Skip to main content

E. Mammen Publications

Publish Date
Abstract

We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic distribution of our estimator under weak dependence conditions. It is shown that the proposed estimation procedure is more efficient than the conventional kernel method. We also provide simulation evidence to suggest that gains can be achieved in moderate sized samples.

Abstract

We introduce a new method for the estimation of discount functions, yield curves and forward curves for coupon bonds. Our approach is nonparametric and does not assume a particular functional form for the discount function although we do show how to impose various important restrictions in the estimation. Our method is based on kernel smoothing and is defined as the minimum of some localized population moment condition. The solution to the sample problem is not explicit and our estimation procedure is iterative, rather like the backfitting method of estimating additive nonparametric models. We establish the asymptotic normality of our methods using the asymptotic representation of our estimator as an infinite series with declining coefficients. The rate of convergence is standaxd for one dimensional nonparametric regression.

Keywords: Coupon bonds; Forward curve; Hilbert Space; Local linear; Nonparametric regression; Yield curve

Abstract

We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen et al. (1997), and the asymptotic theory of our estimators is derived using the theory of additive projections reviewed in Bickel et al. (1995). Our procedure achieves the same bias and variance as the oracle estimator based on knowing the other components, and in this sense improves on the method analyzed in Opsomer and Ruppert (1997). We provide ‘high level’ conditions independent of the sampling scheme. We then verify that these conditions are satisfied in a time series autoregression under weak conditions.