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Abstract

A local limit theorem is given for the sample mean of a zero energy function of
a nonstationary time series involving twin numerical sequences that pass to infinity.
The result is applicable in certain nonparametric kernel density estimation and
regression problems where the relevant quantities are functions of both sample size
and bandwidth. An interesting outcome of the theory in nonparametric regression is
that the linear term is eliminated from the asymptotic bias. In consequence and in
contrast to the stationary case, the Nadaraya-Watson estimator has the same limit
distribution (to the second order including bias) as the local linear nonparametric
estimator.
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1 Introduction

Consider an array xk,n, 1 ≤ k ≤ n, n ≥ 1 constructed from some underlying nonstationary

time series and assume that there is a continuous limiting Gaussian process G(t), 0 ≤
t ≤ 1, to which x[nt],n converges weakly, where [a] denotes the integer part of a. For

∗Wang acknowledges partial research support from Australian Research Council. Phillips acknowl-
edges partial research support from the NSF under Grant No. SES 06-47086.
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instance, in many applications we encounter quantities such as xk,n = d−1
n xk where xk is a

nonstationary time series, such as a unit root or long memory process, for which dn is an

appropriate standardization factor. A common functional of interest Sn of xk,n is defined

by the sample quantity

Sn =
n∑
k=1

g(cn xk,n), (1.1)

where cn is a certain sequence of positive constants and g is a real integrable function on R.

Such functionals arise in nonparametric estimation problems, particularly those involving

nonlinear cointegration models, where the underlying time series xk are nonstationary, g

is a kernel function, and the secondary sequence cn depends on the bandwidth used in

the nonparametric regression.

The limit behavior of Sn in the situation where
∫∞
−∞ g (s) ds 6= 0 was studied in Wang

and Phillips (2008), where it was shown that when cn →∞ and n/cn →∞,

cn
n
Sn →D

∫ ∞

−∞
g(x)dxLG(1, 0), (1.2)

where LG(t, s) is the local time of the process G(t) at the spatial point s. When the

function g is a kernel density, the limit (1.2) is simply the local time of G at the origin.

This limit may be recentred at an arbitrary spatial point s by using g(cn (xk,n − s)) in

place of g(cn xk,n) in (1.1). Jeganathan (2004) investigated the asymptotic form of similar

functionals when xk,n is the partial sum of a linear process. For the particular situation

where cnxk,n is a partial sum of iid random variables, related results were given in Borodin

and Ibragimov (1995), Akonom (1993) and Phillips and Park (1998). Results of the type

(1.2) have many statistical applications, especially in nonparametric estimation - see Wang

and Phillips (2008).

The present work is concerned with developing a limit theory for the sample func-

tion Sn in the zero energy case where
∫∞
−∞ g (s) ds = 0. Such cases are important in

nonparametric regression and appear in the analysis of bias and in derivative estima-

tion problems. In bias analysis, for example, we need to consider functions of the form

g (s) = sK (s) , where K (s) is the kernel function used in nonparametric estimation, and

then
∫
g (s) ds = 0 when K is a symmetric function. Interestingly, in this case it turns out

that for nonstationary time series, the expression for the bias in the limit theory involves

no linear term in the bandwidth, in contrast to the stationary case. One consequence of

this change in the limit theory is that the local level (Nadaraya-Watson) estimator has

the same asymptotic distribution including the bias correction as that of the local linear
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estimator in nonstationary cointegrating regression. These issues are explored in Section

2 (see Remarks 2.5 and 2.6 for details). Similarly, in nonparametric derivative estimation,

we need to deal with functions like the kernel derivative g (s) = K ′ (s), which again have

zero energy when K is symmetric. Theorem 2.1 shows that the limit theory for Sn in

(1.1) differs from (1.2) when g has zero energy in terms of both rate of convergence and

the limiting process.

2 Main results

Let {ξj, j ≥ 1} be a linear process defined by

ξj =
∞∑
k=0

φk εj−k, (2.1)

where {εj,−∞ < j < ∞} is a sequence of iid random variables with Eε0 = 0, Eε20 = 1

and characteristic function ϕ(t) of ε0 satisfying
∫∞
−∞ |ϕ(t)|dt <∞. Throughout the paper,

the coefficients φk, k ≥ 0, are assumed to satisfy one of the following conditions:

C1. φk ∼ k−µ ρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞.

C2.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

Put xi =
∑i

j=1 ξj and let g(x) be a Borel measurable function on R. As discussed

above, the present paper is concerned with the limit behavior of sample functions of the

form
∑n

k=1 g
(
xk/h

)
, when n → ∞, h ≡ hn → 0, and g is an integrable zero energy

function for which
∫∞
−∞ g (x) dx = 0.

We start with the following notation. A fractional Brownian motion with 0 < β < 1

on D[0, 1] is defined by

Wβ(t) =
1

A(β)

∫ 0

−∞

[
(t− s)β−1/2 − (−s)β−1/2

]
dW (s) +

∫ t

0

(t− s)β−1/2dW (s),

where

A(β) =
( 1

2β
+

∫ ∞

0

[
(1 + s)β−1/2 − sβ−1/2

]2

ds
)1/2

,

W (s), 0 ≤ s <∞ is a standard Brownian motion, and for −∞ < s ≤ 0, W (s) is taken to

be W ∗(−s), where W ∗(s), 0 ≤ s < ∞ is an independent copy of W (s), 0 ≤ s < ∞. It is

readily seen that W1/2(t) = W (s) and Wβ(t) has a continuous local time LWβ
(t, s) with

regard to (t, s) in [0,∞)×R. See, e.g., Theorem 22.1 of Geman and Horowitz (1980).
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Here and below, the process {Lζ(t, s), t ≥ 0, s ∈ R} is said to be the local time of a

measurable process {ζ(t), t ≥ 0} if, for any locally integrable function T (x),∫ t

0

T [ζ(s)]ds =

∫ ∞

−∞
T (s)Lζ(t, s)ds, all t ∈ R,

with probability one.

We now develop a limit theory for the sample function (1.1) in the zero energy case.

Write d2
n = Ex2

n. It is well-known that

d2
n ∼

{
cµ n

3−2µ ρ2(n), under C1,
φ2 n, under C2,

(2.2)

where cµ = 1
(1−µ)(3−2µ)

∫∞
0
x−µ(x + 1)−µdx. Setting cn = dn/h, we consider the standard-

ized version (cn
n

)1/2
n∑
k=1

g(cn xk,n) =

(
dn
nh

)1/2 n∑
k=1

g (xk/h) .

Our main result is as follows.

