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1 Introduction

Consider two agents who learn the value of an unknown parameter by observing
a sequence gbrivate signals. The signals are independent and identically dis-
tributed across time but not necessarily agents. Does it follow that the agents will
commonlylearn its value, i.e., that the true value of the parameter will become
(approximate) common-knowledge? We show that the answer is affirmative when
each agent’s signal space is finite and show by example that common learning can
fail when observations come from a countably infinite signal space.

This is an important question for a number of reasons. Common learning is
precisely the condition that ensures efficient outcomes in dynamic coordination
problems in which agents learn the appropriate course of action privately over
time. For example, suppose the two agents have the possibility of profitably co-
ordinating on an action, but that the action depends on an unknown parameter. In
every period = 0,1,..., each agent receives a signal. The agent can then choose
actionA, actionB, or to wait (V) until the next period. Simultaneous choicegtof
when the parameter & or B when it is6g bring payoffs of 1 each. Lone choices
of Aor B or joint choices that do not match the parameter bring a payoficet 0
and cause the investment opportunity to disappear. Waiting is costigsse 1
summarizes these payoffs.

Under what circumstances do there exist nontrivial equilibria of this invest-
ment game, i.e., equilibria in which the agents do not always wait? Choosing
actionA is optimal for an agent in some perio@nly if the agent attaches proba-
bility at Ieastﬁc1 = g to the joint event that the parametebjsand the other agent
choose®\. Now consider the set of historieg at which both agents choose At
any such history, each agehimust assign probability at leagtto o7, that is.o/
must beg-eviden{Monderer and Samgt989. Furthermore, at any history i,
each agenf must assign probability at leagtto the parametefs. But this pair
of conditions is equivalent to the statement thais common g-beliefthe exis-
tence of histories at which there is comnupbelief in 64 is a necessary condition
for eventual coordination in this game. Conversely, the possibility of common
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Figure 1: Payoffs from a potential joint opportunity, with actiohsB, or wait
(W) available to each agent in each period.

g-belief is sufficient for a nontrivial equilibrium, as it is an equilibrium for each
agent/ to chooseA on theg-evident event on whicBa is commong-belief.

Now suppose that various forms of this opportunity arise, characterized by
different values of the miscoordination penaityWhat does it take to ensure that
all of these opportunities can be exploited? It suffices that the information process
be such that the parameter eventually becomes arbitrarily close to common 1-
belief.

Beyond coordination problems, common learning is a potentially important
tool in the analysis of dynamic games with incomplete information. In the equilib-
ria of these games, players typically learn over time about some unknown parame-
ter. Examples include reputation models suckCepps, Mailath, and Samuelson
(forthcoming, where one player learns the “type” of the other, and experimenta-
tion models such ag/iseman(2005, where players are learning about their joint
payoffs in an attempt to coordinate on some (enforceable) target outcome. Char-
acterizing equilibrium in these games requires analyzing not only each player’s
beliefs about payoffs, but also her beliefs about the beliefs of others and how these
higher-order beliefs evolve. Existing studies of these models have imposed strong
assumptions on the information structure in order to keep the analysis tractable.
We view our research as potentially leading to some general tools for studying



common learning in dynamic games.

In general, the relationship between individual and common learning is subtle.
However, there are two special cases in which individual learning immediately
implies common learning. When the signals are public then beliefs are trivially
common-knowledge. At the opposite extreme, common learning occurs when the
agents’ signal processes are stochastically independent and so (conditional on the
parameter) each learns nothing about the other’s beletgpsition 2.

Apart from these extreme cases, when the signals are private and not indepen-
dent, the following difficulty must be addressed. If the signals are correlated, and
if the realized signal frequencies for agent 1 (say) are sufficiently close to the pop-
ulation frequencies under the paramedethen 1 will be confident thaf is the
value of the parameter. Moreover, he will be reasonably confident that 2 will have
observed a frequency that leads to a similar degree of confidertceHowever,
if 1's frequency is “just” close enough to lead to some fixed degree of confidence,
then 1 may not be confident that 2's realized frequency leads to a similar degree
of confidence: while 2’s frequency may be close to 1's frequency, it may be on the
“wrong side” of the boundary for the required degree of confidence.

If the set of signals is finite, the distribution of one agent’s signals, conditional
on the other agent’s signal, has a Markov chain interpretation. This allows us
to appeal to a contraction mapping principle in our proof of common learning,
ensuring that if agent 1's signals are on the “right side” of a confidence boundary
then so must be 1’s beliefs about 2's signals. In contrast, with a countably infinite
signal space, the corresponding Markov chain interpretation lacks the relevant
contraction mapping structure and common learning may fail.

While we have described the model as one in which the agents begin with
a common prior over the set of parameters, we explaiRémark 3how our
analysis sheds light on agents who initially disagreedaunvergeon a common
belief through a process of learning. Indeed, we can allow agents to begin the
process with arbitrary higher-order beliefs over the parameter space. As long
as each agent attaches some minimum probability to each parameter, and this is



common knowledge, the agents will commonly learn the parameter and hence
approach a common posterior over the distribution of signals.

2 A Model of Multi-Agent Learning

2.1 Individual Learning

Time is discrete and periods are denotedtby0,1,2,.... Before period zero,
nature selects a parameéefrom the finite se® according to the prior distribution
p.

For notational simplicity, we restrict attention to 2 agents, denéted. (he)
and 2 (she). Our positive results (Propositi@anand 3) hold for arbitrary finite
number of agents (see Rematkand4).

Conditional o, a stochastic procegd = {¢° oo generates a signal profile
z = (z11,2Zx) € Z1 x Zp = Z for each period, whereZ, is the set of possible
periodt signals for agent = 1,2. For eachd € ©, the signal proces§s?}i
is independent and identically distributed acros§Ve let C{’ = {{n }1>o denote
the stochastic process generating agé&nsignals. When convenient, we g6 }
denote the evenff} x Z* that the parameter value & and we often writed
rather than{ 6} when the latter appears as an argument of a function.

A state consists of a parameter and a sequence of signal profiles, with the set
of states given b2 = © x Z*. We useP to denote the measure éhinduced by
the priorp and the signal processés?)gco, and useéE[- | to denote expectations
with respect to this measure. LBf denote the measure conditional on a given
parameter an&®|. | expectations with respect to this measure.

