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Abstract

We describe conditions for the existence of a stationary Markovian
equilibrium when total production or total endowment is a random vari-
able. Apart from regularity assumptions, there are two crucial conditions:
(i) low information - agents are ignorant of both total endowment and
their own endowments when they make decisions in a given period, and
(i) proportional endowments - the endowment of each agent is in propor-
tion, possibly a random proportion, to the total endowment. When these
conditions hold, there is a stationary equilibrium. When they do not hold,
such equilibrium need not exist.

1 Introduction

This paper is one of a series of investigations of a mass-market economy with
stochastic elements in which the optimization problems faced by each of a con-
tinuum of agents are modelled as parallel dynamic programming problems. The
model used is a strategic market game at the highest level of aggregation, in
order to concentrate on the monetary aspects of a stochastic environment. Al-
though there are several previous papers which provide economic motivation
and modelling details (Karatzas, Shubik & Sudderth (1994) and (1997), and
Geanakoplos, Karatzas, Shubik & Sudderth (1998), referred to below as [KSS1],
[KSS2], and [GKSS], respectively), we have attempted to make this paper as
self-contained as possible. However, we will make use of several theorems estab-
lished in these earlier works.

We consider an economy with a stochastic supply of goods where: (i) the
endowment of each agent is in proportion (possibly a random proportion) to
the total amount of goods available; and (ii) the agents must bid for goods in
each period before knowing both the total supply of goods available and the
realization of their own random endowments.

For such an economy, a stationary equilibrium will be shown to exist, where
the optimal bid of an agent in each period depends only on the current wealth of
the agent. In equilibrium there will be a stationary distribution of wealth among
agents, although prices and the wealth of individual agents will fluctuate as



random processes. This will be true whether or not the opportunity is available
for agents to borrow from, or deposit in, an outside (government) bank.

When either endowments are not proportional, or the agents have additional
information in the form of advance knowledge of the total supply of goods,
then there need not exist such an equilibrium. This will be illustrated by two
examples. One interpretation of these results is that better short-term forecasting
can be destabilizing. We plan further investigation of these “high information"
phenomena in a subsequent paper.

The next section has some preliminary discussion of our model. Sections 3
and 4 treat the the model without lending, Sections 5 and 6 are on the model
with lending and possible bankruptcy, whereas the final Section 7 treats five
simple examples that illustrate the existence and non-existence of stationary
equilibrium.

2 Preliminaries

For simplicity we omit production from consideration. Instead, we consider an
economy where all consumption goods are bought for cash (fiat money) in a
competitive market. Each individual agent begins with an initial endowment of
money and a claim to the proceeds from the consumption goods which are sold in
the market. The goods enter the economy in each period as if they were “manna"
from an undescribed production process, and are owned by the individual agents.
However, the agents are required to sell the goods in the market, and do not
receive the proceeds until the start of the subsequent period. The assumption
that all goods go through the market is probably a better approximation of the
realities in a modern economy than the reverse, where each agent can consume
everything directly without the interface of markets and prices.

Our model has a continuum of agents indexed by the unit interval I = [0, 1]
and runs in discrete time units n = 0,1,---. At the beginning of each time-
period n, every agent a € I receives an endowment Y,*(w) in units of a non-
durable commodity. The random variables Y,&* and all other random variables
in this paper are defined on a given probability space (2, F,P).

We shall consider the no-lending model of [KSS1], and also the lending with
possible bankruptcy model of [GKSS]. Unlike these earlier papers, it will no
longer be assumed that total production @ is constant from period to period,
but instead that production

Qulw) = / Y2 () (da)

in period n is a random variable, for all n =0,1,---.
The following assumption will be in force until the examples of the final
section.

Assumption 1. 1. The total-production variables Q1,Q2,--- are IID (inde-
pendent and identically distributed) with common distribution . It will also be
assumed that the QQ,,’s are strictly positive with finite mean.



2. The individual endowment variables Y,*(w) are proportional to the Q,(w),
in the sense that
Y ¥ w) = Z (w)Qn(w) forall ael, neN, weqQ, (2.1)

where the sequences {Z{, Z§, ...} and {Q1,Q2,...} are independent, ZS > 0,
EZ% =1 and Z¢, ZS, - - - are IID with common distribution \*, for each o € I.

