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ABSTRACT

This paper considers a new class of heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimators. The estimators considered are prewhitened kernel
estimators with vector autoregressions employed in the prewhitening stage. The paper
establishes consistency, rate of convergence, and asymptotic truncated mean squared error
(MSE) results for the estimators when a fixed or automatic bandwidth procedure is
employed. Conditions are obtained under which prewhitening improves asymptotic trun-
cated MSE. Monte Carlo results show that prewhitening is very effective in reducing bias,
improving confidence interval coverage probabilities, and reducing over—rejection of
t—statistics constructed using kernel-HAC estimators. On the other hand, prewhitening is
found to inflate the variance and MSE of the kernel estimators. Since confidence interval
coverage probabilities and over—rejection of t—statistics are usually of primary concern,
prewhitened kernel estimators provide a significant improvement over the standard non-

prewhitened kernel estimators.

JEL Classification Number: 211.

Keywords:  Asymptotics, autocorrelation, consistency, covariance matrix estimator,
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1. INTRODUCTION

Considerable attention has been paid in recent years to the estimation of covariance
matrices in the presence of heteroskedasticity and autocorrelation of unknown form, see
Hansen (1982), Levine (1983), White (1984), Gallant (1987), Newey and West (1987),
Keener, Kmenta, and Webber (1987), Robinson (1988), and Andrews (1990). As shown in
the Monte Carlo results of Andrews (1990), however, the estimators considered in the
above papers all perform quite poorly in certain contexts. This paper considers a new class
of estimators that exhibit better performance in several important respects.

In particular, this paper is motivated by the following finding. Kernel heteroskedas-
ticity and autocorrelation comsistent (HAC) covariance matrix estimators often yield
confidence intervals whose coverage probabilities are too low (equivalently, test statistics
that reject too often) and this phenomenon is not attributable to a particular choice of
kernel or bandwidth parameter (see Andrews (1990)). The problem is especially severe
when there is considerable temporal dependency in the data. This finding suggests that the
standard class of kernel HAC estimators is too restrictive and that one needs to consider a
larger class of estimators if an improved HAC estimator is to be found.

In this paper, we consider a class of prewhitened kernel HAC estimators that
includes the class of standard kernel HAC estimators. The prewhitened kernel HAC esti-
mators are shown to be consistent and to converge to the estimand at the same rate as non-
prewhitened kernel HAC estimators. Their asymptotic truncated mean squared error
(MSE) is established and conditions are given under which prewhitening improves asymp-
totic truncated MSE.

Monte Carlo tesults show that the prewhitened kernel HAC estimators have lower
bias and considerably better confidence interval coverage probabilities than do standard

kernel estimators for a wide variety of different distributions of the data. For this reason,



prewhitened kernel HAC estimators are recommended over standard kernel estimators for
use in constructing confidence intervals and test statistics. On the other hand, the Monte
Carlo results show that prewhitening inflates the variance and MSE of kernel HAC esti-
mators. In consequence, there may be cases where standard kernel HAC estimators are
preferred to prewhitened kernel HAC estimators.

Prewhitening has a long history in the time series literature and dates from the
work of Press and Tukey (1956). Additional references include Blackman and Tukey
(1958) and Grenander and Rosenblatt (1957). The idea behind prewhitening is as follows:
Suppose one is nonparametrically estimating a function f(A) at AO by taking unbiased
estimates of f(A) at a number of points A in a neighborhood of Ao and averaging them.
If the function f(A) is flat in this neighborhood, then this procedure yields an unbiased
estimator of 1'()\0) . If f{A) is not flat in this neighborhood, however, then the procedure
is biased and the magnitude of the bias depends on the degree of non—constancy of f(}).

Suppose the data and the function f(A) can be transformed such that the trans-
formed function f*()) is flatter in the neighborhood of Ay thanis f(3). Then, using the
transformed data, one can estimate f*(),) by averaging unbiased estimates of *(1) at
points A in the neighborhood of Ao - The bias incurred by doing so should be less than
that incurred by estimating f(A) as described above, since f*(A) is flatter than f£()).
Finally, one can apply the inverse of the transformation from f(A) to f*()) to obtain an
estimator of f(A) from the estimator of f*(}).

In the time series literature, the idea of prewhitening has been applied to nonpara-
metric estimators of the spectral density function. In this case, one tries to transform
(filter) the data in such a way that the transformed data is uncorrelated, since an uncorre-
lated sequence has a flat spectral density function. The estimand of interest in this paper
is just the spectral demnsity function at frequency zero in the special case where the obser-
vations are second order stationary and no parameters are estimated. Thus, it is natural to

consider using a prewhitening procedure that attempts to transform the data into an



uncorrelated sequence before applying a kernel estimator when constructing a HAC
covariance matrix estimator.

In brief, the procedure we suggest is the following: Suppose the observations are

T T
. . . 1
{(vi(§) :t=1, ..., T} and the estimand is Jp = Tszl tilEVS(ﬁo)Vt(ﬂo)' , where

[ f, and {V(fp):t=1,..., T} is a weakly dependent sequence of random
vectors (rv’s). For fixed b, one estimates a b—th order vector autoregressive (VAR)
model for {Vt(b)} . Let Al’ ceny Ab denote the estimated VAR matrices. Next, one
applies a kernel estimator to the residuals from the VAR model. Denote this estimator by
ji‘ . Finally, one undoes the prewhitening transformation (a process referred to as recolor
ing) by taking the estimator ijw of J tobe

b
AI] j [I-EA;} .

b
)
= T =1

(L1) Irpw = [I -3

1

This is the VAR prewhitened kernel HAC estimator.

There are several reasons for choosing a VAR model to do the prewhitening. First,
VARs have been found in the econometrics literature to yield reasonable approximations of
a wide variety of vector—valued time series processes. Second, it has been found in the sta-
tistical literature that autoregressive spectral density estimators provide reasonable
estimators of the spectral density functions of more general stationary time series processes,
see Parzen (1984) for references. Third, VAR models are parsimonious, at least when b is
taken to be small. Fourth, prewhitened kernel HAC estimators based on VARS are compu-
tationally quite simple. Fifth, the transformation of the data induced by prewhitening
with a VAR model is linear, and hence, it is easy to determine the inverse transformation
needed to undo the effects of prewhitening after a kernel estimator has been applied to the
transformed data. With nonlinear transformations, the inverse transformation may be dif-

ficult to determine. Of course, if prior information suggests that a model different from a



VAR model may give a better approximation in a given situation, then it may be prefer-
able to use this model to do the prewhitening.

The remainder of this paper is organized as follows: Section 2 defines the estimand
of interest, introduces the VAR prewhitening procedure, defines the class of kernel HAC
estimators, and describes a "plug—in" automatic bandwidth estimation procedure. Section
3 presents consistency, rate of convergence, and asymptotic truncated MSE results for pre-
whitened kernel HAC estimators. It also provides conditions under which prewhitening
improves asymptotic truncated MSE. Section 4 describes a Monte Carlo experiment that

is designed to assess the effectiveness of prewhitening.

