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A NOTE ON THE MODIGLIARI-HOHN PRODUCTION SMOOTHING MODEL

Alan S. Manne

1. Introduction

Modigliani and Hohn [r5:7 have formulated a production plan-
ning and inventory control model that appears relevant to an im-
portent cless of non-stochastic decision-making problems. In their

own words: .

;Hé-donsider the problem of scheduling the
production of a given commodity x over T equal,
gsuccessive periods of time in such a way as
{(1). to meet initially known requirements. -
815 Bpy =+ = 5 S in these periods whi%é
(2) incurring the lowest possible cost. [ 5, p. 467
It is the purpose of this note to sﬁggest: (1) that the Modig-
liani-Ho¢hn problem may be formulated in terms of linear programming as
well as through the calculus model originally employed; (2) that since
the linear progremming version is equivalent to a "transportation problem"
[ 3/, even large systems may be solved readily by hand; and (3) that the -
linear programming version is especially well-suited to trace out tThe cost
implications of stabilizing the work farce at alternative levels., Like -
the "caterer problem” /4 /'#nd the "warehousing problem" /1 7/, this

linear programming model represents ancther instance in which every basis

is pure triangular and contains no elements but zero, {1, and -1.
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an economic interpretation in terms of the labor premiums paid for
successive shifts within a given plant - night work, overtimé, Saturdays,
Sundays and holidays, etc. - and for this reason we shall refer to the
individual segments as though they corresponded to shifts 1,72, . . . , J.¥
Within any one shift as so defined, wmarginal production costs remain
constant, but in going from one shift to the next higher cost catégory,
the marginal costs increase discontinucusly.

In order to simplify subsequent w?rk, a few changes have been made
in the notation used by Modigliani and Hohn. Ours is as follows:

(a) unknowns

Xy = output during the j th shift within time period %.
(j - l, 2, " e sq J)
(E = l, 2’ LI T)

Y3t = eXcess of output limit over actual output during the .j th
shift within time period t (J =1,2, . . ., J)
(twl, 2, . - ., T)

h, = inventory on hand at end of period § (t =1, 2, .. ., T-1)

Ht = inventory on hand at. beginning of period t (E =2, 3, ¢« 0 o, T)
(b) constants

8¢ = sales requirement occurring within period t SE =1, 2, ...;,7T)

¥ The rise in marginal production costs along curve BB' need not have any-
thing to do with pay premiums, but might result from the diversion of a given
material (say, heating oil) away from successively more valusble alternate uses.
See Charnes, Cooper, and Symonds / 2 /. The identical form for BB' would

£till remain applicable.



(b) constants (cont'd.)

8jt = upper limit on output during the J th shift within period t.
(I‘j ,‘ * & wgy J
(t

1 2, + o« «5 T)

n ll

Hl = inventory available at beginning of period l.
by = inventory requirement for end of period T.

(¢) cost coefficients

o = cost of bringing one unit of inventory forward from
one pericd to the next.

¢y = marginal production cost within the J th shift. (j =1, 2, . . . J)
The linear programming problem may 5e phrased as one of choosing values
for the unknowns in such a way as to minimize expression (2.1), subject to
meeting conditions (2.2) - (2.5). The minimand represents the sum of the

variable inventory costs plus production costs during each shift within each

time period:

o5 S
(2.1} 2 h_ + e P
t—l b j=1 4 t=1 Jt

Condition (2.2) states that within each period, the production plus

net inventory change equals the sales requirement for that period:

(2.2) z.'xjt+Ht-ht=St (t=l, 2’ sy T)
Condition (2.3) indicates the upper bound on output within each

shift for each time period:



(2-3) x,jt+ yjt - ajt ‘ { -ﬁ i} g, ¢ o oy J

, b L] L D’ T

And condition {2.4) indicates the identify.between the inventory

carried over from the end of cne pericd and that én hand at the

beginning of the next: f
(2.4) hy = Hy o4 (t=1,2, ..., T=l)
Finally, there are the usual non-negativity restrictions\on a1l unknowns:

(2.5) x,. >0 [\j 1,2,...,.1'[
\t l,e’iao,T

Tye ¥ O | 1 J

h, =0 : (R

1, 2, + o e T-l)

- 3. . Equivalence to thg transportation model

To show that the problem just defined is equivalent to a transportation
model, it suffices to illustrate the array for J=T= 3, (See Table 1.) In
this instance, 22 variables altogether are presenté X33 s Xpys o = oo x33;
Yi1s Yo1s ¢ ¢ s y33;_hl, h, , By , and H3. The remsining cells of the b x 11
array are empty. There are 1k restrictions on the row and column totals of
Table 1: the three row totals corresponding to equation group (2.2), the
first nine column totals corresponding to equation group (2.3), and the last
two column totals to group (2.4). No restriction is placed upon the sum of
the row containing the "slack varigbles", Ve

*¥ The "costless" variables H,_, along with the identity conditions (2.L4), are
really superfluous, They are introduced here only to facilitate seitting up
the linear programming problem in the format of the "transportation'problem.
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In the case of an array{éuch as £ﬁémone showﬁ\in;Table 1, Dantzig
has proved the following theorem: At each iteration; it will be possible
to find either & row or a column containing exactly one basis variable.
Solving for this variable and then working with the reduced array formed
by deleting the corresponding row or column, it is.proved by induction

diihin 7

that every basis must be strictly triangular;%,Furthermore, since the

only coefficients entering into the equations of the initial linear
: Red 003
programming problem are zero, +1, and -1, the only arithmetic operations
A

required for a solution consist of addition and subtraction.