As a consequence of these assumptions, we have

EY® = (EZ2)(EQ,) = EQ,. (2.2)

3 The Model without Lending

Let ¢ be a non-atomic probability measure on the Borel subsets of I = [0, 1] that
corresponds to the “spatial" distribution of agents. For a« € I and n > 1, let
@, (w) and F¢ ; denote respectively the wealth and information oc—algebra
available to agent « at the beginning of period n. As in [KSS1], agent a bids an
amount b% (w) € [0,S2_; (w)] of money for the consumption good before knowing
the value of Qn(w) or ¥,*(w). We call this the low-information condition. (In
other words, the information F<_; available to the agent at the beginning of pe-
riod n, measures the values of past quantities including Sg, Sy, Qr, Z5, b for
k=1,---,n—1, but not of @Q,, Y,*.)
Once all agents have placed their bids, the total amount of fiat money bid
for the consumption good is given by

B(w) = / b3 (w)p(dar),

and a new price is formed as

in goods, as well as

_ Bn(w)
Qn(w)

in cash income, and then enters the next period with wealth

P (@)Y (@) 2 (0)@n(w) = Bu(w)Z; (w) (3.1)

Sp(w) = 551 (@) = by + Bn(w)Z (@) (3.2)

in fiat money.



Each agent « is assumed to have a utility function u® : [0,00) — [0, 00)
for consumption of goods; this function is continuous and continuously differen-
tiable, strictly concave, strictly increasing, and satisfies u®(0) = 0, (u®)’,(0) €
(0,00). The utility earned by agent « in period n is u®(z%), and the agent seeks
to maximize the expected value of his total discounted utility

oo

Z B u (25 11)-

n=0

A strategy T for agent « specifies the sequence of bids {b3'}52 ;. The strat-
egy 7% is called stationary, if it specifies the bids in terms of a single function
c®(+) of wealth, in the form

bg = Ca( 7(:—1)7 n 2 11 (33)

where ¢*(s) € [0,s], s > 0. We call ¢*() the consumption function for the
strategy m<.
The wealth distribution on day n is the random measure v, (-,w) given by

vn(A,w)=p{a el : S;(w) e A}), A € B([0,00)). (3.4)

We are now ready to define the type of equilibrium that we want to study
in this note.

Definition 3.1. A collection of stationary strategies {7*, o € I'} and a proba-
bility distribution p on B((0,00)) form a stationary equilibrium, if

(a) given that v = p and that every agent « plays strategy 7, we have v, = i
for all » > 1, and

(b) given that vg = u, every strategy m® is optimal for agent «, when every
other agent 3 plays m° (8 € I,3 # a).

Unlike [KSS1], there is no mention of price in Definition 3.1. This is, in part,
because the sequence {p,} will not be constant - even in stationary equilibrium
- for the model studied here. Indeed, if the consumption function ¢*(-) for 7
is the same across all agents a € I, and equal to c(-), then

(W) = fbff(w) o(da) fc(s) p(ds)

@n(w) Qn(w)

p

where the sequence of total bids

By(w)= B = / o(s) p(ds)

is constant in equilibrium; see Theorem 4.2 below. Thus, the prices {p,} form
then a sequence of IID random variables, because the {Q,,} do so by assumption.
The constant B will play the same mathematical role that was played by the
price p in [KSS1] and [GKSS], but the interpretation will, of course, be different.



4 Existence of Stationary Equilibrium for the
Model without Lending

The methods of [KSS1] can be adapted to construct a stationary equilibrium for
the present model. As in [KSS1], we first consider the one-person game faced by
an agent «, assuming that the economy is in stationary equilibrium. For ease of
notation we suppress the superscript « while discussing the one-person game.
Furthermore, we shall also assume that the agents are homogeneous, in the sense
that they all have the same utility function u(-) and the same distribution A
for their income variables. This assumption makes the existence proof more
transparent, but is not necessary; the proof in [KSS1] works for many types and
can be adapted to the present context.
We introduce a new utility function defined, for each b > 0, by

a(b) = E[u(bQ(w))] = / u(bq) ¢(da)- (4.1)

Observe that the expected utility earned by an agent who bids b when faced by
a random price p(w) = B/Q(w), can be written

bleb o))

It is straightforward to verify that @(-) has all the properties, such as strict
concavity, that were assumed for u(-).

