Skip to main content

Xiaohong Chen Publications

Publish Date
Abstract

This paper makes several contributions to the literature on the important yet difficult problem of estimating functions nonparametrically using instrumental variables. First, we derive the minimax optimal sup-norm convergence rates for nonparametric instrumental variables (NPIV) estimation of the structural function h0 and its derivatives. Second, we show that a computationally simple sieve NPIV estimator can attain the optimal sup-norm rates for h0 and its derivatives when h0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal L2-norm rates for severely ill-posed problems, and are only up to a [log(n)] ε (with ε < 1/2) factor slower than the optimal L2-norm rates for mildly ill-posed problems. Third, we introduce a novel data-driven procedure for choosing the sieve dimension optimally. Our data-driven procedure is sup-norm rate-adaptive: the resulting estimator of h0 and its derivatives converge at their optimal sup-norm rates even though the smoothness of h0 and the degree of ill-posedness of the NPIV model are unknown. Finally, we present two non-trivial applications of the sup-norm rates to inference on nonlinear functionals of h0 under low-level conditions. The first is to derive the asymptotic normality of sieve t-statistics for exact consumer surplus and deadweight loss functionals in nonparametric demand estimation when prices, and possibly incomes, are endogenous. The second is to establish the validity of a sieve score bootstrap for constructing asymptotically exact uniform confidence bands for collections of nonlinear functionals of h0. Both applications provide new and useful tools for empirical research on nonparametric models with endogeneity.

Abstract

We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound on the sup-norm (uniform) convergence rate of a sieve estimator, allowing for endogenous regressors and weakly dependent data. This result leads to the optimal sup-norm convergence rates for spline and wavelet least squares regression estimators under weakly dependent data and heavy-tailed error terms. This upper bound also yields the sup-norm convergence rates for sieve NPIV estimators under i.i.d. data: the rates coincide with the known optimal L2-norm rates for severely ill-posed problems, and are power of log(n) slower than the optimal L2-norm rates for mildly ill-posed problems. We then establish the minimax risk lower bound in sup-norm loss, which coincides with our upper bounds on sup-norm rates for the spline and wavelet sieve NPIV estimators. This sup-norm rate optimality provides another justification for the wide application of sieve NPIV estimators. Useful results on weakly-dependent random matrices are also provided.

Abstract

This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of h0 and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating h0 and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when h0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of h0 under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.

Abstract

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is often difficult to verify whether a functional is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n estimable). We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is regular or not. We establish the following new useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of a (possibly irregular) functional; (2) the consistency of simple sieve variance estimators of the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) Wilks phenomenon of the sieve QLR test of hypothesis with increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.

Abstract

Parametric mixture models are commonly used in applied work, especially empirical economics, where these models are often employed to learn for example about the proportions of various types in a given population. This paper examines the inference question on the proportions (mixing probability) in a simple mixture model in the presence of nuisance parameters when sample size is large. It is well known that likelihood inference in mixture models is complicated due to 1) lack of point identification, and 2) parameters (for example, mixing probabilities) whose true value may lie on the boundary of the parameter space. These issues cause the profiled likelihood ratio (PLR) statistic to admit asymptotic limits that differ discontinuously depending on how the true density of the data approaches the regions of singularities where there is lack of point identification. This lack of uniformity in the asymptotic distribution suggests that confidence intervals based on pointwise asymptotic approximations might lead to faulty inferences. This paper examines this problem in details in a finite mixture model and provides possible fixes based on the parametric bootstrap. We examine the performance of this parametric bootstrap in Monte Carlo experiments and apply it to data from Beauty Contest experiments. We also examine small sample inferences and projection methods.