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1. Introduction

In an n-person cooperative game, 1t may not be equally easy to
form every coalition. For example, it would be very hard to form a large
coalition because of coalition formation costs, and thus only small coa-
litions play essential roles. If a game has some special structure and
even if all coalitions are permitted, it may sﬁill happen that only small
coalitions play essential roles, e.,g., the marriage game of Gale and
Shapley [1962], the bridge game of Shubik (1971], and the assignment
games of Shapley and Shubik [1972] and Kaneko [1976, 1980].1 In fact,
an assignment game has the special property that it always has a non-empty
core independently of the payoff function (see Kaneko [1980}). We intro-
duce concepts of partitioning games, with and without side payments, which
appropriately model the situations mentioned above.

Our first result provides necessary and sufficient conditioms for
the non-emptiness of the cores of all n-person partitioning games with
a given set of essential coalitions. While these conditions generalize
the results for assignment games, they imply the strong limitation of the
generalization-~the property that all assignment games have non-empty
cores 1s very special.

Our next task is to consider the above problem from the viewpoint
of the approximate core theory recently developed by Wooders [1981].

That is, the approxim#te cores of the replica games of partitioning games
are considered, and it is shown in several strong forms that the approxi-
mate cores of the replica games of partitioning games are non-empty if

the number of replications is sufficiently large. This result is in com-

plete contrast with the first result.

1The marriage game is a special case of the assignment game without side-
payments.



2, Partitioning Games with and without Sidepayments

Initially we consider partitioning games with sidepayments. Let
N be an arbitrary finite number of players, let N = {1, 2, ...,n} ,
and let ¢ be a class of non-empty coalitions satisfying {i}lenr for

all 1e€N. Wecall 5 in g a basic coalition. For any non-empty

SCN, we call Pg = {Tl, ...,Tk} a n-partition of § iff

TE € n forall t=1, ...,k and Pg is a partition of §. (1)

Let P(S) be the set of all m-partitions of S . We call a game in char-

acteristic function form, (N,v) , a partitioning game with sidepayments

iff for some real-valued function v on 17,

v(8) = max } V(T) for all non-empty S C N . (2)
pSGP(S) Tepg

Note that v satisfies the superadditivity property.

The core of a game (N,v) with sidepayments is the set

{xer": J x; = v(N) & ) Xy 2 v(S) for all non-empty S C N} , where
ieN ies

Rn

is the n-dimensional Euclidean space.
The basic idea of definition (2) is very simple. That is, only
the basic coalitions can play essential roles in a partitioning game.

The following lemma ensures that this definition is consistent with our

initial description in Section 1.

Lemma 1. Let (N,v) be a partitioning game with sidepayments. Then

the core coincides with the set {x € R : I X, = v{N) & Z X 2 v(T)

iexN ieT
for all TEn}={x€ER": } x, =v(N) & ) xy 2 v(T) for all TE€ r} .
ieN ier

Proof. Obvious.



Typical examples are Shapley's and Shubik's [1972] assignment game

and Shubik's [1971] bridge game.

Example 1 (The assignment game). Let N=JUK and JNK=¢ . If

n={{i} : 1€ N} U {{},k} : j€ J & k€ K}, thengivenany Vv on =

the game (N,v) defined by (2) is called an assignment game. Shapley

and Shubik prove that every assignment game has a nonempty core. Note

that this proposition is independent of the choice of v .

Example 2 (The bridge game). Let = = {{i} : 1€ N} U {SC N : |S] = 4}
and let v be given as
_ 1 1f |[s]| =4
v(S) =
0 otherwise,
where |S| denotes the number of members in S . Then (N,v) defined
by (2) is called a bridge game. If n = 4m for some positive integer

m , then the core of (N,v) 1is nonempty but otherwise the core is empty.

Every assignment game has a nonempty core independently of the choice
of v . However, the nonemptiness of the core of a partitioning game
depends, in general, upon v . Therefore the property that the nonempti-
ness of the core of an assignment game is Independent of v is very
special. The purpose of this section 1s to clarify this special property.
Although a bridge game has a nonempty core if n = 4m , our general re-
sult implies that the nonemptiness of the core of a game with the same
essential coalitions as the bridge game depends upon v even in the case
of n=4m.

