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Abstract

This paper studies the design of a recommender system for organizing social learn-

ing on a product. To improve incentives for early experimentation, the optimal design

trades off fully transparent social learning by over-recommending a product (or “spam-

ming”) to a fraction of agents in the early phase of the product cycle. Under the optimal

scheme, the designer spams very little about a product right after its release but grad-

ually increases the frequency of spamming and stops it altogether when the product

is deemed sufficiently unworthy of recommendation. The optimal recommender sys-

tem involves randomly triggered spamming when recommendations are public—as is

often the case for product ratings—and an information “blackout” followed by a burst

of spamming when agents can choose when to check in for a recommendation. Fully

transparent recommendations may become optimal if a (socially-benevolent) designer

does not observe the agents’ costs of experimentation.

Keywords: experimentation, social learning, mechanism design.

JEL Codes: D82, D83, M52.

1 Introduction

Most of our choices rely on recommendations by others. Whether selecting movies, picking

stocks, choosing hotels or shopping online, the experiences of others can teach us to make

better decisions. Internet platforms are increasingly acting as recommenders, enabling users

to learn from other users on a scale never before imagined. Amazon (books) and Netflix

(movies) are two well-known recommenders, but there are platforms that mediate social
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learning among users for almost any “experience” good, including Yelp (restaurants), Tri-

pAdvisors (hotels), RateMD (doctors), and RateMyProfessors (professors), to name just a

few. Search engines such as Google, Bing and Yahoo organize social discovery of relevant

websites based on the “search experiences” of users. Social medias such as Facebook and

LinkedIn do the same for the other quintessential “experience” good, friends, linking users

to new potential friends based on the experiences of other friends.

While the economics of social learning are now well appreciated, the prior literature

has focused only on its positive aspects.1 A normative perspective—namely, how best to

encourage users to experiment with new products and to disseminate their experiences to

others—has not yet been developed. Incentivizing early users to experiment with products is

challenging precisely because they cannot internalize the benefits that later users will reap. In

fact, the availability of social learning may dampen the incentives for early experimentation

because users might rather wait and free ride on the information provided by others in the

future.2 In other words, a recommender system may crowd out information production and

undermine its very foundations. The absence of sufficient initial experimentation—known

as the “cold start” problem—might lead to a collapse of social learning and to the death

of products (even pre-launch) that are worthy of discovery by mainstream consumers. The

cold start problem is particularly relevant for new and unestablished products, which are no

longer the exception but rather the rule due to the proliferation of self production.3

This paper studies a recommender system that optimally achieves the dual purposes of

social learning: production and dissemination of information. To maintain realism, we focus

on non-monetary tools for achieving these purposes. Indeed, monetary transfers are seldom

used to compensate for experimentation perhaps because it is difficult to verify whether a

reviewer has performed genuine experimentation conscientiously and submitted an unbiased

review.4

Our key insight is that the judicious use of the recommender system itself can incentivize

consumer experimentation. To illustrate the idea, suppose that a recommender system—

an online movie platform—generally recommends movies to users based on the reviews of

1For instance, the main question studied in the literature involves the circumstances under which obser-
vational learning leads to full revelation of the underlying state.

2See Chamley and Gale (1994), and Gul and Lundholm (1995) for models illustrating this idea.
3For instance, once considered vanity publishing, self-publication has expanded dramatically in recent

years with the availability of easy typesetting and e-books. Bowker Market Research estimates that in 2011
more than 300,000 self-published titles were issued (New York Times, “The Best Book Review Money Can
Buy,” August 25, 2012). While still in its infancy, 3D printing and other similar technologies anticipate
a future that will feature an even greater increase of self-manufactured products. The popularity of self
production suggests a marketplace populated by such a large number of products/titles that they will not
be easily recognized, which will heighten the importance of a recommender system even further.

4Attempts have been made in this regard that are limited in scope. For instance, the Amazon Vine
Program rewards selected reviewers with free products, and LaFourchette.com grants discounts for (verified)
diners that write reviews and make reservations via their site.
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past users (truthful recommendations) but occasionally recommends new movies that require

experimentation (fake recommendations or “spam”).5 As long as the platform keeps its users

uninformed as to whether a recommendation is truthful or spam—and as long as it commits

not to “spam” too much—users will happily follow the recommendation and perform the

necessary experimentation in the process. Indeed, we show that an optimally designed

recommender system trades off fully transparent social learning by over-recommending a

product in the early phase of its life cycle.

Of course, the extent to which information acquisition can be motivated in this manner

depends on the agent’s cost of acquiring information and the frequency with which the plat-

form provides truthful recommendations (as opposed to spam). Another important feature

involves the dynamics of how the platform combines truthful recommendations with spam

over time after the product’s initial release (e.g., a movie release date). For instance, it

is unlikely that many users will have experimented with an unknown product immediately

after its release, so recommending such a product during its early stage is likely to be met

with skepticism. Therefore, to be credible, the platform must commit to truthful recom-

mendations with sufficiently high probability in the early stage of the product’s life cycle,

which means that the designer will spam very little in the early stage and that learning

will be slow. Over time, however, recommendation becomes credible, and hence the pace of

learning will accelerate. This suggests that there will be nontrivial dynamics in the optimal

recommendation strategy and in social learning.

The present paper explores how a recommender system optimally balances the tradeoff

between experimentation and learning, what type of learning dynamics such a mechanism

would entail and what implications these learning dynamics will have on welfare, particu-

larly when compared with: (i) no social learning (where there is no platform supervision

of learning) and (ii) full transparency (where the platform commits to always recommend

truthfully). In the baseline analysis, we consider a platform that commits to maximize the

welfare of its users. Social welfare maximization is a salient normative benchmark that is

important for any market design or public policy inquiry. From a more positive perspective,

social welfare maximization might also result from platforms that compete a la Bertrand

by charging membership fees and providing recommendations on a collection of products of

varying vintages.6

5Throughout, the term “spam” means an unwarranted recommendation, more precisely a recommendation
of a product that has yet to be found worthy of recommendation.

6One can imagine that each such platform provides recommendations for large collections of products
of varying vintages. Providing recommendations on a number of products of different vintages means that
the social welfare gain from optimal experimentation will be spread evenly across users arriving at different
times. For instance, a user who “sacrifices” himself or herself for future users on certain products will be over-
compensated by the benefits from past learning on other products. Hence, firms competing a la Bertrand
on membership fees will be forced to offer the maximum intertemporal social welfare on each product.
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While the optimal recommender system we identify rests on a normative justification,

its main feature is consistent with certain observed practices. For instance, it is known that

search engines such as Google periodically shuffle their rankings of search items to provide

exposure to relatively new or unknown sites, which is highly consistent with the idea of

distorting recommendations for under-exposed and lesser-known items. More generally, our

finding is consistent with the casual observation that ratings of many products appear to

be inflated.7 Ratings are often inflated by sellers (as opposed to the platforms), who have

every interest to promote their products even against the interests of consumers.8 However,

platforms have instruments at their disposal to control the degree of ratings inflation, such

as filters that detect false reviews, requiring verification of purchase for positing reviews, and

allowing users to vote for “helpful” reviews.9 Our theory suggests that some tolerance for

review inflation can result from the optimal supervision of social learning by a benevolent

designer.

