Discussion Paper
Optimal Design for Social Learning
This paper studies the design of a recommender system for organizing social learning on a product. To improve incentives for early experimentation, the optimal design trades off fully transparent social learning by over-recommending a product (or “spamming”) to a fraction of agents in the early phase of the product cycle. Under the optimal scheme, the designer spams very little about a product right after its release but gradually increases the frequency of spamming and stops it altogether when the product is deemed sufficiently unworthy of recommendation.