Spatial units typically vary over many of their characteristics, introducing potential unobserved heterogeneity which invalidates commonly used homoskedasticity conditions. In the presence of unobserved heteroskedasticity, methods based on the quasi-likelihood function generally produce inconsistent estimates of both the spatial parameter and the coefficients of the exogenous regressors. A robust generalized method of moments estimator as well as a modified likelihood method have been proposed in the literature to address this issue. The present paper constructs an alternative indirect inference (II) approach which relies on a simple ordinary least squares procedure as its starting point. Heteroskedasticity is accommodated by utilizing a new version of continuous updating that is applied within the II procedure to take account of the parameterization of the variance–covariance matrix of the disturbances. Finite-sample performance of the new estimator is assessed in a Monte Carlo study. The approach is implemented in an empirical application to house price data in the Boston area, where it is found that spatial effects in house price determination are much more significant under robustification to heterogeneity in the equation errors.
Spatial autoregressive (SAR) and related models offer flexible yet parsimonious ways to model spatial or network interaction. SAR specifications typically rely on a particular parametric functional form and an exogenous choice of the so-called spatial weight matrix with only limited guidance from theory in making these specifications. The choice of a SAR model over other alternatives, such as spatial Durbin (SD) or spatial lagged X (SLX) models, is often arbitrary, raising issues of potential specification error. To address such issues, this paper develops an omnibus specification test within the SAR framework that can detect general forms of misspecification including that of the spatial weight matrix, functional form and the model itself. The approach extends the framework of conditional moment testing of Bierens (1982, 1990) to the general spatial setting. We derive the asymptotic distribution of our test statistic under the null hypothesis of correct SAR specification and show consistency of the test. A Monte Carlo study is conducted to study finite sample performance of the test. An empirical illustration on the performance of our test in the modelling of tax competition in Finland and Switzerland is included.
Spatial units typically vary over many of their characteristics, introducing potential unobserved heterogeneity which invalidates commonly used homoskedasticity conditions. In the presence of unobserved heteroskedasticity, standard methods based on the (quasi-)likelihood function generally produce inconsistent estimates of both the spatial parameter and the coefficients of the exogenous regressors. A robust generalized method of moments estimator as well as a modified likelihood method have been proposed in the literature to address this issue. The present paper constructs an alternative indirect inference approach which relies on a simple ordinary least squares procedure as its starting point. Heteroskedasticity is accommodated by utilizing a new version of continuous updating that is applied within the indirect inference procedure to take account of the parametrization of the variance-covariance matrix of the disturbances. Finite sample performance of the new estimator is assessed in a Monte Carlo study and found to offer advantages over existing methods. The approach is implemented in an empirical application to house price data in the Boston area, where it is found that spatial effects in house price determination are much more significant under robustification to heterogeneity in the equation errors.