are the paradymatic examples of uniform laws of large
numbers and uniform central limit theorems. To illustrate our methodlogy, we present a

brief discussion of uniform laws of large numbers. See Van der Vaart (1998), Chapter 19 for a
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lucid introduction to this field. Let X7, Xo,... be a sequence of i.i.d. random variables with
common probability measure P. From the first n observations we construct the empirical
measure P,. This measure puts mass 1/n at each observation X;, ¢ = 1,... ,n. Given a
measurable function f we write P, f for the expectation of f under the empirical measure,
ie. P, f = %Z?:l f(X;) and Pf for the expectation of f under P,i.e. Pf = [ fdP. By the
strong law of large numbers, P, f converges almost surely to Pf for every f for which Pf is
defined. The classical Glivenko-Cantelli theorem states that this convergence is uniform over
the class of indicator functions 1(_,j, 7 € R. A class F of measurable functions is called
P-Glivenko-Cantelli if ||, — Pz = sup,. g [Puf — Pf] 2%, 0. In a similar vein, a class of
measurable functions is called P-Donsker if the empirical process \/n(P, — P)(f) indexed by
f € F convergences weakly to a tight Gaussian process in [*°(F). By Slutsky’s lemma, a
P-Donsker class is P-Glivenko-Cantelli; the converse is not necessarily true.

Important classes of functions which are P-Donsker are the so called VC classes (named
after Vapnik and Chervonenkis), discussed at length in Pakes and Pollard (1989). VC-classes
are determined by purely combinatorial arguments, and they are small in terms of metric
entropy. That the classical Glivenko-Cantelli theorem is a special case of the abstract uniform
law of large numbers follows from the observation that the class of half sets (—oo,r|, r € R
constitutes a VC-class.

Many proofs of central limit theorems reduce to a careful application of Taylor’s theorem.
In these applications the empirical criterion function is written as a second order Taylor’s
expansion around 6y, the true value of the parameter . However, since our criterion func-
tion M, is not pointwise differentiable, we need a weaker notion of differentiability, to wit,
stochastic differentiability of /n(M, — M), a notion introduced by Pollard (1985).

We now turn to the proofs of Theorem 3.1, Corollary 3.2 and Theorem 3.3. First we need

some additional notation and results. Define the sets
Agy={2€2Z:p(z,0) <y} and B, ={t € X : t <z},
and the associated collections

A={A9y:0€0,ycY}, B={B,: € X} andC={AN(Bx)): Ac A,B € B}.
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Let P be the probability measure of Z = (X,Y), and let P,, be its empirical measure based

on Zi,...,Zy, which puts mass 1/n at each observation. Recall the definition of
Dy(z,e) = Hp(z,e) — F(x)Gy(e),
and define further
Dyg(x,e) = Hpp(x,e) — Frp(x)Gpo(e).
Observe that

Dn9(x7€) - Dg(l‘,é‘)

= {Hno(v,¢) — Ho(,¢)} + Fn(2) {Go(e) — Gno(e) } + Go(e){F(x) — Fn()}
and consequently,

sup |Dpy(x,e) — Dy(x,€)|

969,16X,5€y
< sup [(P, — P)(A)| 4 sup |(P, — P)(C)| + sup (P, — P)(B)|.
Ac A ceC BeB

For any measure @ on Z, any class of functions F C La(Q) and any positive number 6, let
N(6,F,L2(Q)) be the é-covering number (possibly infinite) of the class F with respect to
the Lo(Q) metric, that is, the number of closed balls with radius 6 in L2(Q) needed to cover
F. The é-bracketing number is denoted by Np(d, F, L2(Q)), i.e. the number of §-brackets
needed to cover F. A é-bracket of a function f € F is the pair (fz, fy) such that fr, < f < fy

and [[fu — fo]?dQ < 6.

Lemma 3.4. Suppose that {p(-,0) : 6 € O} is a subset of a finite dimensional vector space.
Then

sup  N(6,F,L2(Q)) < csV

Q discrete

for F=A,B,C and V > 1.

Proof. The statement is well known for the class of sets B. For the class A we argue as follows.

Let d be the dimension of ). Since € = (e1,... ,24)" and p(z,0) = (p(l)(z, 0),...,p9(z, 9))/,
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we can write Ag . as an intersection, v.i.z.,
Age = AG) - n AR,
where
Aéz;)g = {z € Z:p9(z,0) < 52}.