Let V(-) be the value function for an agent playing in equilibrium. In essence,
the agent faces a discounted dynamic programming problem and, as in [KSS1],
V(-) satisfies the Bellman equation

V(s) = sup [u (%)Jrﬂ-EV(sbJrBZ) . (4.3)

0<b<s

This dynamic programming problem is of the type studied in [KSS1], and The-
orem 4.1 of that paper has information about it. In particular, there is a unique
optimal stationary plan m = m(B) corresponding to a consumption function
¢:]0,00) — [0,00). We sometimes write c¢(s) = ¢(s; B) to show its dependence
on the quantity B.

Consider now the Markov chain {S,,} of successive fortunes for an agent who
plays the optimal strategy = given by ¢(-). Then we have

Sn+1 - Sn - C(Sna B) + BZTL+1a (44)

where Z1,Zs,... are IID with common distribution A. By Theorem 5.1 of
[KSS1], this chain has a unique stationary distribution p(-) = u(-; B) defined on
B(]0,00)). Now assume that Z has a finite second moment. Then, by Theorem
5.7 of [KSS1], the stationary distribution p has a finite mean. The following
lemma expresses the fact that the total amount bid by all agents is B, when the
wealth distribution is u(-; B).



Lemma 4.1. [ ¢(s; B)u(ds; B) = B.

Proof. Assume that Sy has the stationary distribution p. Then take expecta-
tions in (4.4) to obtain

ES,41 =ES, — /c(s; B)u(ds; B)+ B - EZ

and the desired formula follows, since ES, 1 = ES,, and EZ = 1. O

Theorem 4.2. For each B > 0, there is a stationary equilibrium for the no-
lending model with wealth distribution p(-) = u(-; B) and stationary strategies
7 = w(B), for all agents o € 1.

Proof. Construct the variables Z%(w) = Z, (o, w) using the technique of Feld-
man & Gilles (1985), so that

Zy(a,-), Za(av,-),. .. are IID with distribution A, for every o € I, and
Z1(-yw), Za(-,w), ... are IID with distribution A, for every w € Q.

Then the chain {5, («,w)} has the same dynamics for each fixed w € Q as it does
for each fixed a € I. The distribution p is stationary for the chain when « is
fixed, and will therefore be a stationary wealth distribution for the many-person
game if the total bids By (w), Ba(w), ... remain equal to B. Now, if So(-,w) has
distribution p, then

Buw) = [ c(Sofanw)plda) = [ o(s) n(ds) = B,

by Lemma 4.1. By induction, B,(w) = B for all n and w. Hence, the wealth
distributions v, are all equal to p.

The optimality of 7* = 7w (B) follows from its optimality in the one-person
game together with the fact that a single player cannot affect the value of the
total bid. |

5 The Model with Lending and Possible Bank-
ruptcy

We now assume that there is a Central Bank which makes loans and accepts
deposits. The bank sets two interest rates in each time period n, namely
rin(w) = 1+ py,,(w) to be paid by borrowers and ro,(w) = 1 4 py,(w) to
be paid to depositors. These rates are assumed to satisfy

1 <rop(w) <rpp(w), ron(w) < (5.1)

=

foralln € N,w € Q.



Agents are required to pay their debts back at the beginning of the next
period, when they have sufficient funds to do so. However, it can happen that
they are unable to pay back their debts in full, and are thus forced to pay
a bankruptcy penalty in units of utility, before they are allowed to continue
play. For this reason, we assume now that each agent « has a utility function
u® : R — R defined on the entire real line, and satisfies all the other assumptions
made above. For z < 0, the quantity u®(z) is negative and measures the
“disutility" for agent « of going bankrupt by an amount z; for x > 0, the
quantity u®(z) is positive and measures the utility derived by « from consuming
2 units of the commodity, just as before.

