Skip to main content

Vadim Marmer Publications

Publish Date
Abstract

This paper considers tests and confidence sets (CS’s) concerning the coefficient on the endogenous variable in the linear IV regression model with homoskedastic normal errors and one right-hand side endogenous variable. The paper derives a finite-sample lower bound function for the probability that a CS constructed using a two-sided invariant similar test has infinite length and shows numerically that the conditional likelihood ratio (CLR) CS of Moreira (2003) is not always “very close,” say .005 or less, to this lower bound function. This implies that the CLR test is not always very close to the two-sided asymptotically-efficient (AE) power envelope for invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS).

On the other hand, the paper establishes the finite-sample optimality of the CLR test when the correlation between the structural and reduced-form errors, or between the two reduced-form errors, goes to 1 or -1 and other parameters are held constant, where optimality means achievement of the two-sided AE power envelope of AMS. These results cover the full range of (non-zero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the two-sided AE power envelope of AMS. Also, theory and numerical results indicate that the CLR test is close to having greatest average power, where the average is over a grid of concentration parameter values and over pairs alternative hypothesis values of the parameter of interest, uniformly over pairs of alternative hypothesis values and uniformly over the correlation between the structural and reduced-form errors. Here, “close” means .015 or less for k≤20, where k denotes the number of IV’s, and .025 or less for 0<k≤40. The paper concludes that, although the CLR test is not always very close to the two-sided AE power envelope of AMS, CLR tests and CS’s have very good overall properties.

Abstract

This paper considers tests and confidence sets (CS’s) concerning the coefficient on the endogenous variable in the linear IV regression model with homoskedastic normal errors and one right-hand side endogenous variable. The paper derives a finite-sample lower bound function for the probability that a CS constructed using a two-sided invariant similar test has infinite length and shows numerically that the conditional likelihood ratio (CLR) CS of Moreira (2003) is not always very close to this lower bound function. This implies that the CLR test is not always very close to the two-sided asymptotically-efficient (AE) power envelope for invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS)

On the other hand, the paper establishes the finite-sample optimality of the CLR test when the correlation between the structural and reduced-form errors, or between the two reduced-form errors, goes to 1 or -1 and other parameters are held constant, where optimality means achievement of the two-sided AE power envelope of AMS. These results cover the full range of (non-zero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the two-sided AE power envelope of AMS. Also, the paper shows via theory and numerical work that the CLR test is close to having greatest average power, where the average is over a grid of concentration parameter values and over pairs alternative hypothesis values of the parameter of interest, uniformly over pairs of alternative hypothesis values and uniformly over the correlation between the structural and reduced-form errors. The paper concludes that, although the CLR test is not always very close to the two-sided AE power envelope of AMS, CLR tests and CS’s have very good overall properties.

Abstract

This paper introduces a rank-based test for the instrumental variables regression model that dominates the Anderson-Rubin test in terms of finite sample size and asymptotic power in certain circumstances. The test has correct size for any distribution of the errors with weak or strong instruments. The test has noticeably higher power than the Anderson-Rubin test when the error distribution has thick tails and comparable power otherwise. Like the Anderson-Rubin test, the rank tests considered here perform best, relative to other available tests, in exactly-identified models.

Keywords: Aligned ranks, Anderson-Rubin statistic, categorical covariates, exact size, normal scores, rank test, weak instruments, Wilcoxon scores

JEL Classification: C13, C30