Skip to main content

Xiaodong Yan Publications

Discussion Paper
Abstract

This paper proposes a novel framework for the global optimization of a continuous function in a bounded rectangular domain. Specifically, we show that: (1) global optimization is equivalent to optimal strategy formation in a two-armed decision problem with known distributions, based on the Strategic Law of Large Numbers we establish; and (2) a sign-based strategy based on the solution of a parabolic PDE is asymptotically optimal. Motivated by this result, we propose a class of Strategic Monte Carlo Optimization (SMCO) algorithms, which uses a simple strategy that makes coordinate-wise two-armed decisions based on the signs of the partial gradient (or practically the first difference) of the objective function, without the need of solving PDEs. While this simple strategy is not generally optimal, it is sufficient for our SMCO algorithm to converge to a local optimizer from a single starting point, and to a global optimizer under a growing set of starting points. Numerical studies demonstrate the suitability of our SMCO algorithms for global optimization well beyond the theoretical guarantees established herein. For a wide range of test functions with challenging landscapes (multi-modal, non-differentiable and discontinuous), our SMCO algorithms perform robustly well, even in high-dimensional (d = 200 ∼ 1000) settings. In fact, our algorithms outperform many state-of-the-art global optimizers, as well as local algorithms augmented with the same set of starting points as ours.