Suppose that an agent « begins in period n with wealth S¢_, (w). If S¥_, (w) <
0, then agent o has an unpaid debt from the previous period and is assessed a
penalty of u(SS_;(w)/pn—1(w)). The debt is then forgiven, and the agent con-
tinues play from wealth-position 0. If S¢ ;(w) > 0, then agent « is not in debt
and plays from position S, (w). In both cases, an agent «, possibly after being
punished, plays from the wealth-position (S¢_;(w))™ = max{S%_;(w),0}.

Based on knowledge of past quantities S§, Si, Zi, Qk, "1k, T2r for 1<
k <n—1, agent « chooses a bid

bn(w) € [0, (Sp_y (W)™ + &7,

where k% > 0 is an upper bound on loans to a. As before, @ must bid in
ignorance of both the total endowment @, (w) and his personal endowment
Y,*(w) for period n.

The total bid B,,, the price p,, and agent a’s quantities of goods & and fiat
money p,Y,* = B, Z¢ are formed exactly as in the no-lending model of Section
3. Formula (3.2) for the dynamics now takes the form
o [omaltn - (ST BAZE (STot<m o
" ral(Sg_0)F —b9) + BuZg, (S5t > b '

The wealth-distribution v,, on day n is defined by formula (3.3) as before,
but with the understanding that A now ranges over Borel subsets of the whole
real line, since some agents may have negative wealth. An agent a’s utility in
period n is now given by

*(2n (W), n-1(w) =0,

= {Ua(ﬂﬁ (W)) + u(Sp_1 (W) /Pr—1(w)), SH_1(w) <O.

As before, agent « seeks to maximize the expected value of his total discounted
utility

> B w).
n=0

We extend now the definition of stationary equilibrium to the model with
lending.



Definition 5.1. A stationary equilibrium for the model with lending, consists
of a wealth distribution p (i.e. a probability distribution) on the Borel subsets
of the real line, of interest rates ry, ro with 1 <7y <1y, ro < 1/8, and
of a collection of stationary strategies {m®, o € I'} such that, if the bank sets
interest rates 1 and 75 in every period, and if the initial wealth distribution is
Vg = N, then

(a) vp =pfor all n > 1 when every agent « plays strategy 7%, and

(b) every strategy 7@ is optimal for agent o when every other agent § plays

(B €1,B+#a).

Suppose that the model is in stationary equilibrium, and that each stationary
strategy m® specifies its bids b by the same consumption function ¢* = ¢(+)
with 0 < ¢®(s) < s+ k for all s > 0, and the same upper-bound k* = k on
loans, for all a € I. Then the total bid

B = B,(w) = / (5 pu(ds)

remains constant, while the prices {p,} form an IID sequence just as in the
no-lending model of Section 3.

6 Existence of Stationary Equilibrium for the
Model with Lending and Possible Bankruptcy

The methods and results of [GKSS]| can be used here, as those of [KSS1] were
used in Section 4. We consider the one-person game faced by an agent when
the economy is in stationary equilibrium. We suppress the superscript o and
assume that agents are homogeneous, with common utility function u(-), income
distribution A, and loan limit k. We define the utility function a(-) as in (4.1)
and observe that (4.2) remains correct. Formula (5.2) for the dynamics can be
written in the simpler form

Sn =9 ((Sn1)™ —bn) + BZ, (6.1)

where

rox, x> 0.

rx, <0,
g(x)—{1

The Bellman equation becomes

V(s) = {SUPogbgerk [(b/B) + B-EV(g(s —b)+ BZ], s>0 62)

u(s/B)+V(0), s<O0.

This equation is of the type studied in [GKSS], and all of the major results
of that paper have counterparts here. For example, Theorem 4.2 of [GKSS]
applies, to tell us that there is a unique stationary optimal strategy = = w(B)



corresponding to a consumption function ¢(-) = ¢(-; B). The Markov chain {5, }
for the fortunes of an agent who plays m(B) evolves according to the dynamics

Spr1=g((Sn)T — c((Syn)"; B)) + BZpy1. (6.3)

Conditions for this chain to have a stationary distribution p with finite mean
are available in Theorem 4.3 of [GKSS]. For u to be the wealth-distribution of
a stationary equilibrium, we must also assume that the bank balances its books
under p.