It is well known that {Aéz)g 10 € ©,e € Y} is a VC-class of sets if {p((2,0) : 6 € O} is a
subset of a finite dimensional vector space, see for instance Van der Vaart & Wellner (1996),
Lemma 2.6.15, page 146. Hence all {A((;)E :0€0,¢e¢€ y} are VC classes for ¢ = 1,... ,d.
The VC property is closed under taking intersections (cf. Van der Vaart & Wellner (1996),
Lemma 2.6.17, page 147), so that A forms a VC-class of sets, and hence the claim for A
follows by Theorem 2.6.4 in Van der Vaart & Wellner (1996), page 136.

The claim for C follows since A and B x Y are VC, and hence C = {AN (B x)Y), A €
A, B € B} is VC as shown in Van der Vaart & Wellner (1996), Lemma 2.6.17, page 147. O

Lemma 3.5. Suppose that Z is compact with nonempty interior and that each coordinate

mapping of p(z,0) € C%(Z) for all § € ©. Then the collections F = A,B,C all satisfy
log Ng(6,F, Lo(P)) < C§™Y

for someV =2D/a < 2 and for all probability measures P with an uniformly bounded density

and o« > D.

Proof. Corollary 2.7.3, page 157 in Van der Vaart and Wellner (1996) bounds the entropy of
bracketing of the collection of subgraphs of C%(Z), and the result for A is immediate. The
condition a > D is needed to ensure that V' < 2. It is easy to show that the ¢ bracketing
number of C is the product of the § bracketing numbers of A and B as they are bounded

classes. Taking the logarithm entails the desired result. O

In particular, the entropy bounds above show that the classes A, B and C are P-Donsker

classes under assumption A.3.

Now we are in the position to prove the consistency result, Theorem 3.1.
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Proof of Theorem 3.1. First, observe that

sup (M, — M)(9)

6co

< 4sup [ Do = Dol
HcO

<4 sup |(Dypg — Dg)(z,¢)|
0€0,2e X )

<4 sup (P, — P)A| +4 sup |(P, — P)B| +4sup |(P, — P)C|
AeA BeBB ceC

250

since A, B and C are Glivenko-Cantelli classes. Hence with probability one,
M,,(8) < My, (60) + o(1/n) = M(6p) + o(1/n) < M(0) + o(1/n).

The compactness assumption on © and the identifiability assumption yield that M(#) has a

unique, well-separated minimum (at 6y) (cf. Theorem 2.4). O

Observe that sufficient (high level) conditions are

(i) A, B and C are P-Glivenko-Cantelli classes.

(ii) M(#) has a unique, well-separated minimum.

Lemma 3.6. Under A.3, A.4, A.5, the process \/n(Dypg— Dy)(x,€) is stochastically equicon-

tinuous at 8y with respect to the Euclidean metric on O, for allx € X ande € ), i.e.
V1(Dyg — Dg)(,) — v/1i(Dygy — Doy ) (,6)—=0 as -6
Proof. The decomposition
V1(Dyg — Dy)(x,¢)
= Vn(Hny — Hp)(x,€) = Fn(2)v/n(Gno — Go)(e) = Go(e)vVn(Fr — F) ()

forms a sum of three terms, each stochastically equicontinuous at #y. This is a consequence of
the already mentioned Donsker property of A, B and C and the fact that the mapping 6 — Gy
is continuous at 6y, since the Lipschitz condition on 6 — p(-, 0) yields both IP{p(Z,6) < \} >
G\ —C|0 — 0o||) and IP{p(Z,0) < A} < G(A+ C||0 — bp]|) and the continuity follows.
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It should be stressed that the Donsker property implies that the process is stochastically
equicontinuous with respect to the Ly(P) metric on the sets A € A and C € C, not necessarily
the Euclidean distance on ©. # However, the Lipschitz condition on 8 — p(-, ) yields that
P{p(Z,0) < X, p(Z,00) < A}
>1P{p(Z,60) <A —Cl0 — |}
= Go, (A = C||0 = bol])

— Gy, () for 0 — g
as Gg, = G is continuous. On the other hand,

P{p(Z,0) < X, p(Z,00) < A}
<P{p(Z,00) < A}
= Gy, ().

We have shown that IP{Ag x N Agy 2} — IP{Ag, 1} as § — 6p. By a similar argument we see
that IP{Ag »} — IP{Ag, »} as @ — 6y, so that

P(Agy)\ — Agoy)\)z = P{Agy)\} + P{Agoy)\} — 2P{A97A N Agoy)\} — 0,

as ¢ — 6p. In other words, the parametrization 6 +— I,  is continous at 6y in Ly(P) sense.