THEOREM 2.1. Assume that
∫
|g(t)|dt <∞,

∫
|ĝ(t)|dt <∞ and |ĝ(t)| ≤ Cmin{|t|, 1},

where ĝ(x) =
∫
eitxg(t)dt and C is a positive constant. Then, for any h→ 0 (h2 log n→ 0

under C2) and nh/dn →∞, we have

( dn
nh

)1/2
n∑
k=1

g
(
xk/h

)
→D τ N ψ1/2(1), (2.3)

where τ 2 =
∫
g2(s)ds, N is a standard normal variate independent of ψ(t) and for 0 ≤

t ≤ 1, the process ψ(t) is defined by

ψ(t) =

{
LW3/2−µ

(t, 0), under C1,

LW (t, 0), under C2.

REMARK 2.1. The conditions on g(x) imply
∫
g(x)dx = 0 and

∫
g2(x)dx < ∞. Indeed

it follows by dominated convergence that∫
g(x)dx =

∫
lim
t→0

eitxg(x)dx = lim
t→0

ĝ(t) = 0.

On the other hand,
∫
g2(x)dx = (2π)−1

∫
ĝ2(x)dx ≤ (2π)−1

∫
|ĝ(x)|dx < ∞. This fact

will be used in the proof without further explanation. Integrability of ĝ(x) is a mild

condition and |ĝ(t)| ≤ Cmin{|t|, 1} is implied by
∫

(1+|x|)|g(x)|dx <∞. Many commonly

used functions, like the normal kernel function or functions having a compact support

with
∫
g(x)dx = 0, satisfy the conditions on g(x) in Theorem 2.1. These conditions are
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particularly convenient for our proofs. More direct conditions such as
∫
g(x)dx = 0,∫

(1 + |x|)|g(x)|dx < ∞ and
∫
g2(x)dx < ∞ might be imposed on g but it is not clear

whether these are sufficient for our results.

REMARK 2.2. If
∫
g(t)dt 6= 0, the limit behavior of

∑n
k=1 g

(
xk/h

)
is quite different and

involves a different rate of convergence. It has been proved as a corollary of a more general

result in Wang and Phillips (2008) that

dn
nh

n∑
k=1

g
(
xk/h

)
→D ψ(1)

∫
g(x)dx.

Jeganathan (2004) and Borodin and Ibragimov (1995) provide related results for such

sample functions. The latter monograph investigated the limit behavior of
∑n

k=1 g
(
xk/h

)
under more general settings on g(x), but required xk to be a partial sum of iid random

variables.

REMARK 2.3. Assume that φ0 = 1 and φj = 0. In this setting, xi =
∑i

j=1 εj is a partial

sum of iid random variables and d2
n =

√
n. Under some conditions on g(x) that are similar

to those in Theorem 2.1, Theorem 4.3.3 of Borodin and Ibragimov (1995) proved that

(dn
n

)1/2
n∑
k=1

g
(
xk

)
→D τ ′N L

1/2
W (1, 0), (2.4)

where τ ′2 = 1
2π

∫∞
−∞ |ĝ(x)|

2
[
1 + 2

∑∞
k=1 ϕ

k(x)
]
dx with ϕ(t) = Eeitε0 . Note that τ 2 =∫

g2(x)dx = 1
2π

∫∞
−∞ |ĝ(x)|

2dx in (2.3), which is related to τ ′2. But there is an essential

difference between (2.3) and (2.4). In particular, (2.4) is only a partial invariance principle

because the limit involves the characteristic function ϕ(t) = Eeitε0 of the innovations in xk

and so the constant τ ′ in (2.4) is dependent on this distribution. The reason underlying

the difference between (2.3) and ( 2.4) is that the sample autocovariances of the summand

in (2.3) satisfy

Jn ≡
dn
nh

∑
1≤k<l≤n

g
(
xk/h

)
g
(
xl/h

)
= OP (h).

See the proof of Proposition 3.3. Hence Jn = oP (1), when h → 0, and so Jn does not

contribute to the limit behavior of dn

nh

∑n
k=1 g

(
xk/h

)
. The extension of (2.4) to linear

processes can be found in Jeganathan (2008). Our proof is different from Jeganathan

(2008) and the presence of the bandwidth sequence h seems to simplify the limit theory.

REMARK 2.4. If |fj(x)| and f 2
j (x), j = 1, 2, are Lebesgue integrable functions on R with
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τ1 =
∫
f1(x)dx 6= 0 and τ2 =

∫
f2(x)dx 6= 0, in addition to the result (2.3), we have{( dn

nh

)1/2
n∑
k=1

g
(
xk/h

)
,
dn
nh

n∑
k=1

f1

(
xk/h

)
,
dn
nh

n∑
k=1

f2

(
xk/h

)}
→D

{
τ N ψ1/2(1), τ1 ψ(1), τ2 ψ(1)

}
, (2.5)

where the notation →D is defined as in Section 3.2. As a direct consequence of (2.5), we

have the following corollary which provides a self-normalized result for additive functionals

of random sums.

COROLLARY 2.1. Assume that
∫

[|g(t)| + g4(t)] dt < ∞,
∫
|ĝ(t)|dt < ∞ and |ĝ(t)| ≤

Cmin{|t|, 1}, where ĝ(x) =
∫
eitxg(t)dt and C is a positive constant. Then, for any h→ 0

(h2 log n→ 0 under C2) and nh/dn →∞, we have∑n
k=1 g

(
xk/h

)√∑n
k=1 g

2
(
xk/h

) →D N(0, 1). (2.6)

REMARK 2.5. Result (2.5) is also useful in nonparametric bias analysis related to non-

stationary cointegration regression. To illustrate, consider the following nonlinear struc-

tural model of cointegration

yt = f(xt) + ut, t = 1, 2, ..., n, (2.7)

where ut is a zero mean stationary equilibrium error and f is an unknown function to be

estimated with the observed data {yt, xt}nt=1. The conventional kernel estimate of f(x) in

model (2.7) is given by

f̂(x) =

∑n
t=1 ytKh(xt − x)∑n
t=1Kh(xt − x)

, (2.8)

where Kh(s) = 1
h
K(s/h), K(x) is a nonnegative real function, and the bandwidth param-

eter h ≡ hn → 0 as n → ∞. Under certain conditions on f(x), ut and h, it is shown in

Wang and Phillips (2008 a) that

(nh2)1/4 (f̂(x)− f(x)) →D C0N L
−1/2
W (1, 0), (2.9)

where C0 is a constant related to the kernel K(x) and the moment Eu2
t . By making

use of the result (2.5), together with some additional smoothness conditions on f(x), an

explicit bias term may be incorporated into the limit theory (2.9). To do this, we use the

following assumptions in the asymptotic development.
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Assumption 1. xt =
∑t

j=1 ξj, where ξj is defined as in (2.1) with φk satisfying C2.

Assumption 2. (εi, ηi), i ≥ 1, is assumed to be a sequence of iid random vectors.

ut = u(ηt, ηt−1, ..., ηt−m0+1) satisfies Eut = 0 and Eu4
t <∞ for t ≥ m0, where u(y1, ..., ym0)

is a real measurable function on Rm0 . We define ut = 0 for 1 ≤ t ≤ m0 − 1.

