Skip to main content

Ioannis Kasparis Publications

Publish Date
Abstract

A unifying framework for inference is developed in predictive regressions where the predictor has unknown integration properties and may be stationary or nonstationary. Two easily implemented nonparametric F-tests are proposed. The test statistics are related to those of Kasparis and Phillips (2012) and are obtained by kernel regression. The limit distribution of these predictive tests holds for a wide range of predictors including stationary as well as non-stationary fractional and near unit root processes. In this sense the proposed tests provide a unifying framework for predictive inference, allowing for possibly nonlinear relationships of unknown form, and offering robustness to integration order and functional form. Under the null of no predictability the limit distributions of the tests involve functionals of independent chi2 variates. The tests are consistent and divergence rates are faster when the predictor is stationary. Asymptotic theory and simulations show that the proposed tests are more powerful than existing parametric predictability tests when deviations from unity are large or the predictive regression is nonlinear. Some empirical illustrations to monthly SP500 stock returns data are provided.

Abstract

In regressions involving integrable functions we examine the limit properties of IV estimators that utilise integrable transformations of lagged regressors as instruments. The regressors can be either I(0) or nearly integrated (NI) processes. We show that this kind of nonlinearity in the regression function can significantly affect the relevance of the instruments. In particular, such instruments become weak when the signal of the regressor is strong, as it is in the NI case. Instruments based on integrable functions of lagged NI regressors display long range dependence and so remain relevant even at long lags, continuing to contribute to variance reduction in IV estimation. However, simulations show that OLS is generally superior to IV estimation in terms of MSE, even in the presence of endogeneity. Estimation precision is also reduced when the regressor is nonstationary.

Abstract

Linear cointegration is known to have the important property of invariance under temporal translation. The same property is shown not to apply for nonlinear cointegration. The requisite limit theory involves sample covariances of integrable transformations of non-stationary sequences and time translated sequences, allowing for the presence of a bandwidth parameter so as to accommodate kernel regression. The theory is an extension of Wang and Phillips (2008) and is useful for the analysis of nonparametric regression models with a misspecified lag structure and in situations where temporal aggregation issues arise. The limit properties of the Nadaraya-Watson (NW) estimator for cointegrating regression under misspecified lag structure are derived, showing the NW estimator to be inconsistent with a “pseudo-true function” limit that is a local average of the true regression function. In this respect nonlinear cointegrating regression differs importantly from conventional linear cointegration which is invariant to time translation. When centred on the pseudo-function and appropriately scaled, the NW estimator still has a mixed Gaussian limit distribution. The convergence rates are the same as those obtained under correct specification but the variance of the limit distribution is larger. Some applications of the limit theory to non-linear distributed lag cointegrating regression are given and the practical import of the results for index models, functional regression models, and temporal aggregation are discussed.