Hence in view of the stochastic equicontinuity with respect to the La(P) distance
P
Gro(e) — Go(e) — G, () —0,

for all 9i>90 and all e € Y. A similar argument applies to the first term and the claim

follows. O

Sufficient high level conditions for the previous theorem are

(i) A, B and C are P-Donsker classes,

“Recall that the empirical process /n(P, — P), indexed by (indicator functions of) sets A €

A, is stochastically equicontinuous at Is,, iff for all e,n > 0 there exists a 6 > 0 such that
limsup,, o P {suppy,, 1, <o V(P2 = PY(A)] > e <.
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(ii) the parametrization 6 +— I,  (the indicator function of the set Ay, ) is continous at 6

in the Ly(P) sense. ®

Proof of Corollary 3.2. The calculation in the proof of Lemma 3.6 using A.5 shows that
0 — Hy is continuous. The consistency of § above implies that Hj(x,e) — Hgy(x,¢) = H(w,¢)
a.s. by the continuous mapping theorem. The proof of Theorem 3.1 implies further that
supgee | Hno (@, €) — Hp(x,€)| == 0. In particular, |H, ;(x,e) — Hy(x,e)| == 0, and Corollary

3.2 follows after an application of the triangle inequality. O
Finally, we prove Theorem 3.3.

Proof of Theorem 3.3. The result follows after an application of Theorem 3.2, page 48 in
Wegkamp (1999). We need to check the following conditions:

(i) 656,

(ii) M(#) has a non-singular second derivative V at 6

(iii) /n(M, — M)(0) is stochastically differentiable at 6, that is, there exists W, which

converges weakly to a tight Gaussian distribution such that
V(M — M)(0) = v/n(M, — M)(60) + (0 — 60)' Wy +0p (1 + v/n||0 — 6ol|)

for 8 — 6.

We have already established consistency, and we assumed the second requirement (ii). It

remains to verify the stochastic differentiability requirement (iii). Recall that

Dy(z,e) = (0 — 0p)' Az, e) + ry(x,€),

5This point is also discussed in Pakes and Pollard (1989) after Lemma 2.16 on pages 1036 — 1037. They
require that
(i) each element in the interior of Ay, , belongs to Ag,, for 6 close to 6y
(ii) each element in the interior of the complement of Ay, , belongs to the complement of Ay, for 6 close to
6o

(iii) the boundary of A, , has zero P measure
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where [A?dp < oo, and [r3(z,e)dp = o(||0 — 6o||*) for & — 6y. Next, observe that for

0250,
M, (6) = M(9)
=/<Dne—De+De)2du—/D§du
— /.(Dng—Dg) du+2/D9 Drg — Dg) dp
/Dneodﬁop 1/n) +2(6 — o) /A Dyg — Do) dyi+ 0p(n™/]8 — 6]

— Miy(00) + 2(0 — 60)’ / AD,gy dyi = 0p(n=2]18 — 8 + 1/n).
In the above calculations we used that

/.(Dng — Dy)?dp

/Dn90 d,u+/ ne—De—Dneo)zdﬂ+2/Dneo(Dne—De—Dneo)dM

=TI+ II+III,

where I = M,(0y) by definition, I = op(1/n) for 050, by Lemma 3.6 above and the
continuous mapping theorem (cf. Van der Vaart and Wellner (1996), Theorem 1.3.6, page
20), and finally

117

IN

(/ D2 d ) (/(Dng — Dy — Dyy,)? d,u)l/Q

= 20p(n~V%) . 0p(n~V?) = 0p(1/n).
Also,
/. DQ(DnQ — Dg) du

= (9 — 90)’/A(Dn9 — Dg) d/L—l— /Tg(Dng — Dg)du

— (0 -6 /A(Dmg — Dg)dp+ 0p(|16 — 60|
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as for all Qi)@o,

frima-miaf < (faw) " (fiou-nra)”

= op(n™ /2] — 6ol).

The other calculations are quite similar and have been omitted for this reason. Thus the

conditions of Theorem 3.2 in Wegkamp (1999) are met, and consequently

i - 90—2V1-('/.A(Z)Dn,eo(z)du(z))+Op(n1/2)

0o — 2Vl + op(n1/?)

holds true. The independence between ¢ = p(Z, 6p) and X and Fubini’s theorem imply that
[ET',, = 0. Writing H = Hy,, G = Gg,, H, = Hpg, and G, = Gpg,, the covariance term of

the leading linear term equals

D(T,) = BT, T, = (/A Dug (2 )(/A Dug, (2 )

= [ [ ACNE EDL)DE) due) dufz)
//A JA'(Z) - E[(H, — H)(2)(H, — H)(Z) + (H — F,,Gp)(2)(H — F,Gy)(Z)+
H)(2)(H — FuGu)(3) + (Hu — H)(Z)(H = FuGo)(2)] diu(2) du(?)
A tedious, but straightforward calculation further reveals that
D(T,) = / / A(w, &) A (F,3) [F(x) F(F)G(min(e, 2)) + F(min(x, 7)) G(e)GE)+
+ H(min(z,T), min(e,2)) — 3H (x,e) H(z,2)] du(z,e) du(T, ) + o(%)
= “Wol).