For any given N and n we denote, by GS(N,v) , the set of
all partitioning games with sidepayments which have the set of players

N and the set of basic coalitions = . Later in this section we will



determine necessary and sufficient conditions for every game in GS(N,m)
to have a nonempty core.

Next let us define partitioning games without sidepayments. Let
N and 7 be given. Let V be a function on n to a class of subsets

of R® such that for all S€ 7 :
V(s) 1s a closed set in R" ; {3)

if x€V(S) and y € R" with y; & % for all

(4)

i€5, then y€ V(§) ; and

ProS[V(S) - U 1interior V({i})] is nonempty and bOunded.2 (5)
i€s

We define (N,V) by

V(8) = V] N V(T) for all nonempty S CN . (6)
PEP(S) Tepg

This game (N,V) 1s called a partitioning game without sidepayments.

Note that V alsc satisfies conditions (3)-(5). Definition (6) means
that when a coalition S 1is formed, the playersin S subdivide §
into a n-partition and get the payoff sets guaranteed by the basic coa-
litions. This idea is almost the same as that of partitioning game
with sidepayments.

The core of a game without sidepayments (N,V) 1is the set

V{K) - U dinterior V(S) . Parallel to Lemma 1, the following lemma
SCN

S¥¢
holds.

2 . n
ProsX {(xi)ms.xex} for SCN and XCR .



Lemma 2. Let (N,V) be a partitioning game without sidepayments. Then

the core coincides with V(N) - U interior V(S) = V(N) - y interior V(S)
Sew Ser

Proof. Obvious.

Example 3 (The central assignment game). Let ® be the collection given

in Example 1. Then a game (N,V) defined by (6) is called a central

assignment game. Kaneko [1980) proves that every central assignment game

has a non-empty core.

There is, however, a minor conceptual difference between partition-
ing games with and without sidepayments. 1In a partitioning game with
sidepayments, it is permitted to transfer money (transferable utility)
in every coalition, but in a partitioning game without sidepayments,
any transfers can only occur within basic coalitions. This difference
appears as follows. A game with sidepayments (N,v) can be represented

as a game without sidepayments (N,V) such that ¥(S) = {x €R" : ]} X, 2 v(s)}
ies

for all nonempty S C N . Even if (N,v) 1is a partitioning game with
sidepayments, (N,¥) 1s not a partitioning game without sidepayments,
i.e., it does not satisfy (7). But in considering the core, this differ-
ence does not appear, To demonstrate this, we define another game without
sidepayments (N, Vv) where

Vv(S) - U M V(1) for all nonempty S CN . &)
pseP(S) Tepg

Of course, (N, Vv) is a partitioning game without sidepayments. Then

the following lemma holds.



Lemma 3. Let (N,v) be a partitioning game with sidepayments. Then

”~
the core of (N,v) coincides with the cores of both (N, Vv) and (N,V) .

Proof. Obvious.

For any N and 7 we denote, by G{(N,n) , the set of all par-
titioning games without sidepayments which have the set of players N
and the set of basic coalitions +w . Embedding GS(N,7) inte G(N,n)
by the mapping (7): Vv Vv » Wwe can regard GS(N,m) as a subset of
G(N,m) .

We need several concepts to state the main result of this section,
Consider the following system of equations:

) Xp =1 forall 1€N and X 20 forall T€m, (8)
Ten

Tai

where (XT)Tew is a variable. We say that the system of equations (8)

has the integral property iff every extreme solution of (8) consists of

integers. If (8) has the integral property, there exists a one-to-one
onto mapping from the set of all m-partitions of N to the set of all
extreme solutions of (8). This integer programming problem is usually
called a set partitioning problem (see Balas and Padberg [1976] and
Murty [1976]).

A family vy of non-empty coalitions of N is said to be balanced
iff the system of equations

'} 8g=1 forall JEN, 9)
S§:52§

such that &, = 0 iff

has a nomnnegative solution & = (&) s

se2M-{4)



S& Yy . The solution & is called a balancing weight vector. Games

(N,v) with sidepayments and (N,V) without sidepayments are said to

be balanced iff

¥ 8sv(8) £ v(N) for any balanced family Yy and
Sey (10)
its balancing weight vector & ,

M y(s) C V(N) for any balanced family vy , (11)

Sey
respectively. Bondareva [1962, 1963] and Shapley [1967]) show that a game
with sidepayments has a nonempty core if and only if it is balanced.
Scarf [1967] demonstrates that a balanced game without sidepayments has
a non-empty core.3

A minimal balanced family is one that includes no other proper

balanced family. A n-family is a subset of = ,

Now we are in a position to state the main result of this section.

