Skip to main content

Yanping Yi Publications

Publish Date
Abstract

We propose new methods for estimating the bid-ask spread from observed transaction prices alone. Our methods are based on the empirical characteristic function instead of the sample autocovariance function like the method of Roll (1984). As in Roll (1984), we have a closed form expression for the spread, but this is only based on a limited amount of the model-implied identification restrictions. We also provide methods that take account of more identification information. We compare our methods theoretically and numerically with the Roll method as well as with its best known competitor, the Hasbrouck (2004) method, which uses a Bayesian Gibbs methodology under a Gaussian assumption. Our estimators are competitive with Roll’s and Hasbrouck’s when the latent true fundamental return distribution is Gaussian, and perform much better when this distribution is far from Gaussian. Our methods are applied to the Emini futures contract on the S&P 500 during the Flash Crash of May 6, 2010. Extensions to models allowing for unbalanced order flow or Hidden Markov trade direction indicators or trade direction indicators having general asymmetric support or adverse selection are also presented, without requiring additional data.

Discussion Paper
Abstract

This paper considers estimation of semi-nonparametric GARCH filtered copula models in which the individual time series are modelled by semi-nonparametric GARCH and the joint distributions of the multivariate standardized innovations are characterized by parametric copulas with nonparametric marginal distributions. The models extend those of Chen and Fan (2006) to allow for semi-nonparametric conditional means and volatilities, which are estimated via the method of sieves such as splines. The fitted residuals are then used to estimate the copula parameters and the marginal densities of the standardized innovations jointly via the sieve maximum likelihood (SML). We show that, even using nonparametrically filtered data, both our SML and the two-step copula estimator of Chen and Fan (2006) are still root-n consistent and asymptotically normal, and the asymptotic variances of both estimators do not depend on the nonparametric filtering errors. Even more surprisingly, our SML copula estimator using the filtered data achieves the full semiparametric efficiency bound as if the standardized innovations were directly observed. These nice properties lead to simple and more accurate estimation of Value-at-Risk (VaR) for multivariate financial data with flexible dynamics, contemporaneous tail dependence and asymmetric distributions of innovations. Monte Carlo studies demonstrate that our SML estimators of the copula parameters and the marginal distributions of the standardized innovations have smaller variances and smaller mean squared errors compared to those of the two-step estimators in finite samples. A real data application is presented.

Abstract

This paper considers efficient estimation of copula-based semiparametric strictly stationary Markov models. These models are characterized by nonparametric invariant (one-dimensional marginal) distributions and parametric bivariate copula functions; where the copulas capture temporal dependence and tail dependence of the processes. The Markov processes generated via tail dependent copulas may look highly persistent and are useful for financial and economic applications. We first show that Markov processes generated via Clayton, Gumbel and Student’s t$ copulas and their survival copulas are all geometrically ergodic. We then propose a sieve maximum likelihood estimation (MLE) for the copula parameter, the invariant distribution and the conditional quantiles. We show that the sieve MLEs of any smooth functionals are root-n consistent, asymptotically normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square distributed. We present Monte Carlo studies to compare the finite sample performance of the sieve MLE, the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the incorrectly specified parametric MLE. The simulation results indicate that our sieve MLEs perform very well; having much smaller biases and smaller variances than the two-step estimator for Markov models generated via Clayton, Gumbel and other tail dependent copulas.