CFDP 1575

Common Learning


Publication Date: August 2006

Pages: 34


Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily agents. Does it follow that the agents will commonly learn its value, i.e., that the true value of the parameter will become (approximate) common-knowledge? We show that the answer is affirmative when each agent’s signal space is finite and show by example that common learning can fail when observations come from a countably infinite signal space.


Common learning, Common belief, Private signals, Private beliefs

JEL Classification Codes: D82, D83