Theorem 1. _The following six statements are equivalent:
(1) The system of equation (8) has the integral property;
(11) Every balanced n-family is a union of m=partitions;
(1ii1i) Every minimal balanced n-family is a r-partition;
(iv) Every (N,V) 1in G(N,n) 1is a balanced game;
(v) Every (N,V) in G(N,n) has a non-empty core;

(vi) Every (N,v) in GS(N,n) has a non-empty core.

Before proving this theorem, let us consider its implications.

3Balancedness is not a necessary condition for the non-emptiness of the
core of a game without sidepayments; cf. Billera [1970].



Example 4. Consider the family 17 of basic coalitions which was given
in Example 2. If n = 8 , the bridge game has a nonempty core. But
every partitioning game with basic coalitions = does not necessarily have
a nonempty core. For example, vy = {{1,2,3,4}, {3,4,5,6}, {1,2,5,6}, {7}, {8}}
is a minimal balanced m-family but not a n-partition. Then Theorem 1
implies that we can find a game in GS(N,n) with an empty core. More
concretely, the game (N,v) which is defined by v on 1 where
ls| 1f s ey

v(s) = (12)
0 otherwise.

has an empty core.

Example 5. Consider a three type assignment game, i.e., N=JUKUM
(mutually disjoint) and 7 = {{1} : 1 € N} VU {{j,k,m} : §€ J, KE K &m € M} .
A three~type assignment game also does not necessarily have a non-empty

core. For example, let N = {1,2,...,9} and J = {1,2,3} , K = {4,5,6}

and M= {7,8,9} . Then vy = {{1,4,7}, (1,5,9}, {2,4,8}, {2,6,9}, {(3,5,7},
{3,6,8}} 4is a balanced n-family but not a n-partition so we can find a

game in GS(N,n) with an empty core. Concretely, the game defined by (12)

and the 7 and y of this example has an empty core (see Figure 1 below).

re

FIGURE 1
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Thus, overall, Theorem 1 implies that each statement of Theorem
1 1s quite strong and, it is fair to say that Theorem 1 is a nega-
tive result. That is, the special property of the assignment game (that
every assignment game has a non-empty core) is hardly generalized.
However, we can find some sufficient conditions for the integral
property of equation (8). Represent the system of equations (8) as the
matrix form, if.e., AX =1e & X 2 0, where X = (XT)TE“ and e 1is the
vector with every component equal to 1. A sufficient condition for
(8) to have the integral property is the unimodular property of A ,
i.e., every minor determinant of A equals 0, 1 or -1 (Hoffman and
Kruskal [1956, Theorem 2]). Hoffman and Kruskal gave also several neces-
sary and sufficient conditions and more convenient sufficient conditions

for the unimodular propérty.

Proof of Theorem 1

The theorem is proved as follows:

(1) &= ({i) &> (i11)

4 AN

(1y) === (v} =—=—=> (vi)
FIGURE 2

Since GS(N,7) is a subset of G(N,7) , (v) =#»(vi) is trivial, and

(iv) =>(v) is also obvious by Scarf's theorem.

Proof of (1) <=> (ii) ®=>» (iii): Since every n-partition is & minimal

balanced family and a balanced family is the union of the minimal balanced
families that it contains (Shapley [1967, p. 457, Corollaryl]), the equi-

valence of (i1i) and (iii) is true.
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With any solution (X_) of (8), we associate Gx = (GX)
S'Sn S N
S€2"-{¢}
such that dx = X for all S &€ w and 5x = (0 otherwise. Then Gx

s S S
is a solution of (9), and it is easy to see that sX is an extreme point
of (9) iff X 41is an extreme point of (8). Shapley's lemma [1967, Lemma 2]
states that Gx is an extreme point of (9) iff the balanced family
y* =z {8 : Gg > 0} 4is minimal. Therefore X 1is an extreme point of (8)
iff YX is a minimal balanced family. Then it is clear that X 1s an

integral solution iff YX is a w-partition.