Assumption 3. K(x) satisfies
∫
K(y)dy = 1,

∫
yK(y)dy = 0 and has a compact support.

Assumption 4. For given x, f(x) has a continuous, bounded third derivative in a small

neighborhood of x.

THEOREM 2.2. Under Assumptions 1-4, we have(
nh2

)1/4
[
f̂(x)− f (x)− h2

2
f ′′ (x)

∫ ∞

−∞
y2K(y)dy

]
→D σuN L

−1/2
W (1, 0) , (2.10)

provided nh14 → 0 and nh2 →∞, where σ2
u = |φ|−1Eu2

m0

∫∞
−∞K

2(s)ds.

An important distinction between (2.10) and the limit theory for the case of stationary

xt is that the expression for the bias involves no linear term in h. The reason is that in

the usual Taylor development for the bias, the linear term takes the form

Ia = h f ′ (x)
n∑
t=1

H1

(
xt − x

h

)
, (2.11)

in which H1 (s) = sK (s) is a zero energy function. It follows from Theorem 2.1 that

Ia = Op

(
n1/4h3/2

)
when xt is unit root nonstationary and dn =

√
n as in Assumption

1. On the other hand, the quadratic term in the Taylor development of the bias has the

form

Ib =
h2

2
f ′′ (x)

n∑
t=1

H2

(
xt − x

h

)
,

where H2(x) = x2K(x), which is Op

(
n1/2h3

)
from (2.5). Thus, Ia is dominated by Ib as

n → ∞ provided nh6 → ∞. On the other hand, when nh6 = O(1), both Ia and Ib does

not affect the limit theory. Details are given in the proof of Theorem 2.2 given in Section

4. By contrast, in the stationary case both Ia and Ib are O (nh2) and then both terms

contribute to the bias in the limit theory.

REMARK 2.6. Interestingly, the fact that the linear term in the bias is eliminated in

(2.10) means that in the nonstationary case the Nadaraya-Watson estimator f̂ (x) defined

by (2.8) has the same limit distribution (to the second order including bias) as the local

linear nonparametric estimator (e.g., Fan and Gijbels, 1996), defined by

f̂L(x) =
n∑
i=1

wiYi
/ n∑
i=1

wi, wi = Kh(xi − x){Sn,2 − (Xi − x)Sn,1}, (2.12)
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where Sn,j =
∑n

1 Kh(xi − x)(xi − x)j.

Indeed, we have the following theorem.

THEOREM 2.3. Theorem 2.2 still holds if we replace f̂(x) by f̂L(x).

The local linear nonparametric estimator is popular partly because of its bias reducing

properties in comparison with the Nadaraya-Watson estimator f̂ (x) defined by (2.8). The

present finding shows that this particular advantage is lost when xt is nonstationary.

3 Proof of Theorem 2.1

Section 3.1 provides some preliminary lemmas. Section 3.2 outlines the proof of Theorem

2.1. In fact, we provide the proof of the more general joint convergence result (2.5). Some

useful propositions are given in Section 3.3. These propositions are interesting in their

own right. Throughout the section we denote constants by C,C1, ... which may differ at

each appearance.

3.1 Preliminaries

Write ϕi =
∑i

j=0 φj, Sk =
∑k

i=0 ϕiεi, Λ2
k =

∑k
i=0 ϕ

2
i and fk(t) = EeitSk/Λk . Recalling the

properties of φj, together with (2.2), simple calculations show that

d2
k/Λ

2
k ∼

{
(1− µ)

∫∞
0
x−µ(x+ 1)−µdx, under C1,

1, under C2.
(3.1)

Next, sinceEε0 = 0, Eε20 = 1 and the characteristic function ϕ(t) of ε0 satisfies
∫∞
−∞ |ϕ(t)|dt <

∞, it follows that, for ∀ε > 0, we may choose A sufficiently large such that∫
|t|≥A

|fk(t)|dt < ε, (3.2)

uniformly on k. See, e.g., the proof of Corollary 3.2 of Wang and Phillips (20008). Result

(3.2) implies that

F: Sk/Λk has a density νk(x) and the νk(x) are uniformly bounded on k and x by a

constant C.
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See, e.g., Lukács, 1970, Theorem 3.2.2. Note that, for any s < m,

xm =
m∑
j=1

j∑
i=−∞

εiφj−i

= xs +
m∑

j=s+1

s∑
i=−∞

εiφj−i +
m∑

j=s+1

j∑
i=s+1

εiφj−i

:= x∗s,m + x′s,m, (3.3)

where x∗s,m depends only on (..., εs−1, εs) and

x′s,m =
m−s∑
j=1

j∑
i=1

εi+sφj−i =
m∑

i=s+1

εi

m−i∑
j=0

φj =d Sm−s−1,

where =d denotes equivalence in distribution. By virtue of (3.3), results (3.1) and (3.2)

above also imply the following lemma.

LEMMA 3.1. xk/dk has a density gk(x) in which gk(x) are uniformly bounded on k and

x by a constant C, and as k →∞,

sup
x
|gk(x)− n(x)| ≤

∫ ∞

−∞
|ĝk(t)− e−t

2/2|dt→ 0, (3.4)

where ĝk(t) = Eeitxk/dk and n(x) = e−x
2/2/

√
2π.

Proof. By virtue of (3.1) and (3.2), it follows from (3.3) with s = −1 and the inde-

pendence of εj that∫ ∞

−∞
|ĝk(t)|dt ≤

∫ ∞

−∞
|EeitSk/dk |dt ≤ C max

k

∫ ∞

−∞
|fk(t)|dt <∞, (3.5)

uniformly on k. This proves that xk/dk has a density gk(x), and gk(x) are uniformly

bounded on k and x by a constant C. As for (3.4), for any ε > 0, by noting that we may

choose A sufficiently large such that∫
|t|≥A

|ĝk(t)|dt+

∫
|t|≥A

e−t
2/2dt ≤ C

∫
|t|≥A

|fk(t)|dt+

∫
|t|≥A

e−t
2/2dt < ε,

uniformly on k because of (3.2), we have

sup
x
|gk(x)− n(x)| ≤

∫ ∞

−∞
|ĝk(t)− e−t

2/2|dt

≤
∫
|t|≤A

|ĝk(t)− e−t
2/2|dt+

∫
|t|≥A

|ĝk(t)|dt+

∫
|t|≥A

e−t
2/2dt ≤ 2 ε,
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when k →∞, where we have used the fact that
∫
|t|≤A |fk(t)−e

−t2/2|dt→ 0, for any A > 0,

as xk/dk →d N(0, 1). This proves (3.4) and also completes the proof of Lemma 3.1. 2

To introduce the next two lemmas, let r(x) be real function such that
∫∞
−∞ |r(x)|dx <

∞. Define

I
(s)
k,l = E

[
r(x′s,k/h) r(x

′
s,l/h) exp

{
iµ

l∑
j=1

εj/
√
n
}]
,

II
(s)
k = E

[
r(x′s,k/h) exp

{
iµ

k∑
j=1

εj/
√
n
}]
,

where x′s,k is defined as in (3.3) and µ is a constant.