Our starting point is the standard “workhorse” model of experimentation that is borrowed

from Keller, Rady and Cripps (2005). The designer offers a product to agents with unknown

(binary) value. By consuming this product, a possibly costly choice, short-run agents might

discover whether its value is high. Here, we are not interested in agents’ incentives to

truthfully report their experience to the designer: because they consume this product only

once, they are willing to do so. We thus postulate that some exogenous fraction of the agents

who consume will share the information with the designer (platform); hence, the greater the

number of agents who consume, the more the designer learns about the product. The learning

by the designer takes the form of conclusively good news about the product, with the news

arriving at a rate that is proportional to the aggregate consumption/experimentation by

agents. This structure might arise from an algorithm employed by a platform that aggregates

the cumulative reviews from consumers into a simple “up” or “down” signal, for instance.

Importantly, agents do not directly communicate with one another. The designer mediates

the transmission of information, which raises a difficult problem: How should she control

social learning so as to yield the right amount of experimentation?

In the baseline model in which agents cannot delay their check-in/consumption, the

optimal policy of the designer involves revealing good news truthfully but recommending

the product even without the news, or “spamming,” as long as the designer’s posterior belief

remains above a certain threshold. Unlike no social learning and full transparency, spamming

induces experimentation, but optimal policy keeps the frequency of spam below a certain

7Jindal and Liu (2008) find that 60% of the reviews on Amazon have a rating of 5.0, and approximately
45% products and 59% of members have an average rating of 5.

8Luca and Zervas (2014) suggest that as much as 16% of Yelp reviews are suspected to be fraudulent.
9Mayzlin et al. (2012) find that Expedia’s requirement that a reviewer must verify her stay to leave a

review on a hotel resulted in fewer false reviews at Expedia compared with TripAdvisor, which has no such
requirement.
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maximal “capacity” necessary to maintain credibility. This creates learning dynamics that

are single-peaked: the designer spams very little on a product immediately after its release

but gradually increases the frequency of spamming over time until a critical belief threshold

is reached, at which point she stops spamming altogether.

We then extend the model in several directions. First, we study public recommendations

that are common in product ratings. Unlike private recommendations, public recommenda-

tions are revealed to all agents, and this limits the scope of the designer’s ability to manipulate

agents’ beliefs. The optimal policy nevertheless induces experimentation, albeit at a slower

average pace than under private recommendation. Notably, the designer randomly selects

a time to trigger spam (e.g., a “good” rating), and the spam then lasts until the designer’s

belief reaches a threshold (after which the spam is halted).

Second, we allow agents to choose when to “check-in” for a recommendation. Endogenous

entry raises two novel issues. First, it is desirable to encourage early agents to wait for

background information to accumulate sufficiently before making decisions. Second, those

induced to experiment must be discouraged from delaying their check-in to free ride on others’

experimentation. The optimal recommender policy now involves an information “blackout”

for a duration of time after release of the product, effectively inducing agents to wait until

some information accumulates, followed by a massive amount of spam that induces them to

experiment in a short burst. Subsequently, spamming tapers off gradually, inducing agents

to experiment at rates that decrease smoothly over time until it stops altogether—a feature

crucial for controling free riding.

Third, we consider heterogeneity in the agents’ costs of experimentation. If costs are

observable, then the designer can tailor her recommendations to agents’ costs levels, inducing

them to experiment at different rates. If the costs are not observable, however, the designer’s

ability to tailor recommendations to the agents’ costs is limited, which might lead the designer

to employ a fully transparent recommendation policy, under reasonable circumstances.

In addition to the exponential bandit literature, our paper relates to several other strands

of literature. First, our model can be viewed as introducing optimal design into the standard

model of social learning (hence the title). In standard models (for instance, Bikhchandani,

Hirshleifer and Welch, 1992; Banerjee, 1993; Smith and Sørensen, 2000), a sequence of agents

takes actions myopically, ignoring their effects on the learning and welfare of agents in the

future. Smith, Sørensen and Tian (2014) study altruistic agents who distort their actions

to improve observational learning for posterity. Frick and Ishii (2014) examine how social

learning affects the adoption of innovations of uncertain quality and explain the shape of

commonly observed adoption curves. Our focus here is instead dynamic control of infor-

mation to agents to incentivize their (unverifiable) experimentation. Such dynamic control

of information is present in Gershkov and Szentes (2009), but that paper considers a very

different environment, as there are direct payoff externalities (voting). Much more closely
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related to the present paper is a recent study by Kremer, Mansour and Perry (2014). They

study the optimal mechanism for inducing agents to explore over multiple products. In their

model, the quality of the product is ascertained once a single consumer buys it, so learning

is instantaneous. By contrast, learning is gradual in our model, and controlling its dynamic

trajectory is an important aspect of the mechanism design we focus on. We also study public

recommendations as well as endogenous entry by agents, which have no analogues in their

model.

Our paper also contributes to the literature on Bayesian persuasion that studies how

a principal can credibly manipulate agents’ beliefs to influence their behavior. Aumann,

Maschler and Stearns (1995) analyze this question in repeated games with incomplete in-

formation, whereas Kamenica and Gentzkow (2011), Rayo and Segal (2010), and Ostrovsky

and Schwarz (2010) study the problem in a variety of organizational settings. The current

paper pursues the same question in a dynamic setting. In this regard, the current paper

joins a burgeoning literature that studies Bayesian persuasion in dynamic settings (see Ely,

Frankel and Kamenica (2015), Renault, Solan and Vieille (2014), Ely (2015), and Halac,

Kartik, and Liu (2015)). The focus on social learning distinguishes the present paper from

these other papers.10

Finally, the present paper is related to the empirical literature on the user-generated

reviews (Jindal and Liu, 2008; Luca and Zervas, 2014; and Mayzlin et al. (2014)).11 These

papers suggest ways to empirically identify manipulations in the reviews made by users

of internet platforms such as Amazon, Yelp and TripAdvisor. Our paper contributes a

normative perspective on the extent to which the manipulation should be controlled.

2 Illustrative Example

We begin with a simple example that highlights the main themes of this paper: (1) the

optimal policy trades off social learning to incentivize experimentation, and (2) the optimal

policy involves slower experimentation and more transparency when agents are able to free

ride.

Suppose a product, say a movie, is released at time t = 0, and a unit mass of agents

arrive at each time t = 1, 2. The quality of the movie is either “good” (ω = 1), in which

case the movie yields a surplus of 1 to an agent, or “bad” (ω = 0), in which case it yields

a surplus of 0. The quality of the movie is unknown at the time of its release, with prior

p0 := Pr{ω = 1} ∈ [0, 1]. Watching the movie costs each agent c ∈ (p0, 1); thus, without

10Papanastasiou, Bimpikis and Savva (2014) show the insight of the current paper extends to the two-
product context, but without fully characterizing the optimal mechanism.