Proof of (ii) = (iv): (a) Let y be a balanced m-family. We show

that if xe NV(T) , then x € V(N) . Since ¥ 1Includes a m-partition
TEvy

Py» x€ NV(DC N VNC U N v(T)
L} L
Tey Tepy, pNEP(N) Tepy,
(b) Let ¥ be a balanced family which is not a n-family. Suppose

Xx€ NV(T) . If 5 €y does not belong to =w , then there is a 7~
TEy

partition pg "of S with x€ N V(T) by (6). For Ten, let
Tep
S

Y'T-{s:se:y,sqens.'repg}. We define vy and § by

;#{T:Tey&TGW}U(Up;)o

Sey
Sén
f
6.+ Y &, 4f TE€y and TE€
T g6 S
GT = 1
I & if T¢y and TE€n
Sey
T
.0 otherwise,

where & 1s a balancing weight vector for y . It is easily verified
that this Y 41s a balanced m-family with the balancing weight vector
8§ . Since x €V(T) for all T E€ Y , the above argument (9) is applic-

able to this case.
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Proof of (vi) = (4ii): Suppose that there is a minimal balanced n-family

¥ which is not a m-partition. Consider the game (N,v) with sidepay-~

ments which is defined by

_ |s|] 1f sey
v(S) =

' 0 otherwise.

Then ) §v(s) = ] } 6= IN] , where § 1s a balancing weight vector
S€y IEN Sey

Sai

for y . But since ¥y does not include any wn-partition,

v(N) = max } v(T) < IN] . By Bondareva-Shapley's theorem, the core
pNGP(N) TEpN

of (N,v) 1s empty.

3. Approximate Cores of Partitioning Games

Obviously, the conditions stated for the non-emptiness of the cores
of partitioning games are extremely restrictive and, without some very
special structure on the collection of basic coalitions, we would not
expect these conditions to be met. 1In this section, however, we show thét,
given N and n , the replications of games in both GS(N,n) and
G(N,7) will have non-empty approximate cores 1f the number of replica-
tions is sufficiently large. The results we will obtain depend only on
N and 7 but not on the .particular games (N,v) or (N,V) .

Formally, given the set of players N = {1, ...,4i,...,n} , for
each positive integer r , define N_ = {(1,q) : i = 1,...? n and

g=1, ..., v} . The set Nr is called the set of players of the rth

replication of N . For each 1 €N, the set {(i,q) : q=1,...,r}
is called the set of players of type i of the rth replication of N .

Given any subset § of N, let 8 = (sl, ...,sn) be defined by its
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coordinates 8 = s N {(4,q) : q =1,..., 1} where |-

denotes the
cardinal number of a set. Then s 1s called the profile of § and is
simply a list of the numbers of players of each type contained in S .
Given S , define p(S) = s, so p(+) maps subsets of Nr into their

profiles.

A subset § CZNr is called a basic coalition (of Nr )y iff

p(S) = p(8') for some basic coalition S' € n of the set N . This
definition allows all subsets of Nr which are identical in terms of
their profiles to some basic coalition in N ( = Nl) to be basic
coalitions of Nr . Let L be the set of all non-empty basic coalitions
of Nr . For any non-empty S C Nr , we call P, = {Tl, easy T,

k
ﬂr—partitionof S iff Tte L for all 1, ..., k and pg 1s a parti-

) a

tion of S . Let Pr(S) be the set of all nr-partitions of § .

For a given partitioning game (N,v) € GS(N,7) , we define the

rth replica game (Nr’ vr) generated by (N,v) by:

for all T € T vr(T) = v(T') , where T'€

(13)
with p(T) = p(T') ; and

for all T€wn , v (T) = max )) v (T) . (14)
pSGPr(S) Tepg

For a given partitioning game (N,V) € G(N,7) , we define the

rth replica game (Nr’ Vr) generated by (N,V) by:

S
for all S€n_, , V.(5) = Rr Y x v(s') , where
: r r
(15)
S'€ 7 with p(S) = p(8') ; and
for all 5 ¢ LI Vr(s) = U N Vr(T) . {16)

PEP(S) Tepg
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where Ns is a subset of Nr such that § CZNS and p(NS) = (1, ..., 1) .
We remark that in both the sidepayments and no-sidepayments cases,

the games (Nr’ vr) and (Nr’ Vr) are partitioning games.

Example 6. Consider a three-type assignment game as given in Example 5.

