This paper makes several contributions to the literature on the important yet difficult problem of estimating functions nonparametrically using instrumental variables. First, we derive the minimax optimal sup-norm convergence rates for nonparametric instrumental variables (NPIV) estimation of the structural function h0 and its derivatives. Second, we show that a computationally simple sieve NPIV estimator can attain the optimal sup-norm rates for h0 and its derivatives when h0 is approximated via a spline or wavelet sieve.