A period+ history for agent is denoted byhy = (20,271, ..,2¢-1). We let
Hx = (Z,)' denote the space of periddiistories for agent and let{ 7} o
denote the filtration induced a2 by agent/’s histories. The random variables
{P(6 | 7n)}i 0, Qiving agent’s beliefs about the parametérat the start of each
period, are a bounded martingale with respect to the me& ifmeeachd, and so



the agents’ beliefs converge almost suré@yl{ngsley, 1979 Theorem 35.4). For
any statew, hy () € 4 is the agent periodt history induced byw. As usual,
P(6 | #)() is often writtenP(6 | hy(@)) or P(6 | hy) whenw is understood.
For any evenfF C Q, the 7;-measurable random variatfig1lg | 7] is the
probability agent attaches tdé- given her information at time We define

BY(F) = {0 € Q E[1r | #4)() > q}.

Thus,B?t(F) Is the set of states where at tilnagent/ attaches at least probability
g to eventF.

Definition 1 (Individual Learning) Agent/ learnsparameterd if conditional on
parameterd, agent/’s posterior ong converges in probability ta, i.e., if for each
g€ (0,1) there is T such that forallt T,

P®(BRL(6)) > a. (1)

Agent/ learns@ if / learns eaclp € O.

Individual learning is equivalent to

imP?(BL(6)) =1, Vvge(0,1). (2)

t—oo

Remark 1 We have formulated individual learning using convergence in proba-
bility rather than almost sure convergence to facilitate the comparison with com-
mon learning. Convergence in probability is in general a weaker notion than al-
most sure convergence. However, sif® | .77 ) converges almost surely to

some random variable2) is equivalent tdP(6 | #%) — 1 P%-a.s.
¢

We assume that each agent individually learns the parameter—there is no point
considering common learning if individual learning fails. Our aim is to identify



the additional conditions that must be imposed to ensure not just that each agent
learns the parameter, but that the agents commonly learn the parameter.

2.2 Common Learning

The event thaF C Q is g-believedat timet, denoted byB{((F), occurs if each
agent attaches at least probabilityo F, that is,

B'(F) = By (F) NBx(F).
The event thaF is common g-belieat datet is

C(F) = (N [B]"(F).

n>1

Hence, orC{(F), the evenf is g-believed and this event is itsajfbelieved and
so on. We are interested in common belief as a measure of approximate common-
knowledge because, as showngnderer and Sam¢1989), itis common belief
that ensures continuity of behavior in incomplete-information games.

A related but distinct notion is that daferated gbelief. The event thaf is
iteratedg-belief is defined to be

I7(F) = BL(F)n B (F)n BB (F)NBLBL(F)N...

Morris (1999 Lemma 14) shows that iterated belief is (possibly strictly) weaker
than common belief:

Lemma 1 (Morris) C/(F) c I2(F).

SeeMorris (1999 p. 388) for an example showing the inclusion can be strict.

The parametef is commong-belief at timet on the evenC(0). We say
that the agents commonly learn the paramétdf;, for any probabilityq, there
is a time such that, with high probability when the parameté, ig is common



g-belief at all subsequent times that the parametér is

Definition 2 (Common Learning) The agentsommonly learrparameterd € ©
if for each ge (0,1) there exists a T such that for altt T,

Pe(Ci(0)) > q.

The agenteommonly learr® if they commonly learn eagh € ©.

Common learning is equivalent to
lim PY(cl(8)=1, Vvqe(0,1).

BecauseC(0) C B?t(e), common learning implies individual learning (recall

(2)).

An eventF is g-evidentat timet if it is g-believed when it is true, that is,

F c B(F).

Our primary technical tool links commampbelief andg-evidence Monderer and
Samet(1989 Definition 1 and Proposition 3) show:

Proposition 1 (Monderer and Samet) F’ is common g-belief ab € Q and time
t if and only if there exists an event® Q such that F is g-evident at time t and
o € F C B(F)).

Corollary 1 The agents commonly leaf if and only if for all @ € © and qe
(0,1), there exists a sequence of eventarkl a period T such that for all+ T,
(i) 6isg-believed onfat time t,
(i) P9R)>q,and
(i) F¢is g-evident at time t.



2.3 Special Cases: Perfect Correlation and Independence

We are primarily interested in private signals that are independently and identi-
cally distributed over time, but not identically or independently across agents. We
begin, however, with two special cases to introduce some basic ideas.

Suppose first the signals are public, as commonly assumed in the literature.
Then agent knows everything there is to know abois beliefs, and we have
P(0 | #4t) = P(6 | ##%) for all 6 andt—and hence beliefs are always common.
Individual learning then immediately implies common learning.

At the other extreme, we have independent signals. Here, the fact thatagent
learnsnothingabout agenf’s signals ensures common learning.

Proposition 2 Suppose each agent lear@sand that for eacld € ©, the stochas-
tic processeq (i, and {{4 )i, are independent. Then the agents commonly
learn ©.

Proof. Our task is to show that under a given paramétemnd for anyqg <
1, the event thaé is commong-belief occurs with at least probability for all
sufficiently larget. We letk = {6} N B[\/q(e) and verify thatR satisfies the
sufficient conditions for common learning providedGorollary 1

(i) Becausdr C Bg/q(e) C B{(6), parametes is g-believed orf at timet.

(i) To showP? (R) > g, note that independence implie$(R) =[], P"(Bf(e)).
By (1), we can choos@& sufficiently large thaPe(Bgtm(O)) > /qforall £ and all
t > T and henc®®(R) > q.

(i) To show thatF is g-evident, we must show thdg C B?t(Ft) for ¢ =
1,2. By constructionf C Bgt/q(e). SinceB%q(G) € J, on kR agent? attaches
probability 1 to the state being af(e) and we have

B (R) = (@ Ellyqp o5y | 7] 2 )

{01 Ly Ellgin g0y | ) > 0)

(8) ( {6}
=B)%(6) NBY(BY(6)n{6}).