The rth replication is defined as follows:

N = {(1,9) : 1 €N, q=1, ..., 1},

and Nr is divided into
J.=1{(1,d) : 1€, 9=1,...,7},
Kr = {(k,q) : k€K, q=1,...,T},

Mr = {(m,q) : mEM q=1, ...,r} .

The collection of basic coalitions L is given as

m_= (L@} (1,9 € N ) U {(1,9), G.q"), @9} :

(3,9 € 3,5 (,0") €K, @,qM) €M) .

In particular, let us consider the three~type assignment game with an

empty core given in Example 5. let r = 2 . Then it holds that

vy(N,) = vz({(l,l), (4,1), (7,1)})-+v2({(2,1), (6,1, (3,1)1H

1
+v, ({31, (.1, (7,0D) +v,({2,2), 4,2, &,DH &

+V2({(192)| (5.2)’ (9:2)}) +V2({(332)’ (6,2), (832)}) =18 .

The partition associated with vz(Nz) is described by Figure 3. Hence

vector (1, 1, ..., 1) 1is feasible and further it is easy to see that
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no coalition can improve upon this vector. Therefore (NZ’ v2) already

has a non-empty core. This property is generalized in Theorem 2.

(1,1 (2,1 (3,1 (1,2 (2,2 (3,2)

(1,1 (8,1)  (9,1)  (7,2)  (8.2)  (9,2)

FIGURE 3

Before starting and proving our theorems, we require the concept
of the balanced cover of a game.
For arbitrarily given games (N,v) and (N,V) with and without

sidepayments, the balanced cover games (N,&) and (N,v) are defined

as follows:

v(8) if S#¥N
noey o ] max{ § 8.v(T) : v is a balanced family
ORR sey T 1f s=n 18
with a balancing weight vector &}
v(s) if S# N
V(s) = { (19)
U NV(T) 1if S =N,
, ves T€y

where B8 18 the set of all balanced families.
Our next theorem will be used in the proof of the following thecorems

and is of some interest itself.
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Theorem 2. Let (N,7m) be given, Then there is an integer w® such

that for any positive integer k and any (N,v) € GS(N,n) and

V_) have non-

(N,V) € G(N,n) , the replics games (Nr’ vr) and (Nr’ r

empty cores, where r = km® .

Proof., Let B denote the collection of all minimal w-balanced families.
Given y € B, observe that the (unique) balancing weights 63 for

S € vy are all rational numbers, because § 1is the solution of linear
equations with Integral coefficients, Therefore there is an m°  which
satisfies the requirement that moés is an Integer for all S € y and

for all y € B . We claim that this n°

satisfies the requirements of
the theorem.

This m° 4is also the integer given in Lemma 5 of Wooders [1981], i.e.,

(]
m
if x€V(N) , then Nx €V (N ) . (20)
o] 0
i=1 m m

Also from Lemma 3 of Wooders [1981] we have:

o
m

for all positive integer k , 1f HN x €V o(N o) »
i=1 m m

o (21)
km
then T x€ V o(N ) .
j=l kn° kn°

Let x be in the core of (N,%) ; from Scarf's theorem [1967], there

o
lm

48 such an x . We show that for all positive integer k , Ix 1s
i=]

in the core of (Nr’ Vr) , where r = km® . From (20) and (21),

r
Nxe& vr(Nr) . Therefore it is sufficient to show that for any SC N,
i=1 '

r
I x does not belong to int V_(S) .
1=1 '
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r

Suppogse for some non-empty subset § CZNr s T x€ int vr(S)
i1=1
From the definition of the game (Nr’ Vr) , there is an n-partition
T r
Pg of § such that I x€ int N Vr(T) » i.e., I x€int V. (T)
i=]1 Teps 1=]1
for all TE pg . Given T € p, , there is a T* € v by (16) such that
NT

p(T*) = p(T) and v (T) = RV~

Tc N

xV(T*) , where N C N_ such that
and D(NT) = (1, ..., 1) . This implies x € int V(T*) . This
is a contradiction to the choice of x .
The above proof alsc applies to partitioning games with side-
6
payments.

Q.E.D.