In view of the preceeding stochastic expansion of 6 and since \/n(H, — H)(x,e), /n(G, —
G)(e), and /n(F, — F)(z) all converge to Gaussian processes, \/n(f — ) converges in
distribution to N(0,4V~'WV~1), by an application of Donsker’s theorem, the continuous

mapping theorem and Slutsky’s lemma. O
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4. RESAMPLING ESTIMATES OF THE SAMPLING DISTRIBUTION AND ASYMPTOTIC VARIANCE

In this section we provide an alternative to the normal approximation of the sampling
distribution of 6 by means of resampling. We show that the ordinary nonparametric bootstrap
is consistent. To formulate our result, let the pairs Z7,...,Z" be the (bootstrap) sample
drawn from the data 7, ..., Z, with replacement. We denote the bootstrap counterpart of

M,, based on the bootstrap sample by M, and let 6* be its minimum over ©.

Theorem 4.1. Under the regularity assumptions A.1 — A.7 described above, the conditional

distribution, of \/n(6* —0) consistently estimates the distribution of /n(6—8q) (in probability).

Proof. Before proving the theorem, we first establish some auxiliary results, to wit, the boot-

strap counterparts of Theorem 3.1 and Lemma 3.6.

Lemma 4.2. Under the same assumptions as in Theorem 3.1, 6% =2 0y for almost all

samples Z1, ..., Zy.

Proof. By the triangle inequality, for almost all samples Z1,... , Z,, we have
sup |(My, = M)(0)]
< sup |(My, = M) (0)] + sup | (M — M)(0)]
< dsup |(D], g — Dnp)(2,€)| +4sup [(Dng — Dp)(,€)|

0,x,e 0,x,e

a.s.
— 0,

since A, B and C are P-Donsker classes. The remainder of the proof goes as the one for

Lemma 3.1 and has therefore been omitted. O

Lemma 4.3. Assume A.3, A.4 and A.5. Then the process \/n(D}, — Dpg)(x,¢), is stochas-
tically equicontinuous at Oy with respect to the Euclidean distance on © for all x € X and

e € Y, conditionally given Zy,... | Zy.

Proof. Giné and Zinn (1990) proved that the empirical process /n(P, — P) can be boot-
strapped if and only if the class of functions which index the process is P-Donsker. Therefore,

as a consequence of the Donsker property of A, B and C,

Vi(Dg — Dug)(2,€) — /i Dng — Dy)(z,) -0,
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and the desired result follows from Lemma 3.6. O

Now we are in the position to prove Theorem 4.1. The proof closely follows the arguments
for M-estimators obtained by Arcones and Giné (1990). Observe that by similar arguments

given in the proof of Theorem 3.3, for all (‘)LHO

M (8) — Ma(6)

= /(D:Le — Dyg)* dp+ 2/Dn9(D7Le — Dyp) dp

_ /(D;;@O ~ Dygy)? dp+ 0p(1/n) +2 / Dy(D%y — Dyg) dpt +2 /(Dn@ — Dy)(Dy — Drg) dpt
= /(D;;e0 — D) dp + 2/D9(D;;9 — D) dp + 2/Dn90(D;‘;90 — Dyg,) dp+ 0p(1/n)

~ [ (D2, = Dusdi+2 [ Dusy(Dig, — Do) 26 = 0) | AD3y = Dy} o+

+op(n Y210 — 6| +n ).
P P
Consequently, for 6—6y and n—#6y,

My (0) = My, ()

= (Mg, = My)(0) = (M;, = My) ()] + [(My, — M)(6) — (M — M)(n)]

+[M(0) — M(n)]
A

ZQ(H_U)T [(D:LGQ _Dn90)+(Dn90 _DGO)] dﬂ""

50— 00TV (0 = 00) — 50— 00)TV (1 — 00) +

+0p ([0 = 60l1* + lIn — boll* +n /2|6 — 6ol +n /% |ln — bol| +n ).
We define
B =2 [ A(Du, ~ Day)dys and &5, =2 [ A(D3g, = Duny)

and we take § = 6 and n =6y — (A, + A}). Observe that n € O for n sufficiently large, as

0o is an interior point of ©. To simplify matters, we assume without loss of generality that
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V = 1. Hence
M;;(0) — M, (n)
. 1 1
= (0= )T (&5 + An) + 56— G0l — 5 1n — ol

