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Abstract
We investigate …rms’ incentives for cost reduction in the …rst price sealed

bid auction, a format largely used for procurement. A central feature of
the model is that we allow …rms to be heterogeneous. Though private value
…rst price auctions are not games with monotonic best responses, we …nd
that for comparative statics purposes they behave like these games. In
particular, …rms will tend to underinvest in cost reduction because they
anticipate …ercer head-on competition. Using the second price auction as a
benchmark, we also …nd that the …rst price auction will elicit less investment
from market participants. Moreover, both auction formats tend to favor
investment by the current market leader and are therefore likely to reinforce
asymmetries among market participants.
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1. Introduction

Consider the following procurement situation. Several …rms are competing for a
government contract through a sealed bid procedure. These …rms are not neces-
sarily equally competitive a priori, and, indeed, in many procurement situations,
some …rms do have a clear cost advantage and are aware of these intrinsic dif-
ferences among them (for systematic evidence see for instance Carnaghan and
Bracewell-Milnes, 1993, Bajari, 1998 and 1999, Porter and Zona, 1999).

In this paper, we are interested in understanding how the rules for the auction
are likely to a¤ect the dynamics of competition and market structure in such
a procurement setting. More speci…cally, we investigate the incentives for cost
reduction under the …rst and the second price auctions. That is, we step back
and, rather than focus on the existence of asymmetries in procurement auctions,
we ask what the incentives are for …rms to improve their competitive situations
relative to their rivals.1

A standard framework to study this question is to start with a two-stage
game, where …rms invest in cost reduction in the …rst stage and compete through
a procurement auction in the second stage. As Fudenberg and Tirole (1984) and
Bulow, Geanakoplos and Klemperer (1985) have shown, it then turns out that
the nature of strategic interactions in the second-stage game (i.e. whether best
responses are increasing or decreasing) is a key element of the analysis.

Unfortunately, this approach does not work for the …rst price auction. Indeed,
though the complete information analog of the procurement auction (a Bertrand
game) has increasing best response schedules, best responses in the space of strate-
gies for the …rst price auction are non-monotonic. To overcome this di¢culty, we
impose the condition of equilibrium and compare equilibria directly.

Our approach is based on the characterization of equilibrium behavior in …rst
price auctions as the solution to a system of di¤erential equations (Maskin and
Riley, 1996, Lebrun, 1999). Our thought experiment is the following: Consider
an initial con…guration of bidders for a procurement contract. Suppose that one
of them has the opportunity to upgrade his technology in the sense of generating
a “better” ex-ante distribution of costs. What are his incentives to do so if this
investment is observed by his competitors?

1E¢ciency investments are important in several markets, though the best example is probably
the defense industry. In his study of defense procurement, Lichtenberg (1988) …nds evidence
that competitive procurement stimulates considerable private R&D investment.
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In section 3, we show that the investor’s opponents will collectively bid more
aggressively after the upgrade than before (propositions 1 and 2). Therefore, any
given bid by the investor has a lower chance to win the market after the upgrade.
In terms of investment incentives, this means that bidders in the …rst price auction
will tend to underinvest prior to the procurement stage according to simple static
e¢ciency arguments (holding competitors’ strategies …xed). Put di¤erently, …rms
will invest less in the case of observable (overt) investment than in the case of
covert investment.

In section 4, we investigate how the …rst and second price auctions compare
when it comes to pre-auction investment. We …nd that the …rst price auction
will induce less investment than the second price auction (proposition 3), and
that this e¤ect is related to the properties of the …rst price auction identi…ed in
propositions 1 and 2. Moreover, we show that the second price auction yields the
socially optimal level of investment incentives (proposition 4).

Section 5 is more exploratory in nature. There, we investigate how our results
could translate in a fully dynamic setting. In particular, an important question
for procurement authorities is whether given market institutions tend to reinforce
existing asymmetries among market participants. Our examples suggest that
both auction rules tend to favor a pattern of increasing dominance by the current
market leader.

Our research contributes to three strands of the literature: the recent literature
on asymmetric …rst price auctions, the work on investment incentives in symmetric
auctions and the broader …eld of market dynamics in oligopoly settings.

Existence and uniqueness of the equilibrium in the independent private value
…rst price auction have been proved under increasingly general assumptions by
Lebrun (1996) and Maskin and Riley (1996 and 1999a). Maskin and Riley (1999b)
and Li and Riley (1999) provide more precise characterizations of the equilibrium
when a stochastic dominance relationship exists among bidders. The results in
section 3 are closest to Lebrun (1998). Our …rst two propositions extend his
comparative statics result in several directions. First, we do not restrict bidders
to have a common support for their distributions of costs. Second, we allow for
risk aversion and endogenous quantity. Finally, and more importantly, our results
apply to N > 2 bidders.

There is a series of papers that study investment incentives in …rst price auc-
tions for the case of ex-ante symmetric …rms and simultaneous investment (the
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key reference here is Tan (1992)). A …nding of this literature is that the …rms
invest the same amount and therefore remain symmetric ex-post. A “Revenue
Equivalence” kind of result is also shown to hold whereby the …rst and second
price auctions elicit the same amount of investment by market participants and
therefore yield the same expected revenue for the procurement authority (Tan,
1992). By contrast, we …nd that the …rst price auction generates less investment
than the second price auction when …rms are allowed to be heterogeneous and
investment is sequential.2 Finally, section 3 also suggests that the fact that this
literature has focused on the Nash equilibrium of the investment game (instead
of imposing subgame perfection) is crucial in obtaining the result that ex-ante
symmetric …rms automatically invest the same amount and remain symmetric
ex-post.

Finally, this paper relates to the literature on strategic investment and market
dynamics in industrial organization. This literature has by and large con…ned it-
self to complete information settings. We o¤er a …rst investigation of the question
of market dynamics under incomplete information. There are two ways to see the
contributions of our paper to this literature. First, allowing for uncertainty about
the costs of the competitors provides some robustness check for the predictions of
models with complete information. Our results suggest that, for comparative sta-
tics purposes, the …rst price auction behaves very much like a game with strategic
complementarities. Therefore, we expect much of the insight and intuition gained
in pricing games under complete information to transpose to the …rst price auc-
tion.3 For instance, the results in section 5 suggest a pattern of increasing market
dominance, which is a common …nding in that literature.

Second, auction environments have the advantage that they are well-de…ned for
the modeler as well as for the participants. By changing the rules of the auction,
we can start investigating the dynamic e¤ect of speci…c market designs. This is
important because, as our results in sections 4 and 5 suggest, market institutions

2The case of simultaneous investment for heterogenous …rms remains an open question.
3Di¤erent approaches have been used to investigate the dynamics of competition and market

structure. Some authors have modeled competition as patent races or sequences of patent races
(see, for instance, Reinganum, 1985, Vickers, 1986, Grossman and Shapiro, 1987 or Tirole, 1989
for a summary). Another popular way to model the dynamics of competition is learning-by-doing
(see, for instance, Dasgupta and Stiglitz, 1988). Athey and Schmutzler (1999) have recently
provided a unifying framework to study market dynamics in oligopoly models. Notice that the
kind of cost reduction considered in this paper corresponds to the “non drastic” innovation in
that literature.
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a¤ect market structure and in turn, this feeds back into the e¤ectiveness and
e¢ciency of these institutions.

2. The model

In this section, we present the model and characterize its equilibrium. There is a
single buyer (e.g. a government agency) in charge of procuring a given good or
service. As in Hansen (1988), we allow quantities to be endogenous. Let D(b) be
the buyer’s demand at price b. We make the following standard assumptions on
demand:4

Assumption 1: D(b) ¸ 0; D0(b) · 0 and increasing price elasticity d
db
[D

0(b)b
D(b)

] · 0:
N ¸ 2 …rms take part in a …rst-price, sealed-bid auction for the procurement

contract. That is, the contract is awarded to the …rm o¤ering to provide the good
or service at the lowest price, and the winner is paid the per unit price she bid.
Ties are resolved by a random draw among the lowest bidders.

