Skip to main content

Michal Kolesár Publications

Publish Date
Discussion Paper
Abstract

We consider inference in models defined by approximate moment conditions. We show that near-optimal confidence intervals (CIs) can be formed by taking a generalized method of moments (GMM) estimator, and adding and subtracting the standard error times a critical value that takes into account the potential bias from misspecification of the moment conditions. In order to optimize performance under potential misspecification, the weighting matrix for this GMM estimator takes into account this potential bias, and therefore differs from the one that is optimal under correct specification. To formally show the near-optimality of these CIs, we develop asymptotic efficiency bounds for inference in the locally misspecified GMM setting. These bounds may be of independent interest, due to their implications for the possibility of using moment selection procedures when conducting inference in moment condition models. We apply our methods in an empirical application to automobile demand, and show that adjusting the weighting matrix can shrink the CIs by a factor of 3 or more.

Discussion Paper
Abstract

We consider estimation and inference on average treatment effects under unconfoundedness conditional on the realizations of the treatment variable and covariates. Given nonparametric smoothness and/or shape restrictions on the conditional mean of the outcome variable, we derive estimators and confidence intervals (CIs) that are optimal infinite samples when the regression errors are normal with known variance. In contrast to conventional CIs, our CIs use a larger critical value that explicitly takes into account the potential bias of the estimator. When the error distribution is unknown, feasible versions of our CIs are valid asymptotically, even when √n-inference is not possible due to lack of overlap, or low smoothness of the conditional mean. We also derive the minimum smoothness conditions on the conditional mean that are necessary for √n-inference. When the conditional mean is restricted to be Lipschitz with a large enough bound on the Lipschitz constant, the optimal estimator reduces to a matching estimator with the number of matches set to one. We illustrate our methods in an application to the National Supported Work Demonstration.

Discussion Paper
Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we derive novel critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean-squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is n^{−2/5}, the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.

Abstract

We consider the problem of constructing confidence intervals (CIs) for a linear functional of a regression function, such as its value at a point, the regression discontinuity parameter, or a regression coefficient in a linear or partly linear regression. Our main assumption is that the regression function is known to lie in a convex function class, which covers most smoothness and/or shape assumptions used in econometrics. We derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with known variance. We show that these results translate to uniform (over the function class) asymptotic results when the error distribution is not known. When the function class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to efficient at smooth regression functions. This implies, in particular, that it is impossible to form CIs that are tighter using data-dependent tuning parameters, and maintain coverage over the whole function class. We specialize our results to inference in a linear regression, and inference on the regression discontinuity parameter, and illustrate them in simulations and an empirical application.

Abstract

Kernel-based estimators are often evaluated at multiple bandwidths as a form of sensitivity analysis. However, if in the reported results, a researcher selects the bandwidth based on this analysis, the associated confidence intervals may not have correct coverage, even if the estimator is unbiased. This paper proposes a simple adjustment that gives correct coverage in such situations: replace the Normal quantile with a critical value that depends only on the kernel and ratio of the maximum and minimum bandwidths the researcher has entertained. We tabulate these critical values and quantify the loss in coverage for conventional confidence intervals. For a range of relevant cases, a conventional 95% confidence interval has coverage between 70% and 90%, and our adjustment amounts to replacing the conventional critical value 1.96 with a number between 2.2 and 2.8. A Monte Carlo study confirms that our approach gives accurate coverage in finite samples. We illustrate our approach with two empirical applications.