Skip to main content

Marek Bojko Publications

Discussion Paper
Abstract

We study mechanism design in environments where agents have private preferences and private information about a common payoff-relevant state. In such settings with multi-dimensional types, standard mechanisms fail to implement efficient allocations. We address this limitation by proposing data-driven mechanisms that condition transfers on additional post-allocation information, modeled as an estimator of the payoff-relevant state. Our mechanisms extend the classic Vickrey–Clarke–Groves framework. We show they achieve exact implementation in posterior equilibrium when the state is fully revealed or utilities are affine in an unbiased estimator. With a consistent estimator, they achieve approximate implementation that converges to exact implementation as the estimator converges, and we provide bounds on the convergence rate. We demonstrate applications to digital advertising auctions and AI shopping assistants, where user engagement naturally reveals relevant information, and to procurement auctions with consumer spot markets, where additional information arises from a pricing game played by the same agents.

Discussion Paper
Abstract

We study mechanism design when agents have private preferences and private information about a common payoff-relevant state. We show that standard message-driven mechanisms cannot implement socially efficient allocations when agents have multidimensional types, even under favorable conditions.

To overcome this limitation, we propose data-driven mechanisms that leverage additional post-allocation information, modeled as an estimator of the payoff-relevant state. Our data-driven mechanisms extend the classic Vickrey-Clarke-Groves class. We show that they achieve exact implementation in posterior equilibrium when the state is either fully revealed or the utility is affine in an unbiased estimator. We also show that they achieve approximate implementation with a consistent estimator, converging to exact implementation as the estimator converges, and present bounds on the convergence rate.

We demonstrate applications to digital advertising auctions and large language model (LLM)-based mechanisms, where user engagement naturally reveals relevant information.

Discussion Paper
Abstract

We study mechanism design when agents hold private information about both their preferences and a common payoff-relevant state. We show that standard message-driven mechanisms cannot implement socially efficient allocations when agents have multidimensional types, even under favorable conditions.

To overcome this limitation, we propose data-driven mechanisms that leverage additional post-allocation information, modeled as an estimator of the pay-off relevant state. Our data-driven mechanisms extend the classic Vickrey-Clarke-Groves class. We show that they achieve exact implementation in posterior equilibrium when the state is either fully revealed or the utility is linear in an unbiased estimator. We also show that they achieve approximate implementation with a consistent estimator, converging to exact implementation as the estimator converges, and present bounds on the convergence rate. We demonstrate applications to digital advertising auctions and large language model (llm) - based mechanisms, where user engagement naturally reveals relevant information.