11Dai, Jin, Lee and Luca (2014) offer a structural approach to aggregate consumer ratings and apply it to
restaurant reviews from Yelp.
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further information, the agents would never watch the movie.

At time t = 0, the designer receives a signal σ ∈ {g, n} (from its marketing research, for

example) about the quality of the movie with probabilities:

Pr{σ = g|ω} =

{
ρ0 if ω = 1;

0 if ω = 0,

and Pr{σ = n|ω} = 1− Pr{σ = g|ω}. In other words, the designer receives good news only

when the movie is good; but she also may receive no news (even) when the movie is good.12

Suppose that the designer has received no news at the beginning of t = 1 but that a

fraction α of agents saw the movie at t = 1. Then, the designer again receives conclusively

good news with probability:

Pr{σ = g|ω} =

{
α if ω = 1;

0 if ω = 0.

The feature that the signal becomes more informative with a higher fraction α of agents

experimenting at t = 1 captures the learning benefit that they confer to the t = 2 agents.

The designer chooses her recommendation policy to maximize social welfare and does so

with full commitment power. Specifically, she recommends the movie to a fraction of agents

in each period based on her information at that point in time.13 The designer discounts the

welfare in period t = 2 by a factor δ ∈ (0, 1).

We consider two possible scenarios in terms of whether the agents arriving in t = 1 can

wait until t = 2.

Exogenous Check-In. Suppose the agents arriving in t = 1 cannot delay their check-

in/consumption to t = 2. The designer’s optimal policy is then as follows. First, the

12Thus, it follows that the designer’s posterior at time t = 1 on ω = 1 is 1 with a probability of ρ0p
0 (in

the event that she receives good news) and

p1 =
(1− ρ0)p

0

(1− ρ0)p0 + 1− p0
,

with a probability of 1− ρ0p
0 (in the event that she receives no news).

13The designer would not gain from a stochastic recommendation policy. To see this, compare two choices:
i) the designer recommends the movie to a fraction α of the agents, and ii) the designer recommends it
to all agents with probability α. For agents in t = 1, the two options are the same in terms of welfare
and thus in terms of incentives. For agents in t = 2, the former results in the learning of good news with
probability p0(ρ0 + (1− ρ0)α), whereas the latter does the same because when there is no good news at the
beginning of t = 1, all agents are recommended the movie with probability α. This equivalence means that
public recommendation entails no loss in this example; however, the equivalence does not hold in our general
model.
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designer is truthful at time t = 2, as lying can only reduce welfare and can never improve

the incentive for experimentation at t = 1.

Consider now time t = 1. If good news has arrived by then, the designer would again

recommend the movie to all agents at t = 1. Suppose that no news has been received by then

and that the designer nevertheless recommends—or “spams”—to a fraction α of the agents.

The agents receiving the recommendation cannot determine whether the recommendation is

genuine or spam; instead, they would form a posterior:

P1(α) :=
ρ0p

0 + αp0(1− ρ0)

ρ0p0 + (1− ρ0p0)α
.

If the designer spams to all agents (i.e., α = 1), then they will find the recommendation

completely uninformative, and hence P1(α) = p0. Since p0 < c, they would never watch the

movie. By contrast, if the designer spams rarely (i.e., α ≃ 0), then P1(α) ≃ 1, i.e., they

will be confident (and nearly certain) that the recommendation is genuine. Naturally, the

agents receiving recommendations will definitely watch the movie in this case. Because the

recommendation is more credible the less the designer spams, Pi(α) is decreasing in α. In

particular, there is a maximal fraction α̂ =: (1−c)ρ0p0

c(1−ρ0p0)−p0(1−ρ0)
of agents who can be induced

to experiment.

Social welfare,

W (α) := p0(ρ0 + (1− ρ0)α)(1− c)(1 + δ)− α(1− p0)c,

consists of the benefit from the good movie being recommended (the first term) and the

loss borne by the t = 1 agents from a bad movie being recommended (the second term). In

particular, the benefit contains the benefit that experimentation by the t = 1 agents confers

to the t = 2 agents, which is captured by the term p0(1− ρ0)α(1− c)δ.

The optimal policy is to “spam” up to α̂, if W is increasing in α, i.e., if the social value

of experimentation at date 1 justifies the cost:

p0 ≥ p̂0 :=
c

(1− ρ0)(1 + δ)(1− c) + c
. (1)

Note that the RHS is strictly less than c when ρ0 < δ
1+δ

. In that case, if p0 ∈ (p̂0, c), the

designer will “spam” the agents at t = 1 to consume against their myopic interest.

Endogenous Check-In and Free-Riding. Suppose next that the agents arriving at

t = 1 can wait until t = 2 to check in for a recommendation. (We assume that check-in

for a recommendation is costly and that an agent thus checks in only once.) Agents may

delay their check-in to free ride on experimentation by other agents. We will see how the
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free-riding concern affects the optimal recommendation policy.

As before, it is intuitively clear that the designer always recommends the movie in the

event of good news at t = 1, as this improves welfare without sacrificing agents’ incentives

to experiment at time t = 1. Suppose that the designer recommends the movie to a fraction

α of the agents at time t = 1 in the event that no news is received. Further, suppose at time

t = 2 the designer provides a recommendation to a fraction γ2 of agents in the event of good

news and to a fraction α2 in the event of no news. If an agent arriving at t = 1 checks in at

t = 1, then his payoff is

U1(α) := p0(ρ0 + (1− ρ0)α)(1− c)− (1− p0)αc.

If the agent waits and checks in at t = 2, he will receive

U2(α, γ2, α2) := δp0(ρ0 + (1− ρ0)α)γ2(1− c)− δ(1− p0)α2c.

Incentive compatibility then requires U1(α) ≥ U2(α, γ2, α2).
14

The designer’s problem is then to solve

max
α,γ2,α2

U1(α) + U2(α, γ2, α2)

subject to

U1(α) ≥ U2(α, γ2, α2).

At t = 2, the optimal policy is full transparency (γ2 = 1 and α2 = 0).15 At t = 1,

assuming (1), the optimal policy is to spam up to a level α = α̃(δ) that satisfies U1(α̃(δ)) =

U2(α̃(δ), 1, 0). For any δ < 1, α̃(δ) > 0, so the designer does spam. However, for any δ > 0,

α̃(δ) < α̂; i.e., the designer spams less than under exogenous check in. This follows from the

fact that the incentive constraint is now stronger: the designer should not only incentivize

agents to experiment at t = 1 but also keep them from free-riding on others by delaying

their check-in.16 This requires the designer to spam less and induce less experimentation.