Firms’ constant marginal costs have support on [ci; ci]; where 0 · ci < ci: They
are independently distributed according to the twice continuously di¤erentiable
cumulative distribution function Fi(:); with a density bounded away from zero on
its support. These distributions are assumed to be common knowledge. They can
be interpreted as representing the technology available to …rms. Notice that we
do not restrict bidders to have cost levels distributed on a common support. Firm
i’s pro…t when its cost is ci and it makes a bid b is given by:

¼i(b; ci) =

½
Vi((b¡ ci)D(b)) if it wins
0 otherwise

(2.1)

Assumption 2: For all i; Vi(0) = 0; V 0i > 0 and V
00
i · 0:

Lemma 1: Under assumptions 1 and 2, ¼i(b; c) is strictly log-supermodular in

(b; c); i.e. @
@c
[
@¼i
@p

¼i
] > 0 over the domain where ¼i > 0:

Proof. We …rst claim that, at any equilibrium, D(b) + (b ¡ c)D0(b) > 0 for all
b such that b is bid by some …rm i: D(b) + (b ¡ c)D0(b) = 0 corresponds to
the …rst order condition of the monopolist facing demand D(b): It trades

4These guarantee that the complete information monopolist problem is quasiconcave (see,
e.g. Caplin and Nalebu¤, 1991, proposition 11).
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o¤ the marginal bene…t of increasing prices with the marginal cost of lost
trade. In a procurement setting, increasing prices has an additional cost:
the potential loss of the whole market. Therefore, D(b) + (b¡ c)D0(b) must
be strictly positive at any bid b submitted in equilibrium by some …rm i:

Together with assumptions 1 and 2, this implies that:

@

@c
[
@¼i
@b

¼i
] =

1

¼i

@2¼i
@b@c

¡ 1

¼2i

@¼i
@b

@¼i
@c

=
1

¼i
f¡V 00i [D(b) + (b¡ c)D0(b)]D(b)¡ V 0iD0(b)g| {z }

positive

+
1

¼2i
(V 0i )

2D(b)[D(b) + (b¡ c)D0(b)]| {z }
strictly positive

> 0

The recent results about existence and uniqueness of equilibrium in the …rst
price auction form the basis for our analysis (see, for instance, Maskin and Riley,
1996 and 1999a). An equilibrium in this auction is described by an N¡tuple of
bidding functions bi : [ci; ci]! R+; i = 1; :::; N: For our purposes, it is convenient
to look at the inverse bidding functions. We denote them by Ái : R+ ! [ci; ci];
i = 1; :::; N:

Maskin and Riley (1996 and 1999a) have shown that there exists a unique
equilibrium in this environment.5 The corresponding equilibrium inverse bidding
functions Ái(:) have support on [li; u]; i = 1; :::; N , and solve the system of di¤er-
ential equations

X
j 6=i

F 0j(Áj(b))Á
0
j(b)

1¡ Fj(Áj(b))
=

@
@b
¼i(b; Ái(b))

¼i(b; Ái(b))
i = 1; :::; N (2.2)

with boundary conditions Fi(Ái(li)) = 0; and with u; the maximum equilibrium
winning bid, determined uniquely by the following lemma:

5If one bidder’s support is very far to the left of all the other bidders’ supports, then the
equilibrium is degenerate. We shall ignore this case.
For the N > 2 case, Maskin and Riley (1996) require an additional condition on the payo¤

functions to ensure uniqueness. It is satis…ed if all bidders are risk neutral or if they have the
same CARA or CRRA utility function.
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Lemma 2 : Upper bound of the support of the equilibrium distribution
of winning bids (adapted from Maskin and Riley, 1996): Suppose that the dis-
tributions (F1; :::; FN ) are ordered so that c1 · c2 · ::: · cN¡1 · cN : Then, if
c1 = c2 = c; then u = c: Otherwise, u solves

minfargmax
b

¼1(b; c1)
Y
i6=1
(1¡ Fi(b))g 2 (c1; c2) (2.3)

If u < ci for some i; we can consider that, for any realization of cost ci > u,
…rm i bids its own cost (and never wins) or stays out of the auction.

Notice that the lower bounds of the supports of equilibrium bids are endoge-
nously determined by the boundary condition of (2.2). In general, those minimum
bids need not be common to all …rms but minflig must be common to at least two
of them. Minimum equilibrium bids depend on the lower bounds of the support
of costs, ci, and it can be shown that li · lj i¤ ci · cj : Finally, it can also be
shown that the equilibrium inverse bidding functions are strictly increasing and
twice di¤erentiable on their support. For further details on the structure of the
equilibrium, we refer the interested reader to Maskin and Riley (1996).

To see why Ái(:); i = 1; :::; N are indeed equilibrium inverse bidding functions,
it su¢ces to realize that equations (2.2) are the …rst-order conditions of the …rms’
pseudo-concave maximization problem. That is, …rm i with cost level ci will
choose its bid by solving the problem

max
b
¼i(b; ci)

Y
j 6=i
(1¡ Fj(Áj(b))| {z }

probability of winning

Noting that, at the optimal value of b; we have ci = Ái(b) for all i; equations (2.2)
follow.

We want to understand how the equilibrium in the procurement auction is
a¤ected by changes in the distribution of cost levels for one …rm. For that purpose,
we need to de…ne a proper notion of “better” distribution of costs. The following
de…nition provides such a partial ordering:

De…nition 1: Consider two cumulative distribution functions F and eF with
bounded support. We shall say that eF Â F if, for all c; c0 such that c0 > c;

1¡ eF (c0)
1¡ eF (c) < 1¡ F (c0)

1¡ F (c) (2.4)
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whenever these expressions are well de…ned.

The requirement in (2.4) is one of conditional stochastic dominance. It means
that, conditioning on any minimum level of costs, it is always more likely for F
to yield a higher cost level than it is for eF: It can be shown that this condition
implies that there is a relation of …rst-order stochastic dominance between the
distributions: F (c) < eF (c) for all c on the interior of their common support. Note
that, given our di¤erentiability assumption, (2.4) can be rewritten as

d

dc

Ã
1¡ eF (c)
1¡ F (c)

!
< 0

or, in terms of hazard rates,

eF 0(c)
1¡ eF (c) > F 0(c)

1¡ F (c) (2.5)

for all c where these expressions are well-de…ned.

De…nition 1 (or its variant for the standard auction) has become quite common
in the asymmetric …rst price auction literature (see Lebrun, 1998, Maskin and
Riley, 1999b, or Li and Riley, 1999, for instance). In practice, it is a little bit
stronger than needed and a weak inequality in (2.5) would do for our purpose.
However, it would also lengthen the proofs without adding any new insight, hence
our decision to keep the stronger version. Comparing (2.5) with (2.2), it should
also be clear that this is a natural way to order distributions for the …rst price
auction.

In what follows, whenever there is a shift in …rm i’s distribution of cost levels
from Fi to eFi Â Fi; we will refer to such a shift as an upgrade, and to …rm
i as the upgrader . Examples of distributional upgrades that satisfy de…nition
1 include: (1) Additional random draws from the same distribution ( eF (c) =
1¡ (1¡F (c))x for x > 1); 6 which is a common way of modeling R&D; (2) Shifts

6Note that eF (c) does not satisfy the assumption of strictly positive density made above sinceeF 0(c) = x(1¡ F (c))x¡1F 0(c) = 0 for c = c, the upper bound of the F distribution.
This assumption is required for the uniqueness result of Maskin and Riley (1996). However,
it is not crucial. Maskin and Riley need this condition to prove that the slope of the inverse
bid functions at u is bounded. This can be shown to hold here too as long as F 0(c) > 0
for all c: To make things simple, suppose that there are 2 …rms and …rm 1 has distribution
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of distributions to the left (i.e. eF (c) = F (c + a) for a > 0) for distributions
with a strictly increasing monotone hazard rate.7 This can be a convenient way
to model a locational investment when transportation costs are important, and
(3) Distributional contractions with a …xed lower end of the support ( eF (c) =
µF (c) for µ > 1 and c 2 (c; F¡1(1=µ)), which could represent the shift to a more
reliable technology. Distributional stretches with a …xed upper end of the support
(1¡ eF (c)) = µ[1¡ F (c)] for µ < 1 and c in the support of F ) satisfy the weaker
requirement of …rst order stochastic dominance and weakly higher hazard rate.

3. Comparing equilibria

To determine …rms’ investment incentives when investment is observable, we need
to understand how a distributional upgrade by one …rm a¤ects the resulting equi-
librium in the procurement auction. More precisely, starting from an initial con-
…guration of …rms (F1; :::; FN ); suppose that …rm j has the opportunity to upgrade
its distribution of costs to eFj Â Fj: How does the equilibrium in this new auction
( eFj ; F¡j) compare with that of the initial one, (Fj; F¡j)?
Referring back to (2.2), it is easy to see that such an investment by …rm j shifts

its opponents’ best response schedules upwards (remember, by lemma 1, the right
hand side of (2.2) is increasing in Ái); that is, they now react more aggressively
to any given bidding behavior of …rm j. If auctions were games with increasing
best responses, this would be the end of the story. Indeed, the “commitment”
of j’s opponents to bidding more aggressively together with increasing best re-
sponses would result in more aggressive bidding behavior by all participants in
the “post-upgrade” equilibrium (see, e.g., Milgrom and Roberts, 1994 who gener-
alize the earlier analyses by Fudenberg and Tirole, 1984 and Bulow, Geanakoplos

F1(c) = 1¡ (1¡ F (c))x: We claim that Á02(b) = 1 +
1
x :To see this, consider …rm 2’s FOC:

1

b¡ Á2(b)
=
F 01(Á1(b))Á

0
1(b)

F1(Á1(b))

Solving for Á01 and using the de…nition of F1; we get: limb!b Á
0
1(b) = limb!b

(1¡F (Á1(b)))
xF 0(Á1(b))(b¡Á2(b))

= lim ¡F 0(Á1)Á
0
1

xF 00(Á1)(b¡Á2)+x(1¡Á02)F 0(Á1)
= ¡Á01

x(1¡Á02) (using l’Hopital’s rule). Solving for Á02; we get

Á02(b) = 1 +
1
x as claimed.

