Commonly used tests to assess evidence for the absence of autocorrelation in a univariate time series or serial cross-correlation between time series rely on procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the size of correlogram and cumulative Ljung-Box tests can be significantly distorted. This paper adapts standard correlogram and portmanteau tests to accommodate hidden dependence and non-stationarities involving heteroskedasticity, thereby uncoupling these tests from limiting assumptions that reduce their applicability in empirical work. To enhance the Ljung-Box test for non-i.i.d. data a new cumulative test is introduced. Asymptotic size of these tests is unaffected by hidden dependence and heteroskedasticity in the series. Related extensions are provided for testing cross-correlation at various lags in bivariate time series. Tests for the i.i.d. property of a time series are also developed. An extensive Monte Carlo study confirms good performance in both size and power for the new tests. Applications to real data reveal that standard tests frequently produce spurious evidence of serial correlation.
Time series models are often fitted to the data without preliminary checks for stability of the mean and variance, conditions that may not hold in much economic and financial data, particularly over long periods. Ignoring such shifts may result in fitting models with spurious dynamics that lead to unsupported and controversial conclusions about time dependence, causality, and the effects of unanticipated shocks. In spite of what may seem as obvious differences between a time series of independent variates with changing variance and a stationary conditionally heteroskedastic (GARCH) process, such processes may be hard to distinguish in applied work using basic time series diagnostic tools. We develop and study some practical and easily implemented statistical procedures to test the mean and variance stability of uncorrelated and serially dependent time series. Application of the new methods to analyze the volatility properties of stock market returns leads to some unexpected surprising findings concerning the advantages of modeling time varying changes in unconditional variance.