+0p([10 = 6ol* + lln — boll* +n~Y2[16 — ol + 0"/l — ol + ")

and
0> M(0%) — M3 (00 — (A + A7)
= (6" = 60 (A5 + D) 180 + AL + 5167 = ol — SIIAL + Al +
+op(]|0* — 80| + || An + AL|2 + 07 V2)10F — || + V2| Ay + AL + 1Y)
= 218" — o — (A5 + A0+ 0p (167 — B0l + 026" — bl + ).
whence

n||0* — 0y — (A +Ap)|I> — 0
in P,- probability. By the preceding theorem
0 —0p=2A0, +op(n /2,

so that combination yields 6* — 6 = A* + op(n~'/2). The term A* has the same limiting

distribution as A,, by the bootstrap theorem for the mean in R¢. This concludes the proof. [

We end this section with a discussion of the asymptotic covariance matrix of \/ﬁ(é —
0p). In principle, under sufficient smoothness assumptions, we could plug in 0 and P, in
the covariance matrix ¥ = X(6p, P). Here P is the probability measure of Z, and P, is
the empirical measure, putting mass 1/n at each observation Z;. However, ¥(6p, P) has a
complicated structure, and the bootstrap estimator of the variance provides an attractive

alternative. Second, we show that the delete —d jackknife estimator ¢ of the variance of

5Let éd,s be the estimate based on the data set Z;,i € s, where s is a subset of {1,2,...,n} with size n —d.
Let S be the collection of all possible subsets of {1,2,...,n} of size n — d, and let N = (Z) be its cardinality.
The delete —d jackknife of ' is defined as

2
n Zs (0 -+ Zc'éd,s> .
sE s
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linear combinations ¢/6 is consistent for d satisfying
(4.1) d/n > ¢ for some € > 0 and n — d — oo.

We were not able to show that the ordinary jackknife (d = 1) works due to the lack of
smoothness of the map 6 — M,(0). For the same reason, the jackknife estimator of the

variance of the sample median is inconsistent (cf. Shao and Tu (1989)).

Theorem 4.4. Under the reqularity conditions A.1 — A.7, the nonparametric bootstrap and
delete —d jackknife estimators of the variance of /(0 — 0g), where d satisfies (4.1) are

consistent, for all ¢ € R¥mM(®©),

Proof. Again we set out with the technical lemma’s first, concerning uniform integrability of

/R0 — 60)|.
Lemma 4.5. If A.3 holds, we have for all k >0

k
E <Sup }\/E(DnH(xag) - Dg(ib‘,é)‘) < 00,

x,e,0

and

k
E* (sup |Vn(Djy(x,e) — Dng(x,s)o < 00 a.s. .
z,e,0

Proof. First notice that

k
E <:g% }\/’E(Dng(x,é) - Dg(ib,é)‘)

< CL T sup [Wia(Pa — PYAP + I sup |ya(Po — P)BI* + 6 sup [Vii(Py — )OI
AeA BeBB ceC

If {p(-,0) : O € O} is a subset of a finite dimensional vector space, an application of Theorem

2.14.1, page 237 in Van der Vaart & Wellner (1996) yields

1/k .
<IE sup |vn(P, — P)A]k> <C sup / V1+1log N(6, A, Lz(Q)) dé,
0

Ac Q discrete
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The right hand side is finite by the bounds obtained in Lemma 3.4. The same applies for
B and C, and combination of the previous two displays establishes the first part for finite
dimensional spaces. The bootstrap counterpart follows by the same argument. For the case
of smooth functions we do not have an uniform bound for the covering numbers, but a bound
on the bracketing numbers instead. Another difference is that we needed to assume the
existence of a bounded probability density for H(x,e). For this case, Theorem 2.14.5, page
244 and Theorem 2.12.2, page 240 in Van der Vaart & Wellner (1996) yield respectively

1/k

k
IE (sup ‘\/ﬁ(Dn(;(w,é) — Da@ﬁ)})

x,e,0

< CTE sup |v/n(P, — P)A| + Cn~3+% for k >2
Ae

-1 1 1
sc/ T+ 10g Np(6, A, Lo(P)) d6 + Cn 344
JO

The bound on the bracketing numbers in Lemma 3.5 shows that the right hand side is finite.
The same is true of course for the classes B and C, and the first claim follows for the case of

smooth functions. Also, by the same reasoning, for k > 2,
1/k

k
I <sup V(D) - DW(m,g)\)

z,e,0

1
< c/ V1+1log Ng(6, A, Ly(P,)) ds + Cn~ 2%
0

1
< c/ VT F 108 No(6/2, A, Lo(P)) d6 + Cn3+% as.
0
where we used the uniform law of large numbers in the last line. This completes our proof. [l

Lemma 4.6. Under A.1, A.2, A.3, A.6 and A.7, ||\/n(0—0)| is uniformly square integrable.