Thus, it suffices to show that on the $gt agent/ attaches at least probabiligy
to the evenBé\t/q(e) N{6}, 7+ ¢. As above, {) allows us to choos€ sufficiently

large thaiP"(Bgt/q(G)) > ,/qforall Zand allt > T. The conditional independence
of agents’ signals implies that, giveh agent/’s history is uninformative about
{'s signals, and hendéB(B}t/q(e) | ) > \/0." But, onR, we haveP(6 | #%) >
/0. Consequently, again df

P(BY*(0)N {0} | k) =PP(BY(0) | #1)P(O| #) >0, (3)

and we have the desired result. ]

Remark 2 (Arbitrary finite number of agents) The proof ofProposition Zov-
ers an arbitrary finite number of agents once we reddfines {6} N Bt*n/q(e),
wheren is the number of agents.

¢

The role of independence in this argument is to ensure that dgesignals
provide/ with no information abouf’s signals. Agent thus not only learns the
parameter, but eventually thinks it quite likely tHiahas also learned the (same)
parameter (having no evidence to the contrary). In addition, we can place a lower
bound, uniform across agefi histories, on how confident agehis that/ shares
¢'s confidence in the parameter (s&® ( This suffices to establish common learn-
ing.

One would expect common learning to be more likely the more informdtion
has about, so that/ has a good idea dfs beliefs. When signals are correlated,
¢'s signals will indeed often provide useful information abdist accelerating
the rate at whictf learns abouf and reinforcing common learning. Clearly this

1Since conditional probabilities are only unique Ralmost all states, the sEtdepends upon
the choice of version of the relevant conditional probabilities. In the proof, we have selected the
constant functiorPe(B‘/q((-))) as the version oP"(B‘/ﬁ(e) | #4). For other versions of condi-
tional probabilities, the definition df; must be adjusted to exclude appropriate zero probability
subsets.



is the case for perfect correlation, but perhaps surprisingly, intermediate degrees
of correlation can generate information that may disrupt common learning. The
danger is that agent 1 may have observed signal frequencies “just” close enough
to lead to some fixed degree of confidence in the value of the parameter, but in the
process may have received evidence that 2’s frequencies are on the “wrong side”
of her corresponding boundary, even though quite close to it. We show this by
example inSection 4

3 Sufficient Conditions for Common Learning

3.1 Common Learning

For our positive result, we assume that the signal sets are finite.

Assumption 1 (Finite Signal Sets)Agentsl and 2 have finite signal sets, | and
J respectively.

We usel andJ to also denote the cardinality of seétandJ, trusting the context
will prevent confusion.

We denote the probability distribution of the agents’ signals condition@ on
by (7°(i))ic jes € A1 x J). Hences® (i) is the probability thatzy, z) = (i, j)
for parametep and everyt. For eachd € O, let

1P={icl:y %ij) >0}
and  J°={led:y n%ij)>0}

be the sets of signals that appear with positive probability under paraéeter
Denote(ne(ij))iemeﬁ by M°.

We define¢ (i) = Y 7 (ij) to denote the marginal probability of agent 1's
signali and w9 (j) = 5;7%(ij) to denote the marginal probability of agent 2’s
signal j. We let¢? = (¢°(i));c;o andy® = (y?(j));c;0 be the row vectors of
expected frequencies of the agents’ signals under paraetdlotice that we

10



restrict attention to those signals that appear with positive probability under pa-
rameterd in defining the vectorg® andy?.
GivenAssumption 1the following is equivalent tol).

Assumption 2 (Individual Learning) For every pair6 and6’, the marginal dis-
tributions are distinct, i.e¢® £ ¢® andy?® £ y?'.

Our main result is:

Proposition 3 UnderAssumption andAssumption Zhe agents commonly learn
o.

Remark 3 (The role of the common prior and agreement orr®) Though we have
conserved on notation by presentiagposition 3n terms of a common prior, the
analysis applies with little change to a setting where the two agents have different
but commonly known priors. Indeed, the priors need not be commonly known—it
is enough that there be a commonly known bound on the minimum probability
any parameter receives in each agent’s prior. We can madifyma 3to still find
a neighborhood of signals frequencies in which every “type” of aperit assign
high probability to the true parameter. The rest of the proof is unchanged.

Our model also captures settings in which the agents have different beliefs
about the conditional signal-generating distributiom$(i j ))iel jes- In particular,
such differences of opinion can be represented as different beliefs about a param-
eter ¢? that determines the signal-generating process giehe model can
then be reformulated as one in which agents are uncertain about the joint parame-
ter (6, ¢%) (but know the signal-generating process conditional on this parameter)
and our analysis applied.

Our work is complementary tdcemoglu, Chernozhukov, and Yild{2006),
who consider environments in which even arbitrarily large samples of common
data may not reconcile disagreements in agents’ bekefsmoglu, Chernozhukov,
and Yildiz(2006 stress the possibility that the agents in their model may not know
the signal-generating proce@se(ij))ieuej, but we have just argued that this is

11



not an essential distinction in our context. The key difference is that the signal-
generating processes consideredMogmoglu, Chernozhukov, and Yild{2006

need not suffice for individual learning. In our context, it is unsurprising that
common learning need not hold when individual learning fails.

¢

3.2 Outline of the Proof

Let f;(ij) denote the number of periods in which agent 1 has received the signal
i and agent 2 received the signabefore period. Defining fx(j) = 3 fi(ij)

andfy (i) = ¥ fi(ij), the realized frequencies of the signals are given by the row
vectorsdy = (1 (i)/t)ier andfx = (fa(j)/t)jes- Finally, let¢® = (f1(i)/t)icro
denote the realized frequencies of the signals that appear with positive probability
under paramete?, with a similar convention foi®.

The main idea of the proof is to classify histories in terms of the realized
frequencies of signals observed and, for gigen (0,1), to identify events such
asB}, () andB}, (B3, (9)) with events exhibiting the appropriate frequencies.