2. VAR PREWHITENED HAC ESTIMATORS

First, we introduce the estimand of interest. Many parametric estimators g in

nonlinear dynamic models satisfy

d

B.4) " H2/m(8 - ) -4 N(g, 1) as Tw, where

(BpdpBg

(2.1) 1T T

Jp =181 %t =1 EVs(G)Vi(6)
B is a nonrandom ¢ x p matrix, and Vt(ﬂ) is a random p—vector for each f¢€ O ¢ RS,
Usually it is easy to construct estimators Bp of B such that Bp—Bp 290 as
T - o . The sample analogue of By with 00 replaced by @ is usually sufficient. Thus,
one can consistently estimate the "asymptotic variance" of yT(0— 0y) » viz., BpJpBi,

if one has a consistent estimator of J T - It is the estimation of JT that concerns us here.

By change of variables, the estimand J. can be rewritten as

1 3 f
EvV: .for j20
@) 1= TR s e ngge] T
2.2 = i}, where T'ra(j) = 5
T T T [T _
Tt_Ej+1EVt+jV£ for j<O
mE



and V, = Vt(ﬂo) . Since _{Vt :t 21} is taken to be "asymptotically weakly dependent"
(defined more precisely below), the lag j covariances die out as j-w, ie,

Iim supllI‘ (j)]| =0, where ]|-|| denotes the Euclidean norm. This property is exploited
ba T21
by kernel HAC estimators and by the prewhitened kernel HAC. estimators introduced

below.

We now introduce a class of VAR prewhitened HAC estimators. They are defined
as follows: Suppose @ is a y/T—consistent estimator of 00 . Estimate a b—th order VAR
process for Vt(a) :

b

(2.3) t(er)_IE AV, (8)+ V(8§ for t=b+1,..., T,

where Ar for r=1,...,b are pxp parameter estimates and {Vt(f?) :
t=b+1, ..., T} are the corresponding rtesidual vectors. For example,
{Ar :r=1, ..., b} could be the least squares (LS) estimators.” The estimated VAR
model is not meant to be an estimate of a true model. It is used as a tool to "soak up"
some of the temporal dependence in {vt(b)} and fo leave one with residuals {Vt(@)}
that are closer to white noise than are the rv’s {V.( 0y} .

Below we assume the VAR parameter estimates A " satisfy
(2.4) JT(AI - Ar) = Op(l) for some matrices A_, r=1, ..., b.

Even though there is no true VAR model, this assumption is not restrictive.

The prewhitened HAC estimator is constructed by applying a kernel HAC esti-
mator, call it jr}.(ST) , to the sequence of VAR residual vectors {VI(?)} and then
transforming this estimator into an estimator of J; by taking account of the prewhitening

procedure. Let



P]. T X X
T E ViV forg0
L . t=j+1
2.5) JA(Sy) = k[ ]I‘*(j),where P4(j) = 1 ,
( = T= 3— —T+1 SJE , T
T 3 +1V¥+JV*’ forj< 0
—J

\7’1'; = V’g(@) » k(-) is a real-valued kernel in the set X, defined below, and S is a
bandwidth parameter. A data—dependent choice of ST is discussed below. The factor
T/(T—(¢) is a small sample degrees of freedom adjustment that is introduced to offset the
effect of estimation of the {(—vector 00 .

Using results from Andrews (1990), we show that

Jx(Sp) —I% -2+ 0, where

(2.6)
sl 3 3 BVVI and Vi = 2 Av
It = EV*V} an - ,
T Tombt1t=b+1 P

provided S =o(T) . In addition, it is straightforward to show that if

b -1
(2.7) D= [Ip—rilAr}

is well—defined, then

1y 1’
% -D 1D
(2.8) 12;, b ; T T 1%‘ T .
— A [ > 3 EV,_V; ¥ EVYV ]A
r=0u=0 Tl g=b4lt=b+1 T 7 Tly¢ly st :

under the assumptions given below, where A = I, for r=0 and A =—-A_ for
r=1, ..., b.

Equations (2.6) and (2.8) indicate the appropriate method of recoloring, i.e., of
transforming jﬂf(ST) to obtain an estimate of J, rather than of J% . In particular, we

define the following prewhitened kernel estimator of J T



. - , b
(2.9) I ppw(S) = DIF(SD’ , where D = [Ip -2

Once a kernel k is chosen and a (data—dependent) bandwidth Sq, is specified, this yields
an operational VAR prewhitened kernel estimator of Jp -

The kernel we suggest using is the QS kernel defined by

(2.10) kost®) = 1212rgx2 [Siggg;’g/ 5) —cos(61rx/5)] .

The QS kernel yields an estimator ijw(ST) that is necessarily positive semi—definite.
This kernel possesses some large sample optimality properties, see Andrews (1990). It does
not suffer from the drawbacks of the truncated kernel (advocated by White (1984, p. 152))
and the Bartlett kernel (advocated by Newey and West (1987)). (The former kernel does
not necessarily generate positive semi—definite estimates and the latter yields an estimator
with a slower rate of convergence, and hence lower asymptotic efficiency, than the QS
kernel, see Andrews (1990).)

The bandwidth parameter that we suggest using is a data—dependent plug—in esti-

mate of an optimal value determined in Andrews (1990). The optimal value is

(2.11) S

)

1/(2q+1)
5= [qkﬁa*(Q)T/Ikz(X)dX] !

where q, kq , and | k2(x)dx are known values that depend on the kernel k and o*(q)
is an unknown scalar quantity that depends on the covariances of the sequence {V}}. For
the QS kernel, q =2, k, = 1421223, and [ (x)dx = 1.

The data—dependent bandwidth parameters are defined as follows: First, one spec-
ifies p univariate approximating parametric models for {V;t} for a=1, ..., p (where
V‘; = (V] LY Vi")t)' ) or one specifies a single multivariate approximating parametric
model for {V:} . Second, one estimates the parameters of the approximating parametric

model(s) by standard methods. Third, one substitutes these estimates into a formula



(given below or in Andrews (1990)) that expresses a*(q) as a function of the parameters
of the parametric model(s). This yields an estimate a*(q) of a*(q). The estimate
&*(q) is then substituted into the formula (2.11) for the optimal bandwidth parameter S

to yield the data—dependent bandwidth parameter S,} :

. 1/(2q+1
(212) S = |alar(@T/ )] et}

For the QS kernel, we have
(2.13) 5% = 1a221(a4(2)T) /5.

For general purposes, the suggested approximating parametric models are first order
autoregressive (AR(1)) models for {V_.}, a=1, ..., p (with different parameters for
each a). These models have advantages of parsimony and computational simplicity. If
some other model(s) seem more appropriate for a narticular problem, however, they should
be used instead. Let (pa, ag_) denote the autoregressive and innovation variance param-
eters, respectively, for a=1,...,p. Let {(,ba, Erz) :a=1, ..., p} denote the

corresponding estimates. Then, for q = 2, we have

.2.4 .4
(2.14) a*(2) = § wa—%—ag/ 5 wa—ﬁj,
a=1 ® (1-5,)° a=1 *(1 - },)

where {w :a=1, ..., p} are specified weights (which determine the weight attached to
the estimation of each of the p diagonal elements of I ). The usual choice for W, is
one for all a except that which corresponds to an intercept and zero for the latter or one
for all a. Formulae analogous to (2.14), but for ARMA(1,1), MA(m), and VAR(1)

approximating parametric models are given in Andrews (1990, eqns. (6.4)—(6.8)).



Plugging &*(2) from (2.14) into (2.13) completely determines S,"I“ . Our VAR pre-

whitened kernel HAC estimator is then defined using (2.5), (2.9), and (2.13) to be

(2.15) 3pr = 3pr(§r"f) = Di%(53)D" .