7Distributions that satisfy this condition include the uniform, the normal, the logistic, the
extreme value, the exponential and the Â2 distributions, as well as the Weibull, ° and ¯ distri-
butions for some parameter values (see Bagnoli and Bergstrom, 1989).
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and Klemperer, 1985). Unfortunately, …rst price auctions are not games with
monotonic best responses as the following example illustrates.

Example 1: Consider the following auction environment. Two risk neutral
…rms bid for a single object. Firms’ costs are distributed independently and
uniformly over the interval [0; 1]: This is a symmetric …rst price auction and
it is easy to check that the equilibrium bidding functions are bi(ci) = 1+ci

2

for i = 1; 2 (this means that Á(b) = 2b ¡ 1): Now suppose that …rm 1
suddenly bids more aggressively: bb1(c1) = pc1 < 1+c1

2
(this corresponds to

an inverse bidding function of bÁ1(b) = b2): Firm 2’s best response solvesmax
b

(b ¡ c2)(1 ¡ b2): Let bÁ2(b) be the inverse bid function that corresponds to
this optimization problem. bÁ2(b) = 3b2¡1

2b
and has support on [1=

p
3; 1]: The

interesting element here is that though …rm 1 has become more aggressive,bÁ1(b) > Á(b); …rm 2’s best response to bÁ1; bÁ2; is less aggressive than his best
response to Á:8 Examples where …rm 2 would respond to a more aggressive
behavior of …rm 1 by being more aggressive can similarly be generated.

Example 1 runs a bit counter our intuition about the nature of competition
in the private value …rst price auction. However, on a second thought, it should
not be so surprising. Indeed, …rm 2’s maximization problem is identical to that
of the monopolist who faces demand D(b) = (1 ¡ F1(Á1(b)) and has constant
marginal cost c2:Firm 2 in example 1 is then analogous to the monopolist who
might respond to a decrease in demand by raising prices. Put di¤erently, in the
same way as a monopolist cares about the elasticity and not the level of the
demand he is facing, bidders in the …rst price auction care about the hazard rate
of their opponents’ highest bid (see (2.2)).

Nevertheless, example 1 is problematic because it rules out the kind of com-
parative statics exercise based on the slope of best responses. The alternative
approach that we take here is to impose the condition of equilibrium, and com-
pare the equilibria (prior and after the upgrade) directly. In this section, we want
to show that the kind of comparative statics that did not hold for best responses
(more aggressive response to more aggressive behavior) does hold at equilibrium.

Consider the two con…gurations (Fj ; F¡j) and ( eFj; F¡j) with eFj Â Fj : Denote
their respective equilibria by (Áj; Á¡j) and (eÁj; eÁ¡j). Let l and u (respectively el

8Indeed, bÁ2(b) = 3b2¡1
2b is less than Á(b) = 2b¡ 1 i¤ 3b2 ¡ 1 < 4b2 ¡ 2b or b2 ¡ 2b+ 1 > 0:
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and eu) be the lower and upper bounds of the equilibrium bids under (Fj; F¡j)
(respectively ( eFj; F¡j)): For later use, we also de…ne pi(b) = Fi(Ái(b)) i.e. the
probability that …rm i submits a bid lower than b in con…guration (Fj; F¡j): epi(b)
is similarly de…ned.

In the asymmetric …rst price auction, we cannot in general solve for the equi-
librium explicitly. Therefore, we need to resort to …rms’ FOCs in order to compare
equilibria. Though the actual proofs tend to be lengthy, the gist of the argument
is actually quite simple. We want to show that j’s opponents will tend to bid
more aggressively if j makes the investment. In other words, we want to rank the
pi functions de…ned above (indeed, if epi(b) > pi(b) for all b; then we can conclude
that …rm i bids more aggressively after the investment). With N = 2 and a slight
abuse of notation, (2.2) becomes:

p0i(b)
1¡ pi(b) =

@
@b
¼j(b; Áj)

¼j(b; Áj)
i 6= j (3.1)

where the term on the right-hand side is increasing in Áj (from lemma 1). To
prove that ep2(b) > p2(b) everywhere, we show that this holds on an interval close
to the minimum bid and then we use the FOCs to rule out a crossing later on. For
example, suppose that at some point bb; p2(bb) = ep2(bb) and p02(bb) > ep02(bb), that is, p2
is crossing ep2 from below at bb: Then, …rm 1’s FOC (3.1) implies that Á1(bb) > eÁ1(bb):
In other words, using …rms’ FOCs, we are able to deduct from what is happening
to one given …rm’s behavior across con…gurations, what is happening to the other
…rm’s behavior. The rest of the argument usually makes use of the relationship
between Fj and eFj to get a contradiction:
For N > 2 …rms, the equations in (2.2) can be rewritten as:

X
j 6=i

p0j(b)
1¡ pj(b) =

@
@b
¼i(b; Ái)

¼i(b; Ái)
(3.2)

Solving for
p0j(b)
1¡pj(b) yields:

(n¡ 1) p0j(b)
1¡ pj(b) =

X
i6=j

@
@b
¼i(b; Ái)

¼i(b; Ái)
¡ (n¡ 2)

@
@b
¼j(b; Áj)

¼j(b; Áj)
(3.3)
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where n is the number of …rms who bid down to b:9 Since the only property of
@
@b
¼i
¼i

that is used in the proofs is the fact that it is increasing in Ái; for simplicity
we will often write the equivalent of (3.3) for the single object risk neutral case:

(n¡ 1) p0j(b)
1¡ pj(b) =

X
i6=j

1

b¡ Ái(b)
¡ (n¡ 2) 1

b¡ Áj(b)
(3.4)

It should be clear that any result proved for this case also holds for the more
general case (allowing for risk aversion and endogenous demand).

Our argument proceeds in 3 steps. First, we show that the upper bound to
the equilibrium bids must be non increasing i.e. eu · u (lemma 3). Second,
we show that the lower bound to equilibrium bids is strictly decreasing, el < l
(lemma 5). Finally, we show that, for 2 …rms, bidding in the new con…guration
is more aggressive (in the sense of …rst order stochastic dominance), epj(b) > pj(b)
(proposition 1). For more than two …rms and with some additional conditions
on the technologies available (the F functions), we prove that, for any b; the
probability that the upgrader wins the market with b is lower after the upgrade
than in the original con…guration (proposition 2).

Lemma 3: Let u(F1; :::; FN ) be the upper bound of the equilibrium bids in con…g-
uration (F1; :::; FN ): u(F1; :::; FN) is weakly decreasing in its arguments. That is,
if eFj Â Fj, then u( eFj ; F¡j) · u(Fj; F¡j):
Proof. Let u = u(Fi; F¡i) and eu = u( eFi; F¡i); and assume without loss of

generality that c1 · c2 · ::: · cN : Let eci be the maximum cost under eFi
(eci · ci):
If c1 = c2, then eu · u follows trivially from lemma 2. If c1 < c2; lemma 2
implies that u solves:

minfargmax
b

¼1(b; c1)
Y
i6=1
(1¡ Fi(b))g

In particular, u satis…es the FOC:
@
@b
¼1(b; c1)

¼1(b; c1)
=
X
i6=1

F 0i (b)
1¡ Fi(b) (3.5)

9Remember from the discussion in the previous section that …rms need not share the same
minimum equilibrium bid.
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When b # c1; the expression in the left-hand side (LHS) goes to in…nity while
the expression in the right-hand side (RHS) remains bounded. Therefore,
at the solution (remember, u is the smallest value that solves the FOC), the
LHS crosses the RHS from above. In other words, the slope of the LHS is
always less than that of the RHS.

If …rm 1 is the upgrader, there are two possibilities. Either ec1 = c1, in which
case eu = u; or ec1 < c1: In that case, the LHS of (3.5) decreases (using lemma
1) and eu < u follows.
If eFi Â Fi for i 6= 1; the RHS of (3.5) increases for all b 2 (c1; c2) when
…rm i upgrades its distribution, and the lowest solution to (3.5) falls: eu < u
follows.

Lemma 4 is central to the rest of the argument:

Lemma 4: It cannot be that, at some point, bidding is less aggressive for all
bidders after the investment than before. More precisely, it cannot be that, at
any point bb 2 [maxfl;elg; eu); eÁi(bb) · Ái(

bb) for all i for whom both functions are
de…ned, including a non-upgrading …rm.

Proof. The proof proceeds in two steps. First, we show that eÁi(bb) · Ái(bb) for
all i for whom both functions are de…ned, implies that eÁi(b) · Ái(b) for all i
and for all b > bb (with a strict inequality close to eu). Second, we show that
this leads to a contradiction with the fact that eu · u (lemma 3):
Step 1: Suppose that for all i for which both functions are de…ned,eÁi(bb) · Ái(bb) (3.6)

Towards a contradiction, imagine that this condition is violated at a later
point, b¤ where:

b¤ = inf
b>bbfb s.t. eÁj > Áj for some jg (3.7)

The expression in (3.7) accounts for two distinct possibilities. (3.6) can
be violated if the inverse bid functions cross for one of the bidders in this
group (in that case, eÁj(b¤) = Áj(b¤) and eÁ0j(b¤) > Á0j(b¤)): Alternatively, it
is possible that lk > bb for some bidder k; lk > elk and eÁk(lk) > Ák(lk) = ck =
b¤): (The proof proceeds by assuming that the …rst scenario holds but the
argument is easily adapted for the second possibility.)