LEMMA 3.2. (a) E|r(x′s,k/h)| ≤ C h/dk−s and

Er(xk/h)− h dk
−1

∫
r(x)dx = o(h/dk). (3.6)

(b) Suppose that |r̂(t)| ≤ C min{|t|, 1} and
∫
|r̂(t)|dt <∞, where r̂(t) =

∫
eitxr(x)dx.

Then, for all l − k ≥ 1 and all k ≥ s+ 1,

|II(s)
k | ≤ C h

[
(k − s)−2 + h/d2

k−s
]
. (3.7)

|I(s)
k,l | ≤ C h

[
(l − k)−2 + h /d2

l−k
] [

(k − s)−2 + h/dk−s

]
, (3.8)

where we define
∑∞

j=t/2 =
∑

j≥t/2.

Proof. The first part of result (a) follows from fact F. Then, from Lemma 3.1∣∣Er(xk/h)− h dk
−1

∫
r(x)dx

∣∣ ≤ h dk
−1

∫
|r(x)|

∣∣gk(xh/dk)− 1
∣∣dx

≤ h dk
−1

∫
|r(x)|

(∣∣gk(xh/dk)− n(xh/dk)
∣∣ +

∣∣n(xh/dk)− n(0)
∣∣)dx = o(h/dk),

which gives the second part of result (a).

We next prove result (b). We prove (3.8) with s = 0 since the proofs of (3.7) and (3.8)

with s 6= 0 are the same and so the details are omitted. For convenience of notation, write

x′′k = x′0,k and Ik,l = I
(0)
k,l . As

∫
|r̂(t)|dt <∞, we have r(x) = 1

2π

∫
e−ixtr̂(t)dt. This yields

Ik,l = E
[
r(x′′k/h) r(x

′′
l /h) exp

{
iµ

l∑
j=1

εj/
√
n
}]

=

∫ ∫
E

{
e−it x

′′
k/h eiλ x

′′
l /h eiµ

Pl
j=1 εj/

√
n
}
r̂(t) r̂(λ) dt dλ.
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Define
∑l

j=k = 0 if l < k, and put as,q =
∑s−q

j=0 φj. Without loss of generality, assume

φ0 6= 0. Indeed, if φ0 = 0, we may use φ1 and so on. Since

x′′l =
l∑

q=1

εq

l−q∑
j=0

φj =
( k∑
q=1

+
l−1∑

q=k+1

)
εq al,q + εlφ0,

it follows from independence of the εk’s that

|Ik,l| ≤
∫ ∣∣∣Eeiεl(λφ0+uh/

√
n)/h

∣∣∣ ∣∣∣E{
eiz

(2)/h
}∣∣∣ |r̂(λ)|Λ(λ, k) dλ, (3.9)

where Λ(λ, k) =
∫ ∣∣E{

eiz
(1)/h

}∣∣ |r̂(t)| dt,
z(1) =

k∑
q=1

εq
(
λ al,q − t ak,q + uh/

√
n
)
,

z(2) =
l−1∑

q=k+1

εq
(
λ al,q + uh/

√
n
)
.

As n can be taken sufficiently large so that u/
√
n is as small as required, we assume u = 0

in the following proof for convenience. We first show that, for all λ,

Λ(λ, k) ≤ C
(
k−2 + h/dk

)
. (3.10)

In order to estimate (3.10), write Ω1 (Ω2, respectively) for the set of 1 ≤ q ≤ k/2 such

that |λ al,q − t ak,q| ≥ h (|λ al,q − t ak,q| < h, respectively), and

B1 =
∑
q∈Ω2

a2
k,q, B2 =

∑
q∈Ω2

al,qak,q and B3 =
∑
q∈Ω2

a2
l,q.

By noting that

∣∣as,q∣∣ = |
s−q∑
j=1

φj| ∼
{
C (s− q)1−uρ(s− q), under C1
φ, under C2,

(3.11)

as s− q sufficiently large, it is readily seen that

B1 ≥
{
C k3−2uρ2(k), under C1
C k, under C2,

whenever #(Ω1) ≤
√
k and k is sufficiently large, where #(A) denotes the number of

elements in A. On the other hand, there exist constants γ1 > 0 and γ2 > 0 such that

∣∣Eei ε1 t∣∣ ≤ {
e−γ1 if |t| ≥ 1,

e−γ2t
2

if |t| ≤ 1,
(3.12)
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since Eε1 = 0, Eε21 = 1 and ε1 has a density. See, e.g., Chapter 1 of Petrov (1995). Also

note that∑
q∈Ω2

(λ al,q − tak,q)
2 = λ2B3 − 2λ tB2 + t2B1 = B1(t− λB2/B1)

2 + λ2(B3 −B2
2/B1)

≥ B1(t− λB2/B1)
2,

since B2
2 ≤ B1B3, by Hölder’s inequality. By virtue of these facts, it follows from the

independence of εt that

∣∣EeiW (1)/h
∣∣ ≤

k/2∏
q=1

|Eeiε1(λal,q−t ak,q)|

≤ exp
{
− γ1#(Ω1n)− γ2 h

−2
∑
q∈Ω2

(λ al,q − tak,q)
2
}

≤ exp
{
− γ1#(Ω1n)− γ2B1 h

−2(t− λB2/B1)
2
}

where W (1) =
∑k/2

q=1 εq (λ al,q − t ak,q). This, together with the fact that z(1) = W (1) +∑k
q=k/2+1 εq(λal,q − tak,q), yields that, for all λ,

Λ(λ, k) ≤
∫ ∣∣E{

eiW
(1)/h

}∣∣ |r̂(t)| dt
≤

∫
#(Ω1)≥

√
k

e−γ1#(Ω1)|r̂(t)| dt+

∫
#(Ω1)≤

√
k

e−γ2B1 h−2(t−λB2/B1)2 dt

≤ C k−2

∫
|r̂(t)| dt+

∫
e−γ2B1 h−2t2 dt

)
≤ C ( k−2 + h/dk),

as required.