In fact, as δ → 1, α̃(δ) → 0. In other words, as δ → 1, the optimal policy converges to full

14If α = 0, there will be no additional learning at t = 1, and the t = 1 agents will have no incentive to
wait until t = 2. Hence, the inequality holds. If α > 0, then the designer must be inducing some agents to
check in at t = 1 and experiment; otherwise, α = 0 combined with no waiting dominates that policy. To
keep t = 1 agents from waiting, it must be that U1(α) ≥ U2(α, γ2, α2).

15It is easy to see that at the optimum γ2 = 1 and α2 = 0. Suppose not. Then, it must be the case that
α > 0; otherwise, the incentive constraint would not be binding and either raising γ2 or lowering α2 would
increase the objective without violating the constraint. Given that α > 0, suppose that one reduces α and
simultaneously either raises γ2 or lowers α2 to hold U2(α, γ2, α2) constant. This will increase U1(α) because
U1(·) is decreasing due to the assumption that p0 < c.

16This latter result can be seen by the fact that U2(α̃(δ), 1, 0) > 0, which means that the incentive
constraint is stronger than simply ensuring that the agents in t = 1 break even.
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transparency.

3 Model

Our model generalizes the example in terms of its timing and information structure. A

product is released at time t = 0, and, for each time t ≥ 0, a constant flow of unit mass of

agents arrive and decide whether to consume the product. In the baseline model, the agents

are short-lived—they make a one-time decision and then exit the market permanently. (We

later extend the model to allow the agents to delay their entry after their arrival.) An agent

incurs cost c ∈ (0, 1) for consumption. This cost can be the opportunity cost of time spent or

a price charged. The product is either “good,” in which case an agent derives the (expected)

surplus of 1, or “bad,” in which case the agent derives the (expected) surplus of 0. The

quality of a product is a priori uncertain but may be revealed over time.17 At time t = 0,

the probability of the product being good, or simply “the prior,” is p0. We shall consider

all values of the prior, although the most interesting case will be p0 ∈ (0, c), which makes

non-consumption myopically optimal.

Agents do not observe previous agents’ decisions or their experiences. There is a designer

who can mediate social learning by collecting information from previous agents and disclosing

that information to current agents. We can think of the designer as an Internet platform,

such as Netflix, Google orMicrosoft, that has access to users’ activities and reviews and makes

product recommendations based on them. As is natural with these examples, the designer

may obtain information from its own marketing research and other sources including agents’

experiences themselves. For instance, there may be some flow of “fans” who experiment

with the product at zero cost. We thus assume that some information arrives at a constant

base rate ρ > 0 plus the rate at which agents experience the product. Specifically, if a flow

of size µ consumes the product over some time interval [t, t + dt), then the designer learns

during this time interval that the movie is “good” with probability λ(ρ+ µ)dt, where λ > 0

is the arrival rate of good news and ρ > 0 is the rate at which the designer obtains the

information regardless of the agents’ behavior. Section 7.1 extends our model to allow for

news to be (conclusively) bad, showing that our qualitative results continue to hold so long

as the arrival rate of the good news exceeds that of the bad news. The designer begins with

the same prior p0, and the agents do not have access to “free” learning.

17The agents’ preferences may involve an idiosyncratic component that is realized ex post after consuming
the product; the quality then captures only their common preference component. The presence of an
idiosyncratic preference component does not affect the analysis because each agent must decide based on
the expected surplus he will derive from his consumption of the product. Idiosyncratic preferences would
make the designer’s interpretation of the agents’ reviews nontrivial because a good product may receive a
bad review and a bad product may receive a good review, which motivates our assumption that the arrival
of the news signal is gradual.
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The designer provides feedback on the movie to agents at each time based on the infor-

mation she has learned by that time. Since agents’ decisions are binary, without loss, the

designer simply decides whether to recommend the product. The designer commits to the

following policy: At time t, she recommends the movie to a fraction γt ∈ [0, 1] of agents if

she learns that the movie is good, and she recommends or spams to fraction αt ∈ [0, 1] if

no news has arrived by t. We assume that the designer maximizes the intertemporal net

surplus of the agents, discounted at rate r > 0, over the (measurable) functions (γt, αt).

The designer’s information at time t ≥ 0 is succinctly summarized by the designer’s

belief, which is 1 in the event that good news has arrived or some pt ∈ [0, 1] in the event

that no news has arrived by that time. The “no news” posterior, or simply posterior pt,

must evolve according to Bayes’ rule. Specifically, suppose for time interval [t, t + dt) that

there is a flow of learning by the designer at rate µt, which includes both “free” learning ρ

and the flow αt of agents experimenting during the period. Formally, set

µt = ρ+ αt.

Suppose that no news has arrived by t + dt, then the designer’s updated posterior at time

t+ dt must be

pt + dpt =
pt(1− λµtdt)

pt(1− λµtdt) + 1− pt
.

Rearranging and simplifying, the posterior must follow the law of motion:18

ṗt = −λµtpt(1− pt), (2)

with the initial value at t = 0 given by the prior p0. Notably, the posterior falls as time

passes, as “no news” leads the designer to form a pessimistic inference regarding the movie’s

quality.

In our model, agents do not directly observe the designer’s information or her belief.

However, they can form a rational belief about the designer’s belief. They know that the

designer’s belief is either 1 or pt, depending on whether good news has been received by time

t. Let gt denote the probability that the designer has received good news by time t. This

belief gt is pinned down by the martingale property, i.e., that the designer’s posterior must

18Subtracting pt from both sides and rearranging, we obtain

dpt = − λµtpt(1− pt)dt

pt(1 − λµtdt) + 1− pt
= −λµtpt(1− pt)dt+ o(dt),

where o(dt) is a term such that o(dt)/dt → 0 as dt → 0.
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on average equal the prior:

gt · 1 + (1− gt)pt = p0. (3)

Notably, gt rises as pt falls, i.e., the agents find it increasingly probable that the news has

arrived as time progresses.

The designer chooses a (measurable) policy (α, γ) to maximize social welfare, namely,

W(α, β, χ) :=

∫

t≥0

e−rtgtγt(1− c)dt+

∫

t≥0

e−rt(1− gt)αt(pt − c)dt,

where (pt, gt) must follow the required laws of motion: (2) and (3), and µt = ρ + αt is the

total experimentation rate and r is the discount rate of the designer.19 The welfare consists

of the discounted value of consumption—1 − c in the event of good news and pt − c in the

event of no news—for those the designer induces to consume.

In addition, for the policy (α, γ) to be implementable, the agents must have an incentive to

follow the recommendation. Since the exact circumstances of the recommendation (whether

the agents are recommended because of good news or despite no news) is kept hidden from

the agents, their incentives for following the recommendation depend on their posterior

regarding the information held by the designer. Specifically, an agent will have the incentive

to consume the product, if and only if the posterior that the movie is good is no less than

the cost:

gtγt + (1− gt)αtpt
gtγt + (1− gt)αt

≥ c. (4)

(There is also an incentive constraint for the agents not to consume the product when it is

not recommended by the designer. Because this constraint will not be binding throughout—

as the designer typically desires more experimentation than do the agents—we shall ignore

it.)