At b¤; there are potentially three groups of …rms bidding:
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1. The …rms that bid down to b¤ under both con…gurations, (Fj ; F¡j) and
( eFj; F¡j): We index them by i:

2. Firms that bid down to b¤ only under (Fj ; F¡j): We index them by q:

3. Firms that bid down to b¤ only under ( eFj ; F¡j): We index them by r:

Since eÁj(b¤) = Áj(b¤); …rm j’s FOC yields:

1

b¤ ¡ eÁj(b¤) =
X ep0r

1¡ epr+X
i 6=j

ep0i
1¡ epi =X p0q

1¡ pq+
X
i6=j

p0i
1¡ pi (3.8)

(notice that the …rms in the second group only appear on the right-hand
side since they are active opponents only in the con…guration (Fj ; F¡j) and
similarly for the …rms in the third group).

Because for all the other …rms in group 1, eÁk · Ák at b¤; we also have:X ep0r
1¡ epr+X

i6=k

ep0i
1¡ epi ·X p0q

1¡ pq+
X
i6=k

p0i
1¡ pi (3.9)

Now, eÁ0j(b¤) > Á0j(b¤) implies that ep0j
1¡epj > p0j

1¡pj : Moreover, comparing (3.8)
with (3.9), we …nd that, for all the …rms in group 1:

0 <
ep0j

1¡ epj ¡ p0j
1¡ pj ·

ep0i
1¡ epi ¡ p0i

1¡ pi (3.10)

Therefore, going back to (3.8) we conclude that there must be some …rms
in group 2. Let p be one of them. We have,X ep0r

1¡ epr+X
i6=j

ep0i
1¡ epi > X

q 6=p

p0q
1¡ pq+

X
i6=j

p0i
1¡ pi

So, adding
ep0j
1¡epj > p0j

1¡pj

1

b¤ ¡ecp >
X ep0r

1¡ epr+X ep0i
1¡ epi >X

q 6=p

p0q
1¡ pq+

X p0i
1¡ pi =

1

b¤ ¡ Áp(b¤)
>

1

b¤ ¡ cp

14



where the …rst inequality follows from the assumption that …rm p does not
bid down to b¤ under ( eFj ; F¡j); the equality corresponds to …rm p’s FOC
and the last inequality comes from the fact that inverse bid functions are
increasing. This last expression implies that ecp > cp, a contradiction. We
conclude that eÁi(b) · Ái(b) for all i and for all b > bb:
To prove the stronger claim that eÁi(b) < Ái(b) for all i and for all b in a
neighborhood of eu; we need a few more steps since we also have to rule outeÁ0j(b¤) = Á0j(b¤): In that case, the …rst inequality in (3.10) is weak if j is not
the upgrader. To get a strong second inequality for at least one …rm, we
need that, for some i in the …rst group; eÁi < Ái at b¤ or that the upgrader
belongs to the …rst group (in which case, even if eÁi = Ái;

ep0i
1¡epi > p0i

1¡pi by

de…nition 1): If none of these conditions is satis…ed, eÁi = Ái for all i and for
all b > b¤ until we meet a …rm in category 2 or 3 (and we know that this
must happen at some point before eu since the upgrader does not belong to
group 1). At that point, we can argue as before (there must be a …rm in
group 2) and get a contradiction.

Step 2: Consider one of the non-upgrading …rm in group 1, say k. Step
1 implies that eÁk(eu) < Ák(eu): However, eÁk(eu) = minfck; eug (lemma 2)
and Ák(eu) · minfck; eug (lemmas 2 and 3) implying eÁk(eu) ¸ Ák(eu): A
contradiction.

Lemma 5: l(F1;:::; FN) is strictly decreasing in its arguments. That is, if eFj Â Fj;
then l( eFj; F¡j) < l(Fj; F¡j):
Proof. Towards a contradiction, suppose that el ¸ l: Then, for all i where both

functions are de…ned, eÁi(el) · Ái(
el) (eÁi(el) = ci or eci for the upgrader): We

claim that there is at least a non-upgrading …rm bidding down to el under
both con…gurations. To see this, remember that there are at least two …rms
bidding to the lower bound l and el. Moreover, we know from section 2
that, in any con…guration, li · lj i¤ ci · cj: Given that there is a non-
upgrading …rm that has the …rst or second lowest minimum cost under both
con…gurations, it must be bidding under both con…gurations down to el. We
can then apply lemma 4 to get a contradiction:
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We are now able to prove the main result of this section. We start with the
simplest case: two …rms. Then, we know from our discussion in section 2 that,
at equilibrium, both …rms bid on a common support [l; u] (and [el; eu] after the
investment). Moreover, lemma 5 implies that el < l so epj(b) > pj(b); j = 1; 2; for
b close to l:

Proposition 1: Let N = 2:Then epj(b) > pj(b) for all j and for all b in the
interior of their common support.

Proof. Let 1 be the upgrader. From lemma 5, epj > pj close to l: In addition, as
long as ep2(b) > p2(b); eÁ2(b) > Á2(b) and so (using …rm 2’s FOC) ep01

1¡ep1 > p01
1¡p1 :

Therefore, starting from the left, ep1 > p1 as long as ep2 > p2:
Now, towards a contradiction, suppose that ep2 and p2 intersect …rst at b1 <eu:

Á2(b1) =
eÁ2(b1) (3.11)

In addition, we have p02(b1)
1¡p2(b1) >

ep02(b1)
1¡ep2(b1) so (using …rm 1’s FOC)

Á1(b1) >
eÁ1(b1) (3.12)

By lemma 4, (3.11) and (3.12) together are impossible.

Comparative statics results on …rms’ aggregate bidding behavior (the pi func-
tions) are all we need to answer questions about investment incentives in the
procurement auction. It is nevertheless useful to remark that proposition 1 im-
plies that, for the non upgrading …rm, bidding is also more aggressive for every
cost realization. Indeed, for …rm 2, ep2(b) = F2(eÁ2(b)) > p2(b) = F2(Á2(b)); henceeÁ2(b) > Á2(b): This does not necessarily hold for the upgrader.
When we move to N > 2 …rms, the system of di¤erential equations that

describes the equilibrium puts much less structure on the solution. Intuitively,
…xing the bidding behavior of one …rm places contraints on the aggregate bidding
behavior of its opponents (since what matters for the …rm is its probability of
winning). However, it leaves much room for maneuver concerning their individual
bidding behavior. To illustrate, suppose that there are three …rms and let us try
to argue as in the proof of proposition 1. We can easily claim again that ep1 > p1
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as long as ep2 > p2 and ep3 > p3:10 Now suppose that the …rst p’s and ep’s cross at
b1 for …rm 2. We have Á2(b1) = eÁ2(b1) and eÁ3(b1) > Á3(b1) and, since p02

1¡p2 >
ep02
1¡ep2

must hold, eÁ1(b1) < Á1(b1):This is a perfectly possible situation and we cannot
rule it out (remember that by FOSD eÁ1 < Á1 is compatible with ep1 > p1): In a
nutshell, the more …rms, the more degrees of freedom we have to allow for various
patterns in the way the solutions behave.

To get analytical results, we need to impose further conditions. First, we
assume that …rms have the same utility functions, Vi for all i: Second, we impose
that the distributions of costs are partially ordered according to de…nition 1 for
some …rms. This is useful because it can be shown that if Fi Â Fj then Ái < Áj and
pi > pj at equilibrium (see, e.g., Maskin and Riley, 1999b and for a generalization
toN > 2 bidders, Li and Riley, 1999). Intuitively, …rm i; which has a more e¢cient
technology, can a¤ord to take a higher pro…t margin b¡Ái(b) at equilibrium. This
is because, when trading o¤ between a lower probability of winning and a higher
price-cost margin, it takes into account the fact that its opponent is unlikely to
have low costs. How strong is this condition? Probably stronger than needed
for the claim to hold. On the other hand, it seems that …rms participating in
an auction have a good idea of their relative cost advantages and, in that case,
de…nition 1 seems appropriate.

An important consequence of our assumption of common payo¤ functions is
that …rms that have the same technology will bid identically at equilibrium.11

So, in particular, this means that we can already “stretch” the interpretation of
proposition 1. Suppose there areN …rms with …rms 2 toN sharing the same payo¤
function and the same technology F: Firm 1 is the upgrader. Then the claim of
proposition 1 also applies to describe the relationship between the equilibria prior
and after the investment.