Assumption 2. (i) The Markov chain {S,} of (6.3) has an invariant dis-
tribution p with finite mean.

(i) Under the wealth distribution p, the total amount of money paid back
to the bank by borrowers in a given period, is equal to the sum of the total
borrowed plus the amount of interest paid by the bank to lenders. This
condition can be written as

[ 1Bz n vt na@nae) = [t uds) + o [ 1) utas),

where d(s) = (c(s) —s)T and l(s) = (s — c(s))T are the amounts borrowed
and deposited, respectively, under the stationary strategy c(-) by an agent
with wealth s > 0.

Theorem 6.1. If Assumption 2 holds, then there is a stationary equilibrium
with wealth distribution p, and interest rates ry, ro in which every agent plays
the plan .

The proof of this theorem is the same as that of Theorem 4.2 once the
following lemma is established.

Lemma 6.2. [c(s™, B)u(ds) = B.

The proof of the lemma is similar to that of Lemma 5.1 in [GKSS].

Theorem 6.1 is intuitively appealing, and useful for verifying examples of
stationary equilibria. However, it is inadequate as an existence theorem because
condition (i) of Assumption 1 is delicate and difficult to check. There are two
existence theorems in [GKSS], Theorems 7.1 and 7.2, that do not rely on such
an assumption. Here we present the analogue of the second of them.

Theorem 6.3. Suppose that the variables {Z%} are uniformly bounded, and
that the derivative of the utility function u(-) is bounded away from zero. Then
a stationary equilibrium exists.

The proof is similar to that of Theorem 7.2 in [GKSS], with the constant B
again playing the mathematical role played by the price p in [GKSS]. The utility
function @(-) replaces u(-) in the argument, and the hypothesis that inf «/(-) > 0
implies that the same is true for a(-).



7 Examples

Here we present five examples. The first two illustrate the existence theorem
(4.2) for the model without lending.

Example 7.1. Suppose that the utility function is linear, namely u(z) = x.
The endowment variables {Y,"} satisfy the proportionality assumption (2.1) but
are otherwise arbitrary. The function @(-) of (4.1) is also linear, since

a(b) = / b C(dg) = b- E(Q).

We shall show that the optimal policy m of Theorem 4.2 is given by the “spend
all" consumption function c¢(s) = s. To see this, let I(-) be the return function
for m. Then

I(s) =d(s/B)+ - E[I(s — s+ BZ)| = %E(Q) T

where I* := - E[I(BZ)]. To prove optimality, we have to check that I(-)
satisfies the Bellman equation:

I(s) = max [a(b/B) + 3. BlI(s— b+BZ)]]

0<b<s
Now
E[I(s—b+ BZ)| = E [#ﬂ(@)ﬂ*] - $~EQ+I*
so that the function
_ B .  E@Q) s .
a(b/B)+ - Ell(s b+ BZ)] = b(1 - )= + 8[ (% +1) BQ) +I']

attains its maximum on [0,s] at b = ¢(s) = s. Hence, the Bellman equation
holds and 7 is optimal. Notice that under 7,

Sn-f—l - Sn - Sn + BZn+1 = BZn+1
and the stationary distribution p is that of BZ.

Example 7.2. Assume that the utility function is

b <b<1
u(b) = » 0sbs1,
1, b>1,

that the distribution ¢ of the endowment variables {@,} is the two-point dis-

tribution
C({1/2}) = c({1}) = 1/2,

10



and that the distribution A of the proportions {Z,,} of the total endowment is
the two-point distribution

A{0}) = 3/4, A({4}) = 1/4.

Suppose also that the total bid B is 1. Then the price p = B/Q fluctuates
between p; =1 (when Q = 1) and po = 2 (when @ = 1/2). The modified utility
function of (4.1) is given by

3b 0<b<1,

1 1 4
a(b) = gu(b) + Fu(b/2) = H, 1<b<2, (7.1)
1 b> 2.

3

Clearly, an agent with this utility function should never bid more than 2. How-
ever, for small values of 3, it is optimal to bid all up to a maximum of 2. In
fact, we will show that, for 0 < 8 < 3/7, the optimal policy 7 is of the form

s , 0<s<2,
C(S): s> 2

3

To establish the optimality of 7, it suffices to show that the return function
I() satisfies the Bellman equation (4.3). First observe that I(-) satisfies the
functional equation

324 B8-EI(Z), 0<s<1,
I(s) =< 2 4+ 3. EI(Z) 1<s<2, (7.2)
)

1+ 81(s+2)+21(s-2), s>2.