We now turn back to the proof of (3.8) for s = 0. Recall that we may assume u = 0

for convenience as earlier. By virtue of (3.9) and (3.10), it suffices to show that

Ĩk,l :=

∫ ∣∣Eeiλφ0ε1/h
∣∣ ∣∣∣E{

eiλ
Pl−1

q=k+1 εqal,q/h
}∣∣∣ |r̂(λ)| dλ

≤ C h
[
(l − k)−2 + h /d2

l−k
]
, (3.13)

for l− k ≥ 1. First notice that, for any δ > 0, there exist constants γ3 > 0, γ4 > 0 and k0

sufficiently large such that, for all s ≥ k0 and q ≤ s/2,∣∣Eeiε1 λas,q/h
∣∣ ≤

{
e−γ3 s

1−uρ(s), if |λ| ≥ δ h,

e−γ4 s
2(1−u) ρ2(s)λ2/h2

, if |λ| ≤ δ h,

under C1, and ∣∣Eeiε1 λas,q/h
∣∣ ≤

{
e−γ3 , if |λ| ≥ δ h,

e−γ4 λ
2/h2

, if |λ| ≤ δ h,
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under C2. These facts follow from (3.11) and (3.12) with a simple calculation. Hence,

since ρ(.) is a slowly varying function, whenever l − k ≥ k0,∣∣E{
eiλ

Pl−1
q=k+1 εqal,q/h

∣∣ ≤ Π
(l+k)/2
q=k

∣∣Eeiεq λal,q/h
∣∣

≤
{
e−γ3(l−k) if |λ| ≥ δ h,

e−γ4 d
2
l−k λ

2/h2

if |λ| ≤ δ h.
(3.14)

Now, using |r̂(t)| ≤ C min{|t|, 1}, we obtain that, whenever l − k ≥ k0,

Ĩk,l ≤ C e−γ3(l−k)2−uh(l−k)
∫
|λ|≥δh

∣∣Eeiλφ0ε1/h
∣∣ dλ+ C

∫
|λ|≤δh

|λ|e−γ4 d2l−kλ
2/h2

dλ

≤ C
[
h(l − k)−2 + h2/d2

l−k
]
,

where we have used the fact that
∫
|Eeiλε1 |dλ <∞. This gives (3.13) for l− k ≥ k0. The

result (3.13) for l − k ≤ k0 is obvious, since, in this case,

Ĩk,l ≤ C

∫ ∣∣Eeiλφ0ε1/h
∣∣ dλ ≤ C k2

0 h (l − k)−2.

The proof of Lemma 3.2 is now complete. 2

3.2 Proof of (2.5)

First, it is convenient to introduce the following definitions and notation. If α
(1)
n , α

(2)
n ,...,

α
(k)
n (1 ≤ n ≤ ∞) are random elements of D[0, 1], we will understand the condition

(α(1)
n , α(2)

n , ..., α(k)
n ) →D (α(1)

∞ , α(2)
∞ , ..., α(k)

∞ )

to mean that for all α
(1)
∞ , α

(2)
∞ ,..., α

(k)
∞ -continuity sets A1, A2,...,Ak

P
(
α(1)
n ∈ A1, α

(2)
n ∈ A1, ..., α

(k)
n ∈ Ak

)
→ P

(
α(1)
∞ ∈ A1, α

(2)
∞ ∈ A2, ..., α

(k)
∞ ∈ Ak

)
.

[see Billingsley (1968, Theorem 3.1) or Hall (1977)]. D[0, 1]k will be used to denote

D[0, 1]× ...×D[0, 1], the k-times coordinate product space of D[0, 1]. We still use ⇒ to

denote weak convergence on D[0, 1].

In order to prove (2.5), we use the following lemma, whose proof is the same as in

Wang and Phillips (2008 a). Also see Borodin and Ibragimov (1995).

LEMMA 3.3. Suppose that {Ft}t≥0 is an increasing sequence of σ-fields, q(t) is a process

that is Ft-measurable for each t and continuous with probability 1, Eq2(t) < ∞ and

q(0) = 0. Let ψ(t), t ≥ 0, be a process that is nondecreasing and continuous with probability

1 and satisfies ψ(0) = 0 and Eψ2(t) < ∞. Let ξ1, ..., ξm be random variables which are

13



Ft-measurable for each t ≥ 0. If, for any γj ≥ 0, j = 1, 2, ..., r, and any 0 ≤ s < t ≤ t0 <

t1 < ... < tr <∞,

E
(
e−

Pr
j=1 γj [ψ(tj)−ψ(tj−1)]

[
q(t)− q(s)

]
| Fs

)
= 0, a.s.,

E
(
e−

Pr
j=1 γj [ψ(tj)−ψ(tj−1)]

{
[q(t)− q(s)]2 − [ψ(t)− ψ(s)]

}
| Fs

)
= 0, a.s.

then the finite-dimensional distributions of the process (q(t), ξ1, ..., ξm)t≥0 coincide with

those of the process (W [ψ(t)], ξ1, ..., ξm)t≥0, where W (s) is a standard Brownian motion

with EW 2(s) = s independent of ψ(t).

By virtue of Lemma 3.3, we now obtain the proof of (2.5). Technical details of some

subsidiary results that are used in this proof are given in the next section. Set

ζn(t, l) =
1√
n

[nt]∑
k=−[nl]

εk, ψ1n(t) =
dn
nh

[nt]∑
k=1

f1

(
xk/h

)
, ψ2n(t) =

dn
nh

[nt]∑
k=1

f2

(
xk/h

)
,

ηn(t) =
( dn
nh

)1/2
[nt]∑
k=1

g(xk/h), ψn(t) =
dn
nh

[nt]∑
k=1

g2(xk/h),

for 0 ≤ t ≤ 1 and 0 ≤ l <∞.

We will prove in Propositions 3.1 and 3.2 that ζn(t, l) ⇒ ζ(t, l), for each 0 ≤ l < ∞,

where ζ(t, l) = W (t)−W (−l), ψn(t) ⇒ τ 2 ψ(t) and ψjn(t) ⇒ τj ψ(t), j = 1, 2, on D[0, 1].

Furthermore we will prove in Proposition 3.4 that {ηn(t)}n≥1 is tight on D[0, 1]. These

facts imply that, for any 0 ≤ l0 < l1 < ... < lr′ <∞,

{ηn(t), ψn(t), ψ1n(t), ψ2n(t), ζn(t, l0), ..., ζn(t, lr′)}n≥1

is tight on D[0, 1]r
′+4. Hence, for each {n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′}

such that {
ηn′′(t), ψn′′(t), ψ1n′′(1), ψ2n′′(1), ζn′′(t, l0), ..., ζn′′(t, lr′)

}
→d

{
η(t), τ 2ψ(t), τ1ψ(1), τ2ψ(1), ζ(t, l0), ..., ζ(t, lr′)

}
. (3.15)

on D[0, 1]r
′+4, where η(t) is a process continuous with probability one by noting (3.28)

below. Write Fs = σ{ζ(t, l), 0 ≤ t ≤ 1, 0 ≤ l <∞; η(t), 0 ≤ t ≤ s}. It is readily seen that

Fs ↑ and η(s) is Fs-measurable for each 0 ≤ s ≤ 1. Also note that ψ(t) (for any fixed

t ∈ [0, 1]) is Fs-measurable for each 0 ≤ s ≤ 1. If we prove that for any 0 ≤ s < t ≤ 1,

E
([
η(t)− η(s)

]
| Fs

)
= 0, a.s., (3.16)

E
({

[η(t)− η(s)]2 − [ψ(t)− ψ(s)]
}
| Fs

)
= 0, a.s., (3.17)
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then it follows from Lemma 3.3 that the finite-dimensional distributions of
{
η(t), τ1 ψ(1), τ2 ψ(1)

}
coincide with those of

{
τ N ψ1/2(t), τ1 ψ(1), τ2 ψ(1)

}
, where N is a normal variate inde-

pendent of ψ1/2(t). The result ( 2.5) therefore follows, since η(t) does not depend on the

choice of the subsequence.

