Skip to main content

Ying Wang Publications

Publish Date
Discussion Paper
Abstract

A general asymptotic theory is established for sample cross moments of nonstationary time series, allowing for long range dependence and local unit roots. The theory provides a substantial extension of earlier results on nonparametric regression that include near-cointegrated nonparametric regression as well as spurious nonparametric regression. Many new models are covered by the limit theory, among which are functional coefficient regressions in which both regressors and the functional covariate are nonstationary. Simulations show finite sample performance matching well with the asymptotic theory and having broad relevance to applications, while revealing how dual nonstationarity in regressors and covariates raises sensitivity to bandwidth choice and the impact of dimensionality in nonparametric regression. An empirical example is provided involving climate data regression to assess Earth’s climate sensitivity to CO2, where nonstationarity is a prominent feature of both the regressors and covariates in the model. This application is the first rigorous empirical analysis to assess nonlinear impacts of CO2 on Earth’s climate.

Journal of Econometrics
Abstract

Limit distribution theory in the econometric literature for functional coefficient cointegrating regression is incorrect in important ways, influencing rates of convergence, distributional properties, and practical work. The correct limit theory reveals that components from both bias and variance terms contribute to variability in the asymptotics. The errors in the literature arise because random variability in the bias term has been neglected in earlier research. In stationary regression this random variability is of smaller order and can be ignored in asymptotic analysis but not without consequences for finite sample performance. Implications of the findings for rate efficient estimation are discussed. Simulations in the Online Supplement provide further evidence supporting the new limit theory in nonstationary functional coefficient regressions.

Economic Theory
Abstract

Functional coefficient (FC) regressions allow for systematic flexibility in the responsiveness of a dependent variable to movements in the regressors, making them attractive in applications where marginal effects may depend on covariates. Such models are commonly estimated by local kernel regression methods. This paper explores situations where responsiveness to covariates is locally flat or fixed. The paper develops new asymptotics that take account of shape characteristics of the function in the locality of the point of estimation. Both stationary and integrated regressor cases are examined. The limit theory of FC kernel regression is shown to depend intimately on functional shape in ways that affect rates of convergence, optimal bandwidth selection, estimation, and inference. In FC cointegrating regression, flat behavior materially changes the limit distribution by introducing the shape characteristics of the function into the limiting distribution through variance as well as centering. In the boundary case where the number of zero derivatives tends to infinity, near parametric rates of convergence apply in stationary and nonstationary cases. Implications for inference are discussed and a feasible pre-test inference procedure is proposed that takes unknown potential flatness into consideration and provides a practical approach to inference.

Discussion Paper
Abstract

Functional coefficient (FC) regressions allow for systematic flexibility in the responsiveness of a dependent variable to movements in the regressors, making them attractive in applications where marginal effects may depend on covariates. Such models are commonly estimated by local kernel regression methods. This paper explores situations where responsiveness to covariates is locally flat or fixed. In such cases, the limit theory of FC kernel regression is shown to depend intimately on functional shape in ways that affect rates of convergence, optimal bandwidth selection, estimation, and inference. The paper develops new asymptotics that take account of shape characteristics of the function in the locality of the point of estimation. Both stationary and integrated regressor cases are examined. Locally flat behavior in the coefficient function has, as expected, a major effect on bias and thereby on the trade-off between bias and variance, and on optimal bandwidth choice. In FC cointegrating regression, flat behavior materially changes the limit distribution by introducing the shape characteristics of the function into the limiting distribution through variance as well as centering. Both bias and variance depend on the number of zero derivatives in the coefficient function. In the boundary case where the number of zero derivatives tends to infinity, near parametric rates of convergence apply for both stationary and nonstationary cases. Implications for inference are discussed and simulations characterizing finite sample behavior are reported. 

Discussion Paper
Abstract

Limit distribution theory in the econometric literature for functional coefficient cointegrating (FCC) regression is shown to be incorrect in important ways, influencing rates of convergence, distributional properties, and practical work. In FCC regression the cointegrating coefficient vector \beta(.) is a function of a covariate z_t. The true limit distribution of the local level kernel estimator of \beta(.) is shown to have multiple forms, each form depending on the bandwidth rate in relation to the sample size n and with an optimal convergence rate of n^{3/4} which is achieved by letting the bandwidth have order 1/n^{1/2}.when z_t is scalar. Unlike stationary regression and contrary to the existing literature on FCC regression, the correct limit theory reveals that component elements from the bias and variance terms in the kernel regression can both contribute to variability in the asymptotics depending on the bandwidth behavior in relation to the sample size. The trade-off between bias and variance that is a common feature of kernel regression consequently takes a different and more complex form in FCC regression whereby balance is achieved via the dual-source of variation in the limit with an associated common convergence rate. The error in the literature arises because the random variability of the bias term has been neglected in earlier research. In stationary regression this random variability is of smaller order and can correctly be neglected in asymptotic analysis but with consequences for finite sample performance. In nonstationary regression, variability typically has larger order due to the nonstationary regressor and its omission leads to deficiencies and partial failure in the asymptotics reported in the literature. Existing results are shown to hold only in scalar covariate FCC regression and only when the bandwidth has order larger than 1/n and smaller than 1/n^{1/2}. The correct results in cases of a multivariate covariate z_t are substantially more complex and are not covered by any existing theory. Implications of the findings for inference, confidence interval construction, bandwidth selection, and stability testing for the functional coefficient are discussed. A novel self-normalized t-ratio statistic is developed which is robust with respect to bandwidth order and persistence in the regressor, enabling improved testing and confidence interval construction. Simulations show superior performance of this robust statistic that corroborate the finite sample relevance of the new limit theory in both stationary and nonstationary regressions.

Discussion Paper
Abstract

Behavior at the individual level in panels or at the station level in spatial models is often influenced by aspects of the system in aggregate. In particular, the nature of the interaction between individual-specific explanatory variables and an individual dependent variable may be affected by `global’ variables that are relevant in decision making and shared communally by all individuals in the sample. To capture such behavioral features, we employ a functional coefficient panel model in which certain communal covariates may jointly influence panel interactions by means of their impact on the model coefficients. Two classes of estimation procedures are proposed, one based on station averaged data the other on the full panel, and their asymptotic properties are derived. Inference regarding the functional coefficient is also considered. The finite sample performance of the proposed estimators and tests  are examined by simulation. An empirical spatial model illustration is provided in which the climate sensitivity of temperature to atmospheric CO_2 concentration is studied at both station and global levels.