Our goal is to characterize the optimal policy of the designer and the pattern of social

learning it induces. To facilitate this characterization, it is useful to consider three bench-

marks.

• No Social Learning: In this regime, the agents receive no information from the

designer, and hence they decide solely based on the prior p0. When p0 < c, no agent

ever consumes.

• Full Transparency: In this regime, the designer discloses her information—or her

19We allow the designer to randomize over (γ, α) although we show in the Appendix that such a policy is
never optimal.
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beliefs—truthfully to the agents. In our framework, full disclosure is implemented by

the policy of γt ≡ 1 and αt = 1{pt≥c}.

• First-Best: In this regime, the designer optimizes her policy without having to satisfy

the incentive compatibility constraint (4).

To distinguish the current problem from the first-best, we call the optimal policy maxi-

mizing W subject to (2), (3) and (4), the second-best policy.

Before proceeding, we observe that it never pays the designer to lie if the news actually

arrives.

Lemma 1. It is optimal for the designer to disclose the good news immediately. That is, an

optimal policy has γt ≡ 1.

Proof. If one increases γt, it can only increase the value of objective W and relax (4) (and

does not affect other constraints). �

Lemma 1 reduces the scope of optimal intervention by the designer to choosing α, the

recommendation policy following “no news.” In the sequel, we shall thus fix γt ≡ 1 and focus

on α as the sole policy instrument.

4 Optimal Recommendation Policy

We begin by further characterizing the process by which the designer’s posterior, and the

agents’ beliefs about the designer’s posterior, evolve under arbitrary policy α. To understand

how the designer’s posterior evolves, it is convenient to work with the likelihood ratio ℓt =
pt

1−pt
of the posterior pt. Given the one-to-one correspondence between the two variables, we

shall refer to ℓ simply as a “posterior.” It then follows that (2) can be restated as:

ℓ̇t = −ℓtλµt, ℓ0 = ℓ0 :=
p0

1− p0
. (5)

The agents’ belief gt concerning the arrival of news is determined via (3):

gt =
ℓ0 − ℓt
1− p0

. (6)

Immediately following the release of the product, news is very unlikely to have arrived, and

hence gt ≃ 0. As time elapses, the agents find it increasingly probable that news has arrived.
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To see how this affects the designer’s ability to “spam,” substitute gt into (4) to obtain:

αt ≤ ᾱ(ℓt) := min

{

1,
ℓ0 − ℓt
k − ℓt

}

, (7)

if the normalized cost k := c/(1 − c) exceeds ℓt and ᾱ(ℓt) := 1 otherwise. It is convenient

to interpret ᾱ(ℓt) as the designer’s capacity for spamming. This capacity depends on the

prior p0. If p0 ≥ c, then the designer can “freeze” the agents’ belief at the prior p0 by always

spamming, and the prior is high enough to convince the agents to consume the product.

Hence, ᾱ(ℓt) = 1 for all ℓt. By contrast, if p0 < c, then the spamming capacity is initially

zero and increases gradually over time. Immediately after the product’s release, the designer

has nearly no ability to spam because good news could never have arrived instantaneously,

and the agents’ prior is unfavorable. Over time, however, ᾱ(ℓt) increases. In other words,

even when no news is received, and ℓt falls as a result, the arrival of good news becomes

increasingly probable, which allows the designer to develop her credibility over time and

expands her capacity to spam.

Effectively, spamming “pools” recommendations across two very different circumstances:

one in which the good news has arrived and one in which no news has arrived. Although

the agents in the latter circumstance will never knowingly follow the recommendation, pool-

ing the two circumstances for recommendation enables the designer to siphon the slack

incentives from the former circumstance to the latter and to incentivize the agents to exper-

iment, so long as the recommendation in the latter circumstance is kept sufficiently infre-

quent/improbable. Since the agents do not internalize the social benefit of experimentation,

spamming becomes a useful tool for the designer’s second-best policy.

Substituting (6) into the objective function and using µt = ρ + αt—and normalizing by

ℓ—the second-best program is restated as follows:

[SB] sup
α

∫

t≥0

e−rt
(
ℓ0 − ℓt − αt (k − ℓt)

)
dt

subject to

ℓ̇t = −λ(ρ+ αt)ℓt, ∀t, and ℓ0 = ℓ0, (8)

0 ≤ αt ≤ ᾱ(ℓt), ∀t. (9)

Obviously, the first-best program, labeled [FB], is the same as [SB], except that the

upper bound for ᾱ(ℓt) is replaced by 1. We next characterize the optimal recommendation

policy.
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Proposition 1. (i) The first-best policy prescribes experimentation

α∗∗(pt) =

{
1 if pt ≥ p∗;

0 if pt < p∗,

where

p∗ := c

(

1− rv

ρ+ r(v + 1
λ
)

)

,

and v := 1−c
r

denotes the continuation payoff upon the arrival of good news.

(ii) The second-best policy prescribes experimentation at

α∗(pt) =

{

ᾱ( pt
1−pt

) if pt ≥ p∗;

0 if pt < p∗.

(iii) If p0 ≥ c, then the second-best policy implements the first-best, and if p0 < c, then

the second-best induces slower experimentation/learning than the first-best. Whenever

p0 > p∗, the second-best induces strictly more experimentation/learning than either no

social learning or full transparency.

The first-best and second-best policies have a cutoff structure: They induce maximal

feasible experimentation, which equals 1 under first-best and equals the spamming capacity

ᾱ under the second-best, so long as the designer’s posterior remains above the threshold

level p∗ and there is no experimentation otherwise. The optimal policies induce interesting

learning trajectories, which are depicted in Figure 1 for the case of p0 < c.

The optimality of a cutoff policy and the optimal level of the cutoff posterior can be

explained by the main tradeoff facing the designer, namely the marginal benefit and cost of

inducing additional experimentation at any given belief p:

λpv

(
1

(λρ/r) + 1

)

︸ ︷︷ ︸

value of experimentation

− c− p
︸ ︷︷ ︸
cost of

experimentation

. (10)

The cost is the flow cost borne by the experimenting agents (the second term). The benefit is

the social learning that the additional experimentation may generate (the first term): With

probability p, the product is good, and experimentation will reveal this information at rate

λ, which will enable the future generation of agents to collect the benefit of v = (1 − c)/r.

The term 1
(λρ/r)+1

discounts this benefit by the rate at which the good news will be learned by

“background learning” even with no experimentation. The optimal threshold posterior, p∗,

which equates the benefits and the costs, is the same under either first-best and second-best
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Figure 1: Path of α for (c, ρ, p0, r, λ) = (2/3, 1/4, 1/2, 1/10, 4/5).

because the opportunity cost of experimentation, i.e., relying solely on background learning,

is the same under both regimes.