Section3.4 develops the tools required for working with frequencies. The
analysis begins with an open neighborhood of frequencies within which each
agent will assign high probability to parameter Indeed,Lemma 3shows that
there is @ > 0 so that whenever 1's observed frequency distribugﬁda within a
distance’ of ¢¢, his marginal signal distribution und@r the posterior probability
he assigns t® approaches one over time. Lt (0) denote thiss-neighborhood
of ¢9,

Fu(0) = {o: Héﬁ —¢9H <8},

By the weak law of large numbers, the probability unédhat the realized fre-
quency falls inFy (0) converges to ond_émma 4.

Next, we consider the set of frequencies that characterize the event that 1 as-
signs high probability t® andto 2 assigning high probability t8. This involves
three steps.

12



STEP 1: Since the event we are interested in implies that 1 assigns high prob-
ability to 6, we can approximate 1's beliefs about 2 by his beliefs conditional on
0 being the true parameter.

STEP 2: We now introduce an object that plays a central role in the proof, the
19 x J® matrix M" whoseijth element |s¢+()) i.e. the conditional probability
under parametef of signal j given signali. At any datet, when agent 1 has
realized frequency distributiof, his estimate (expectation) of the frequencies

observed by agent@nditional on paramete# is given by the matrix product
oMy .

The corresponding matrix for agent two, denokél, is theJ® x 19 matrix with
jith elemen%.

We now make a key observation relatip8, y, MY, andM$. Let DY be the
19 x 19 diagonal matrix withith diagonal element¢®(i))~! and lete be a row
vector of 1's. It is then immediate that

9°My = ¢°DIN’ =en’ = y°. (@)

A similar argument implies
yoM7 = ¢°. (5)

Note that the produorp M"Mé9 gives agent 1's expectation of agent 2's expec-
tation of the frequencies observed by agent 1 (conditionabpn Moreover,
MY, = MIMY is a Markov transition matrix on the sét of signals for agent
1.2 Section3.3 collects some useful properties of this Markov process.

From (@), the continuity of the linear maMf implies that whenever 1’s fre-
quencies are in a neighborhoodddt, we are assured that 1 expects that 2’s fre-
quencies are in the neighborhoodwft, and hence that 2 assigns high probability
to 6. Of course, “expecting” that 2 assigns high probabilitgtis not the same as

2This perspective is inspired Bamet(19989.

13



assigning high probability to it, and we must account for the error in 1's estimate
of 2's frequencies, leading to the third step.

STEP 3: We need to bound the probability of any large error in this estimate.
Lemma 5shows that conditional o, there is a timd@ after which the probability
that 2's realized frequencies are more than some givaway from 1’'s estimate
(QSIQM{’) is less thare. A crucial detail here is that this bound applies uniformly
across all histories for 1. There is thus a neighborhoogi®o$uch that if 1's fre-
quencyét" falls in this neighborhood for sufficiently largethen agent 1 assigns
high probability to the event that 2 assigns high probabilitg th et F; (1) denote
this neighborhood, which we can equivalently think of as a neighborhoad of
into which $?M¢ must fall, that is,

Fu(1) = {o: || M7 —y°| <5 ¢},

wheree is small and determined below.

For sufficiently larget, the intersectior; (0) NFy (1) = Fy; is contained in
BJ, (B} (6)NB3(6)) =B, (8)NB} (B5(6)), providing the first steps toward com-
mon learning. However, in order to shamacommon belief, we need to show that
all orders of iterated (joint-belief can be obtained on neighborhoods8fand
v?, and common learning requires in addition these neighborhoods have high
probability. Rather than attempting a direct argument, we applpllary 1

Suppose (for the sake of exposition) that every eIemeM{Qﬁs strictly pos-
itive. In that caseJ\/If2 is a contraction when viewed as a mapping/Zifi, a
property critical to our argument. Hence, for some (0,1), if 1's frequencies
are within§ of ¢9, then 1’s prediction of 2’s prediction of 1's frequencies are
within r§ of ¢¢. Consequently, iteratin@ﬁt anngt does not lead to “vanishing”
events.

Fix 6 and a period large. A natural starting point would be to thf; N
Fot (whereFy is defined similarly for agent 2 té1;) as a candidate fol in
Corollary 1 But since we also nedd to be likely unde®, we intersect these sets
with the evenf{ 6} so thatk = Fir "Fx N {6}.

14



Observe that;?t6 € F1(0) for all € R by construction. It is also intuitive
(and indeed true) thafl is g-believed onk, at timet and thatP?(R) > q for
sufficiently large. It remains to verify that the sé& is g-evident at time, that is,
R C Bi(R) = B}(R) N B (R). It suffices to argue that

Fin{6} C B} (FunFxN{6})

(the argument is symmetric for agent 2).
We first note thaEy € .77 (i.e., agent knows the everf, in periodt). Next,
a straightforward application of the triangle inequality yields

Fu (1) NFu(1) € Fx(0),

whereFy (1) = {0 : || §*M{ — || < €} is the event that 2's realized frequencies
are close to 1's estimate. Note that the e\lém(tl) may not be known by either
agent (i.e., we may havéy (1) ¢ . for £ = 1,2).

SinceM} is a stochastic matrix, for ad € Fy; (1), we have|§eMIMS — GOMS |
< €. We now set small enough thats < & —2¢. SinceMY, is a contraction with
fixed point¢? (see €) and 6)), we have, again from the triangle inequality,

Fue(0) NPy (1) C Fax ().
Hence Fy NFy (1) C Fx, and so
FiNFy(1)N{6} c Fxn{6}.

But, fromLemma Yrecall step 3) we know thdif } C B‘ft(lflt(l) N{6}) for large
t. Consequently,

Fin {6} C B (Fx NFu(1)n{6}) € B (FNFx N {6}),

and we are done.

15



The proof ofProposition 3nust account for the possibility that some elements
of MY, may not be strictly positive. However, as we show.@mma 2 sinceM?,
is irreducible when restricted to a recurrence class, some power of this restricted
matrix is a contraction. The proof proceeds as outlined above, with the definition
of F4 now taking into account the need to take powerM@.