The above theorem states that given any (N,V)} and (N,v) in
G(N,m) and GS(N,m) respectively, there are subsequences of the gener-
ated sequences of replica games such that gll games in the subsequences
have non-empty cores. This type of property was noted by Shubik for his
Bridge Game Example and our result generalized Shubik's observation.
Just as Shubik's Bridge Game has a non-empty core for all numbers of players
such that the set of players can be partitioned into groups of four, our
result shows that any partitioning game has a non-empty core if the set
of players can be partitioned into basic coalitions associated with a
payoff x* in the core of the balanced cover of the (unreplicated) game.
In the following we introduce concepts of approximate cores, one for

partitioning games with sidepayments and a more restrictive one for par-

6This theorem can be easily extended to show that for some n° , for all
positive integers k , the games (Nr' Vr) and (Nr’ vr) where

r = kn® are "totally balanced" in the sense that all subgames of the
games (Nr’ Vr) and (Nr’ vr) have non-empty cores.
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partitioning games without sidepayments. We show that independently of
v (or § ) , eall sufficiently large replications of partitioning games
have non-empty approximate cores.

For games without sidepayments, we have the following result (this

also applies to games with sidepayments),

Theorem 3. For any A > 0, there is an r* such that for all r > r* ,

and for any (N,V) € G(N,n) , there is a vector ** 1in the core of the

balanced cover game (Nr' ﬁr) of the rth replica game generated by

(N,V} and a vector x  in Vr(Nr) such that

l{(1,0) € N_ : xs

10 ¥ x;q}] < Ar . (22)

Informally, Theorem 3 states that given a game (N,V) , for sufficiently
large replications r , it is possible to find vectors x* 1n vr(Nr)

r
which "approximate'" some vector x  in the core of the balanced cover

r
iq

from ;iq can be made arbitrarily small. Moreover, "close" approxima-

game in the sense that the percentage of players whose payoff x differs

tions can be obtained simultaneously for all (N,V) 1in G(N,m) by the
appropriate choice of r* and A .7

Theorem 3 differs from a related theorem of Shubik and Wooders
[1982]) in that they use a slightly different, less restrictive, concept
of approximate core than we do. We are able to obtain our stronger result
because sequences of replica games generated by a given game satisfy

properties not required by Shubik and Wooders (see Shubik and Wooders

[1982] and also Wooders [1981]).

7Similar theorems concerning approximate cores of games derived from
exchange economies are well-known (cf. Henry [1972], Dierker [1971],
and Broome [1972]).
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Proof of Theorem 3. Let m° be as defined in the preof of Theorem 2.

Let r* be sufficiently large so that m°|N|/r* < A . For any

(N,V) € G{N,7) , select any y 1in the core of the bsalanced cover game

T

(N,W) of (N,V) . For each r , let ;r = Ny . It follows that
i=1
%" 4is in the core of (Nr’ Wr) for each r (the proof is essentially
r
the same as the proof that 1[I x is in the core of (Nr’vr) in the
i=1

proof of Theorem 2).

Given r > r* , let k be the largest integer such that km® gr

o

km |
and let § = r-km® . Arbitrarily select z€ V(N) . Let x = Nyx IIz.
i=] i=1
1n®
From superadditivity, x' € vr(Nr) since Ny €v (N o) and
] i=1 km® km
I z€V_(N,). Then it holds that
A
k=1
Ar T o
[{(t,q) € N X4 q ¥ xiq}l = i|N| <m |N] < Ark < Ar .
Q.E.D.

Now we consider non-emptiness of approximate cores of partition-
ing games with sidepayments. The approximate core concept used in Thereom
4, however, is the Shapley-Shubik [1966] weak e-core. To enable us to
state the theorem independently of the function v , we normalize the
games in GS(N,n) . Let GS*(N,m) denote the class of partitioning games

with sidepayments, normalized so that for all (N,v) € GS*(N,m) ,

vin < fn| 8. (23)

8Note that this does not allow V(T) < 0 for all T€ n . Therefore it

is not true that every game (N,n) &€ GS(N,7) can be normalized into
GS*(N,7) only by a parallel transformation.
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Theorem 4. For any € > 0, there is an r* such that for all r > r*

and for any (N,v) € GS*(N,n) , the rth replica game generated by

(N,v) has a non-empty e-core, 1.e., there is a vector x* such that

r
x, < v (N) (24)
(1’q)€Nr ig r'r
r
x; 2>v_(S) -¢|s| forall ScN_. (25)
(1,q)es 197 T r

Example 7. Consider the three-type assignment game with an empty core
given in Example 5. In Example 6, it is shown that (NZ’ v2) already
has a non-empty core. Furthermore it is easily verified that

9r if r 1s even

vr(Nr) =
9(r-1)+6 1f r 1is odd.

and, if r 1is even, then the core of (Nr’ vr) is non-empty. If

is odd, then the vector % such that
x, =1~ £ for all (i,q) €N
3r °r 8 »q r

is feasible. Since 1/3r + 0 (r =+ =) , this véctor is in the e-core
for all sufficiently large r . Note that Theorem 4 states that it is

possible to choose r independently of a particular game in GS(N,w) .