Proof. Tt suffices to show that IE||y/n(f — 6p)||® < co. First, observe that by A.7, there exist
6 > 0 and ¢ > 0 such that for all ||@ — || < 6,

cllo — 0ol < M(0) — M (0) = M(0).

Second, for any fixed ¢ > 0 (not depending on n), there exists an 7 > 0 such that |0 —6o|| > 6
implies that M (6) — M (6y) > n. This is a consequence of §y being a well separated minimum
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of M, which follows from Al, A2 and A7 (cf. the proof of Theorem 3.1 ). Combining these

two observations, we find
E[6 -6l = TE||6 — 6ol {16 — bo]l < 6} + IO — 6o[I*{16 — 6ol > &}
< O (EMY2(0) + {10 6o = 6})

The constant C' > 0 is a generic constant independent of n. In the last line we invoked A.1

as well. We will bound the two terms on the right hand side separately. Notice that
IP{||6 — 60| > 6} < P{M(6) — M(6o) = 1} = P{M(6) — My(6) + Ma(6) — M(6) = 1}

=W {QSHP | M (0) — M(0)] = 77} < (n/2) " sup |Dy(x,¢) — Dup(x,2)|* = O(n~*/?)
6coO x,e,0

for any a > 2 by Lemma 4.5. The other term can be handled as follows:

EM*2(0) = TE (M — Ma)(0) + Mn(é)>3/2 < (I(Mn — M)@)] + |Mn(90)|)3/2

3/2
<IE </(Dn(§ — D) dp + 2/ |D4l|D,,5 — Dyl dp + Mn(90)>

x,e,0 T,E,

3/2
<IE <2 sup(Dpg — Dg)?(x,¢) + C||6 — 6o|| sup | (Do — Dg)(, 5)\)

1/2
3 5 3\ /2 3
< CEsup|(Dug — Do(a,&)* +C (ElI0 —b]*) " | Esup [Dyo(a,¢) — Dy(a,<)|

z,e,0 z,e,0
. 1/2
= O(n™*/2) + O(n*) (TEII0 — b|*)
Combining all three preceding displays, we obtain that
. . 1/2
|0 — 60> < O(n%) + On=*/*) ()16 — 60l|*) "
Since IE||f — 6g)|* < oo by A.1, the conclusion follows. O
It is shown in Shao and Tu (1995, Theorem 2.10, page 52), that the stochastic expansion
dh =0y —2v1 /C’A Dy, dp +0p(1/4/n)

and the uniform integrability of ||/nc/ (8 — 6p)||?> imply the consistency of J2 4+ brovided the

tuning parameter d satisfies

d/n > ¢ for some € > 0 and n — d — oo.
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The weak convergence result Theorem 4.1 and uniform square integrability of \/ﬁ(é* — é)
imply that the bootstrap provides a consistent alternative for estimating the variance of
a linear combination of 8. It remains to prove the uniform square integrability, which is

immediate from Lemma 4.7 below.

Lemma 4.7. Under A.1, A.2, A.3, A.6 and A.7,
IE*||[v/n(0* — 0)|]> < 0o a.s..

Proof. As in the proof of Lemma 4.6, there exists ¢ = ¢(6y, §) > 0 such that

cl|0* — 6o[*{]16* — bol < 6}

< M%) — Mo (0%) + Mo (%) — M(07) + M3 (67)

< {M(0") = My(0%)} + {My(0%) = M;3(0)} + {M;;(60) — Mi(60)} + Mo (6o).
Most terms can be handled as before in the proof of Lemma 4.6, and for the additional terms
we invoke Lemma 4.5. [l

The proof of Theorem 4.4 is complete. O

5. ESTIMATION OF A SIMULATED MODEL OF CONSUMER DEMAND

We consider a consumer with a random demand function Y (P, I, ¢,6) derived from maxi-
mizing a random utility function V' (y, e, 6p) subject to her budget constraint p -y = I. First,
the consumer draws ¢ from a fixed and known distribution. Then nature draws X = (P, 1),
from a fixed but unknown distribution. The main model assumption is that ¢ and X are

stochastically independent. The consumer solves the following optimization problem:
maximize V' (y,e,0y) over y such that p-y = I.

The econometrician knows V (y,e,60) and O, the set of all possible values for the parameter 6,
but does not know 6y, the true value of 8, Nor does the econometrician observe the € or know
the distribution of e. The econometrician does observe X = (P,I). The econometrician’s
problem is to estimate 6y and the distribution of € from a sequence of observations Z; =

(X;,Y;) for i = 1,2,...,n. The structural equations for this model are simply the first-order
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conditions of the consumer’s optimization problem. In general, these conditions define an
implicit nonlinear simultaneous equation model of the form ¢ = p(X,Y, #), where the reduced
form function is the consumer’s random demand function Y (P, 1,e,6y). The specification of
V(y,e,0) proposed by Brown-Matzkin (1998) where V(y,e,0) = U(y,0) + ¢ - y generates
an econometric model of this type. They assume that for all § € ©, U(y,0) is a smooth
monotone strictly concave utility function on the positive orthant of R¥, i.e., DU(y,0) > 0
and D?U(y, ) is negative definite for all y in the positive orthant of R¥.

