Skip to main content

Timothy B. Armstrong Publications

Publish Date
Discussion Paper
Abstract

We consider inference in models defined by approximate moment conditions. We show that near-optimal confidence intervals (CIs) can be formed by taking a generalized method of moments (GMM) estimator, and adding and subtracting the standard error times a critical value that takes into account the potential bias from misspecification of the moment conditions. In order to optimize performance under potential misspecification, the weighting matrix for this GMM estimator takes into account this potential bias, and therefore differs from the one that is optimal under correct specification. To formally show the near-optimality of these CIs, we develop asymptotic efficiency bounds for inference in the locally misspecified GMM setting. These bounds may be of independent interest, due to their implications for the possibility of using moment selection procedures when conducting inference in moment condition models. We apply our methods in an empirical application to automobile demand, and show that adjusting the weighting matrix can shrink the CIs by a factor of 3 or more.

Discussion Paper
Abstract

We consider estimation and inference on average treatment effects under unconfoundedness conditional on the realizations of the treatment variable and covariates. Given nonparametric smoothness and/or shape restrictions on the conditional mean of the outcome variable, we derive estimators and confidence intervals (CIs) that are optimal infinite samples when the regression errors are normal with known variance. In contrast to conventional CIs, our CIs use a larger critical value that explicitly takes into account the potential bias of the estimator. When the error distribution is unknown, feasible versions of our CIs are valid asymptotically, even when √n-inference is not possible due to lack of overlap, or low smoothness of the conditional mean. We also derive the minimum smoothness conditions on the conditional mean that are necessary for √n-inference. When the conditional mean is restricted to be Lipschitz with a large enough bound on the Lipschitz constant, the optimal estimator reduces to a matching estimator with the number of matches set to one. We illustrate our methods in an application to the National Supported Work Demonstration.

Discussion Paper
Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we derive novel critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean-squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is n^{−2/5}, the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.

Abstract

We consider the problem of constructing confidence intervals (CIs) for a linear functional of a regression function, such as its value at a point, the regression discontinuity parameter, or a regression coefficient in a linear or partly linear regression. Our main assumption is that the regression function is known to lie in a convex function class, which covers most smoothness and/or shape assumptions used in econometrics. We derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with known variance. We show that these results translate to uniform (over the function class) asymptotic results when the error distribution is not known. When the function class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to efficient at smooth regression functions. This implies, in particular, that it is impossible to form CIs that are tighter using data-dependent tuning parameters, and maintain coverage over the whole function class. We specialize our results to inference in a linear regression, and inference on the regression discontinuity parameter, and illustrate them in simulations and an empirical application.

Abstract

Kernel-based estimators are often evaluated at multiple bandwidths as a form of sensitivity analysis. However, if in the reported results, a researcher selects the bandwidth based on this analysis, the associated confidence intervals may not have correct coverage, even if the estimator is unbiased. This paper proposes a simple adjustment that gives correct coverage in such situations: replace the Normal quantile with a critical value that depends only on the kernel and ratio of the maximum and minimum bandwidths the researcher has entertained. We tabulate these critical values and quantify the loss in coverage for conventional confidence intervals. For a range of relevant cases, a conventional 95% confidence interval has coverage between 70% and 90%, and our adjustment amounts to replacing the conventional critical value 1.96 with a number between 2.2 and 2.8. A Monte Carlo study confirms that our approach gives accurate coverage in finite samples. We illustrate our approach with two empirical applications.

Abstract

This note uses a simple example to show how moment inequality models used in the empirical economics literature lead to general minimax relative efficiency comparisons. The main point is that such models involve inference on a low dimensional parameter, which leads naturally to a definition of “distance” that, in full generality, would be arbitrary in minimax testing problems. This definition of distance is justified by the fact that it leads to a duality between minimaxity of confidence intervals and tests, which does not hold for other definitions of distance. Thus, the use of moment inequalities for inference in a low dimensional parametric model places additional structure on the testing problem, which leads to stronger conclusions regarding minimax relative efficiency than would otherwise be possible.

Abstract

This paper derives asymptotic power functions for Cramer-von Mises (CvM) style tests for conditional moment inequality models in the set identified case. Combined with power results for Kolmogorov-Smirnov (KS) tests, these results can be used to choose the optimal test statistic, weighting function and, for tests based on kernel estimates, kernel bandwidth. The results show that KS tests are preferred to CvM tests, and that a truncated variance weighting is preferred to bounded weightings under a minimax criterion, and for a class of alternatives that arises naturally in these models. The results also provide insight into how moment selection and the choice of instruments affect power. Such considerations have a large effect on power for instrument based approaches when a CvM statistic or an unweighted KS statistic is used and relatively little effect on power with optimally weighted KS tests.

Abstract

We consider the problem of inference on a regression function at a point when the entire function satisfies a sign or shape restriction under the null. We propose a test that achieves the optimal minimax rate adaptively over a range of Hölder classes, up to a log log n term, which we show to be necessary for adaptation. We apply the results to adaptive one-sided tests for the regression discontinuity parameter under a monotonicity restriction, the value of a monotone regression function at the boundary, and the proportion of true null hypotheses in a multiple testing problem.

Abstract

We consider inference on optimal treatment assignments. Our methods allow for inference on the treatment assignment rule that would be optimal given knowledge of the population treatment effect in a general setting. The procedure uses multiple hypothesis testing methods to determine a subset of the population for which assignment to treatment can be determined to be optimal after conditioning on all available information, with a prespecified level of confidence. A Monte Carlo study confirms that the inference procedure has good small sample behavior. We apply the method to study Project STAR and the optimal assignment of small class based on school and teacher characteristics.

Abstract

This paper considers inference for conditional moment inequality models using a multiscale statistic. We derive the asymptotic distribution of this test statistic and use the result to propose feasible critical values that have a simple analytic formula, and to prove the asymptotic validity of a modified bootstrap procedure. The asymptotic distribution is extreme value, and the proof uses new techniques to overcome several technical obstacles. The test detects local alternatives that approach the identified set at the best rate among available tests in a broad class of models, and is adaptive to the smoothness properties of the data generating process. Our results also have implications for the use of moment selection procedures in this setting. We provide a monte carlo study and an empirical illustration to inference in a regression model with endogenously censored and missing data.