In proposition 2, we use these additional assumptions to prove a similar claim
for any number of partially ordered technologies. Proposition 2 covers any pat-
terns of “catching-up” by the investing …rm, whereby the investor is either a

10Indeed, ep2 > p2 and ep3 > p3 imply that eÁ2 > Á2 and eÁ3 > Á3: ep1 = p1 implies by FOSD
that eÁ1 < Á1: Therefore, using (3.4), we have:

2
ep01

1¡ ep1 = 1

b¡ eÁ2 + 1

b¡ eÁ3 ¡ 1

b¡ eÁ1 > 2 p01
1¡ p1

11Lebrun (1998) was the …rst to point out and use this property of equilibrium.
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“laggard” or an “average” bidder prior to the investment and it joins the average
or becomes a leader after the investment.12

Proposition 2: Let eF º F stands for eF Â F according to de…nition 1 or eF = F:
Suppose there are N …rms with eF1 º Fj º F1 for all j 6= 1 with a least one of
these inequalities strict : Let …rm 1 be the upgrader. De…ne W1(b) =

Q
j 6=1
(1¡pj(b))

i.e. W1(b) is the probability that …rm 1 wins with a bid of b in the original
con…guration: De…ne fW1(b) similarly. Then fW1(b) < W1(b) on the interior of
their common support.

Proof. For future reference, notice that bidders’ FOCs (3.2) can be rewritten
as:

¡W
0
j(b)

Wj(b)
=

1

b¡ Áj(b)
Because the technologies are partially ranked, equilibrium inverse bid func-
tions can also be ordered. We have:

eÁ1 · eÁj (3.13)

Áj · Á1

for all j 6= 1 (with some strict inequalities).
We …rst assume that the supports of winning bids are common to all …rms
in the post-upgrade con…guration. Then, by lemma 5 (el < l); epj > pj for all
j, fW1 < W1; and eÁj > Áj for all j 6= 1 close to l:
Claim 1: Starting from the left (i.e. from l onwards), the …rst ep and p to
cross cannot be for the upgrader. Moreover, at that …rst crossing, it must
be that eÁ1 < Á1:
Proof: Since ep1 would need to cross p1 from above, we must have

ep01
1¡ ep1 < p01

1¡ p1 (3.14)

12These also form the relevant cases when one wants to talk about market turnover and
leadership changes. When the investment is made by a leader or a laggard who retain their
positions, a similar claim seems to hold though we were not able to prove it analytically (see
claim 4 of the proof where the partial ordering is needed).
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At the same time, because eÁj ¸ Áj for all j 6= 1 and eÁ1 < Á1 (since eF1 > F1);
we have

(N ¡ 1) ep01
1¡ ep1 =

X
j 6=1

1

b¡ eÁj ¡ (N ¡ 2) 1

b¡ eÁ1
>

X
j 6=1

1

b¡ Áj
¡ (N ¡ 2) 1

b¡ Á1
= (N ¡ 1) p01

1¡ p1

a contradiction with (3.14). Now, suppose that the …rst ep and p to cross
from the left are for bidder j 6= 1: Because, by hypothesis, eÁk ¸ Ák for all
k 6= j; 1;we need eÁ1 < Á1 to get ep0k

1¡epk < p0k
1¡pk (and this is possible since, by

FOSD, eÁ1 < Á1 is compatible with ep1 > p1).
Claim 2: fW1(b) < W1(b) close to u:

Proof: When eu < u, this is straightforward. If eu = u; suppose towards
a contradiction that fW1 ¸ W1 close to eu = u: In the appendix, we prove

(lemma 6) that this implies that
fW 0
1fW1
· W 0

1

W1
close to u; and using …rm 1’s

FOC; eÁ1 ¸ Á1 close to u: Using (3.13), this implies that eÁj ¸ Áj for j 6= 1
(some of them strict) and fW1 < W1 close to u: A contradiction.

Claim 3: eÁ1 = Á1 implies that eÁj ¸ Áj for all j (some strict)
Proof: This follows directly from (3.13).

Claim 4: fW1 < W1 for all b:

Proof: First note that if for all j 6= 1; eÁj > Áj on their common support,
then epj > pj for all j and fW1 < W1 follows directly. So suppose …rm 2 is
the …rst from the left (say, at b1) for whom eÁ2 = Á2 : We have fW1 < W1 for
all b · b1, and by claim 1, eÁ1(b1) < Á1(b1):
Case 1: eÁ1(b) < Á1(b) for all b > b1:
Using bidder 1’s FOC, this implies

¡
fW 0
1fW1

=
1

b¡ eÁ1 < 1

b¡ Á1
= ¡W

0
1

W1
(3.15)

for all b > b1: Then using claim 2, we conclude that fW1 < W1 for all b (since

a crossing in (b1; eu)would require fW 0
1fW1
<

W 0
1

W1
in contradiction with (3.15)).
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Case 2: There exists b2 > b1 such that eÁ1(b2) = Á1(b2) (b2 is the …rst one
from b1):

Using claim 3, we have fW1(b2) < W1(b2) and arguing as in case 1, we havefW1 < W1 for all b < b2: The scenario from b2 on is identical (the …rst p andep cannot be for the upgrader and at that point we must have eÁ1 < Á1; ::::)
and we can replicate the argument.

In the appendix, we extend the proof for the case where the lower bound el
is not common to all …rms.

Propositions 1 and 2 allow us to answer our initial question concerning the
incentives of …rms to upgrade their distributions. When …rm i upgrades its dis-
tribution, it needs to take two e¤ects on its ex-ante expected payo¤ into account.
First, a direct e¤ect through an improvement in the ex-ante distribution of its
costs (holding its opponents’ strategies …xed) and, second, an indirect or strategic
e¤ect through its opponents’ adjustments to the new con…guration. Propositions
1 and 2 tell us that, under the new con…guration ( eFi; F¡i), …rm i’s opponents will
bid, collectively, more aggressively. This means that the strategic e¤ect is negative
for distributional upgrades in the …rst price procurement auction.

At this point, it might be useful to remember that the investments we are
considering shift the best response schedule of the investor’s opponents upwards.
In other words, holding the bidding strategy of the investor …xed, his opponents
prefer to bid more aggressively after the investment than before (refer to (2.2) if
needed). We can then interpret our results as indicating that, for comparative
statics purposes, the …rst price auction behaves as a standard game with increasing
best response schedules. Firms will tend to invest less in case of overt investments
than in case of covert investments.

How strong is the strategic e¤ect? It can be quite strong as example 2 illus-
trates. There, an ine¢cient …rm is better o¤ avoiding a cost reducing investment,
even if it came at no cost !

Example 2: Consider the following initial con…guration for …rms 1 and 2: F1 is
uniform over [0,10] and F2 is uniform over [0,5]. Suppose that …rm 1 has the
possibility to upgrade its distribution to eF1 = F2:Denote by¦i(F; bF ) …rm i’s
ex-ante payo¤ when …rm 1’s distribution is F and …rm 2’s distribution is bF:
A numerical solution to the …rst-price auction yields: ¦1(F1; F2) = 0:90445;
¦2(F1; F2) = 1:93245; ¦1(F2; F2) = ¦2(F2; F2) = 0:83333: The change in its
distribution leaves …rm 1 worse o¤.
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Proposition 1 and 2 also shed light on the results derived when …rms are ex-ante
symmetric and investment is simultaneous. Typically, this literature has focused
on the Nash equilibrium of the investment game and found a unique symmetric
equilibrium (see e.g. Tan (1992)). Our results and example 2 in particular suggest
that this equilibrium might not be subgame perfect when investment is observable
(and so bidders can react to deviations at the investment stage). Indeed, suppose
that the symmetric Nash equilibrium of the investment game is given by (x¤; :::; x¤)
(where x represents …rms’ investment level, indexed according to de…nition 1) and
consider …rm 1’s incentive to deviate. Since (x¤; :::; x¤) is a Nash equilibrium,
…rm 1 has no incentive to deviate when its opponents’ behavior (including at the
procurement stage) is held …xed. Because of the negative strategic e¤ect identi…ed
in propositions 1 and 2, investing more than x¤ would not be pro…table either if
investment is observable. However, investing less than x¤ might be a pro…table
deviation: by choosing a lower investment level, …rm 1 induces its opponents
to bid less aggressively in the second stage, and this, together with the cost
saving involved, might overcome the e¤ect of the lower probability of winning.
In other words, our results suggest that the focus on the symmetric equilibrium
of the simultaneous investment game can only be justi…ed if investment is not
observable. Otherwise, the simultaneous investment game among symmetric …rms
might admit asymmetric (subgame perfect) equilibria.

4. Investment Incentives in Procurement Auctions

In this section, we turn to our original question of investment incentives and com-
pare the …rst price auction (FPA) and the second price auction (SPA). Comparing
the two auction formats is interesting in two respects. First, both are commonly
used auction rules (remember that in our setting the SPA is equivalent to the
English auction). Second, the SPA provides an excellent benchmark to analyze
the properties of the FPA because the strategic e¤ect identi…ed in the previous
section for the FPA is absent for the SPA. Indeed, bidding one’s own cost is a
dominant strategy in the SPA, irrespective of the distributions of one’s opponents.
Therefore bidding behavior at the procurement stage is una¤ected by …rms’ in-
vestment in the …rst stage. To allow for a comparison between the two auction
formats (using the Revenue Equivalence Theorem), we return in this section to the
standard assumptions of risk neutrality and a single indivisible object. Moreover,
it is convenient to restrict the analysis to two …rms.