Remark 4 (Arbitrary finite number of agents) The restriction to two agents sim-
plifies the notation, but the result holds for any finite number of agents. We illus-
trate the argument for three agents (and keep the notation as similar to the two
agent case as possible). Denote agent 3's finite set of signadfs byhe joint
probability of the signal profiléjk € | x J x K under@ is 79 (ijk). In addition to

the marginal distribution$® andy? for 1 and 2, the marginal distribution for 3

is @°. As before, M? is thel? x J% matrix withijth elementy, 79 (ijk)/¢° (i)

(and similarly forMy). For the pair 1- 3, we denote bN? the 19 x K& matrix

with ikth elementy ; 79 (ijk)/¢(i) (and similarly forN¢). Finally, for the pair

2— 3, we have analogous definitions for the matri@dsandQf. As before ¢ is

a stationary distribution d¥1YM$, but now also oN?N¢; similar statements hold

for w9 and the transition§M? andQ9QY, as well as for? and the transitions
NYNY andQfQs.

Suppose (as in the outline and again for exposition only) that every element
of the various Markov transition matrices is non-zero, and letl now be the
upper bound on the modulus of contraction of the various contractions. The argu-
ment of the outline still applies, once we redeffig1) = {@ : |§M? — || <
S—ern{w:|¢N? — | < 5 —e} andFy(1) = {0 |¢*M? — 0| < e} n
{w:||¢ENS — §°]| < e} (with similar definitions for the other two agents).

¢

3.3 Preliminary Results: Expectations about Expectations

We summarize here some important properties of the Markov chains induced by
the transition matrices?, andMJ,.
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Remark 5 (Markov Chains) From @) and ), the vectorp? is a stationary dis-
tribution for MY, and y? is a stationary distribution fom$, = MIM?. More-

over, the matrixM?,D¢ = DYNPDY NP TDY is obviously symmetric and has a
nonzero diagonal (wherlég is the diagonal matrix whosgh diagonal element

is (y9(j))~1for j € 39). This first property implies that the Markov proced§,

with initial distribution ¢¢ is reversible’ Consequently, the process hs as a
stationary distribution when run backward as well as forward, and hence (since
¢?(i) > 0 for alli € 19) has no transient states. The second property implies that
MY, has a nonzero diagonal and hence is aperiodic.

¢

Remark 6 (Recurrent Classes)Two signalsi andi’ belong to the sameecur-

rence classinder the transition matrid?, if and only if the probability of a tran-

sition fromi to i’ (in some finite number of steps) is positit/&ve let(R{ (k))K_,

denote the collection of recurrence classes, and we order the elemdftsmf

that the recurrence classes are grouped together and in the order of their indices.
This is a partition ofl® because (from Remark) there are no transient states.
Similarly, the matrixM$, = M§M? is a Markov transition on the séf that we

can partition into recurrence clasg&§ (k))K_;.

Define a mapping from (RY(k))K_; to (R§(k))K_, by letting &(RY (k) =
RY(K') if there exist signals e R{ (k) andj € R§(K') with z%(ij) > 0. Then¢ is a
bijection (as already reflected in our notation). It is convenient therefore to group
the elements a3 by their recurrence classes in the same order as was done with
19. We use the notatioR? (k) to refer to thekth recurrence class in eith&f or
J% when the context is clear. This choice of notation also reflects the equalities of

3As MZ,DY is symmetric, the detailed balance equationg®ahold, i.e.,
9° (HMy(ii") = 9° (I")ME(1"1)
(Bremaud 1999 page 81).

4Since the Markov process has no transient states, if the probability of a (finite-step) transition
fromi toi’ is positive, then the probability of a (finite-step) transition froro i is also positive.
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the probabilities oRY (k) andR) (k) under8, that is

CRKN= T 0% =3 wl(i)=v (RK). (6)

icRY(K) jeR8(K)

Since agent 1 observes a signaR%(k) under parametef if and only if agent
2 observes a signal iR§(k), conditional oné the realized frequencies of the
recurrence classes also agree.

¢

Let ¥? denote a probability distribution ovéf that takes positive values
only on thekth recurrence clas®? (k), and denote the set of such distributions by
AR? (k).

Lemma 2 There exist K 1and a natural number n such that for alkk{1, ... ,K}
and for all YK 79K in AR? (k)°

(AR A (oK

<r HYGk—T’GkH (7)

and similarly for(M$))".

Proof. We have noted tha¥?, is aperiodic. By definition, the restriction of
MY, to any given recurrence class is irreducible and hence ergodic. Thus, because
signals are grouped by their recurrence classes, there exists a natural mumber
such that(MleZ)” has the block-diagonal form with each block containing only
strictly positive entries. The blocks consist of the non-zestep transition prob-
abilities between signals within a recurrence class. The prodgéteiith (M,)"
is just the product of? restricted taR? (k) with thekth block of (MY,)". Because
it has all non-zero entries, ttéh block is a contraction mapping(okey and Lu-
cas 1989 Lemma 11.3). In particular, there existsraq 1 such thatT) holds. =

SFor anyx € RN, ||x|| = TR, |x«] is the variation norm ox.
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3.4 Preliminary Results: Frequencies are Enough

Let ¢°k denote the distribution ovel® obtained by conditioning on thekth
recurrence clasi’ (k) (for those cases in which?(R?(k)) > 0), and letg®,
v andyfX be analogous.

Ouir first result shows that if agent 1's signal frequencies are sulfficiently close
to those expected undér, the posterior probability he attaches to paraméter
approaches one.

Lemma 3 There exis € (0,1), B € (0,1), and a sequencé : N — [0, 1] with
&(t) — 1such that

P(6 [ hy) > &(t)
for aII 9 e G and hy satisfying R6 | hy) > 0, || — ¢%|| < & for all k, and
B < ¢9 R9 < B~ for all k. An analogous result holds for ageht

Proof. Fix a paramete andd < min; g {¢° (i) : ¢°(i) > 0}. Then||§& — ¢°¥||
< §forallk only if ¢ puts strictly positive probability on every sigriat 1. For
6’ andhy; with P(6’ | hyt) > 0, define the ratio

06" _ P(9 | hyt) ) ¢9(it_1)P(0 | hyt—1)
Mt =109 507 ) =199 507G y)P(6! [ huya)

We now show tha ands < & can be chosen so that there exigts 0 with the
property that
200 >89+t ve' 46

for all 8’ € © and historiegy; for which ||k — ¢%|| < 5 for all k and for which
289" is defined. Notice that " = &( )) is the log-likelihood ratio at time zero,
that is, the ratio of prior probabilities.