Our examples are suggested by their model, where first we consider:
V(y,e,0) = yflyg2 + Inyo + e1y1 + €2y2, where 61,65 € (0,1).

Then the first-order conditions for this optimization problem can be written as e = p(X, Y, 0),

where X = (Pl,PQ,I), Y = (%,Yl,l/g) and 0 = (91,92)

. Py (01—1)+,0
= — g,y Dyt
() e (I— DY — Poyy) 1 2
P -
(i) e = 2 — Oy Py Y

(I — PY1 — PY5)
Equations (i) and (ii) can (in principle) be solved uniquely for the random demand functions
Y1(X,e,0) and Ya(X, e,0), if 01 +02 < 1. This verifies assumption (I.1). To verify assumption
(I.2) we consider the matrix (0p/0y),

dp1 9;m
9\ _ | a1 Oy
<6_y> — | 92 Op2
oy1 Oy
where
dp1 p% (01-2), 6
S +601(1—0 ! 2
oy (I —p1y1 — pay2)? 1 RN
op1 0p2 DP1P2 (61—1) (62—1)
orr 9Pz _ + 0105y, " 2
Ya a1 (I—piyi —payp)? UG
0p2 p% 01, (02—2)
P2 _ +05(1 — 02)y ys 2
y2 (I — p1y1 — p2y2)? 2 U2

det(0p/0y) > 0, if 61 + 02 < 1. Hence 0p/0y has rank 2 and (I1.2) is verified. It follows
from (I.2) and the implicit function theorem that dy(z,e,0)/0x can be computed from the
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structural equations ¢ = p(x,y,#). In fact,

(%) - [ [

| _ | 9p Op2 OI
R
6p1 apg oI
where
91 _ 1 . P1y1
Ip1 (I = py1 —pay2) (I —piy1 + paya)?
o _ P2y
Ip2 (I —piy1 + paya)?
opr —p1
o (I—pw +paya)?
op2 1 D2y2
opp (I —pwi+pw2)  (I—piy1 + paya)?
Op2 P11
ap2 (I —pys + pay2)?
% _ P2
o (I —piy1 + pay2)?
We see that dp/0z has rank 2 and is independent of 6 and e.
Therefore,
ay(wa,;ﬁo) _ ay(fgx &9 g
Op(x,y,00) _ Op(z,y.0)
dy dy
But
(iii) 8p(mé;;,90) = 8/)(3(;5’9) a.e. iff
0 = 6

If (iii) holds, then 907190,gy§90’171)y§00’271) = 9192y§9171)y§9271). This implies
In 90,1 +1In 9072 -+ (9071 — 1) Iny; + (90,2 — 1) Inys
= In6y +1nb + (91 — 1) Iny; + (92 — 1) Inys.

Taking partial derivatives with respect to y; and ys, we see that 6p1 = 61 and 0y 2 = 6.
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If 6 # 0y then Oy(x,e,6p)/0x # Jy(x,e,0)/0x and by Theorem 2 dp(x,y(x,e,6y),0)/0x #
0 for some (7,2). It follows from Theorem 2.3 that the model is identified if 6; + 62 < 1,
i.e., Assumption (A.2) holds. Tt is important to notice that the structural equations for this
model are nonlinear in both the parameters and the variables.

If we assume that p; and py are uniformly bounded away from 0 and I is bounded above,
then this model satisfies all our verifiable regularity conditions, i.e., Assumptions (A.1), (A.2),
(A.3), (A.5) and (A.6).

A more tractable model for simulation, where we can derive explicit expressions for the
random demand functions, is the following consumer optimization problem:

max flny; + (1 — 0) Inys + ey1, where 6 € (0,1)
Y1,Y2

st.py1 +y2 =1

y1,y2 > 0

An equivalent optimization problem for the consumer is:

maxflny; + (1 —0)In(l — py1) + e
Y

st.0<y1 <I/p

The first-order condition for this problem is:

(1—6p ¢
E= S5 — —
(I—py1) 0
This equation can be solved explicitly for the random demand function Y1(P, I,e,6). Then

Ys(P,I,e,0) =1— PY1(P,1,e,0), where

(eI — P) + /(eI — P)2 +40IP:

