In this paper, we explore a scenario where a sender provides an information policy and a receiver, upon observing a realization of this policy, decides whether to take a particular action, such as making a purchase. The sender’s objective is to maximize her utility derived from the receiver’s action, and she achieves this by careful selection of the information policy. Building on the work of Kleiner et al., our focus lies specifically on information policies that are associated with power diagram partitions of the underlying domain. To address this problem, we employ entropy-regularized optimal transport, which enables us to develop an efficient algorithm for finding the optimal solution. We present experimental numerical results that highlight the qualitative properties of the optimal configurations, providing valuable insights into their structure. Furthermore, we extend our numerical investigation to derive optimal information policies for monopolists dealing with multiple products, where the sender discloses information about product qualities.
We study a generalization of the classical monopoly insurance problem under adverse selection (see Stiglitz 1977) where we allow for a random distribution of losses, possibly correlated with the agent's risk parameter that is private information. Our model explains patterns of observed customer behavior and predicts insurance contracts most often observed in practice: these consist of menus of several deductible-premium pairs or menus of insurance with coverage limits–premium pairs. A main departure from the classical insurance literature is obtained here by endowing the agents with risk-averse preferences that can be represented by a dual utility functional (Yaari 1987).
We study auction design for bidders equipped with non-expected utility preferences that exhibit constant risk aversion (CRA). The CRA class is large and includes loss-averse, disappointment-averse, mean-dispersion, and Yaari's dual preferences as well as coherent and convex risk measures. Any preference in this class displays first-order risk aversion, contrasting the standard expected utility case which displays second-order risk aversion. The optimal mechanism offers “ full-insurance” in the sense that each agent’s utility is independent of other agents’ reports. The seller excludes less types than under risk neutrality and awards the object randomly to intermediate types. Subjecting intermediate types to a risky allocation while compensating them when losing allows the seller to collect larger payments from higher types. Relatively high types are willing to pay more, and their allocation is efficient.