W~

In particular,
3/4, 0<s<,
I'(s)=<1/4, 1<s<2, (7.3)
(B/4) I'(s +2)+ (368/4) I'(s — 2) , for nonintegers s > 2.

As a step toward the verification of the Bellman equation, we shall see that the
function I(-) satisfies the concavity condition:

1> BI'.(4) + 38T, (0). (7.4)

Note that, if we can compute I(0) = - EI(Z), then, by (7.2), we know the
function I(-) on the interval [0,2].
Now write ay, := I(2k), k =0,1,... and,by (7.2), we have the recursion

3
ap =1+ gak_,_l + Iﬂak—h k>1. (75)

A particular solution of (7.5) is a = ﬁ, so the general solution is given by

1
I(Qk):ak:m+A9k, k=1,2,... (7.6)

11



for a suitable real constant A. Here € is the root of the equation

O =~ Zet3=0

g
in the interval (0,0). Note that f(0) = 3 > 0, f(3) = > -1 < 0, and
g — 2=/4-35"
= -

Using (7.2) and (7.6), we see that I(2) = 1+ I(1) and hence I(0) = ﬁ +
A9 — 1= 5 + A6. Also 1(0) = 51(4) + 221(0). Thus

33 B
(1- Z)I(O) = 11(4)
a 38, A B w1
(1 — I)(m +A9) = Z<A9 + m)

Hence, A = —15, I(0) = 1—%—1%09 >0,and I(1) = 2+1(0) = ﬁ i
More generally, with dy, := I(2k + 1), k = 0,1, ..., we have the recursion

3
dk:1+§dk+1+zﬁdk_1, k=1,2,...

with general solution

1
dp = —— + D§* k=12 ....
k ].—,6+ ) ) Ay

Plugging this last expression into the equality I(3) =1 + gl (5) + %I (1), and
substituting the value of I(1) from above, we obtain D = A — 1 = -, — 1.

With these computations in place, we are now in a position to check the
concavity condition (7.5). Indeed, I’ (4) = I(5) —I(4) = da —as = (D — A)f* =

[A(0 —1) = §160* = 267 = 3(36 — 3) = % — §. Thus
, , 9 3
BIL(4) +30IL(0) =30 — 8 +30- 5 =30 < 1.

It follows that f(3) <0 or § — % + 3 < 0, and this last condition is equivalent

to our assumption that § < 3/7.

We are now prepared to complete the proof that m is optimal by showing that
its return function I(-) satisfies the Bellman equation (4.3). Equivalently, we
have to check that the function

30

Py (b) :=u(b) + BEI(s —b+ Z) :ﬂ(b)+§[(s—b+4)+zf(sfb)

attains its mazimum over b € [0, s] at b* = c(s). We consider three cases.

12



Case I: 0 < s < 1. In this case, for 0 < b < s:

Py (b) = %b+§[(sfb+4)+¥f(s—b)
and 3 5 38
W) = 5 — [T () + = 10(0) > 0.

Thus ¥',(s—) > 0, and b* = s = c(s) is the location of the maximum.
Case II: 1 < s < 2. Here we use (7.1) and (7.3) to obtain

[

I()+2ra1), o<b<s—1,
Ii(4)+21,0), s—1<b<l,
I(4)+2r.0)], 1<b<s.

Y (b) =

NN NN
|
NN [N

In particular, ¥.(-) > 0 on [0,s], thus b* = s = c(s), as follows from Lemma
7.1 below.

Case III: s > 2. In this case, we have

3 181 (s+3)+ 221, (s—1)], 0<b<1,
Pob) =S 2 — 21, (s +2) + 21, (s — 2)], 1<b<?2,

—%I;(LS —b| +4) i %JléIQ_(Ls -b]), b>2.

The function (-) now attains its mazimum at bx = 2 = c(s), since ¥'(:) > 0
on (0,2) and ¢'(-) <0 on (2,s) as follows from Lemma 7.1 below.