Let 0 = t0 < t1 < ... < tr = 1 and 0 = l0 < l1, ..., lr′ <∞, where r and r′ are arbitrary

integers and G(...) be an arbitrary bounded measurable function. In order to prove (3.16)

and (3.17), it suffices to show that

E[η(tj)− η(tj−1)]G(...) = 0, (3.18)

E
{
[η(tj)− η(tj−1)]

2 − [ψ(tj)− ψ(tj−1)]
}
G(...) = 0. (3.19)

where G(...) = G[η(t0), ..., η(tj−1); ζ(t0, l0), ..., ζ(t0, lr′); ...; ζ(tr, l0), ..., ζ(tr, lr′)].

Recall (3.15). Without loss of generality, we assume the sequence {n′′} is just {n}
itself. Since ηn(t), η

2
n(t) and ψn(t) for each 0 ≤ t ≤ 1 are uniformly integrable (see

Proposition 3.3), the statements (3.18) and (3.19) will follow if we prove

E[ηn(tj)− ηn(tj−1)]Gn[...] → 0, (3.20)

E
{
[ηn(tj)− ηn(tj−1)]

2 − [ψn(tj)− ψn(tj−1)]
}
Gn[...] → 0, (3.21)

where Gn[...] = G[ηn(t0), ..., ηn(tj−1); ζn(t0, l0), ..., ζn(t0, lr′); ...; ζn(tr, l0), ..., ζn(tr, lr′)] (see,

e.g., Theorem 5.4 of Billingsley, 1968). Furthermore, by using similar arguments to those

in the proofs of Lemma 5.4 and 5.5 in Borodin and Ibragimov (1995), we may choose

G(...) = exp
{
i
( j−1∑
k=0

λkyk +
r∑

k=0

r′∑
s=0

µkszks
)}
.

Therefore, by independence of εk, we only need to show that

E
{ [ntj ]∑
k=[ntj−1]+1

g(xk/h) e
iµ∗j

1√
n

Ptj
k=tj−1+1 εk+iχ(tj−1)

}
= o[(

nh

dn
)1/2], (3.22)

E
{[ [ntj ]∑

k=[ntj−1]+1

g(xk/h)
]2 −

[ntj ]∑
k=[ntj−1]+1

g2(xk/h)
}
e
iµ∗j

1√
n

Ptj
k=tj−1+1 εk+iχ(tj−1)

= o
(nh
dn

)
, (3.23)

where χ(s) = χ(..., εs−1, εs), a functional of ..., εs−1, εs, and µ∗j =
∑r

k=j

∑r′

s=0 µks. Now, by
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independence of εk again and conditioning arguments, it suffices to show that, for any µ,

sup
y,0≤s<m≤n

E
{ m∑
k=s+1

g(y + x′s,k/h) e
iµ

Pm
i=1 εi/

√
n
}

= o[(
nh

dn
)1/2], (3.24)

sup
y,0≤s<m≤n

E
({ m∑

k=s+1

g(y + x′s,k/h)
}2 −

m∑
k=s+1

g2(y + x′s,k/h)
)
eiµ

Pm
i=1 εi/

√
n

= o
(nh
dn

)
, (3.25)

where x′s,k is defined as in (3.3). This follows from Proposition 3.5. The proof of Theorem

2.1 is now complete.

3.3 Some useful Propositions

In this section we will prove the following propositions required in the proof of theorem

2.1. Our notation will be the same as in the previous sections except when explicitly

mentioned.

PROPOSITION 3.1. We have, for each 0 ≤ l <∞,

ζn(t, l) ⇒ ζ(t, l) and ζ ′n(t) :=
1

dn

[nt]∑
k=1

xk ⇒ W̃ (t) on D[0, 1], (3.26)

where W̃ (t) = W3/2−u(t) under C1 and W̃ (t) = W (t) under C2.

Proof. The first result of (3.26) is well-known. The second result in (3.26) can be

found in Wang, Lin and Gulatti (2003), for instance.

PROPOSITION 3.2. For any h→ 0 and nh/dn →∞, we have

ψn(t) ⇒ τ 2 ψ(t), on D[0, 1]. (3.27)

Similarly, we also have

ψ1n(t) ⇒ τ1 ψ(t), ψ2n(t) ⇒ τ2 ψ(t) on D[0, 1].

Proof. We only prove (3.27). It suffices to show that:

(i) the finite dimensional distributions of ψn(t) converge to those of τ 2 ψ(t);

(ii) {ψn(t)}n≥1 is tight on D[0, 1].
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Statement (i) has been established in Jeganathan (2004) [also see Wang and Phillips

(2008)]. We will use Theorem 4 of Billingsley (1974) to establish statement (ii). According

to this theorem, we only need to show that

max
1≤k≤n

g2(xk/h) = oP (nh/dn), (3.28)

and there exists a sequence of αn(ε, δ) satisfying limδ→0 lim supn→∞ αn(ε, δ) = 0 for each

ε > 0 such that, for

0 ≤ t1 ≤ t2 ≤ ... ≤ tm ≤ t ≤ 1, t− tm ≤ δ,

we have

P
[
|ψn(t)− ψn(tm)| ≥ ε | ψn(t1), ψn(t2), ..., ψn(tm)

]
≤ αn(ε, δ), a.s. (3.29)

To prove (3.28), by noting that, for ∀ε > 0,

P ( max
1≤k≤n

g2(xk/h) ≥ ε2nh/dn) = P
( n∑
k=1

g2(xk/h)Ig2(xk/h)≥ε2nh/dn
≥ ε2nh/dn

)
,

it suffices to show that, for ∀ε > 0,

J ≡ dn
nh

n∑
k=1

Eg2(xk/h)I(g2(xk/h)≥ε2nh/dn) = o(1). (3.30)

In fact, by recalling that xk/dk has a uniformly bounded density gk(x), we have

J =
dn
nh

n∑
k=1

∫
g2(xdk/h)I(g2(xdk/h)≥ε2nh/dn) gk(x)dx

≤ C
dn
n

n∑
k=1

1

dk

∫
g2(x)Ig2(x)≥ε2nh/dn

dx = o(1),

where we have used the fact that dn

n

∑n
k=1

1
dk

= O(1) and
∫
g2(x)Ig2(x)≥ε2nh/dn

dx = o(1)1.