Proof of Theorem 4. From a result established in the proof of Theorem

3, wve have the result that if x 4is in the core of the balanced cover
r

game (N,&) of (N,v) € GS*(N,n) , then I x 1is in the core of the
i=1
balanced cover game (Nr’ 3r) of the rth replica game (Nr’ vr) of

(N,v) . Therefore
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V_(N) = rv(N) forall r31. (26)
Let m° be as defined in the proof of Theorem 2. Then

if r = ka-+j for some Integers k and 3j , thenwe have

(27)
v (8 ) = v (N R V(N .

r kmo km b I |
For any {N,v) € GS*(N,7) , we have

V(N) = max{ ] &
SE€Y

Sv(S) :y 1s a balanced family with balancing

weight vector &} (28)

< v(N) ] 6. < IN|v(N) < In)2 .

S€y S

For r > m° » let k be the largest integer such that kn® <r
and let j = r - km® . Given any (N,v) € GS*(N,n) , from Theorem 2

and the Bondareva-Shapley theorem

for all positive integer k , v (N J)=v (N ). {29)

km® km° kn®  km

Then it follows from (26}, (27), (28), (29) and superadditivity that

v u N
v.(N) -v . (N) < vkm°(Nkm°) + vj(Nj) - [vkmo(Nkmo)-+vj(Nj)] (30)

= 3, - vy 5 W - v g 3nl? g wnl?

Now select r* sufficiently large so that m°|N|2/r* <g . Given

any (N,v) € GS*(N,n) and any r > r* , we have, by (30), and

3r(Nr) - v (W) = mO]NI2 <re . (31)
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Let x* be in the core of (Nr, vr) . Then we define y' by

ytq = xtq - £ for all (t,q) € Nr M

It follows from (31) that this yr satisfies (25) and (26).

Q.E.D.

Remarks: An Extension

Although Wooders' result [1981] applies to a larger class of se-
quences of games than those constructed from given games with sidepayments,
Theorem 4 suggests another theorem which, for the sidepayments case, is
stronger than the result in Wooders [1981].

In this extension, we will define a more general class of sequences
of replica games than previously considered herein and obtain a result
analogous to Theorem 4 for this class.

Given n , let I denote the n-fold Cartesian product of the

non-negative integers, called the set of profiles. Given any s € I and

8' € I where s8' < s, the profile s' 1is called a subprofile of s.
Let v denote a superadditive function mapping I into R,
where v(0) = 0 , Define Nr = {(4,q) : i =1, ..., nandgq =1, ..., 1}

and V., 28 function mapping subsets of Nr into R, so that

9,10

v.(8) = v(s) when p(5) =5 . Then (N, v.) is a game and the

r=1 is called a sequence of replica games. Note that

sequence (Nr’ vr)
we do not necessarily have 3(Nr) = r&(Nl} , & property of replica games

generated by a given game.

9Here again p(S) 4is the profile of S ; f.e., the 1th coordinate of
p(s) 18 |{sN{({4,9) : q=1,...,1} .

10
The profile of Nl is the vector (1, ...,1) € R" . This does not rule

out the possibility that members of N, are substitutes for each other.

1
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Let G*S denote the set of all sequences of replica games

(Nr’ vr)r-l normalized so that for all § C:Nr ,» 0¢ vr(S) and
v(N_)

lim sup -

T

:_|N1[ . We then have the following theorem which 1s

stated without proof since the result is an easy extension of Theorem

4 and results in Wooders [1981] applied to sidepayment games.

Theorem 4'. Given any ¢ > 0 there is an r* such that for any func-

tion v defined as above, and for all r > r* the rth replica game

N
(Nr, vr) has a non-empty e-core, i.e., there is an x" €R T satisfying

r r
x; <v (N) and x, >v (5) - €|s| forall SCN_.
(1,0 19T TT (1,965 197 T ¥
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