/ Dantzig, 3, p. 365/.

4, An illustrative example

Suﬁpose that the constants and the cost coefficients for a 3=shift,
3 time period problem are as given 1n Teble 2. For these data, Table 3
fhen contains the minimum cost solution as computed by the “"transportation"
method. Values for the dual variables u., the "shadow prices" associated
with each of the sales requirement equations, are also entered in Table 3.
In this, as in any optimal solution to this class of linear programming
prqblems, the following conditions are necessary, and may be employed to
facilitate computations: ¥

% Note that the conditions of (4.1) correspond to the Modigliani-Hohn
‘calculus inequalities (3.10), /5, p.50/.



B8 = H

Constants

(units of output)

80
160
2ho

100

g i el Seshart, O Gl porlod

smoothing problem.

Cost coefficients

Cl = 10
02 = 15
. C3 s 20
(a1l j, t). ' a = h

Table 3. Optimal solution to hypothetical smoothing problem

tinEhaQ%fi;i‘ CE;
Period T

1 100

2 100

3 100

a 100

It
cj ($103) 10

x:]t
A
-
2 3.
0] 0
80 0
100 0
100 100
15 20

By By
Requirements
-- 20 8o
20 40 : 160
Lo -- 2ho
T-1
Inventory 4 labor costs = @ L by
t=1

.($ib3/unit of output)

u,  ($103)
11

15

19

J T
e, Tx

j=1 9 t=1 IF

= $5,940,000.
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(4.1) U,y Su +o (t=1,2, ..., T-1)
(4.2) (u, +a - uy5) (i) £ 0 c (b ml, 2, ..., T-1) %

(4.3) 1If, for any given shift j and period t,

xjt >0, then x'j_l, = aj_l, %t (J -‘2,'3, ¢« o ey Jd; T = J___, 2, ¢ s oy T)
R T ) S S o

b ¥ . o -
{ e

(4.4) If, for any given shift J and period %,

ajt >th > 0, then u,

And if Xy 0, then u < cy. (all J, &)

' 7 (4.5) The "costless" variables H,, H « oy Hp will all be j'é-on'tained in an

3
"cptimal basi‘@- although some of them may take on the value of zerc.

5. - Work stahllization policies

The model with which we have been dealing includes no explicit cqsts for altering
the rate -of production or the size of the work force frém one period to the next.
Indeed, in any concrete application, it may be extremely difficult for a fi;'m to
:'place dollar cost estimates on the loss of employee and commu.nity good ;will that
z;asults from deliberate fluctuations in employment. As an alternafive to making
;}ﬁ'rbitrary estimates of these "rate of change" costs, it will frequently be desirable._
%.,to calculate several alternative inventory and production plans - each corresponding
2@0 a different assumption as to the "work force commitment", i.e., the level below
%ﬁch employment will not be reduced during any of the time periods covered by the

ﬁ?cxluction plan.

In the terminology of Modiglian and Hohn, if u, +ca > Uiy period £ and t & 1
g to two different “intervals". "Small" changes in 54412 Styo Sm + hT
1d not alter the optimal solution for periocds 1, 2, « . ., t. 125 o o
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In the case of our hypothetical examplé, thé optimum solution shown in Table 3
already provides a minimum of one-ghift employment during eacﬁ of the.three periods.
The bar chart of Figure 2 compares the cost of this plan with those of two further
linear programming solutions - one that assumes a work force commitment of 1.6
shifts and one of 2.0. ¥ Interestingly enough, the total of[ inventory plus labor
costs increases very little from & 1.0 to a 1.6 shift commitment - from $5.94
millions to 6.34%. In going from the 1.6 to the 2.0 shift level, however, some of
the employées must remain idle, and a substantial cost ingrease oceurs. The toﬁal
goes up to $7.66 millions. When presented with an.explicit choice of thié gort,
few managements would hesitate to choose the 1.6 shift policy - despite their initial
reluctance to place a dollar value on the worth of stabilizing employment.

In order to obtain a linear programming solution for the cases of 1.6 and

2.0 shifts, only a few changes need be made in the constants and cost coefficients

shown in Tables 2 and 3:

Work force come none 1.6 2,0
mitment, number
of shifts (Tables

2 and 3)
814 100 160 0
8, 100 40 200
c2 15 15 0

¥ Note that 1.6 shifts yield 480 units of output during the three periods -
exactly the cumulated production requirements.



ree—period
costs, millions
of dollars

8.0 B

Code

70 |

6.0 |

3.0 L

Flgurers

Inventory costs

Labor costs in
excess of wark
force commitment

Fixed lsbor costs
for work force
cormitment

Work force commitment,

number of- shifts

NN

e

none

NN

1.6

2.0

°ct
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These alterations consist simply of recognizing that the effect of a work
force stabilization policy is to make the marginal labor costs zero for output
rates that fall short of using up the fixed labor dommitment, but that the marginal
costs increase disconﬁinuously at produgt;on rates in exceés ofrthis level. Here
it is apparent that a linear prograrming idealization approaches economic reality
mach moreAclosely than & calculus modei which assumes that the marginal cost curve
is a continuous one. ‘Both from thé viewpoint of problem formilation and of
numerical computations, the linear programming version seems to be as useable

as its calculus counterpart.
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