We next prove (3.29). It follows from the independence of εk and (3.3) that

sup
|t−s|≤δ

P
(
|

[nt]∑
k=[ns]+1

g2(xk/h)| ≥ ε nh/dn | ε[ns], ε[ns]−1, ...
)
≤ αn(ε, δ), (3.31)

1Assuming that Y has a density |g(x)|/
∫
|g(x)|dx, we have

E|g(Y )|Ig2(Y )≥ε2nh/dn
=

∫
g2(x)Ig2(x)≥ε2nh/dn

dx/

∫
|g(x)|dx.

The fact that
∫

g2(x)Ig2(x)≥ε2nh/dn
dx = o(1) follows from E|g(Y )| =

∫
g2(x)dx/

∫
|g(x)|dx < ∞ and

P (g2(Y ) ≥ ε2nh/dn) ≤ ε−1dn(np)−1E|g(Y )| = o(1).
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where

αn(ε, δ) = ε−1
[
dn/(nh)

]
sup

y,0≤t≤δ
E

[nt]∑
k=1

g2[(y + x′0,k)/h].

The result (3.29) will follow if we prove limδ→0 lim supn→∞ αn(ε, δ) = 0 for each ε > 0.

In fact, by letting r(x) = g2(y/h + x), we have
∫
r(x)dx =

∫
g2(x)dx < ∞ uniformly on

y ∈ R and h. Hence it follows from part (a) of Lemma 3.2 that, for ∀ε > 0,

αn(ε, δ) ≤ C ε−1 dn
n

[nδ]∑
k=1

d−1
k → 0, (3.32)

first n → ∞ and then δ → 0, as required. The proof of Proposition 3.2 is complete.

2

PROPOSITION 3.3. For any fixed 0 ≤ t ≤ 1, ηn(t), η
2
n(t) and ψn(t), n ≥ 1, are

uniformly integrable.

Proof. We first claim that, for each fixed t,

Eψn(t) → τ 2Eψ(t), as n→∞. (3.33)

In fact it follows from (3.6) that, for each fixed t,

Eψn(t) =
dn
nh

[nt]∑
k=1

Eg2(xk/h) ∼ τ 2 dn
n

[nt]∑
k=1

d−1
k

∼ τ 2

{ 1
u−1/2

tu−1/2, under C1
1
2
t1/2, under C2

= τ 2Eψ(t).

By virtue of (3.33), together with Proposition 3.2 and the fact that ψk(t) is positive, it

follows from Theorem 5.4 of Billingsley (1968) that ψk(t) are uniformly integrable for each

fixed t.

In order to prove the uniform integrability of η2
n(t) for each fixed t, we first show that

sup
0≤t≤1

E|ψn(t)− η2
n(t)| = o(1). (3.34)

In order to prove (3.34), let r(x) = g(y/h + x) and r̂(t) =
∫
eitxr(x)dx. It is readily

seen that r̂(t) =
∫
eitxg(y/h + x)dx = e−ity/hĝ(t) and

∫
|r(x)|dx =

∫
|g(x)|dx < ∞.

Furthermore,
∫
|r̂(λ)|dλ ≤

∫
|ĝ(λ)|dλ <∞ and

|r̂(t)| ≤ |ĝ(t)| = |
∫

(eitx − 1)g(x)dx| ≤ Cmin{|t|, 1}.
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That is, the conditions on r(t) in part (ii) of Lemma 3.2 hold true uniformly for all y ∈ R
and h. It now follows from (3.8) with u = 0 and s = 0 that, for all l − k ≥ 1,

sup
y

∣∣E{
g
[
(y + x′0,k)/h

]
g
[
(y + x′0,l)/h

]}∣∣
≤ C h

[
(l − k)−2 + h /d2

l−k
] (
k−2 + h/dk

)
. (3.35)

Hence, by noting that

E|η2
n(t)− ψn(t)| ≤

2dn
nh

∑
1≤k<l≤[nt]

|E
[
g(xk/h) g(xl/h)

]
|,

and recalling (3.3), we obtain that

sup
0≤t≤1

E|ψn(t)− η2
n(t)| ≤ dn

nh

∑
1≤k<l≤n

sup
y

∣∣E{
g
[
(y + x′0,k)/h

]
g
[
(y + x′0,l)/h

]}∣∣
≤ dn

n

(
C + h

n∑
k=1

d−2
k

) (
C + h

n∑
k=1

d−1
k

)
≤ C

{
h, under C1,
h+ h2 log n, under C2,

which yields (3.34), since h→ 0 (h2 log n→ 0 under C2).

By virtue of (3.34), for any A > 0 and fixed t, we have

|Eη2
n(t)Iη2

n(t)≥A − Eψn(t)Iη2
n(t)≥A| ≤ sup

0≤t≤1
E|ψn(t)− η2

n(t)| = o(1).

This, together with the fact that

Eψn(t)Iη2
n(t)≥A ≤ Eψn(t)Iψn(t)≥

√
A +

√
AP (η2

n(t) ≥ A)

≤ Eψn(t)Iψn(t)≥
√
A + A−1/2Eψn(t) + o(1),

implies that

lim
A→∞

sup
n
Eη2

n(t)Iη2
n(t)≥A ≤ lim

A→∞
sup
n

[
Eψn(t)Iψn(t)≥

√
A + A−1/2Eψn(t)

]
= 0,

where we have used the uniform integrability of ψn(t). That is, η2
n(t) is uniformly inte-

grable. The integrability of ηn(t) follows from that of η2
n(t). The proof of Proposition 3.3

is now complete. 2

PROPOSITION 3.4. {ηn(t)}n≥1 is tight on D[0, 1].
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Proof. As in Proposition 3.2, we will use Theorem 4 of Billingsley (1974) to establish

the tightness of ηn(t) on D[0, 1]. According to the theorem, we only need to show that

max
1≤k≤n

|g(xk/h)| = oP [(dn/nh)
1/2], (3.36)

and there exists a sequence of α′n(ε, δ) satisfying limδ→0 lim supn→∞ α
′
n(ε, δ) = 0 for each

ε > 0 such that, for

0 ≤ t1 ≤ t2 ≤ ... ≤ tm ≤ t ≤ 1, t− tm ≤ δ,

we have

P
[
|ηn(t)− ηn(tm)| ≥ ε | ηn(t1), ηn(t2), ..., ηn(tm)

]
≤ α′n(ε, δ), a.s. (3.37)

The result (3.36) has been proved in (3.28). In order to prove (3.37), we choose

α′n(ε, δ) = ε−2 dn
nh

sup
y,0≤t≤δ

E
{ [nt]∑
k=1

g[(y + x′0,k)/h]
}2
.