Lemma 7.1. The function I(-) satisfies:
I''(0)> I, (1) >1I(2) > >0
Proof. The first three of these inequalities amount to
3/4>1/4> 21;(4) + 387 0) = 1.0,
and have been established already. So we have to prove
I' (2k) > I' 2k + 1) > I’ (2(k + 1)) > 0, for k > 2. (7.7)

Now
I' (2k) = I(2k + 1) — I(2k) = di — aj, = (D — A)#",

and
I'(2k+1) = I2(k + 1)) — I(2k + 1) = a1 — dx = (A0 — D)".
So the inequalities of (7.7) amount to
D—-—A>A0—-D>6(D—-A)>0.

But D—A=A(0—-1)—1/4=3/4, A0 —D = 1/4, and these inequalities reduce
to 0 < 6 < 1/3, which has already been proved. O

13



The optimality of the strategy ™ for an agent playing in equilibrium with B =
1 has now been established. The stationary distribution p for the corresponding
Markov chain as in (4.4) is supported by the set of even integers {0,2,---} and
given by

p({0}) = 1/2, u({2}) =1/6, p({2k}) = (2/3)(1/3)""" fork >2.

(The calculation of p is explained in some detail in Example 2.5 of [KSS1].)
The family of stationary strategies 7 = 7w and the wealth distribution p form a
stationary equilibrium as in Theorem 4.2 for 0 < 3 < 3/7. There will also exist
equilibria for other values of 3, but we shall not calculate them here.

The next example provides a simple illustration of Theorem 6.1.

Example 7.3. Let the utility function be

b b>
ub) =< 20,
%, b<0.

Suppose that the common distribution ¢ of the variables {Q,} is (({1}) =
¢({3}) = 1/2 and that the distribution A of the {Z,} is A\({0}) = A({2}) =1/2.
The modified utility @ is then

1 1 %, b>0
i(b) = =u(b) + =u(3b) =3 7=
(b) = Fu(b) + 5u(3b) {4b, b<0.

Take the interest rates to be r; = ro = 2 and the bound on lending to be k = 1.
Finally assume that the total bid B is 1.

Although the penalty for default is heavy, as reflected by the larger value of
u/(b) for b < 0, it is to be expected that an agent will choose to make large bids
for 8 sufficiently small. Indeed we shall show that the optimal strategy 7 for
0 < 8 < 1/3is to borrow up to the limit and spend everything, corresponding to
c(s) = s+1forall s > 0. (Recall that an agent with wealth s < 0 is punished in
amount u(s) and then plays from position 0. Thus a strategy need only specify
bids for nonnegative values of s.)

Let I(-) be the return function for 7. Then, for s >0

I(s)=u(s+ 1)+ BEI(2(s—(s+ 1))+ Z)| =2s+ 2+ B[I(-2) + 1(0)],

and, for s < 0,

Thus
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To verify that I(-) satisfies the Bellman equation (6.2), consider the function

.(b) = (b) + BEI((s — b) + Z)
= 2+ D1(2s — b)) + 12(s — 1) + 2)]
_{2[;451)+c1 ,0<b<s,

S )20—68b+cy L, s<b<s+1,
where ¢; and ¢y are constants. Thus

W (b) = 1-26, 0<pB<s,
1-38, s<b<s+1,

and we see that ¢ ,(-) attains its maximum on [0, s + 1] at s + 1 because of our
assumption that 3 < 1/3. It follows that I(-) satisfies the Bellman equation and
7 is optimal. The Markov chain {S,,} of (6.3) becomes

Spr1 =2((Sn)T = ((Sp)" +1)+Z2 =2 —2.

The stationary wealth-distribution, namely, the distribution of Z — 2, has mass
1/2 at —2 and mass 1/2 at 0. Obviously, clause (i) of Assumption 2 is satisfied.
Clause (ii) is also satisfied, because every agent borrows one unit of money and
spends it; one-half of the agents receive no income and pay back back nothing,
whereas the other half receive an income of 2 units of money, all of which they
pay back to the bank since the interest rate is 7; = 2. As there are no lenders,
the books balance. Theorem 6.1 now says that we have a stationary equilibrium
in which half of the agents are in debt 2 units of money and the other half hold
no money at the beginning of each period. All of the money is held by the
bank.