To provide intuition for our next result, consider the following example. Sup-
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pose that …rms have originally the same distribution of costs and consider an in-
cremental investment by …rm 1. Firm 1’s change in payo¤ can be decomposed into
two terms: a direct e¤ect (holding its opponents’ behavior …xed) and a strategic
e¤ect. By the Revenue Equivalence Theorem, the direct e¤ect for an incremental
change is the same under the FPA and the SPA. Moreover, propositions 1 and
2 suggest that the strategic e¤ect is negative for the FPA. Because there is no
strategic e¤ect for the SPA, this implies that …rm 1 will invest less under the FPA
than under the SPA.

Proposition 3 shows that this intuition extends to situations where …rms are
not ex-ante symmetric and investment is not necessarily incremental: Firms will
tend to invest less when the FPA format is used because they anticipate the
more aggressive behavior of their opponents. As in proposition 2, proposition 3
requires some level of leadership change for the analytical proof to go through,
though again we expect this result to hold generally.

Proposition 3: Let N = 2: The FPA provides less incentives than the SPA
for investments that involve a change of leadership. Formally, let …rm 1 be the
upgrader. Then, investment incentives are lower in the FPA than in the SPA for
an investment such that eF1 º F2 º F1 (with at least one strict inequality).

Proof. Let H2 Â H1: The statement of proposition 3 can be decomposed into
two parts: (1) the incentive to catch up, i.e. to move from (H1; H2) to
(H2; H2); and (2) the incentives to overtake i.e. to move from (H1; H1) to
(H2; H1): We need to show that both are weaker under the FPA.

Proposition 3 is then an almost direct consequence of Maskin and Riley
(1999b)’s proposition 2.6. There, they show that the ine¢cient …rm prefers
the FPA format to the SPA auction format. Let ¦FPA1 (H; bH) be the ex-
ante expected pro…t of …rm 1 when its cost distribution is H and …rm
2’s cost distribution is bH: ¦SPA1 (H; bH) is the equivalent for the SPA auc-
tion. Proposition 2.6 of Maskin and Riley implies that ¦FPA1 (H1; H2) >
¦SPA1 (H1;H2) and ¦FPA2 (H1; H2) < ¦

SPA
2 (H1;H2): Therefore:

¦FPA1 (H2; H2)¡ ¦FPA1 (H1; H2) < ¦
FPA
1 (H2; H2)¡ ¦SPA1 (H1; H2) =

¦SPA1 (H2; H2)¡ ¦SPA1 (H1; H2)

where the equality of the second and third terms follows from the Revenue
Equivalence theorem. To prove (2), we proceed similarly:
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¦FPA1 (H2; H1)¡ ¦FPA1 (H1; H1) < ¦
SPA
1 (H2; H1)¡ ¦FPA1 (H1; H1) =

¦SPA1 (H2;H1)¡¦SPA1 (H1; H1)

The result in proposition 3 could overturn the revenue ranking found byMaskin
and Riley (1999) for exogenous and …xed distributions of valuations. Though
neither auction format is generally better in their environment, they …nd that
the FPA performs better for plausible asymmetries. Proposition 3 suggests that
allowing for endogenous distributions could change this result.13

Our next proposition con…rms the qualities of the SPA: Not only does it induce
more investment (which is good news for the auctioneer), it also induces the
socially optimal level of investment. The e¢ciency of the SPA (i.e. the fact
that the …rm with the lowest cost always wins the contract) is what drives this
result. Intuitively, consider …rm 1’s investment decision. In the SPA, …rm 1 wins
if and only if it has the lowest cost. Investment makes this occurrence more likely.
Speci…cally, an investment changes …rm 1’s payo¤ in two circumstances: (1) Firm
1 wins the auction in both cases but it now wins it with a lower cost. Then, its gain
equals the di¤erence between the two costs, and this corresponds to the change
in social welfare (because the social cost of the contract has been decreased by
that amount), and (2) …rm 1 wins after the investment but not before. Its payo¤
then equals the di¤erence between its cost and the second lowest cost, and this
corresponds again to the change in social welfare. Formally,

Proposition 4: The second price auction provides the socially optimal level of
investment incentives.

Proof. Let (F1; F2) be the initial con…guration, with support on [c1; c1] and
[c2; c2]: Suppose …rm 1 is considering an investment to eF1 Â F1: We just
need to prove that private and social incentives are aligned under the SPA.

Claim 1: ¦SPA1 (F1; F2) =
R maxfc1;c2g
minfc1;c2g F1(c)(1¡ F2(c))dc

Proof: Suppose c1 ¸ c2: By de…nition,

¦SPA1 (F1; F2) =

Z c2

c1

dF1(c)

Z c2

c

(x¡ c)dF2(x)

13A similar reversal of revenue ranking has been found by Persico (2000) for the case of
common values and unobservable investment.
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= F1(c)

Z c2

c

(x¡ c)dF2(x)
¯̄̄̄c2
c1

+

Z c2

c1

F1(c)(1¡ F2(c))dc

(integration by parts)

=

Z maxfc1;c2g

minfc1;c2g
F1(c)(1¡ F2(c))dc

The proof when c1 < c2 is analogous.

Given claim 1, the private return to investment is equal to ¦SPA1 ( eF1; F2)¡
¦SPA1 (F1; F2)

=

Z maxfec1;c2g
minfec1;c2g

eF1(c)(1¡ F2(c))dc¡ Z maxfc1;c2g

minfc1;c2g
F1(c)(1¡ F2(c))dc (4.1)

In a procurement setting, the lower the minimum of the two cost realizations,
the higher the social surplus. Hence, a measure of social surplus is the
negative of the expected value of the second order statistics. Let S(c) be
the distribution of the second order statistics.

S(c) = F2(c)(1¡ F1(c)) + F1(c)(1¡ F2(c)) + F1(c)F2(c)
= F1(c) + F2(c)¡ F1(c)F2(c)

Therefore,

SS(F1; F2) = ¡
Z minfc1;c2g

minfc1;c2g
cdS(c)

= ¡minfc1; c2g+
Z minfc1;c2g

minfc1;c2g
S(c)dc

= ¡maxfc1; c2g+
Z maxfc1;c2g

minfc1;c2g
S(c)dc

and the social return to investment, SS( eF1; F2)¡ SS(F1; F2)
=

Z maxfec1;c2g
minfec1;c2g

eF1(c)(1¡ F2(c))dc¡ Z maxfc1;c2g

minfc1;c2g
F1(c)(1¡ F2(c))dc

¡maxfec1; c2g+maxfc1; c2g
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+

Z maxfec1;c2g
minfec1;c2g F2(c)dc¡

Z maxfc1;c2g

minfc1;c2g
F2(c)dc

=

Z maxfec1;c2g
minfec1;c2g

eF1(c)(1¡ F2(c))dc¡ Z maxfc1;c2g

minfc1;c2g
F1(c)(1¡ F2(c))dc(4.2)

The claim follows by comparing (4.1) and (4.2)

Proposition 4 is actually a very general result. The proof straightforwardly
extends to N > 2: With one quali…cation, it also easily extends to situations
where …rms invest simultaneously: when investment is simultaneous, the socially
optimal outcome is always an equilibrium but not necessarily the only one.14

To see this, denote …rm i’s investment choice xi 2 Xi. Let SS(x1; :::; xN ) be
the social welfare resulting from …rms’ investment decisions (x1; :::; xN): Suppose
that (x¤1; :::; x

¤
N) maximizes this expression. This will also be a subgame perfect

equilibrium of the simultaneous investment game. Indeed, …x x¤¡1 = (x
¤
2; :::; x

¤
N )

and consider …rm 1’s incentive to deviate. This is similar to considering the
one-…rm investment incentive of our model. So, applying the same logic as in
the proof of proposition 4, we …nd that private and social incentives are again
perfectly aligned. (x¤1; :::; x

¤
N ) is a subgame perfect equilibrium investment choice

when investment is simultaneous.

5. Market turnover and the dynamics of competition

An important question in industrial organization is whether asymmetries between
…rms tend to increase or decrease over time. Maintaining a healthy degree of
competition is also a concern for procurement authorities.15 The analysis of a
full-blown dynamic model is of course outside the scope of this paper. However,
we can already use the insights from our previous results to explore the likely
dynamics of competition under both auction formats.

First, note that the results of section 3 transpose to a fully dynamic multi-stage
setting. Indeed, what matters for our comparative statics result to go through is
the log-supermodularity of the payo¤ function (lemma 1), which can be shown to

14Stegeman (1996) provides a proof of proposition 4 for the case of simultaneous investment.
15Repeated procurement auctions are also an active area for empirical research (see among

others, the work of Bajari (1998 and 1999) and Jofre-Bonet and Pesendorfer (1999)).
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hold for the value function of a dynamic version of the model. Therefore, at any
point, the FPA will generate less investment than the SPA.

However, from a revenue perspective, the fact that the SPA elicits more in-
vestment does not in it-self imply that it should be favored by the procurement
authority. Indeed, market asymmetries among bidders reduce competition and
hurt revenue (Cantillon, 1999). Therefore, the lower level of investment in the
FPA might not be such a bad news for the procurement authority if, in the long
run, the FPA were likely to favor a more symmetric market structure than the
SPA.