It follows from (3.32) and (3.35) that

α′n(ε, δ) ≤ ε−1αn(ε, δ) + 2ε−2 dn
nh

sup
y

∑
1≤k<l≤[nδ]

|E
{
g[(y + x′0,k)/h]g[(y + x′0,l)/h]

}
|

= ε−1αn(ε, δ) + 2ε−2 dn
n

(
C + h

[nδ]∑
k=1

d−2
k

) (
C + h

[nδ]∑
k=1

d−1
k

)
≤ ε−1αn(ε, δ) + Cε−2 δ

{
h, under C1,
h+ h2 log n, under C2,

→ 0,

first n→∞ and then δ → 0, as h→ 0 (h2 log n→ 0 under C2). Now, by noting that

sup
|t−s|≤δ

P
(
|

[nt]∑
k=[ns]+1

g(xk/h)| ≥ ε (dn/nh)
1/2 | ε[ns], ε[ns]−1, ...; η[ns], ..., η1

)
≤ α′n(ε, δ),

by using Markov’s inequality and the independence of εk, we obtain the required (3.37).

The proof of Proposition 3.4 is complete. 2

PROPOSITION 3.5. Results (3.24) and (3.25) hold true for any constant u ∈ R.

Proof. Let r(t) = g(y/h+ t). It has been proved in Proposition 3.3 that r(x) satisfies

the conditions required in part (b) of Lemma 3.2, uniformly on y and h. Hence it follows
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from (3.8) that, uniformly on y,∑
1≤k<l≤n

|Isk,l| ≤ C
∑

1≤k<l≤n

[
h (l − k)−2 + h2/d2

l−k
] (
k−2 + h/dk

)
≤ C (1 + nh/dn)

{
h+ h2, under C1,
h+ h2 log n, under C2.

This implies (3.25) since h → 0 (h2 log n → 0 under C2) and nh/dn →∞. The proof of

(3.24) is similar and the details are omitted. 2

4 Proof of Theorem 2.2

We may write

f̂(x)− f (x) =

∑n
t=1 {f (xt)− f (x)}K

(
xt−x
h

)∑n
t=1K

(
xt−x
h

) +

∑n
t=1 utK

(
xt−x
h

)∑n
t=1K

(
xt−x
h

)
= Λ1n + Λ2n, say. (4.1)

It is readily seen that Assumptions 1-4 match with those used in Theorem 3.1 of Wang

and Phillips (2008 a) except Assumption 2. The current Assumption 2 seems to be more

natural and clearly does not affect the result and the proof of Theorem 3.1 in Wang and

Phillips (2008 a). It now follows from (3.7) of Wang and Phillips (2008 a) that

(nh2)1/4Λ2n →D σuN L
−1/2
W (1, 0) . (4.2)

We next handle with Λ1n. The numerator of Λ1n involves

n∑
t=1

{f (xt)− f (x)}K
(
xt − x

h

)
= Ia + Ib + Ic, (4.3)

where

Ia = f ′ (x)
n∑
t=1

(xt − x) K

(
xt − x

h

)
,

Ib =
1

2
f ′′ (x)

n∑
t=1

(xt − x)2 K

(
xt − x

h

)
,

Ic =
n∑
t=1

{
f(xt)− f(x)− f ′ (x) (xt − x)− 1

2
f ′′ (x) (xt − x)2

}
K

(
xt − x

h

)
.

Write H1(x) = xK(x) and H2(x) = x2K(x). Recall that K(x) has a compact support (Ω,

say),
∫
K(x)dx = 1 and

∫
xK(x)dx = 0. It is readily seen from (2.5) that

h−1 (nh2)1/4Ia∑n
t=1K

(
xt−x
h

) →D σ1N L
−1/2
W (1, 0), (4.4)
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where σ2
1 = [f ′(x)]2 |φ|−1

∫
H2

1 (x)dx, and

h−2 Ib∑n
t=1K

(
xt−x
h

) →P
1

2
f ′′(x)

∫
H2(x)dx. (4.5)

On the other hand, by noting limh→0 supy∈Ω |f
′′′
(yh+ x)| ≤ C by Assumption 4, Taylor’s

expansion yields that

|Ic| ≤ C
n∑
t=1

|xt − x|3K
(
xt − x

h

)
,

and hence

h−3 |Ic|∑n
t=1K

(
xt−x
h

) ≤ C

∑n
t=1H3

(
xt−x
h

)∑n
t=1K

(
xt−x
h

) →P C

∫
H3(x)dx, (4.6)

where H3(x) = |x|3K(x).

Combining (4.3)-(4.6), simple calculation show that

(nh2)1/4
[
Λ1n −

h2

2
f ′′ (x)

∫ ∞

−∞
y2K(y)dy

]
= oP (1),

whenever nh2 →∞ and nh14 → 0. This, together with (4.1) and (4.2), yields (2.10). The

proof of Theorem 2.2 is now complete.

5 Proof of Theorem 2.3

We may write

f̂L(x) =
Sn,2

∑n
i=1Kh(xi − x)Yi − Sn,1

∑n
i=1Kh(xi − x)(xi − x)Yi

Sn,2
∑n

i=1Kh(xi − x)− S2
n,1

=

∑n
i=1K[(xi − x)/h]∑n

i=1K[(xi − x)/h]− hS2
n,1/Sn,2

f̂(x)− (hSn,1/Sn,2)
∑n

i=1H1[(xi − x)/h]Yi∑n
i=1K[(xi − x)/h]− hS2

n,1/Sn,2
,

where H1(x) = xK(x). As in the proof of Theorem 2.2, it follows easily from (2.5) that

h
S2
n,1

Sn,2
→D C0N, h (

√
nh)1/2 Sn,1

Sn,2
→D C1N L

−1/2
W (1, 0),

where C0 and C1 are constants. Also recall that

1√
nh

n∑
i=1

K[(xi − x)/h] →D |ψ|−1 LW (1, 0).

By virtue of these facts, together with (2.10), to prove(
nh2

)1/4
[
f̂L(x)− f (x)− h2

2
f ′′ (x)

∫ ∞

−∞
y2K(y)dy

]
→D σuN L

−1/2
W (1, 0) ,
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it suffices to show that

∆3n :=

∑n
i=1H1[(xi − x)/h]Yi∑n
i=1K[(xi − x)/h]

= oP (1), (5.1)

provided nh14 → 0 and nh2 →∞. This follows from some similar arguments to those in

the proof of Theorem 2.2. To see this, we may split the numerator of ∆3n as

f(x)
n∑
i=1

H1[(xi − x)/h] +
n∑
i=1

H1[(xi − x)/h][f(xi)− f(x)] +
n∑
i=1

H1[(xi − x)/h]ui

:= ∆4n + ∆5n + ∆6n.

As in (4.2),
∆6n∑n

i=1K[(xi − x)/h]
= OP [(nh2)−1/4] = oP (1).

As in (4.4) (also see Theorem 2.1),

∆4n∑n
i=1K[(xi − x)/h]

= OP [(nh2)−1/4] = oP (1).

By noting that

|∆5n| ≤ C
n∑
i=1

|H1[(xi − x)/h]||xi − x| = C h
n∑
i=1

H2[(xi − x)/h],

where H2(x) = x2K(x), as in (4.6),

∆5n∑n
i=1K[(xi − x)/h]

= OP (h) = oP (1).

Combining all these estimates, we obtain (5.1), and the proof of Theorem 2.3 is complete.
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