Our choice 0f9, implying that every signdle |9 has appeared in the history
hyt, ensures tha®(6’|hy) > 0 (and hencé.)? is well defined) only ifl® < 19",
This in turn ensures that the following expressions are well defined (in particular,

having nonzero denominators). Because signals are distributed independently and
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identically across periodd,?®" can be written as

t—1 9/
00’ ¢° (is)
= + Iog( — ) .
10 5; ¢ (is)
We find a lower bound for the last term. Let

Ho6' = E° (Iog g;%) >0

denote the relative entropy ¢f with respect tap®’. Then,

300((afiy) o
|3 wora J5) -1 3 00w (565

i€l® icl®
_ 20y 40 ¢°(i)
“t 3 8000 <u>>log(¢9,(l))‘
20\ L0 9°(i)
<ty |86 0ron( S5 )

<tlogb| ¢ — ¢°||

forb=max g ¢co { g:,((ii)) 99(i) > 0}. By Assumptior?, b > 1. Thus,

200" > A58 +t<H99'—Iong43t9—¢9H>.

We now argue thal < § andf can be chosen to ensué® —logb [|¢¢ — ¢°|| >
n for all 6,6 and some) > 0. For this, it is enough to observe that the mapping

({# R} {8, ) 3 3 [0 R09)6 0 - 0] = 6~ o°]
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is continuous and equals zero if and onlyft(R? (k) = ¢?(R? (k)) and ¢k =
¢ % for all k.

We thus haved and such that for® andhy; satisfying the hypotheses of the
lemma and’ with P(6’ | hy) > 0, it must be tha 8%" > 199" +-tn and hence

p(e’)
p(o)

Noting that this inequality obviously holds fér with P(6’ | hy;) = 0, we can sum
over6’ # 6 and rearrange to obtain

P(9/|hlt)etn.
P(6|hy)

>

P(6 | hy) p(o)
1—P(6 | hy) = 1— p(e)em’

giving the required result. ]

We next note that with high probability, observed frequencies match their ex-
pected values. Together with LemrBgthis implies that each agent leai®@s

Lemma 4 For all € > 0and@, P°(||¢¢ — ¢°|| < &) — Land P(||¢f — yO|| <
g) —»last— co.

Proof. This follows from the Weak Law of Large NumbeiBi{lingsley, 1979
p. 86). ]

We now show that each agent believes that, conditional on any paraéheter
his or her expectation of the frequencies of the signals observed by his or her
opponent is likely to be nearly correct. Recall tkﬁﬁl\/lf is agent 1's expectation
of 2’s frequenciesj? and thanift"Mg is agent 2's expectation of 1's frequencies
o
Lemmab For anye; > 0, & > 0, there exists T such that for all T and for
every h with P?(h) > 0,

(it <nim)o1n o
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and
P"(HnﬁfMS—éﬁH <81|h2t> >1-e. ©)

Proof. We focus on §); the argument for9) is identical. Definingy =
#M?, the left side of 8) is bounded below:

P (([[dem — ¢ < ea ) =1 5 P (|0 - 9| > ).
jed (10)

Conditional oné andhy;, agent 2’s signals are independently, hot iden-
tically, distributed across time. In perigl given signalis, agent 2’s signals are
distributed according to the conditional distributioef (isj)/¢° (is));. However,
we can bound the expression on the right sideldj (ising a related process ob-
tained by averaging the conditional distributions. The average probability that
agent 2 observes signpbver thet periods{0,1,...,t — 1}, conditional orhy; is

11 7(is] ~ m0))

isj) . e
Fs; 09 (is) —IZQ(I) 0) = (1),

agent 1's expectation of the frequency that 2 obseljved

Consider nowt independent and identically distributed draws of a random
variable distributed 0d® according to the “average” distributiaggf € A(J?); we
refer to this process as the average process. Denote the frequencies of signals
generated by the average processipyg A(J?). The process generating the fre-
quenciesy; attaches the same average probability to each sigoaér periods
0,...,t — 1 as does the average process, but does not have identical distributions
(as we noted earlier).

We use the average process to bound the terms in the suirfi)irBy Hoeffd-
ing (1956 Theorem 4, p. 718), the original process is more concentrated about its
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mean than is the average process, thét is,
A

whereP is the measure associated with the average process. Applying this upper
bound to (0), we have

WO -mi)|=55) =P (W -0 = 5| ).  Te,

P"(Hét"l\/lf—tift"H<eljhu) >1- Y ﬁ(‘ﬁ(j)—nt(j)]zj_;). (11)
jedeé

The event{ |y (j) — nt(j)| > €1/3%} is the event that the realized frequency of
a Bernoulli process is far from its mean. By a large deviation inequality ((42) in
Shiryaev(1996 p. 69)),

B (100 (1)~ ()] > 55 ) < 26 2H/O"
Using this bound in11), we have
P? (H$19M19 - li\fteH < 81‘ hlt) >1-— 2‘]99*2“3%/(39)2_

This inequality holds for any historly;;. We can thus choogelarge enough so
that the right-hand side is less thgnand the statement of the lemma follovas.

3.5 Proof of Proposition 3

We fix an arbitrary parametér and define a sequence of eveRtgsuppressing
notation for the dependence Bfon 6), and show thak has the three requisite
properties fronCorollary 1for sufficiently larget.

6For example, 100 flips of &p, 1 — p) coin generates a more dispersed distribution tharp100
flips of a(1,0) coin and 1001 — p) flips of a(0, 1) coin.
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Theeventk. Letéd < (0,1)andp € (0,1) be the constants identifiedliremma 3
Pick € > 0 such thaté < 6 — 2ne wherer < 1 andn are identified in_.emma 2
For each datg, we define the everik as follows.