To illustrate, let us consider the following simple thought experiment. Today,
two …rms, 1 and 2, bid for a contract for which, a priori, …rm 1 has a competitive
advantage i.e. F1 Â F2. Next period, a similar contract is put for tender and
because of project synergies, winning the contract today is helpful (say, in the
form of shifting the distribution of costs for the second period auction). Costs are
independently drawn in each period.

In this setting, winning today corresponds to an “investment” in our framework
and …rms will need to account for this extra advantage of winning when bidding
for the …rst period contract.16 The underinvestment result from the previous
section suggests that this advantage will be valued less if the FPA is used rather
than the SPA. However, it is unclear which …rm, of the laggard or the leader,
will value the investment more. If the leader values it more, then he will be more
likely to win the contract today and therefore con…rm his competitive advantage
tomorrow. By contrast, if the laggard values it more, then this can help him win
more often today (because he will discount his current bid more) and this could
possibly reverse his current market disadvantage, leading to a more symmetric
market structure tomorrow.

In the SPA, we can use the fact that private and social investment incentives
are perfectly aligned (proposition 4) to compare the incentives of the leader and
the laggard. Recently, Athey and Schmutzler (1999) have found su¢cient condi-
tions for leaders in oligopoly markets to invest more than followers (an outcome
they term “weak increasing dominance”). In our setting, these conditions reduce
to: (1) The return to investment must be decreasing in the initial position of one’s
opponents (i.e. investments are strategic substitutes); and (2) The higher one’s

16Given that only one …rm wins the contract at a time, …rms’ decisions correspond to our
one-…rm investment set-up. The di¤erence with our basic model is that the identity of the
investor is now endogenously determined.
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initial position, the higher the return on investment. The social return to an in-
vestment is clearly decreasing in the initial position of the investor’s opponents so
condition (1) holds straightforwardly for the SPA. Moreover, it is easily checked
that condition (2) holds for all the examples of distributional upgrades given in
section 2.17 This suggests that leaders in a SPA environment will have at least as
high an inventive as laggards to invest. Therefore, the SPA is likely to increase
current market asymmetries.

Could the FPA favor a more symmetric market structure? Unfortunately,
there is some reason to suspect that the negative strategic e¤ect identi…ed in sec-
tion 3 is greater for investments by laggards than by leaders. Intuitively, when a
laggard invests, he closes the gap with his competitors and this intensi…es com-
petition. By contrast, when a leader invests, he does not need to change his
behavior much and he is therefore able to keep a greater part of the bene…t of his
investment.

In this section we investigate this question numerically.18 In the examples that
follow, we keep the distribution of costs for …rm 2 …xed, and order the potential
distributions of costs for …rm 1 by the parameter a with F a1 Â F a+11 (a lower
value for a means a more e¢cient cost distribution). Let ¦1(F; bF ) be the ex-ante
expected pro…t for …rm 1 when its costs are distributed according to F and …rm
2’s costs are distributed according to bF: De…ne ¢ = ¦1(F

a
1 ; F2) ¡ ¦1(F a+11 ; F2):

¢ is the ex-ante expected increase in …rm 1’s pro…t from moving to F a+11 to F a1 :

The tables report the values of ¦1(F a1 ; F2) and ¢:
19 They all indicate that,

holding the position of …rm 2 …xed, the higher the initial position of …rm 1, the
greater its incentives to invest further. An appropriate rescaling of the numbers
in the table allows us to conclude that, of the two …rms in stage 1, the current
leader values the investment more.20

17Except for the case of additional random draws for which the social returns to an investment
depend on the aggregate investment only (from a social perspective, you don’t care which bidder
gets an extra draw). In this setting then, leaders and laggards have equal incentives to invest.
18To answer this question analytically, we would need to compare the investment incentives

for …rms with di¤erent initial competitive situations. However, the analysis in section 3 only
pinned down the sign of the strategic e¤ect, not its size, and given the lack of explicit solution
to the equilibrium, we were not able to study this question analytically.
19Our numerical simulations are based on Li and Riley’s Bidcomp2 program, extended to

compute bidders’ ex-ante expected payo¤s. We refer to their paper for technical details about
the program.
20Alternatively, we could appeal to Athey and Schmutzler (1999)’s su¢cient conditions. Con-

dition (1) is intuitive and the tables illustrate condition (2).
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Distributional contraction (…xed lower end): F2 is uniform on [0; 5] and F a1
is uniform on [0; a]: Table 1 presents the payo¤s that result from the numerical
solution to each of the auction for a between 10 and 1. The row in bold type
refers to the symmetric con…guration.

a ¦1(F
a
1 ; F2) ¢

10 0.90445
9 0.87073 -0.03372
8 0.84941 -0.02132
7 0.83392 -0.01549
6 0.82701 -0.00691
5 0.83333 0.00632
4 0.85391 0.02058
3 0.91935 0.06544
2 1.00454 0.08519
1 1.12233 0.11779

Table 1

As re‡ected in the last column, the strategic e¤ect outweighs the direct e¤ect
for high levels of a: Catching up leaves …rm 1 worse o¤.21 However, as soon as …rm
1 becomes the most e¢cient …rm, further distributional upgrades always result in
an increase in its payo¤s.

Distributional stretch (…xed upper end): F2 is uniform on [5; 10] and F a1 is

21A particular feature of the kind of upgrade considered here is that when …rm 1 upgrades,
the length of the support of its distribution is reduced and so is the “privateness” of its cost
realization.
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uniform on [a; 10]: The corresponding values are presented in Table 2.

a U1(F
a
1 ; F2) ¢

9 0.04191
8 0.15958 0.11767
7 0.33874 0.17916
6 0.56666 0.22792
5 0.83333 0.26667
4 1.13113 0.29780
3 1.45416 0.32303
2 1.79797 0.34381
1 2.15986 0.36189
0 2.53459 0.37473

Table 2

In this case, the strategic e¤ect is not signi…cant enough to outweigh the direct
e¤ect on …rm 1’s payo¤s from any starting distribution. However, the last column
exhibits once more a pattern of increasing incentive in the investor’s original
position.

Distributional shift: F a1 is uniform on [a ¡ 4; a + 4]; while F2 is uniform on
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[12; 20]: The corresponding values are presented in Table 3.

a ¦1(F
a
1 ; F2) ¢

24 0.10255
23 0.14931 0.04676
22 0.21325 0.06392
21 0.29937 0.08614
20 0.41182 0.11245
19 0.56437 0.15255
18 0.75644 0.19207
17 0.96974 0.21330
16 1.24499 0.27516
15 1.57223 0.32724
14 1.97229 0.40006
13 2.39907 0.42678
12 2.87819 0.47912
11 3.42465 0.54646
10 4.02154 0.59689
9 4.66895 0.64741
8 5.36238 0.69343

Table 3

Finally, table 4 presents the numerical results of a shift to the left of a trun-
cated normal distribution. Speci…cally, F a1 has mean a, whereas F2 has mean 10.
The standard deviation for both distributions is 1 and they are truncated three
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standard deviations away from the mean.

a ¦1(F
a
1 ; F2) ¢

17 0.01813
16 0.02587 0.00774
15 0.03705 0.01118
14 0.05701 0.01996
13 0.09742 0.04041
12 0.17411 0.07669
11 0.31627 0.14216
10 0.55835 0.24208
9 0.92902 0.37067
8 1.43440 0.50538
7 2.05971 0.62531
6 2.77621 0.71650
5 3.57305 0.79684
4 4.41764 0.84459
3 5.28299 0.86535

Table 4

To sum up then, all these numerical results support the conjecture that leaders
have greater incentives to upgrade than laggards do.22 Therefore they suggest that
the dynamics of competition under the FPA will similarly be biased in favor of the
current leader. As a result, we do not expect a fuller dynamic model to provide
more support for the FPA.

6. Concluding remarks

Asymmetries among bidders are widespread in procurement situations. They are
also a source of concern for procurement authorities. However, our understanding

22Of course, these results are largely indicative. Moreover, the numbers in the table refer to
the gross bene…ts from the investment. If the origin of the change in …rms’ competitive position
arise from synergies with other auctions, then of course the “investment” comes in for free.
Otherwise, a de…nite conclusion would require us to model the investment technology as well.
If costs increase with the initial competitive position of …rms, this could of course provide a
countervailing force.
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of these market situations has been largely limited to date by the lack of explicit
solutions for the equilibrium in the asymmetric …rst price auction.

In this paper, we have provided comparative statics results for a class of in-
vestments in cost reduction in the …rst price auction. In section 3, we showed
that, after the investment, the investor’s opponents bid collectively more aggres-
sively. In the terminology of industrial organization, this means that investments
in the …rst price auction have a negative strategic e¤ect. In turn, we found in
section 4 that this e¤ect leads to lower investment levels in the …rst price auction
than in the second price auction. Finally, the results in section 5 suggested that
market leaders tend to invest more than laggards. It is tempting to interpret the
low level of competition and of turnover in many procurement markets in light of
these results.

At a purely theoretical level, our results contribute to the current e¤orts by
various researchers to characterize and describe the equilibrium in the asymmetric
…rst price auction. Our analysis deals with more than two bidders and provides
a systematic treatment of potentially di¤erent bidding supports.