If p0 ≥ c, the designer can implement the first-best policy by simply “spamming” all

agents if and only if full experimentation is warranted under first-best. The agents comply

with the recommendation because their belief is frozen at p0 ≥ c under the policy. Admit-

tedly, informational externalities are not particularly severe in this case because early agents

will have an incentive to consume on their own. Note, however, that full transparency does

not implement the first-best in this case, since agents will stop experimenting once pt reaches

c. In other words, spamming—or “obfuscation”—is crucial to achieving the first-best, even

in this case.

In the more interesting case with p0 < c, the second-best policy cannot implement the

first-best. In this case, the spamming constraint for the designer is binding. As can be

seen in Figure 1, spamming capacity is initially zero and increases gradually. Consequently,

experimentation initially takes off very slowly and builds up gradually over time until the

posterior reaches the threshold p∗, at which point the designer abandons experimentation.

Throughout, the experimentation rate remains strictly below 1. In other words, learning is

always slower under the second-best than under the first-best. Since the threshold belief is the

same under both regimes, the agents are induced to experiment longer under the second-best

than under the first-best regime, as Figure 1 shows.
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Figure 2: Optimal (second-best) spamming as a function of ρ (here, (k, ℓ0, r, λ) =
(2/5, 1/3, 1/2, 1)). The dots on the x-axis indicate stopping times under first-best.

In either case, as long p0 > p∗, the second-best policy implements strictly higher exper-

imentation/learning than either no social learning or full transparency, strictly dominating

both of these benchmarks.

Comparative statics reveal further implications. The values of (p0, ρ) parameterize the

severity of the cold start problem facing the designer. The lower these values, the more

severe the cold start problems are. One can see how these parameters affect optimal exper-

imentation policies and induced social learning.

Corollary 1. (i) As p0 rises, the optimal threshold remains unchanged and total experi-

mentation/social learning increases under both the first-best and second-best policies.

The learning speed remains the same in the first-best policy but rises in the second-best

policy.

(ii) As ρ rises, the optimal threshold p∗ rises and total experimentation/social learning de-

clines under both the first-best and the second-best policies. The learning speed remains

the same in the first-best policy but rises in the second-best policy.

Unlike the first-best policy, the severity of the cold start problem affects the flow rate

of experimentation under the second-best policy. Specifically, the more severe the cold start

problem is, in the sense of (p0, ρ) being smaller, the more difficult it becomes for the designer

to credibly spam the agents, thereby reducing the flow rate of experimentation that the

designer can induce. This has certain policy implications. Internet recommenders such as
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Netflix and Amazon have the ability to increase ρ by investing resources in product research.

Corollary 1-(ii) shows the sense in which such an investment “substitutes” for agents’ experi-

mentation: an increased free learning raises the opportunity cost of experimentation, calling

for its termination at a higher threshold, under both first-best and second-best policies. In

the second-best world, however, there is also a sense in which this investment “complements”

experimentation: free learning makes spamming credible, and this allows the designer to in-

duce a higher level of experimentation at each t. Figure 2 shows that this indirect effect

can accelerate the social learning significantly: as ρ rises, the time it takes to reach the

threshold belief is reduced much more dramatically under the second-best policy than under

the first-best.

5 Public Recommendations

Thus far, we have considered private recommendations that may differ across agents and

are not shared amongst them. Such personalized private recommendations are an important

part of the Internet recommender system; Netflix and Amazon make personalized recom-

mendations based on its users’ past purchase/usage histories. Search engines are known

to rank search items differently across users based on their past search behavior. At the

same time, platforms also make public recommendations that are commonly observable to

all users. Product ratings provided by Amazon, Netflix, Yelp, Michelin, and Parker are

public and unpersonalized, to our knowledge.

Personalized recommendations benefit consumers when they have heterogenous tastes,

but do personalized recommendations matter even when the users have the same preferences,

as assumed herein? In particular, do they play any role in incentivizing experimentation?

We answer this question by studying the (optimal) public recommendation policy. Plainly,

any public recommendation can be made privately without any loss. Hence, a public rec-

ommendation cannot be strictly better than private recommendations. It is not obvious,

however, that private recommendations are strictly better than public recommendations.

Our main result is that although the designer can still induce agents to experiment under

public recommendation, the experimentation is random and slower (on average) and thus

welfare is strictly lower than under the optimal (private) recommendation.

To begin, consider the baseline model with p0 < c. Recall full transparency induces

no experimentation in this case. We first show that a public recommendation policy can

induce some experimentation and improve upon full transparency. Consider a policy with

the following structure:

• At t = 0, the designer begins by making no recommendation, which means that the

only source of learning is free learning at rate ρ.
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– If good news has arrived by t > 0, then the designer recommends the product

and does so forever.

– If good news has not arrived by time t > 0 and the designer’s posterior is above

p∗ (our first-best/second-best cutoff), then the designer “spams” (or recommends

the product without good news) according to a distribution function F (t) (to be

defined). Once she recommends the product, she continues to recommend until

her posterior reaches p∗.

– If good news has not arrived by t and the posterior is below p∗, then the designer

recommends that the agents do not consume.

Proposition 2 below demonstrates that the optimal public recommendation policy has

this structure. As with private recommendations, the designer reveals the good news when

it arrives, but the way she “spams” is different. Given the public nature, the designer must

effectively recommend to “all” agents when she does so at all. After the recommendation is

made successfully, meaning that all agents choose to consume, the designer can “freeze” the

agents’ posterior by simply continuing to recommend the product, which allows the designer

to implement the first-best policy from that point forward. Of course, the first time that

a public recommendation is made cannot be arbitrary. For instance, if the designer begins

the recommendation at time 0 with certainty (which is what she would like to do), then the

agents’ posterior will be p0, and they will thus not follow the recommendation. The designer

instead randomizes the time at which she begins spamming on the product.

We now study how the random spamming distribution F (t) can be constructed to satisfy

incentive compatibility. For ease of exposition, we assume F (t) to be atomless. (This will be

justified formally in the proof of Proposition 2 in the Appendix.) Let h(t) := f(t)/(1−F (t))

denote the hazard rate; i.e., htdt is the probability that the designer spams for the first time

during [t, t + dt). Then, by Bayes’ rule, the posterior of an agent who receives the public

recommendation to consume for the first time at t is given by:

Pt =
p0e−λρt(λρ+ h(t))

p0e−λρt(λρ+ h(t)) + (1− p0)h(t)
.

The incentive constraint requires that Pt ≥ c, which in turn yields:

h(t) ≤ λρℓ0

k − eλρt − ℓ0
.

It is intuitive (and formally shown) that the incentive constraint is binding at the optimal

policy, which gives rise to a differential equation for F , alongside the boundary condition
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F (0) = 0. Its unique solution is

F (t) =
ℓ0(1− e−λρt)

k − ℓ0e−λρt
, (11)

for all t < t∗ := − 1
λρ

ln( k
ℓ0

λρ+r
λ(1+ρ)+r

), the time at which the designer’s posterior reaches the

threshold belief p∗.

