This paper analyzes the properties of a class of estimators, tests, and confidence sets (CS’s) when the parameters are not identified in parts of the parameter space. Specifically, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter theta. This includes log likelihood, quasi-log likelihood, and least squares criterion functions.
We determine the asymptotic distributions of estimators under lack of identification and under weak, semi-strong, and strong identification. We determine the asymptotic size (in a uniform sense) of standard t and quasi-likelihood ratio (QLR) tests and CS’s. We provide methods of constructing QLR tests and CS’s that are robust to the strength of identification.
The results are applied to two examples: a nonlinear binary choice model and the smooth transition threshold autoregressive (STAR) model.
This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CS’s) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The asymptotic sizes (in a uniform sense) of standard GMM tests and CS’s are established.
The paper also establishes the correct asymptotic sizes of “robust” GMM-based Wald, t; and quasi-likelihood ratio tests and CS’s whose critical values are designed to yield robustness to identification problems.
The results of the paper are applied to a nonlinear regression model with endogeneity and a probit model with endogeneity and possibly weak instrumental variables.
This paper provides a set of results that can be used to establish the asymptotic size and/or similarity in a uniform sense of confidence sets and tests. The results are generic in that they can be applied to a broad range of problems. They are most useful in scenarios where the pointwise asymptotic distribution of a test statistic has a discontinuity in its limit distribution.
The results are illustrated in three examples. These are: (i) the conditional likelihood ratio test of Moreira (2003) for linear instrumental variables models with instruments that may be weak, extended to the case of heteroskedastic errors; (ii) the grid bootstrap confidence interval of Hansen (1999) for the sum of the AR coefficients in a k-th order autoregressive model with unknown innovation distribution, and (iii) the standard quasi-likelihood ratio test in a nonlinear regression model where identification is lost when the coefficient on the nonlinear regressor is zero.
This paper analyzes the properties of standard estimators, tests, and confidence sets (CS’s) for parameters that are unidentified or weakly identified in some parts of the parameter space. The paper also introduces methods to make the tests and CS’s robust to such identification problems. The results apply to a class of extremum estimators and corresponding tests and CS’s that are based on criterion functions that satisfy certain asymptotic stochastic quadratic expansions and that depend on the parameter that determines the strength of identification. This covers a class of models estimated using maximum likelihood (ML), least squares (LS), quantile, generalized method of moments (GMM), generalized empirical likelihood (GEL), minimum distance (MD), and semi-parametric estimators.
The consistency/lack-of-consistency and asymptotic distributions of the estimators are established under a full range of drifting sequences of true distributions. The asymptotic sizes (in a uniform sense) of standard and identification-robust tests and CS’s are established. The results are applied to the ARMA(1, 1) time series model estimated by ML and to the nonlinear regression model estimated by LS. In companion papers the results are applied to a number of other models.