3. CONSISTENCY AND ASYMPTOTIC MSE

In this section we establish consistency, rate of convergence, and asymptotic trun-
cated MSE properties of prewhitened HAC estimators. The latter results are used to
determine those scenarios where prewhitening reduces asymptotic bias, variance, and/or
MSE.

We consider the following classes of kernels:

X = {k(-) :R= [-1,1][K(0) = 1, k(x) = k() Vx € R, [° k% (x)dx < o, k(-)

is continuous at 0 and at all but a finite number of other points} and
(3.1) Xy = {k(-) e X, : (i) |k(x)] < C;lx| ™ forsome B> 1+ % and some

C; < w, where g € (0,0) is such that kq € (0,0), and

(i) Jk(x) = k(y)| < Cylx—¥| Vx, y € R for some constant C, < m} .

IC1 contains the QS, truncated, Bartlett, Parzen, and Tukey—Hanning kernels
among others. X, contains all of these kernels except the truncated kernel. For fixed
sequences of bandwidth parameters our consistency results hold for all kernels in X; . For
data—dependent sequences {S,’E} , they hold for all kernels in K .

The asymptotic bias of kernel estimators depends on the smoothness of the kernel at
zero. Following Parzen (1957), we define

(3.2) k =1lim 1= k(x) ¢ q € (0,m) .
q leq

x=0

4
If q is an even integer, then k =——1riﬂ5)- and k_ < o if and only if k(x) is
q Q@ gx9 Ix=0 q
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q times differentiable at zero. For the QS kernel, k2 = 1.421223 , kq =0 for q<2,
and kq=m for ¢ > 2.
We consider the following asymptotic truncated MSE criterion with arbitrarily high
truncation point:
. . 2q/(2q9+1) ;

lim 1im MSE, (T y dpa Iy Wop)

h-o Tow
(3.3)

= lim Lim B minf| 729/ G4 Dvec(3 1) W vec(3p-Ip)1, 1}
h-w T-o

where jT is some estimator of Jq, Wq is some (possibly random) p2 x p2 weight
matrix, and vec(-) is the column by column vectorization operator. The squared error
loss function in (3.3) is truncated at h to circumvent undue influence of # on the
criterion of performance. For example, if 8 has infinite second moment, its use can have
the undesirable consequence of dominating a non—truncated MSE criterion.

Below we give consistency and rate of convergence results that hold when {Vt} is
stationary or non—stationary (but not explosive). The asymptotic truncated MSE results
only hold, however, when {Vt} is eighth order stationary. This permits conditional heter-
oskedasticity, but precludes unconditional heteroskedasticity. For the latter case, bounds
on the asymptotic MSE can be obtained via the method employed in Andrews (1988), but
such bounds are not given here.

When {Vt} is second order stationary, we define

T - , B

( ) 7. F(J)e ’ F(J) = Evtvt—j ) f= f(O) :
==
1 o~ —ij .

(3.4) PO =gz 3 T A = EVIVY, £ =140),

[1.] W
@=L 5 590), €9 =L % [5190%) for qe o),

j=—w j=-w
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where i=y~T. The spectral density matrices of {V.} and {V}} are f(}) and f¥())
respectively. Their values at A = 0 are denoted by f and f*. Thelimit as T -+« of the
estimand Jp equals 27f when {Vt} is second order stationary. This fact motivates the

use of spectral density estimators to estimate Jp - f(q) and f@ index the smoothness of

q
f{A) and *()), respectively,at A=0. If q is even, then {9 = (__1)C1/2 d—f—%l
dA? 'A=0

and |£V|| < o if and only if f(A) is q times differentiableat A = 0. Analogous results
hold for fQQ) . The asymptotic biases of kernel and prewhitened kernel estimators depend
on {(q) and f,(ﬂ) respectively.

For the second order stationary case, it can be shown that

t _ira) 1
(35) () = DO)F(A)D(A)! and f= DD, where D(A) = [Ip ~ T Ag ]
r=1

and (-)t denotes the conjugate transpose operator.

Let Kabe d(t, t+j, t+4, t+n) denote the fourth order cumulant of
v

(v where V_, denotes the a—th element of V.. Let tr

at’ Vbt-}—j’ ct+2 th+n) !

denote the trace function and @ the tensor {or Kronnecker) product operator. Let Kpp

denote the p2 x p2 commutation matrix that transforms vec(A) into vec(A’), i.e,

P P
Kpp: iil jzleiei B e, where e, is the i-th elementary p—vector. Let A max(B)

denote the maximum eigenvalue of A. Let |[|A|| denote the Euclidean norm of a vector
or matrix A (i.e., the square root of the sum of squares of its elements).

We now introduce a number of assumptions from Andrews (1990) that will be
assumed to hold when stated. See Andrews (1990) for further discussion of these assump-
tions.

ASSUMPTION A: {Vt} i8 a mean zero, fourth order stationary sequence of r’s with

w ® 1 1] 11}
CLrG)| <e and B X ) nabcd(o,j,t,n) <m Va,b,c,d<p.

= J= {=—wn=—
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ASSUMPTION A*: {V,} is a mean zero sequence of rv's with E supIIEV Vi || <o and
=012
U] o m

Elle 21:1;113 Kabcd(t t+j,t+4 t+n) <w Va,b,c,d<p.
j=l{=ln=

As shown in Andrews (1990, Lemma 1), Assumptions A and A* (and Assumptions
C(i), C*(i), G, and G* stated below) are implied by an o—mixing condition and a moment

condition.

ASSUMPTION B: (i) yT(8—-¢,) = 0,(1).
.t 2
(ii) :1}111) E ”Vt“ <wo.

2
3
(iii) sup E sup | 7V (0)" <w.
021 690 't

(iv) J k (x)dx <o.
ASSUMPTION C: (i) Assumption A holds with V, replaced by
Vi, vec 3V 6.) — aV )"
i» vee g7 Vil %) — EagVil%
(ii) sup E sup
t21

Vt(a) = (V]_t(a)’ crey pf.(e))

ASSUMPTION C*: Assumption C holds but with reference to Assumption A* rather than

i
lWVat(ﬂ)" <o Ya=1,...,p, where

Assumption A in part (i).

ASSUMPTION D: (i) {V,} is eighth order stationary with

o] w
) e ] (U,j _])(
J1=-—-m 17=-——m al ..38 1? y 7
(i) Wp B w.
ASSUMPTION E: &*(q) = Op(l) and 1/a*(q) = Op(l) :

For consistency of ijw , @*(q) need only satisfy Assumption E. For rate of con-

vergence and asymptotic truncated MSE results, stronger conditions on &*(q) are needed.
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Let ¢ denote the estimator of the parameter of the approximating parametric model(s) for
{Vzt} , a=1,...,p, introduced in Section 2. For example, with univariate AR{1)
approximating parametric models, £ = (bl ,&%, ceey P P &% +. Let ¢ denote the prob-
ability limit of £. &*(q) is the value of o*(q) that corresponds to ¢ . The probability

limit of &*(q) depends on ¢ and is denoted o -
ASSUMPTION F: /T(a*(q) — af‘é) = Op(l) Jor some az € (0,m) .

ASSUMPTION G: /\max(r(j))gc:;j‘"f Vj20  for some Cz<ow and some

7> max{2, 1 + 2q/(q+2)} , where q isasin K,.