Suppose now that the discount factor is larger so that agents will be more
concerned about the penalties for default. In particular, assume that 1/3 < 8 <
1/2. Then an argument similar to that above shows that an optimal strategy
is for an agent to borrow nothing and spend what he has; that is, the optimal
strategy 7 corresponds to ¢(s) = s for every s > 0. This induces the Markov
chain

Sna1=2((Sn)" = (Su)")+Z2 =2

with stationary distribution equal to the distribution of Z assigning mass 1/2
each to 0 and +2. This time the books obviously balance, since no one borrows
and no one pays back. In fact, the bank has no role to play.

For the next example we drop the assumption that individual endowments
are proportional to total production (Assumption 1, part 2) and show that a
stationary equilibrium need not exist.

Example 7.4. For simplicity, we return to a no-lending model for this example.
Assume that the utility function is w(b) = b, and let the distribution ¢ of the
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variables {Q,,} be the two-point distribution: ¢({1}) = {({3}) = 1/2. Suppose
that when @Q,, = 1, the variables {Z%, a € I'} are equal to 0 or 2 with probability
1/2 each, but that when Q,, = 3, each of the Z% is also equal to 3. Thus the
{Qr} and the {Z%} are not independent as we had assumed in Assumption 1.

Now suppose, by way of contradiction, that a stationary equilibrium exists
with wealth distribution 1 and optimal stationary strategies {7%, o € I'} corre-
sponding to consumption functions ¢*(-),« € I. The total bid in each period is
then B = [ ¢*(s) u(ds) and the prices p, = B/Q,, are independent, and equal
to B and B/3 with probability 1/2 each.

Consider next the spend-all strategy 7’ with consumption function c¢(s) = s.
We will sketch the proof that 7’ is the unique optimal strategy. First we calculate
the return function I(-) for 7’

I(s)=E E +8- I(BZ)} = % +3-E[I(BZ)].
It is easy to check that I(-) satisfies the Bellman equation

I(s)= sup E [E—Fﬁl(s—b—i—BZ)} ,
0<b<s p

and that the supremum above is uniquely achieved at b = s. It follows that 7’
is the unique optimal strategy. Thus we must have 7@ = 7’ for all a. So every
agent a spends his entire wealth at every stage n and enters the next stage with
wealth

Spp1(w) = BZ (w).

(a3

But the distribution of Z, ; depends on the value of @,,. Thus the distribution
of wealth varies with the value of @,, and cannot be identically equal to the
equilibrium distribution p as we had assumed.

In our final example, we assume that agents know the value of the production
variable @,, in each period n before they make their bids. It is not surprising
that agents playing optimally take advantage of this additional information, and
therefore that a stationary equilibrium need not exist. What sort of equilibrium
is appropriate for this “high information" model is a question that we plan to
treat in a subsequent paper.

Example 7.5. As in the previous example, we consider a no-lending model
with the linear utility w(z) = z and with the distribution ¢ of the variables
Qn given by ¢({1}) = ¢({3}) = 1/2. However, we assume that the individual
endowments are proportional so that, as in Assumption 1, the variables Z¢ are
independent of the @Q,,.

Suppose, by way of contradiction, that a stationary equilibrium does exist
with wealth distribution g and optimal stationary strategies {7®, a € I} cor-
responding to consumption functions {¢*(-), a € I'}. Let B = [ ¢*(s) pu(ds) be
the total bid in each period so that the price in period n is B/3 if @, = 3 and
is B if @Q,, = 1. It is not difficult to show that, in a period when the price is
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low (i.e. when @,, = 3), the optimal bid for an agent is ¢(s) = s. Thus we must
have ¢*(s) = s for all & and s. However, in a period when the price is high (i.e.
when @Q,, = 1), an agent who spends one unit of money receives in utility %,
whereas an agent who saves the money and spends it in the next period expects
to receive 834 + 12]. Thus, for 8 € (3,1), it is optimal for an agent to spend
nothing in a period when the price is high. But then ¢*(s) = 0, a contradiction.
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