First, we ask that agent 1's realized frequency of signals ffdand 2’s from
J9 be close to the frequencies expected ur@defor eachk, define the events

FX(0) E{a): H@GK—MKH < 5} (12)
and  F5(0)={o Hy/ w"kH<5}. (13)

Lemma 2ensures thalf §7<(MZ,)" — ¢¥¢(MZ,)"|| will then be smaller thais on
F1(0). We define our event so that the same is true for all powelfobetween
0 andn. Hence, for any € {1,...,n} and for eaclk, let

Fk(2l—1) = {w : Héﬁk(l\/lfz)'—llvlf _ y/"kH <5-(2- 1)8} (14)

and  FX@2)= { H@{’k(Mfz)' —¢9'<H < 5—2|e}. (15)

Similarly, for agent 2,

F2'§(2|—1)z{a> npt"k(Me)'*lMg’—wkH<6—(2|—1)e} (16)
and  F52)={o: | M) —qﬁkH <8-2le}. (17)
Next, define the events
K 2n—-1 2n—1
Fu=() () Fi(x) ﬂ Fi = ﬂ Fy (1
k=1 k=0
K 2n—-1 K 2n— 1
Fx=() () Fi(x) = FE= () Fa(x),
k=1 x=0 k=1 k=0

0] = {a)e (03 x (1 x3)™: PP(hy) >0, £ € {1,2),t :0,1,...},

24



and

o _ h(ROK) o1 _
Gt _[e]m{ﬁ < GO RO(K) <B Vk} = [0]N Gy (18)

= WR—G(k)) -1 =
_[e]m{ﬁ< VO (RO(K)) <P ,Vk}_[e]mGZ. (19)

The equality of the two descriptions & follows from Remark 6 Finally, we
define the everf,
R=FyNFxNGY.

In the analysis that follows, we simplify notation by usifi¢- | < €} to denote
the evenf{w : ||- || < €}.

0 is g-believed onk. By definition kR C F3:(0) NFx(0) N Gf’. Lemma 3then
implies that for anyg < 1, we haver, ¢ B{(6) for all t sufficiently large.

R is likely under 8. If ¢! = ¢¢ andy' = y?, then the inequalitiesl)—(19) ap-
pearing in the definitions of the sdfg, Fx, andGf are strictly satisfied (because
¢ MY = yO andy®*M$ = ¢ for eachk). The (finite collection of) inequali-
ties (12)—(19) are continuous ig' andy! and independent af Hence, {2)—(19)
are satisfied for ang! and§* sufficiently close tap® and¢®. We can therefore
choosee™ > 0 sufficiently small such that

{16t =00 < e, |9t —vo| <eTn[o] c R, Wt

By Lemma 4 the P?-probability of the set on the left side approaches one as
gets large, ensuring that for ajlc (0,1), P°(F,) > q for all large enougl.

R is g-evident. We show that for any, F, is g-evident whert is sufficiently

large. Recalling tha¢ andf3 were fixed in definingi, choosee; = €8 min; 5 vo(j).
Note thate; /(R (k)) < & on the event&y NG andFx NGY.
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[STEP 1] The first step is to show that if the realized frequencies of agent 1's
signals are close to their population frequencies umdand his expectations of
agent 2’s frequencies are not too far away from agent 2’s realized frequencies,
then (conditional o) the realized frequencies of agent 2’s signals are also close
to their population frequencies under In particular, we show

Fltmef’m{Hé{’Mf—qft"H <81}CF2t. (20)
First, fix k and note that for eadh=1,...,n,
Fi(2) N {]| 67 — % < e}
C @) N {]|8*mEy)' - o Mgy ~m | <€)
= {][MEY" — 6% < 8~ 2e} N ]| ML) — B (ME)'ME|| < e}
< {]| o g ~ImE - 9% < 8- (@ — 1)e}
=FX(2—1). (21)

The firstinclusion uses the fact tha3,)! ~*MJ is a stochastic matrix. The equal-
ities use the definitions dff(2!) andFX (2 —1). The last inclusion is a conse-
guence of the triangle inequality. Similarly, foe 1,...,n, we have

Fi(2 - 1) { ]| 6M — 9% < e} < FE (20 - 1)).

This suffices to conclude that

2n—-1 2n-2
N R0 N 1|0 mf - 9| <} ) Fh(x). (22)
k=1 k=0
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We next note that

FE ) N (|6 M7 — 0| <e} < @ n{|dPmf - 3| <e)
c FX(2n-1), (23)
where F{(0) € F£(2n) is an implication of¢®%(MY,)" = ¢%k Lemma 2 and

our choice ofe andn; while the second inclusion follows fron2() (for | = n).
Combining 2)—(23) fork=1,...,K, we have

Fltmﬂ{Hét"ka—lpﬁkH <e} C Fa. (24)
k

As the matrixM? maps recurrence classes to recurrence classeG! ane
have that

16°M7 — || = Z||¢3t9(R9(k)>At9ka—W(Re(k))liftekll
> 18 (R (k)@ M7 — v (R? (k) v’
= W (R ()67 M] — v,

sinced? (R (k)) = #f (R (k)) on [6] (recall Remark §. Our choice ofe; then
yields that, orFy NG,

&

~okpa0  ~6k
W>H¢t My — 37, vk.

[6omE 9| < = e
Therefore

Fi 60 N {[|60ME — ¢ || <&}  Fy ﬂQ{Ha}t"ka — 9| <e}.
and by @4) we have proved20).

[STEP 2] We now conclude the proof afevidence. Piclp € (,/g,1) and set

e=1—pinLemmab
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Consider the everi; N G{’. Fort sufficiently large, given any history consis-
tent with a state iff;; NG, agent 1 attaches at least probabifitio 6 (F; N G c
B‘l’t(e)) (Lemma3). Conditional or® we have, by emma 5 that for large, agent
1 attaches probability at leagto ||¢?M? — 4P| < 1. Hence

FrNGY C Bftz ({H‘l;ter - ‘lA/tGH < *‘31}m [9]) :
SinceFy; N Gy; is measurable with respect 17 anthe = [6] NGy, we have
Fen6! < Bf (Fune? n{|6mf - v¢| <er}).
and hence, from20),
FenGY C BY, (FunFanGf) = B (R). (25)

A similar argument for agent 2 givés; mGte C BS:(Ft) and thusk, C B[pz(Ft) c
BI(R,) for sufficiently larget.