Clearly, F (t) > 0, for any t ∈ (0, t∗), so the designer spams and the agents experiment

with positive probability. Meanwhile, F (t∗) = ℓ0−ℓ∗

k−ℓ∗
< 1, and hence there is a positive

probability that the designer never spam—a property crucial for the designer to maintain

her credibility. Learning under this policy can be either faster or slower depending on

the realization of the random triggering of spam, but it is on average slower under public

recommendation than under the optimal private recommendation. To see this more clearly,

fix any t ≤ t∗. Under optimal public recommendation, spam is triggered at s according to

F (s) and lasts until t, unless the posterior reaches p∗. Let T (s) be the time at which the

latter event occurs if spam was triggered at s. Then, the expected level of experimentation

performed by time t under public experimentation is:

∫ t

0

(min{t, T (s)} − s)dF (s) ≤
∫ t

0

(t− s)dF (s)

=

∫ t

0

F (s)ds =

∫ t

0

ℓ0 − ℓ0e−λρs

k − ℓ0e−λρs
ds <

∫ t

0

ℓ0 − ℓs
k − ℓs

ds =

∫ t

0

ᾱ(ℓs)ds,

where ℓs is the likelihood ratio at time s under the optimal private recommendation. The

first equality follows from integration by parts, and the inequality holds because ℓs =

ℓ0e−λ
∫ s

0 (ᾱ(ℓs′ )+ρ)ds′ < ℓ0e−λρs.

We now state our findings.

Proposition 2. Under the optimal public recommendation policy, the designer recommends

the product at time t if good news is received by that time. If good news is not received and

a recommendation is not made by t, she triggers spam at a random time given by F (t) in

(11) and the spam lasts until t∗ in the event that no good news arrives by that time. The

experimentation speeds up until t∗ on each realization of the policy (and thus on average).

The induced experimentation under optimal public recommendation is on average slower—

and the welfare attained is strictly lower—than under optimal private recommendation.

Proof. The proof in the Appendix formulates the mechanism design problem fully generally,

allowing the designer to communicate arbitrary messages upon receiving good news and

no news. Although the argument is involved, the key observation is that once the agents

are induced to consume the product, the designer can “freeze” the posteriors of the agents

arriving subsequently and induce them to continue, which means that the first-best policy
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can be implemented following any history that credibly convinces the agents to consume

the product. This fact allows us to formulate the optimal mechanism design problem as a

stopping problem that is indexed by two stopping times, one specifying how soon after good

news is received that the designer should recommend the product to the agents and one

specifying how soon she should recommend it to the agents despite having received no news.

The unusual feature of the problem is that the the incentive constraint must be obeyed,

which forces the optimal stopping time (i.e., triggering spam) to be random. We show that

the above public recommendation policy solves this general mechanism design problem. �

6 Endogenous Entry

Our model has thus far considered short-lived agents whose only decision is whether to

consume a product given a recommendation. In practice, consumers also choose when to

consume. In particular, they may delay their consumption decision until after more accurate

recommendations become available. A recommender facing such patient consumers must

guide consumers not only toward the right experimentation decision—and must make the

recommendation persuasive in the sense discussed above—but also toward the right time for

doing so. In particular, overcoming a possible free-rider problem becomes a new challenge.

To study this issue, we extend our baseline model in Section 4 as follows. As in our

baseline model, agents arrive at a unit flow rate in each period, but upon arrival, say at t,

an agent is free to choose any time τ ≥ t to “check in” for a recommendation. In principle,

agents may check in multiple times to obtain an improved recommendation, but such an

incentive can be muted by ensuring that an agent receives the same recommendation each

time he checks in, which is possible under personalized/private recommendation.20 Agents

would then never delay their consumption decision after checking in. As in Section 3, we

focus on private recommendation.

The designer now controls two instruments: the mass Xt of agents the designer induces

to check in by time t and the fraction αt of agents to whom the designer spams among those

who check in at t. Specifically, the designer faces the following problem:

[SB′] sup
{αt,Xt}

∫

t≥0

e−rt
(
ℓ0 − ℓt − αt (k − ℓt)

)
dXt

20For instance, an Internet recommender may program the same recommendation to appear at its Internet
portal for any user who logs in with the same membership ID or the same IP address. Although motivated
users may circumvent the system at some inconvenience, the stakes or benefits from this behavior are often
not large enough for it to be worthwhile. However, multiple check-ins might be potentially beneficial from a
welfare perspective because agents may reduce their wait time after good news has arrived; for instance, the
designer may have the agents “continuously” check in for news. In practice, checking in for a recommendation
can be costly. We assume that this cost is high enough for multiple check-ins to be undesirable.
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subject to (7),

ℓ̇t = −λ(ρ+ αtdXt)ℓt, ∀t, and ℓ0 = ℓ0, (12)

Xt ≤ t, ∀t (13)

t ∈ argmax
t′≥t

(αt (ℓt − k)− ℓt) , ∀t ∈ supp(X). (14)

The problem [SB′] has a similar objective function to [SB], and involves the incentive

constraint (7) and the law of motion (12), much as in [SB]. The difference is that the

designer now controls the agents’ check-in time according to a measure Xt. She does so

subject to two constraints: (13) ensures that the the mass of agents who check in by time t

cannot exceed the mass who have arrived by that time, and (3) requires that agents should

have no incentive to delay their check-in beyond that desired by the designer.21

The following proposition characterizes the optimal recommendation policy and full

transparency in the presence of endogenous entry.

Proposition 3. Suppose that agents can delay checking in for a recommendation, and

suppose that ℓ0 < k.

(i) Under full transparency, agents who arrive before tFT = − 1
ρλ

ln r
r+λρ

all check in at tFT ,

and those who arrive after tFT check in as they arrive. Upon checking in, agents con-

sume if and only if news has arrived by that time. In other words, no agent experiments

under full transparency.

(ii) The second-best policy coincides with full transparency if ρ is sufficiently large for any

p. The second-best policy differs from full transparency if ρ ≤ 1
λ

(
rℓ0+

√
rℓ0

√
4kλ+ℓ0

2k
− r
)

.

(iii) In case the second-best differs from full transparency, there exist t∗ > 0 and T > t∗

such that the optimal mechanism induces the following behavior from the agents:22

a. (Blackout followed by a burst of spam) The designer offers no recommendation

(even with good news) until t∗, which induces the agents who arrive before t∗ to

21Here, supp(X) is support of X . More precisely,

supp(X) := {t ∈ [0,∞) | Xt+ǫ −Xmax{t−ǫ,0} > 0, ∀ǫ > 0}.

We ignore the incentive for the agents never to check in too soon relative to what the designer intends, since
the designer can simply withhold all recommendations to prevent agents from checking in for a period of
time.

