Skip to main content

Haitian Xie Publications

Discussion Paper
Abstract

This paper studies nonparametric local (over-)identification, in the sense of Chen and Santos (2018), and the associated semiparametric efficiency in modern causal frameworks. We develop a unified approach that begins by translating structural models with latent variables into their induced statistical models of observables and then analyzes local overidentification through conditional moment restrictions. We apply this approach to three leading models: (i) the general treatment model under unconfoundedness, (ii) the negative control model, and (iii) the long-term causal inference model under unobserved confounding. The first design yields a locally just-identified statistical model, implying that all regular asymptotically linear estimators of the treatment effect share the same asymptotic variance, equal to the (trivial) semiparametric efficiency bound. In contrast, the latter two models involve nonparametric endogeneity and are naturally locally overidentified; consequently, some doubly robust orthogonal moment estimators of the average treatment effect are inefficient. Whereas existing work typically imposes strong conditions to restore just-identification before deriving the efficiency bound, we relax such assumptions and characterize the general efficiency bound, along with efficient estimators, in the overidentified models (ii) and (iii).

Discussion Paper
Abstract

This paper investigates efficient Difference-in-Differences (DiD) and Event Study (ES) estimation using short panel data sets within the heterogeneous treatment effect framework, free from parametric functional form assumptions and allowing for variation in treatment timing. We provide an equivalent characterization of the DiD potential outcome model using sequential conditional moment restrictions on observables, which shows that the DiD identification assumptions typically imply nonparametric overidentification restrictions. We derive the semiparametric efficient influence function (EIF) in closed form for DiD and ES causal parameters under commonly imposed parallel trends assumptions. The EIF is automatically Neyman orthogonal and yields the smallest variance among all asymptotically normal, regular estimators of the DiD and ES parameters. Leveraging the EIF, we propose simple-to-compute efficient estimators. Our results highlight how to optimally explore different pre-treatment periods and comparison groups to obtain the tightest (asymptotic) confidence intervals, offering practical tools for improving inference in modern DiD and ES applications even in small samples. Calibrated simulations and an empirical application demonstrate substantial precision gains of our efficient estimators in finite samples.