4 A Counterexample to Common Learning

This section presents an example in whicdssumption Ifails and common learn-

ing does not occur, although the agents do privately learn. There are two values
of the parametel§’ and6”, satisfying O< 6’ < 8” < 1. Signals are nonnegative
integers. The distribution of signals is displayedrigure 27 If we set8’ =0
and6” = 1, then we can view one period of this process as an instance of the
signals inRubinsteirs (1989 electronic mail game, where the signal corresponds
to the number of “messages” receivett.is immediate that the agents faced with

71t would cost only additional notation to replace the single valir Figure2 with heteroge-
neous values, as long as the resulting analogugjfi¢ a collection whose values are bounded
away form 0 and 1.

8Rubinstein(1989 is concerned with whether a single signal drawn from this distribution
allows agents to condition their action on the state, while we are concerned with whether an arbi-
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Probability Player-1 signal Player-2 signal

0 0 0

e(1-0) 1 0
(1—¢e)e(1-0) 1 1
(1—¢€)%e(1-0) 2 1
(1—¢)3%(1-9) 2 2
(1—e)%(1-0) 3 2
(1—€)%(1-0) 3 3

Figure 2: The distribution of signals for the counterexample given parar@eter
{6’,0"}, wheree € (0,1).

a sequence of independent draws from this distribution |&riwWe now show
that common learning does not occur.

What goes wrong when trying to establish common learning in this context,
and how does this depend upon the infinite set of signals? Establishing common
g-belief in parameteé requires showing that if agent 1 has observed signals just
on the boundary of inducing probabilitythat the parameter i8, then agent 1
nonetheless believes 2 has seen signals inducing a similar belief (and believes that
2 believes 1 has seen such signals, and so on). In the case of finite signals, a
key step in this argument is the demonstration that (an appropriate power of) the
Markov transition matrisV, is a contraction. In the current case, the correspond-
ing Markov process is not a contraction (though the marginal distribution is still
stationary). As a result, agetan observe signals on the boundary of inducing
probability q of state® while believing that agerﬁ has observed signals on the
“wrong side” of this boundary.

The first step in our argument is to show that, regardless of what agents have

trarily large number of signals suffices to commonly learn the parameter. Interestingly, repeated
observation of the original Rubinstein process (i8¢ 0 and8” = 1) leads to common learning.

In particular, consider the eveRt at datet that the state i8’ and no messages have ever been re-
ceived. This event ig(t)-evident wherej(t) approaches 1 asapproaches infinity, since 1 assigns
probability 1 and 2 assigns a probability approaching B t@whenever it is true.

29



observednth-order beliefs attach positive probability to agent 2 having observed
larger and larger (and rarer and rarer) signals) gsts larger (cf. Z7) and 9)
below). We then argue that agents attaching strictly posititieorder belief to
agent 2 having observed such extraordinarily rare signals will also attach strictly
positiventh order-belief to another rare event—that agent 2riea®rseen a zero
signal (cf. @1)). Since zero signals are more likely under paraméterthis
ensures a positivath-order belief in agent 2’s being being confident the parameter
is 8/, even when it is not, precluding common learning.

- 1-6) (-
. e(1- —€
q:mln{e”+e(1—9”)’(2—8)}' (26)
Note that regardless of the signal observed by agent 1, he always believes with
probability at leasy that 2 has seen the same signal, and regardless of the signal

observed by 2, she always believes with probability at lgastat 1 has seen a
higher signal.

We show that for alt sufficiently large there is (independently of the observed
history) a finite iterated-belief thaté’ is the true parameter. This implies tht
can never be iteratepkbelieved for anyp > 1 — g, with Lemma 1then implying
that 8” can never be commop-belief. That is, we will show that fot large
enoughB3(0') = Q and soBh, (8”) = @ forall p> 1—q.

Define for eacltk, the event that ageritobserves a signal of at ledsbefore
timet:

Dy (k) = {w : s > k for somes < t}.

Note thatD (0) is equal toQ (the event that any-length history occurs). For
everyk > 0 the definition ofg implies:

D1t (k) C B3, (D« (K)),
and

Dai(k— 1) C B (Dx(k)),
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which together imply
Dzt (k— 1) C BB} (D (k).
By induction, for all 0< m <k,
Da(m) ¢ (BBH) " (Da(k). (27)

Now, for anyK and any list(k}, k?,..., k), wherek® > k51, define the event
that agent observes distinct signals of at le&8tbefore timet,

Dyt (K1 K,... . K) = {o: I distinctts <t, s=1,...,K, s.t.zg >k}

Note that forK <t, Dg(0,K?,...,KX) = Dg(K?,...,kX). Whenever agent 1 ob-
serves a signd he knows that agent 2 has seen a signal at least. Hence,

Dyt (K1 K%, ... K) € BL(Da (KL K2~ 1,k —1,...,K — 1))
and by similar reasoning
Dot (K1 K, K<) € B (Dat (K 4+ 1, K%, K3, ... KKY),
so that for alln, if 0 < k! < k? —2n, then
D (K5 K2,...,K) < (B3 BS) " Da(kt+n k2 —n k3 —n,... . K —n).  (28)

From 27),
Q =Dy (0) c (B4B%)? Dx(2 Y (29)

and, fort > 2, from (28),

_ _ -2 _ _
D2 (271 =Dx(0,27Y) c (B4B)" Dx(272,272). (30)
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1, ot-2
Inserting @0) in (29) givesQ C (BgtB‘i't)zt +2 D (2172,2'=2). Continuing in

this fashion and noting that 2! +-2t=24- ... + 2t = 2! _ 1, we obtain

21 —t ot— - 21
Qc (BxB})” "Da(2 27, 27 = (BRBY)T TDa(L,1,...,1). (31)

t times t times

Now choosd large enough so that aftertdength history in which signal 0
was never observed, agent 2 assigns probability at ¢etast’, i.e.;

Dx(1,1,...,1) c BX(6").
2t ) C Bx(6)

t times

Using 1), we then have C (BgtB‘jt)zt_lBgt(G’) and hence have shown that for
t large enough, regardless of the history, there cannot be itepstetief in 6” for
anyp>1—gq,i.e.l?P(6”)=2. NowbyLemma 1CP(6") = &.
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