Finally, it is interesting to stress the fact that most of auction theory and, in
particular, the comparison between market rules, take the distributions of private
information as exogenously given. In practice, this should not be the case as
market institutions are likely to a¤ect the incentives for entry and investment. In
this paper, we have o¤ered a …rst comparison between the …rst price auction and
the second price auction when …rms are not necessarily symmetric ex-ante, the
distributions of costs are endogenous and investment is observable. Our analysis
has highlighted two attractive features of the second price auction: (1) it generates
higher investment levels than the commonly used …rst price auction and (2) these
investment levels are socially e¢cient. These results suggest that in markets
where investment prior to the auction is deemed important or where there exist
positive synergies between auctions, the second price auction is likely to be better
at fostering a healthy level of competition.

In any case, further research is needed. We have assumed that only one …rm
has the opportunity to invest at any single point in time. It would be interesting
to investigate whether our underinvestment result continues to hold and asym-
metries are also self-reinforcing under the …rst price auction when investment is
simultaneous (we conjecture that this is the case).23 Another important open

23Whether the sequential or the simultaneous investment assumption is more relevant depends
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question for the …rst price auction is the source of bidders’ pro…ts, since these
are ultimately driving incentives. In the meantime, economists will need to rely
on numerical methods for gaining understanding of the basic forces at play in
asymmetric …rst price auctions (and they have already successfully done so: see
Marshall et al., 1994, Athey, 1997, and Li and Riley, 1999).

of course on the economic environment under study. An important area of application for the
sequential investment case is when the auction is repeated and there is some linkages (through
capacity, learning, ...) between them.
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7. Appendix

Lemma 6: Behavior of W1(b) close to u = eu:
Let W1(b) =

Q
j 6=1

(1 ¡ pj(b)); i.e. W1(b) is the probability that bidder 1 bid wins

the auction with a bid of b in the original con…guration: De…ne fW1(b) similarly.
With these notations, …rm 1’s FOC can be rewritten as:

¡W
0
1(b)

W1(b)
=

1

b¡ Á1(b)
and ¡

fW 0
1(b)fW1(b)

=
1

b¡ eÁ1(b) (A.1)

In the procurement …rst price auction, the upper bound to the equilibrium winning
bids, u; is a singularity point for at least one of the di¤erential equations that
characterize the equilibrium (since for at least one …rm, pj(u) = 1 and so the left-
hand side of (A.1) is undetermined at u): We want to pin down the relationship
between W1 and fW1when u = eu:
Lemma 6: Let 1 be the upgrader and suppose that eu = u. Then
(a) if W 0

1(b)

W1(b)
>

fW 0
1(b)fW1(b)

for all b 2 (u¡ ±; u) for some ± positive, then fW1(b) > W1(b)

in (u¡ ±; u);
(b) if fW1(b) > W1(b) in some neighborhood of u; then 9 ± > 0 such that W 0

1(b)

W1(b)
>fW 0

1(b)fW1(b)
for all b 2 (u¡ ±; u),

and the same claims hold by inverting the roles of W1 and fW1:

Proof of lemma 6: (a) Towards a contradiction, suppose that there existsbb 2 (u¡ ±; u) such that fW1(bb) < W1(bb) (this is without loss of generality since iffW1(bb) = W1(bb); then fW1(bb + ") < W1(bb + ") for " small enough) . fW1(b)fW1(b)
< W1(b)

W1(b)

for all b 2 (u¡ ±; u) implies that d
db

³fW1(b)
W1(b)

´
< 0 on the same interval. Then,

Z u

bb
d

db

ÃfW1(b)

W1(b)

!
db =lim

b!u

fW1(b)

W1(b)
¡
fW1(bb)
W1(bb) < 0:

That is,

lim
b!u

fW1(b)

W1(b)
<
fW1(bb)
W1(bb) < 1: (A.2)
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From lemma 3, we know that u = eu only in two cases: (i) if there are at least
two …rms j such that u = cj and c1;ec1 ¸ u; (ii) if ec1 = c1 < min

j 6=i
fcjg: The

con…guration where all …rms have the same maximum cost is included in the …rst
case. Bajari (1998) and, for the more general form of the pro…t function, Maskin
and Riley (1996) have found expressions for the …rst derivative of inverse bidding

functions at u: They satisfy Á0j (u) = ¡ N
N¡1

@
@b
¼j(u;u)

@
@c
¼j(u;u)

<1:We refer to these papers
for a proof of this result. Case (i) also includes the possibility that two …rms share
the same maximum cost equal to u but some other …rms have a strictly higher
maximum cost. We shall argue that this possibility is a knife-edge case (we can
rule it out by imposing the condition that, when some maximum costs di¤er, then
they should all di¤er) and ignore it.24 With this in mind, we need to consider two
cases:

(i) All …rms have the same maximum cost, u: Using L’Hbopital’s rule and the fact
that Á0j(u) = eÁ0j(u) <1; we get that:

lim
b!u

fW1(b)

W1(b)
= 1;

and this contradicts (7.1).

(ii) c1 = ec1 < cj for all j 6= i: In such a case,
lim
b!u

fW1(b)

W1(b)
=

Q
j 6=i
[1¡ Fj(u)]Q

j 6=i
[1¡ Fj(u)] = 1;

since Fj(u) < 1 for all j 6= i; and we get a contradiction again with (7.1).
The same proof can be used reversing the roles of fW1(b) and W1(b):

(b) Towards a contradiction, suppose that for all b in a neighborhood of u; W
0
1(b)

W1(b)
·fW 0

1(b)fW1(b)
: Then, applying the argument of part (a), we get that fW1(b) · W1(b) in

that neighborhood. This contradicts the hypothesis.

Proof of proposition 2 when the support of bids need not be common:
What changes when the supports of bids are not common to all …rms is that we
can no longer start on the premise that epj > pj for all j 6= 1 close to l since it

24A continuity argument would su¢ce as well.
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could be that for some j; l · lj < elj (by contrast, claims 2 and 3 in the main body
of the proof continue to hold). To account for this, we simply need to rede…ne the
…rst “relevant crossing”, b1 as used in claim 4.

b1 = min
b¸l
fb s.t. eÁj(b) = Áj(b) for j 6= 1; lj when lj < elj for j 6= 1g (A.3)

With this de…nition, it is easy to check that fW1(b) < W1(b) for all b · b1: More-
over, we have:

Claim 5: eÁ1(b1) < Á1(b1)
Proof: First, notice that …rm 1 must be bidding down to el after the investment
since, by assumption, eF1 º Fj for all j 6= 1 (and remember from our discussion in
section 2 that li · lj i¤ ci · cj): The rest of the proof adopts the same technique
as lemma 4. Towards a contradiction, suppose that eÁ1(b1) ¸ Á1(b1): At b1; there
are potentially three types of …rms bidding:

1. The …rms that bid down to b1 under both con…gurations, (Fj; F¡j) and
( eFj ; F¡j): We index them by i:

2. Firms that bid down to b1 only under (Fj; F¡j): We index them by q:

3. Firms that bid down to b1 only under ( eFj; F¡j): We index them by r:

Suppose that b1 is such that eÁj(b1) = Áj(b1) for j 6= 1: Using …rm j’s FOC, we
have that, at b1;

1

b1 ¡ Áj(b1)
=

X
i6=j

ep0i
1¡ epi +X ep0r

1¡ epr =X p0q
1¡ pq+

X
i6=j

p0i
1¡ pi (A.4)

and, for all other …rms in category 1, eÁk ¸ Ák; soX
i6=k

ep0i
1¡ epi +X ep0r

1¡ epr ¸X p0q
1¡ pq+

X
i6=k

p0i
1¡ pi (A.5)

Now, because at b1 eÁj is crossing Áj from above, we have ep0j
1¡epj < p0j

1¡pj : Comparing
(A.4) and (A.5), we …nd that for all k 6= j in category 1,

ep0k
1¡ epk ¡ p0k

1¡ pk ·
ep0j

1¡ epj ¡ p0j
1¡ pj < 0 (A.6)
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Comparing (A.6) with (A.4) and (A.5) again, we conclude that there must exist
a …rm in category 3 at b1:Let’s call it s:Using (A.6) and (A.4), we have

1

b1 ¡ cs
· 1

b1 ¡ eÁs(b1) =
X ep0i

1¡ epi+X
r 6=s

ep0r
1¡ epr < X p0q

1¡ pq +
X p0i

1¡ pi

But this contradicts the fact that …rm s does not bid down to b1 under (Fj; F¡j):
We now turn to the case where b1 corresponds lj when lj < elj for j 6= 1: Then,

at b1; we have 0 =
ep0j
1¡epj < p0j

1¡pj : We also have that cj =
eÁj(b1) < Áj(b1): Using

bidder j’s FOC this means that:X
i6=j

ep0i
1¡ epi +X ep0r

1¡ epr <X p0q
1¡ pq+

X
i6=j

p0i
1¡ pi

Now, for all other bidders in category 1, eÁk ¸ Ák; so (A.5) holds for them. Arguing
as before, we …nd that (A.6) must hold, that there must be a …rm in category 3,
and we get the same contradiction as above.

From claim 5, we can continue the argument along the same lines as claim 4 in
the main body of the proof.
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