ASSUMPTION G*: Assumption G  holds with Amax(T())  replaced by

sup A, (EV,V:, ).
t>1 maxy t t+]

We add one assumption, regarding the behavior of the VAR parameter estimators
{f\r} , that is not considered in Andrews (1990).

AsSUMPTION H: (i) yT(A_—A )= O,(1) for some A ¢ RPP vr=1,...,0.
b
(ii) D=1_— ¥ A_ is nonsingular.
P op=1f
Note that Assumption H(ii) does not require the matrices {Ar :r=1, ..., b} to
correspond to a stationary VAR process. In practice, however, they usually would.

The main result of this section is the following:

THEOREM 1: Suppose k € Ka , q 18 asin L'3 , |lf(q)|[ < o, and Assumption H holds.

(a) If Assumptions A, B, and E or Assumptions A*, B, and E hold and q > 1/2, then

(b) If Assumptions B, C, F, and G or Assumptions B, C* F, and G* hold, then
q/(2q+1)3  _3 3y

T (Jpr Jp) = Op(l).
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(c) If Assumptions B—D, F, and G hold, then
. . 2q/(2q+1) 3
lim 1 im MSEy (T q/(24+1) 3w I W)
—o 1l-m
=C a*ll(2q+1)[(vec fS{q))’W* vec fg.Q)/(qa*) +tr WXI ,+ K _)(f*e 1*)] and
k,q~¢ 3 p2 PP
tr WHI , + Kpp)(f* off) =t W(I , + Kpp)(fo f),

P P

] 1/(2q+1)

where Cy 0= e [qk?l/jk2(x)dx ]k2(x)dx and W¥*=(DeD)'W(DeD).

COMMENTS: 1. Except for Assumption H, the assumptions of Theorem 1 are identical to
those used in Andrews (1990) for non—prewhitened kernel estimators. In fact, Theorem 1
contains results for non—prewhitened kernel estimators by taking Ar = AI =0
Vr=1, ..., b.

2. For the QS kernel, q=2 and the rate of convergence in Theorem 1(b) is
7=2/5

3. When q =2, as with the QS kernel, f(q) and f£Q) are related as follows:

(36) 9= _%(\_3\_1 and £9) = _d2f*£).)

2
d t
= ——[DMI(A)D(A)] |, _q -
l)\:o dx dA A=0
These expressions and Theorem 3(c) allow one to compare the asymptotic truncated MSE

A=0

of kernel HAC estimators and prewhitened kernel HAC estimators. To this comparison we
now turn.

Any comparison between prewhitened and non—prewhitened kernel estimators
depends upon the choice of bandwidth parameter for each estimator. Meaningful compari-
sons can be made only if a reasonable choice of bandwidth parameter is made for each
estimator. In consequence, the most appropriate choice of bandwidth parameters for mak-
3

ing such comparisons are the optimal bandwidth parameters for the two estimators.

Thus, for the prewhitened estimator, we consider the case where
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(37) @ 2(vec fLQ))'W* vec f&q)
’ o =0oXq) | =T WI, F K_)(el)
p? 19

(where the latter equality uses Corollary 1 of Andrews (1990)). For the non-prewhitened

estimator, we consider the case where

]1/(2Q+1)

§p = [akala) T/ (x)dx , 8(a) 2 ay, and

(3.8)

9 {9y w vec £
ap = ofq) [= ge\%(l " -)+ Kpggffaf) 1 -
2

Let jT (= 3T(§T)) denote the non—prewhitened estimator. (By definition, it is the
same as a prewhitened estimator with AI =0 Vr and gT as in (3.8).)

For the above choices of bandwidth parameters, we have

-

. . 2q/(2q+1
lim lim MSEh(T q/(2q+ ), Jpr, Iy WT)

h-'m Twaw

(3.9) . - 1/(2q+1) 2q/(2q+1
- Ck,q[(vec £9) W vec fS,Q)] [tr W(Ip2 +K )0 1) q/(2q+1)
and
lim Lim msE, (12¢/(20+1), 5 5., W)
(3:10) = Ck q[(vec f(Q))’W vec f(Q)] 1/(2(1-|_1)[1;1: W(I 5+ Kpp)(f ® f)]2q/(2(1+1) ,
’ p
1/(2q+1)

where Ck, q= sr? [2 ‘51] [qu?l/ / kz(x)dx] ) k2(x)dx. It can be shown that the
asymptotic squared bias component is [1/(2q+1)}-th of the MSE in (3.9) and (3.10). In
consequence, the effect of prewhitening is the same for the asymptotic squared bias, vari-
ance, and MSE. Thus, it suffices to determine those cases where prewhitening improves

asymptotic MSE.
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For simplicity, suppose V, isa scalar (i.e., p=1). Let the weight W in the
MSE criterion equal one for all T . Then, from (3.9) and (3.10), the asymptotic MSEs of

3Tp W and ‘?T for estimating ‘IT are

C and

~k,q[f£Q)2D4] 1/(2q+1) [2f2] 2q/(2q+1)

(3.11) Ck [f(q)z] 1/(2q+1) [2{2] 2q/(2q+1)

respectively. Thus, 5pr has smaller asymptotic MSE than jT if and only if
(3.12) 118902 < |9

Suppose the kernel under consideration has q = 2. This is true of the QS kernel and
many other kernels. Then, by (3.6) and some algebra, equation (3.12) can be shown to be

equivalent to

(3.13) D"? < D"|D|f"/f,
here £=1(0), |D| 3], m=— v = 47 Do)
where {f=1£(0), =|1— I, "= , D" = A , and
o1 f a2 e’ T a2 =
|D

|-| denotes the modulus of a complex number. Note that { and | are positive real

numbers, while f' and D" may be any real numbers.

For the case of a VAR process of order b > 1, we have

b, b2
(3.14) D" = —|D|3 z A [ > rAr] .
r=1

This simplifies when b=1 to

(3.15) D" = —A/|1-A|3,

where A = AI for r=1. In consequence, for a first—order VAR prewhitening process,

(3.13) can be written as
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AJ(1-A)% < —£"/f for A/(1-A)> 0 and

(3.16) 0
AJ(1=A)? > —"/f for AJ(1-A) < 0.

To reiterate, (3.16) gives those scenarios where the asymptotic squared bias, variance, and

MSE of the prewhitened estimator ij - is less than that of the standard kernel esti-

mator Jq for the case where V, is a scalar (p=1), an AR(1) model is used for

prewhitening (b = 1) with estimated parameter A (= Al) that satisfies A~ A, {Vt}
d2

is second order stationary with spectrum f(3), f=1£(0), f'=—5i(}) , and the
dA A=0

kernel chosen has g =2.

Now, suppose {V,} actually is a stationary AR(1) process with AR(1) coefficient
ne(-1,1). Then, {"/f= 27]/(1—1,;)2 (see eqn. (6.4) of Andrews (1990)). This result,
equation (3.16), and some algebra show that any of the following combinations of 7 and

A lead to improved asymptotic MSE due to prewhitening:
ne€(-1,-172] and A €(-1,0),

n€(—172,0) and A € (h(n),0), and

(3.17)
n€(0,1) and A € (0, h(n)), where

1/2

h(n)=n+%%q[3n+1-—(n2+6n+1) ] for n#0.

