Discussion Paper
Asymptotic Theory for Zero Energy Density Estimation with Nonparametric Regression Applications
A local limit theorem is given for the sample mean of a zero energy function of a nonstationary time series involving twin numerical sequences that pass to infinity. The result is applicable in certain nonparametric kernel density estimation and regression problems where the relevant quantities are functions of both sample size and bandwidth. An interesting outcome of the theory in nonparametric regression is that the linear term is eliminated from the asymptotic bias.