Yi(P,1,¢,0) = o7
€

In our simulations we choose 6y = 0.3579, then randomly draw I; , p; and g;, i =1,... ,n =
100 from uniform distributions on (0,1) and compute y1(p, I,¢,0) and ya2(p, I, e,0). We chose
the uniform measure on [0, 1] for the measure p. Figure 1 below is a histogram based on 1000
simulations of the model described above. Let éb, b=1,...,1000 be the weighted minimum

mean-square distance from independence estimate for 6y in the b-th simulation. We found in



D.J. Brown and M.H. Wegkamp

our simulation that
1000 1000

g ! j . 1 A B
e—mZQb—O-W& blaS—mZHb—Ho_—&()%oxlo ,

b=1 b=1

1 1 1000
td=,|=—— > (6, —0)2=0.0071, and MSE = —— Y (0, — 6p)> = 5. 10-5.
’ 999;“’ ) = 00071, and M3 1000;(11 b)? = 5.033 x 10

The histogram confirms that our estimators are consistent and asymptotically normal.

27
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Figure 1: Histogram based on 1000 simulations.
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6. APPENDIX: IDENTIFICATION IN NONLINEAR SIMULTANEOUS EQUATIONS MODELS

WITH MULTPLE EQUILIBRIA

Nonlinear simultaneous equations models with multiple equilibria are commonplace in
applications of game theory or general equilibrium theory in industrial organization and
macroeconomics. Amemiya (1985) in his discussion of estimation in nonlinear simultaneous
equations models observed that nonlinear two-stage and nonlinear three-stage estimators of
fp are consistent even in the presence of multiple equilibria. Unfortunately, this consistency
is predicated on his (unstated) assumption that the model is identified — see section 18.7 in
Davidson and Mackinnon (1993) for discussion.

Weighted minimum mean-square distance from independence estimators are also consistent
in the presence of multiple equilibria, if the model is identified. In section 2 of this paper we
presented a necessary and sufficient condition for identifying nonlinear simultaneous equations
models with unique equilibria, i.e. Theorem 2.3. Surprisingly, this condition is also sufficient
for identifying nonlinear simultaneous equations models with multiple equilibria. In addition
to assumptions 1.2, 1.3 and 1.4, we assume only that there are a finite number of equilibria.

If Y is compact then this condition folows from 1.2 and the implicit function theorem.

Theorem 6.1. Let ¢ = p(z,y,0) and suppose

1) (V0 € ©)(Y(z,¢))3N = N(z,¢,0) and {y; é-Vzl such that € = p(x,y;,6).
2) The matriz Op/0y has full rank.

3
4

X and € are stochastically indpendent.

~~ o~ o~

)
)
)
) The joint c.d.f. of (X,e) is absolutely continuous with respect to Lebesque measure with

positive density.

(5) (V6 # 00)(A(T,%)) such that 2E8s(5200)0)

i

# 0 for some j.

(@2)

Then 0y is the unique minimum of M(0).

Proof. Without loss of generality, we may assume that (5) implies 3(7, k) such that

6/01(337 yj<x7€7 90)7 9)
6$k

>0
(%)
for all 6 # 0y. Given (7,%) and assumptions (1) and (2), we obtain by the implicit function

theorem the existence of neighborhoods Uz of T and Uz of € and functions {yl}l]\i 1 such that
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(i) y : Uz x Uz — RE,

(ii) y; are smooth.

(iii) y; have disjoint ranges.
Given (Z,2) and assumption (5), there exist neighborhoods Vg of T and Vz of € such that

V(l‘,é‘) e Ve x Ve

8[)2(33; yj(wa &, 90)7 9)

> 0.
8xl€ (575)

In particular, 36 > 0 such that p;(Z,Y;(T,¢,00),0) < pi(T + dex, Y;(T + dey, €, 00),0) for all
e € Ve Let W = Uz N Vg and Wz = Us N V& then 30 < 1 < § such that T + ne, € Wx
and p;(T,y;(T,¢,600),0) < pi(T + nek,y;(T + nex,e,6p),0) for all e € Wz. Moreover, the
restrictions of the y; to Wz x Wz have disjoint ranges. Let D; = {(T,y,(T,e,00)) | € €
We} U {(F + news 5 (T + nen,e,00)) | € € Weh and go(,y) = pil,3,0) if (2,) € D; and
go(z,y) = 0 otherwise. The change of variables formula for densities, see equation (8.10.2)
in Hoffmann-Jgrgensen (1994), yields IE(gp(X,Y) | X =7) < IE(go(X,Y) | X =T + neg).
Hence € = p(x,y,0) depends on x for all § # 0y, and 6 is the unique minimum of M (). The
above argument is derived from Brown (1983, pp. 180, 181). |
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