Table 1 provides the values of h(p) for 2 number of values of 5. For example, for
n=.5, wehave h(n)=.610. Thus, if {V,} isan AR(1) process with AR parameter
n=.5, then asymptotic MSE is improved by prewhitening using an AR(1) model with
AR parameter A for any A ¢ (0, .610) . Any combination of n€ (-1,1) and A€ (-1,1)
that is not included in (3.17) corresponds to a case where prewhitening decreases (or leaves
unchanged) the asymptotic MSE. (Note that (3.17) does mot list combinations of
ne(-1,1) and A with |A|>1 where prewhitening improves asymptotic MSE,

although such combinations do exist.) Equation (3.17) and Table 1 illustrate the margin
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for error in the estimation (or choice) of the autoregressive parameter used in the prewhit-
ening procedure. If A =79 (#0), then prewhitening always improves asymptotic MSE.
If A differs from 7%, there is still an interval of A values containing #n for which MSE
is improved by prewhitening.

Next, suppose {V.} is an MA(1) process with moving average parameter 7 (i.e.,
for t>1). In this case, {"/f = 2'r/(1-i-*r)2 (see eqn. (6.5) of Andrews

Vt=e + Te

t t-1
(1990)). The latter result, equation (3.16), and some algebra show that any of the follow-

ing combinations of 7 and A lead to improved asymptotic MSE due to prewhitening:
7€ (—1,—101) and A € (-1,0),
7€ (—101,0) and A € (g(7),0), and

(3.18)
7€(0,1) and A € (0, g(7)) , where

2 1/2
g)=-3" =107 =1 —11?[14 + 1275 + 2272 4 127 4+ 1] for 740.

Table 2 provides values of g(7) for a number of values of 7. Table 2 also provides values
of A(7) for these values of 7, where A(7) is defined to be the probability limit of the
least squares estimator A of the AR(1) prewhitening model when {V,} is an MA(1) pro-
cess with moving average parameter 7. (With this definition, A(7) = /(1 + 'r2) .) Any
combination of r€ (-1,1) and A €(-1,1) that is not included in (3.18) corresponds to a
case where prewhitening decreases (or leaves unchanged) the asymptotic MSE.

Equation (3.18) illustrates the wide range of A values that improve asymptotic
MSE when 7 is negative. It and Table 2 also ilustrate the smaller range of A values
that improve MSE when 7 is positive. Table 2 shows that for most positive values of 7
the probability limit A(7) of the least squares estimator A is too large to fit in the
interval of A values for which the asymptotic MSE is improved by prewhitening. This is
to be expected. Finite sample considerations, however, operate in favor of the prewhiten-

ing procedure, since the least squares estimator is biased downward for 7> 0.
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4, MONTE CARLO RESULTS

In this section, Monte Carlo methods are used to evaluate the performance of the
VAR prewhitened HAC estimator introduced above. We are interested in comparing the
prewhitened HAC estimator to the non—prewhitened HAC estimator and to a parametric
estimator.

We consider several linear regression models, each with an intercept and four regres-

sors, and the least squares (LS) estimators # for each of these models:

o [T 1o
Y=X£90+Ut,t=1,...,T,0=[E xx'] 5IX.Y, , and

i 17 17t
(4.1) ) LT -1, T T LT -1
ar(VI(9 - ) = [TE1XtX£] % I EUXUX] [TE1XtX£] .

The estimand of interest is the variance of the LS estimator of the first non—constant
regressor. (That is, the estimand is the second diagonal element of Var(yT(6—6))) in
(4.1).)

Seven basic regression models are considered: AR(1)-HOMO, in which the errors
and regressors are homoskedastic AR(1) processes; AR(1)-HET1 and AR(1)-HET2, in
which the errors and regressors are AR(1) processes with multiplicative heteroskedasticity
overlaid on the errors; MA(1)-HOMO, in which the errors and regressors are homoskedas-
tic MA(1) processes; MA(1)-HET1 and MA(1)-HET?2, in which the errors and regressors
are MA(1) processes with multiplicative heteroskedasticity overlaid on the errors; and
MA(m)-HOMO, in which the errors and regressors are homoskedastic MA(m) processes
with linearly declining MA parameters. (Details are given below.) A range of different
parameter values are considered for each model. Each parameter value corresponds to a
different degree of autocorrelation.

Three variance estimators are considered. The first, denoted QS—PW, is the pre-

whitened kernel HAC estimator defined in (2.15) that uses the QS kernel, a first—order
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VAR prewhitening procedure (b = 1), and the automatic bandwidth procedure defined in
(2.13) and (2.14) with weights (w;, ..., wg)=(0,1, ..., 1) 4

{Vt(a)} ) upon which QS-PW is constructed (see (2.3)), are defined by

The underlying rv’s

Vt(b) = (Y, - X{ b)Xt . The second estimator, denoted QS, is the non—prewhitened kernel
HAC estimator that is defined exactly as is QS—PW except that A (= f\l) =0. The
third estimator, denoted PARA, is a parametric estimator that is based on the assumption

that the errors are homoskedastic AR(1) random variables. By definition,

-1 -1
Ty v, 1 T2} 1 15—ty v, ) [LoT
[Tzlxtxt] [T:;): il ][ 5 2 xx][Tz xx]

(42) PARA=
s—lt 1

b

22

where fIt = Yt - X{@ , ﬁLS is the LS regression parameter estimator from the regression

of th on U for t=2,..., T, p=min(97, prg), and [-],, denotes the (2,2)

t—1
element of .. The QS and PARA estimators are the same estimators as in the Monte
Ca-lo study reported in Andrews (1990).

For each variance estimator and each scenario, the following performance criteria
are estimated by Monte Carlo simulation: (1) the exact bias, variance, and MSE of the
variance estimator and (2) the true confidence levels of the nominal 99%, 95%, and 90%
regression coefficient confidence intervals (CIs) based on the t—statistic constructed using
the LS coefficient estimator and the variance estimator.5 The control variate method of
Davidson and MacKinnon (1981) is used to estimate the true confidence levels in (2). The
sample size is 128. One thousand repetitions are used for each scenario.

The distributions of all of the variance estimators considered here are invariant with
respect to the regression coefficient vector 60 in the model. Hence, we set 00 =0 in each
model and do so without loss of generality.

Next we describe the models used in the Monte Carlo study. The AR(1)-HOMO

model consists of mutually independent errors and regressors. The errors are mean zero,

homoskedastic, stationary, AR(1), normal random variables with variance 1 and AR
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parameter p. The four regressors are generated by four independent draws from the same
distribution as that of the errors, but then are transformed to achieve a diagonal

T 6

1 , .
Ttilxtx : matrix.

The values considered for the AR(1) parameter p are 0, .3, .5, .7,
.9, .95, —.3, and —.5.

The AR(1)-HET1 and AR(1)-HET2 models are constructed by introducing multi-
plicative heteroskedasticity to the errors of the AR(1)-HOMO model.  Suppose
{xt, th :t=1, ..., T} are the non—constant regressors and errors generated by the
AR(1)-HOMO model (where X, =(1,x{)" ). Let U = |x{w| U, . Then, {x,U,:
t=1,..., T} are the non—constant regressors and errors for the AR(1)-HET1 and
AR(1)-HET?2 models when w=(1,0,0,0)° and w=(1/2,1/2,1/2,1/2)" respectively.
In the AR(1)-HET1 model, the heteroskedasticity is related only to the regressor whose
coefficient estimator’s variance is being estimated, whereas in the AR(1)-HET2 model, the
heteroskedasticity is related to all of the r(-’:gressors.7 The same values of p are considered
as in the AR(1)-HOMO model.

The MA(1)-HOMO, MA(1)-HET1, and MA(1)-HET2 models are exactly the
same as the AR(1)-HOMO, AR(1)-HET1, and AR(1)-HET2 models, respectively, except
that stationary MA(1) processes replace stationary AR(1) processes everywhere that the
latter arise in the definitions above. The MA(1) processes have variance 1 and MA param-
eter ¢ (and are parameterized as ﬁt =€+ qbet_l ). The values of ¢ that are
considered are .3, .5, .7, .99, —.3, =5, —.7, and —.99.

The MA(m)-HOMO model is exactly the same as the AR(1)-HOMO model except
that the errors and the (pre—transformed) regressors are homoskedastic, stationary MA(m)

random variables with variance 1 and MA parameters ¢y, ..., Y (where the MA(m)
m

model is parameterized as Ut =€ + ) ¢rft—r ). The MA parameters are taken to be
=1

positive and to decline linearly to zero (i.e., ¥ =1-r1/ (m+1) for r=1, ..., m). The

values of m that are considered are 3, 5, 7, 9, 12, and 15.
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The Monte Carlo results for the parameter/model combinations discussed above are
given in Tables 3—7. For the MA(1) models, however, no results are reported for the
negative 9 values, since they are very nearly the same as for the corresponding positive 3
values.® Tn addition, Monte Carlo results have been computed, but are not reported, for
MA(m)-HET1 and MA(m)-HET2 models (defined analogously to the MA(m)-HOMO
model). These results are not reported because they are qualitatively quite similar to the
AR(1)~HET1 and AR(1)-HET? results.

Inspection of Tables 3—7 shows a number of clear patterns in the relative perform-
ance of the three estimators QS—PW, QS, and PARA. First, in almost all model/
parameter cases, QS—P'W has the smallest bias. In a number of cases, its bias is much less
than that of the other two estimators. In the HOMO models (whether AR(1), MA(1), or
MA(m)), PARA has the next smallest bias, while in the HET1 and HET2 models, QS has
the next smallest bias. Second, PARA always has the smallest variance, often by a consid-
erable margin. QS has the next smallest variance in each case. Third, in the HOMO and
HET2 models, PARA has the smallest MSE, followed by QS. In the HET1 models, QS has
the smallest MSE, followed by QS—PW. In sum, prewhitening has the desired effect on
bias, but it inflates variance sufficiently that its MSE is always worse than that of the non-
prewhitened estimator QS. The parametric estimator PARA performs well in terms of
MSE in the homoskedastic models, but does poorly in the heteroskedastic models,
especially the HET1 models.

Next we discuss the patterns in the confidence interval coverage probabilities exhib-
ited in Tables 3—7. In almost all cases, the true coverage probabilities are less than the
nominal asymptotic coverage probabilities. In these cases, the best CI coverage probabil-
ities are the largest ones. The estimator QS—PW yields the best CI coverage probabilities
in almost all cases except for the AR(1)-HOMO and MA(1)-HOMO models. In these
models, Q5~PW is just slightly worse than PARA. In many model/parameter combina-

tions, QS-PW is better than QS by a considerable margin in terms of CI coverage
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probabilities. In addition, QS—PW is better than PARA in the HET1 and HET2 models
by a considerable margin.

The good performance of QS—PW in terms of CI coverage probabilities is due to its
relatively small bias. It is apparent from the tables that the magnitude of an estimator’s
bias is much more important than its variance in determining its corresponding CI cover-
age probabilities. In sum, QS—PW is clearly the best estimator of the three in terms of CI
coverage probabilities. PARA does well in the homoskedastic models, but performs poorly
in the heteroskedastic models.?

Based on the Monte Carlo results reported here, the choice between the QS—PW
and QS estimators is evident. If one desires lower variance and MSE, then QS is prefer-
able. If one desires lower bias and better CI coverage probabilities, then QS-~PW is
preferable. In many cases, CI coverage probabilities and the corresponding rejection rates
of t-statistics are of primary concern, and hence, the prewhitened estimator QS—PW is
preferred.

Lastly, we note that the Monte Carlo results reported above are at odds in some
respects with the asymptotic results of Section 3. The latter show that in large samples,
when the bandwidth parameter is chosen appropriately, the effect of prewhitening is the
same for the squared bias, variance, and MSE. That is, in any given model scenario pre-
whitening should reduce all three or increase all three. In the Monte Carlo experiments,
however, we find that prewhitening has the effect of reducing bias and increasing variance
and MSE in most model scenarios.

The explanation for this discrepancy is that the parameters {Ar} of the prewhiten-
ing procedure are estimated rather than fixed. The asymptotics are the same for these two
cases, but the finite sample properties differ. One would expect that the use of Ar rather
than AI would increase the variance of the prewhitened kernel estimator, but have little
effect on its bias. In fact, simulations (not reported here) verify that this is exactly what

happens. Furthermore, for the sample size considered here, the increase in variance of the
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prewhitened kernel estimator due to the estimation of Ar more than offsets the reduction
in the estimator’s variance due to prewhitening. In consequence, the prewhitened kernel
estimator has higher variance and MSE than the standard kernel estimator, but lower bias.
The lower bias is responsible for the prewhitened kernel estimator’s improved CI coverage

probabilities and improved t—statistic rejection rates.



APPENDIX

PROOF OF THEOREM 1: To establish part {a), we apply Theorem 3(a) of Andrews (1990)
to the estimator j{‘(QT) of J4 with § and 8, elongated to include (Al, . Ab)
and Ay, ..., Ab) respectively. To apply Theorem 3(a) in this fashion, Assumptions A,
A* B, and E must hold with {V,} replaced by {V}}. It is not difficult to show,
however, that if these assumptions hold as stated, then they also hold with {Vt} replaced
by {Vf} . Furthermore, if these assumptions hold as stated, then they also hold with &
and f, elongated as above provided Assumption H(i) holds. Thus, Theorem 3(a) and the
results of Section 8 of Andrews (1990) yield J %(S,}) — It B, 0 . This result, Assumption
H, and equation (2.8) give the desired result

I = NI*(T*\T) - *TY - =

To establish part (b), we apply Theorem 3(b) and the corresponding results of
Section 8 of Andrews (1990) in the same manner as above.

The second result of part (c) follows from the fact that f= Df*D’, see equation
(3.5), and the property of the commutation matrix K that (DeD)K

pp
D e D), see Magnus and Neudecker (1979, Thm. 3.1(ix)).

pp
= Kpp
To establish the first result of part (c), we apply Theorem 3(c) of Andrews (1990) in

the same manner as above to obtain

lim 1im MSE, (T/S}y, I%, I%, WX)

hoo Too
(A.2)
= 4r? [kfl(vec £ 9D) W* vec f£Q)/YE + [3(x)dx tr W*(Ip2 + Kpp)(i*@f*)] ,
1/(2q+1
where 3% demotes  J§(3}),  Spp= [qkﬁazT/Ikz(x)dx] f2atl) ,

Wi=(DeD)Wy(DeD), and 7= qk?la’z/ [i3(x)dx . Equation (A.2) and some
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algebra establish that lim 1im MSEy(T23/(2a%1) 32 Jx W) equals the righthand
h-o T-w

side of the first result of part (c). Thus, it remains to show that

- 29/(29+1)
lim 1im MSE, (129/(34+1), 3pw I W)
hvo T-w
(A.3)
o 24/(2q+1)
= lim 1im MSE,(T°/(20+1) §x 5x wa) .
h-o To

Let Jp* = ﬁ_lJT(ﬁ"l)' . The lefthand side of (A.3) equals

lim 1im E mjn{T2Q/ (Rat)yee(D(34 — 344D 7) Wop vee(DFH — I49)D-), h}

h—?m T-m
1 . . 2q/(2q+1) T * ¥\, (Meh) T*
=lim lim Emm{T vec(JA—J**)’(DeD)’ W(DeD)vec(d +—I+*), h
h-ao T-wm T°T T T
o - (-2q/(2q+1). (2 -
¢lim 1im E mm{T 9/ (20t yee(3% — 34) Wi vee(i% — I%), h}
h-p T-o
(A.4)
+ lim Lim B minf 29/ (G9+vec(at - 34%) Wi vec(35 - 157), b}
h-o Tom
+21im limE min{TZQ/ (20+1) | yeo( it — 34) WA vec(J — 38, h}
h-o T-w

Since G, equals the righthand side of (A.3), it suffices to show that G, =Gg=0.

2gq+1 2q+1) [ -1 -1,/ a-1 ~—1y 7
Gy=0 becawse TY(24HD(e _gax) = 70/(20+ )[D I -7 ]
= op(l) , Wr= Op(l) , and loss is truncated at h (using the fact that if X, B0 and
{Xp:T21} is uniformly integrable, then = EX; -0 ). Gg=0  because
a/(2a+1) 5% _ yxy = q/(2q+1) 1 _ yE#y = X _
T (3 -31) = Op(l) , T (I3 —I1%) = op(l) , Wi = Op(l) , and loss
is truncated at h. o
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g .

A is
=1 T
not too close to singularity. For example, for the Monte Carlo results of Section 4, where
b=1, wetake A (= A;) to be an eigenvalue adjusted version of the LS estimator ALS :

See below for details of the adjustment.

Zwe suggest defining the estimators {Ar} in such a way as to ensure that Ip —

3Grenander and Rosenblatt (1957, pp. 273—274) carry out calculations that are similar to
some of those given below. However, they compare the MSE of prewhitened and non-
prewhitened kernel estimators when the same bandwidth sequence is used for each esti-
mator. Such comparisons do not take account of the fact that one would want to use a
different bandwidth sequence depending upon whether prewhitening has been done or not.

4The p x p estimator A that is used is defined as follows: Let ALS denote the LS esti-
mator from the regression of vt(b) on vt_l(“a) for t=2, ..., T. The LS estimator

-~ P

ALS is adjusted using its singular value decomposition to obtain an estimator A for

~

which Ip — A is not too close to singularity. In particular,let B and € denote pxp
orthogonal matrices whose columns are eigenvectors of ALSAI’,S and Af,SALS respec-
tively. Let ALS be the diagonal p xp matrix defined by ALS = I?}'ALSC. By
construction, ALS = BALSC' . Let A bethe p x p diagonal matrix constructed from

- Y

ALS by replacing any element of ALS that exceeds .97 by .97 and any element that is

~

less than —97 by —97. Then,let A = BAG- .

SThe nominal 100(1—a)% ClIs are based on an asymptotic normal approximation. For the
PARA estimator, this normal approximation is valid asymptotically only in the
AR(1)-HOMO model.

S The transformation used is described as follows. Let % denote the T x 4 matrix of pre-
transformed, randomly generated, AR(1) regressor variables. Let X denote X with its

column means subtracted off. Let x = i[%i'i] . Define the T x 5 matrix of trans-

formed regressors to be X = [1T + x] . By construction, X’X = TI, .
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Since Ex=0 and Ex'x=1,, this transformation should be close to the identity

map. With this transformation, the estimand and the estimators simplify and the compu-
tational burden is reduced considerably.

"When the regressor transformation map is the identity map, the errors in the AR(1)-
HET1 and AR(1)-HET2 models are mean zero, variance one, AR(1) sequences with AR

parameter p2 and innovations that are uncorrelated (unconditionally and conditionally on
{X;}) but are not independent. Hence, the errors have an AR(1) correlation structure

even after the introduction of heteroskedasticity.

8 The reason for this is that for the non—intercept Tegressors {Vt} = {U,X;} has autocor-
relations given by the product of the autocorrelations of {U;} and {X,}, and hence,
these autocorrelations are independent of the sign of % . Thus, for the non—intercept
regressors, the distribution of {Vt} = {I’tht} depends on the sign of % only due to the

effect of the sign of 1 on the distribution of the deviations fIt -U,.

gWe note that the QS—PW and QS estimators each provide a different tradeoff between
bias and variance. Correspondingly, they provide different performance re CI coverage
probabilities. Monte Carlo results using a wide grid of different fixed bandwidth param-
eters for the QS estimator show that the same tradeoff cannot be attained (or even
approached) simply by using a different bandwidth parameter for the QS estimator.
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TABLE 1
Values of the Function h{7)

T-1

n -15 —.10 —.05 1 3 .5 g 9 .95
n(y) —533 —264 —106 170 417 610 777 928 .064
TABLE 2
Values of the Functions g(7) and A(r)

T -1 —.05 1 2 3 0 T .99
gr) -8 —.145 126 184 217 250 263 268
A(r) —099 —.050 .099 192 275 .400 470 .500




TABLE 3

Bias, Variance, and MSE of QS—PW, QS, and PARA Estimators and
True Confidence Levels of Nominal 99%, 95%, and 90% Confidence Intervals
Constructed Using the QS—PW, QS, and PARA Estimators
for the AR(1)-HOMO Model — T = 128

Value of

p Estimand Estimator Bias Variance MSE 9%  95%  90%
QS—-PW .005 079 079 98.5 3.9 88.1

0 1.00 QS —.060 .044 .048 98.6 3.3 87.7
PARA —-.002 017 017 98.8 94.8 89.1

QS-PW 010 15 .15 08.8 83.1 88.3

.3 1.18 QS - 14 .090 11 08.0 91.7 86.5
PARA -.029 .043 .044 98.7 03.9 89.2

QS-PW —.040 .39 .39 a97.7 434 88.1

R 1.60 QS —-.35 21 .33 96.9 0.6 84.0
PARA 14 A1 .13 98.1 93.9 88.3

QS-PW =21 1.84 1.89 97.1 91.3 84.4

N 2.63 QS —.40 71 1.52 95.3 85.5 78.2
PARA —48 51 .74 08.2 g91.0 83.5

QS-PW -1.93 204 33.1 00.4 83.0 75.3

.9 6.40 QS —4.04 2.55 18.9 82.5 72.0 64.4
PARA —-3.08 3.41 12.9 90.2 81.6 73.5

QS-PW —4.03 427 58.9 84.1 74.8 66.5

.95 8.75 QS —6.68 3.00 478 72.9 60.6 53.1
PARA —5.75 5.11 38.2 82.1 71.8 63.6

QS-PW .030 .19 .19 08.4 4.1 88.6

-3 1.19 QS -13 11 .13 a7.7 83.1 86.2
PARA —.008 044 044 08.8 95.2 83 4

QS5—-PW 018 49 .49 98.2 03.1 88.0

-5 1.63 QS =30 28 37 96.5 90.1 84.6
PARA —.038 .15 .16 098.7 93.9 89.3




TABLE 4

Bias, Variance, and MSE of QS—PW, QS, and PARA Estimators and
True Confidence Levels of Nominal 99%, 95%, and 90% Confidence Intervals
Constructed Using the QS—PW, QS, and PARA Estimators
for the AR(1)-HET1 Model — T = 128

T-3

’ gg’i?éaﬁé Estimator  Bias Varance MSE  99%  95%  90%
QS—PW  —21 166 170 975 939 859

0 2.94 Qs _25 5131 187 976 938 858
PARA  -1.04 048 382 860 T56 672

QS—PW  —90 192 274 966 899  83.1

3 3.86 Qs —1.09 142 261 962 899 820
PARA  —2.79 066 783 820 681 604

QS—PW  —1.58 485 734 952 888 816

5 5.98 Qs —2.06 279 705 940 867  79.0
PARA  —4.00 14 161 800 687 506

QS—PW  —3.50 170 293 927 831 713

7 8.82 Qs 452 857 200 907 803 728
PARA  -7.11 44 509  T48 610 514

QS—PW  —147 040.  455. 814 700  60.9

9 93.5 Qs ~18.0 244 347, 751 625 534
PARA  —20.9 977 441, 58.6 457  38.1

QS—PW  —31.4 123.  1107. 706 575 505

95 39.3 Qs 345 178 1208, 619 489 419
PARA 368 381 1356  49.0 390 334

QS—PW 88 304 381 989 954  92.0

_3 9.41 Qs 61 218 255 988 953 L0
PARA  —128 079 172 888 788 699

QSPW  2.23 602 110 993 965 928

5 1.89 Qs 161 349 608  99.0 957 919
PARA  —49 19 43 047 874 801




TABLE 5

Bias, Variance, and MSE of QS—PW, QS, and PARA Estimators and
True Confidence Levels of Nominal 99%, 95%, and 90% Confidence Intervals
Constructed Using the QS—PW, QS, and PARA Estimators
for the AR(1)-HET2 Model — T = 128

T4

Value of

p Esiimand Estimator Bias Variance MSE 99%  95%  90%
QS-PW 0072 .66 .66 08.2 93.5 87.6

0 1.47 QS —-14 .60 .63 08.4 92.0 85.8
PARA —49 044 29 96.3 88.6 81.0

QS—PW .0080 B4 84 98.1 92.7 86.3

.3 1.66 QS —24 49 .55 97.8 91.0 84.2
PARA -.59 .070 A1 95.5 87.8 80.1

QS5-PW —.098 1.78 1.79 97.9 922 85.8

9 2.13 QS —.54 .72 1.01 96.7 88.6 81.8
PARA —.87 13 .89 94.5 85.3 78.2

QS—PW —.36 5.89 6.02 95.8 89.9 83.4

T 3.29 QS -1.20 1.80 3.23 94.3 86.0 784
PARA —1.60 45 3.01 91.8 83.3 75.9

QS-PW —-2.32 38.2 43.5 89.6 80.5 1.5

.9 7.15 QS —4 .45 4.93 24.8 84.4 72.5 63.4
PARA —4.64 2.33 23.9 84.5 73.0 64.7

QS-PW -3.53 246. 258. 83.9 74.1 66.9

.95 9.58 QS —7.01 7.15 56.2 75.6 62.0 53.9
PARA —6.99 5.00 53.8 77.6 65.8 57.9

QS-PW .034 .89 .89 98.7 94.5 88.7

-3 1.68 Qs —24 .49 .85 08.2 93.1 86.4
PARA ~.57 080 40 97.0 89.1 82.0

QS-PW .050 2.46 2.46 97.8 92.0 87.0

—.5 217 QS —.48 .93 1.16 95.9 88.6 83.0
PARA —79 19 81 94.7 87.9 80.5




TABLE 6

Bias, Variance, and MSE of QS—PW, QS, and PARA Estimators and
True Confidence Levels of Nominal 99%, 95%, and 90% Confidence Intervals
Constructed Using the QS—PW, QS, and PARA Estimators
for the MA(1)-HOMO and MA(1)-HET1 Models — T = 128

T-5

Model ¢ Eg};?;mgcfl Estimator Bias Variance MSE 99% 95% 90%
QS-PW  .00019 .13 13 981 933 880

3 1.14 QS  —178  .059  .091 97.3 9Ll 855

PARA —032 03¢  .035 983 043 894

QS-PW  .042 24 25 981 941 888

5 1.30 Qs _95 10 17 970 911 855

MA(1) PARA —060  .050  .053 983 943 889
HOMO QS-PW  .055 28 28 988 934 89.1
7 1.42 Qs ~a1 14 22 978 909 851

PARA —073 074 079 992 939 894

QS-PW  .082 34 35 085 030 885

99 1.47 Qs a7 19 96 971 910 843

PARA —091  .072 .08 987 93.3 887

T QSPW —44 174 193 976 914 854

3 3.29 Qs —66 116 159 975 006 844

PARA  —2.25 061 511 840 715 625

QS-PW —41  2.67 284 972 909 844

5 3.70 Qs _86 158 233 068 883 828

MA(1) PARA —256  .082 661 842 712 635
HET1 QS-PW —49  3.16 340 975 9l8 847
7 4.00 QS 106 199 311 962 887 812

PARA -2.79  .098 7.0l 832 715 625

QS-PW —37 166 167  97.2 925 848

99 4.19 QS  -108 264 381 955 888 818

PARA -2.904 11 876 832 722 619




T—6

TABLE 7

Bias, Variance, and MSE of QS—PW, QS, and PARA Estimators and
True Confidence Levels of Nominal 99%, 5%, and 90% Confidence Intervals
Constructed Using the QS~PW, QS, and PARA Est1ma.tors

for the MA(1)-HET?2 and MA(m)—HOMO Models — T = 128
Model gr Value of  poiioior  Bias  Variance MSE  99%  95%  90%
o Estimand 0 0 0
QS-PW  .052 96 97 977 931 89.3
3 1.62 Qs ~.25 39 45 975 922 861
PARA  —56 060 38 049 878 814
QS-PW .16 377  3.80  99.0 032 876
5 1.82 Qs _32 66 76 984 912 838
MA(1) PARA  —66 087 53 96.6 86.7 8L1
HET2 QS-PW .18 210 213 975 932 881
7 1.95 Qs 39 L 86 96.6 90.6 84.0
PARA  —73 1 65 957 885 804
QS-PW .13 219 221 977 928 B85
99 2.00 Qs _42 92 110 962 902 836
PARA  —75 12 68 950 87.3 79.8
QS-PW .34 133 145 982 046 895
3 2.11 Qs —49 43 ‘67 967 89.8 82.9
PARA  —18 26 20 985 031 875
QS-PW 54 401 430 982 043 889
5 2.92 Qs —92 100 186 950 868 79.3
PARA  —39 69 84 981 9032 868
QS-PW .60 854 890 982 936 885
3.68 QS  —138 173 363 938 846 774
PARA  —76 113 171 971 905 834
MA(m
HOMO QS-PW .77 175 181 974 925 865
445 QS  -183 242 579 009 82.6 748
PARA -100 210 311 963 905 824
QS-PW  .073 274 274 94.2 801 83.2
12 5.50 QS  -281 321 111 886 772 705
PARA —189 301  6.80 940 860 788
QS-PW —28 322  32.3 94.1 87.8 80.9
15 6.46 QS  -356 455 17.2 875 750 682
PARA -2.65 430 11.3 92.4 837 76.0