22As before, as soon as good news arrives, it is immediately shared with the agents, including during the
process of atom split, which is described in a.
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check in and experiment at t∗ but sequentially with probability α(ℓ) that increases

along the locus α(ℓ) := ℓ++α2(k−ℓ+)−ℓ
k−ℓ

, for some (α+, ℓ+) with ℓ+ < ℓFT := rℓ0

r+λρ
.

b. (Smoothly tapered spam) The agents who arrive after t∗ check in as they arrive and

experiment with probability αt which declines over time and reaches 0 at t = T .

The agents who arrive after T never experiment.

Proof. The proof is available in the Appendix and the Supplementary Material. �

The intuition behind the results can be explained as follows. There are two conflicting

welfare considerations involved in an agent’s timing of check-in.

First, there is a social benefit from delaying agents’ check-in time. By delaying the time at

which agents obtain a recommendation, the designer allows an agent to make a decision based

on more updated information. This benefit exists even without any experimentation because

of free learning but declines over time due to discounting. Therefore, absent experimentation,

there is an interior time tFT > 0 such that the designer would seek to delay agents’ check-in

up to that time. This is precisely what happens under full transparency, which is socially

optimal, assuming that no agent is induced to experiment.

The second consideration arises when the designer wishes to induce positive experimen-

tation. Since experimentation is costly for agents who experiment and beneficial for later

agents who do not experiment, the former have incentives to delay their checking in to free

ride on other experimenters (even when delaying is not socially beneficial). This incentive

problem can be seen clearly by the second-best policy in Section 4. In Figure 1, all agents

who arrive before t ≃ 2.4 are told to experiment at a rate that leaves them with zero expected

payoff, whereas those arriving slightly after 2.4 enjoy a strictly positive payoff; thus, all the

former agents would wait until after that time. To overcome this free-rider problem, the

designer must “bribe” the experimenting agents by reducing their experimentation and re-

ducing the externalities enjoyed by later agents by prolonging experimentation. In particular,

experimentation cannot fall discontinuously as in our baseline case, and all experimenting

agents must enjoy strictly positive payoffs, which means that incentive constraint (7) is no

longer binding.

Both of these considerations reduce the value of experimentation, particularly when ρ

is large (significant free learning). Indeed, for a sufficiently large ρ, the second-best policy

is reduced to full transparency. When ρ is sufficiently low, however, full transparency is

again not optimal (part (ii) of Proposition 3). In this case, the second-best policy involves

“spamming”—much as in our baseline model—but with qualitatively new features. Figure

3 depicts how experimentation and belief evolve over time under the second-best policy. As

the belief ℓt declines over time, the relevant outcome (αt, ℓt) moves from right to left in the

figure.
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Figure 3: The probability of a recommendation as a function of ℓ (here, (r, λ, ρ, k, ℓ0) =
(1/2, 2, 1/5, 15, 9)). In dotted line, the spamming probability α∗ in the baseline model with
exogenous entry, as a function of ℓ.

First, the agents who arrive before t∗ > 0 are induced to delay their checking in for

recommendation until t∗. This can be implemented by an information “blackout”—or the

recommender refusing to recommend a product—for a duration of time after its release. This

can be interpreted in practical terms as the recommender refusing to take a stance on the

product. Given the initially unfavorable prior, all agents will then choose to wait during the

blackout.

At time t∗, it is optimal for the agents to all check in at that moment; however, it is not

optimal to have them experiment simultaneously. If the designer were to “split” the mass

into two smaller masses and have one of them move immediately after the other, the former

will benefit from the experimentation of the latter, and can be asked to experiment more

without violating their incentives. Repeating this argument, one finds it optimal to divide

the mass of agents into flows of them who check in sequentially—but without taking any

real time—and to experiment with increasingly higher probability, in a manner that leaves

them indifferent across this menu of (ℓ̃, α̃) offered sequentially at that instant.23 Doing so

23The need to allow for sequential moves that do not take any real time arises from the feature of the
continuous time: the soonest next time after any time t is not well defined. The Supplementary Material
resolves this issue by enriching the policy space, specifically by adding a “virtual” clock that is used to
sequence the check-in of agents who arrive at the same “real” time. See Simon and Stinchcombe (1989)
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sequentially is optimal because it increases the overall experimentation that can be performed

with the agents; Indifference among these agents gives rise to a locus (ℓ̃, α̃) = (ℓ̃, α(ℓ̃)) that

begins at (α−, ℓ−) and ends at (α+, ℓ+), as depicted in Figure 3. The mass of agents are all

dissipated at a point (ℓ+, α+).

After t∗, the experimentation tapers off along a smooth locus, as depicted in Figure

3. Specifically, these agents check in as they arrive, and they experiment with probability

that declines continuously at a rate that eliminates incentives for delaying entry. At T , the

experimentation stops, and full transparency prevails from this point forward.

In sum, the optimal policy under endogenous entry exhibits qualitatively the same fea-

tures as that from the baseline model (such as spamming and single-peaked experimentation),

but it also introduces new features such as an information blackout and a gradual phase-out

of experimentation. Endogenous entry also affects the amount of experimentation performed

by the agents. Under exogenous entry, the agents who are induced to experiment do so at

the level that leaves them with no rents. By contrast, under endogenous entry, the designer

must leave them with positive rents to prevent them from free-riding on others. This means

that, for each ℓ > ℓ∗, agents experiment less under endogenous entry than under exogenous

entry; see the optimal experimentation α∗ induced under the latter regime for comparison in

Figure 3.24 Meanwhile, agents are induced to experiment even when ℓ < ℓ∗ with endogenous

entry (whereas no more experimentation occurs when ℓ < ℓ∗ with exogenous entry). This

feature is in turn attributed to the free-riding problem. Inducing agents to experiment when

ℓ < ℓ∗ entails net social loss (as was shown before); yet this distortion is necessary to prevent

early agents who are induced to experiment when ℓ > ℓ∗ from delaying their check-in. In

this sense, the distortion at a low belief is what makes experimentation at a higher belief

implementable.25

and Ausubel (2004) for adopting similar enrichment of strategies to guarantee existence of an equilibrium.
Intuitively, we can think of the optimal policy in the enriched space as the supremum over policies in which
the designer can only provide one recommendation at each time t, or the limit of the optimal outcomes
of the sequence of discrete time models as its time interval shrinks to zero. In such a model, the designer
will divide the mass into an increasing number of smaller masses as the time interval shrinks to zero, but
with total real time approaching zero in the limit. Note, however, that our optimal policy is a well-defined
maximum if the optimal control problem is written with ℓ as the “time” index.

24This does not imply that learning is necessarily slower here in the temporal sense than under exogenous
entry. The agents who arrive before t∗ delay their check-in, and the free learning up to that point can
motivate them to experiment more at t ≥ t∗. This effect may offset the otherwise reduced incentive for
experimentation.

25This feature is reminiscent of optimal second-degree price discrimination wherein a seller distorts a
low-value buyer’s purchase to extract rents from a high-value buyer.
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7 Extensions

The model can be further extended to incorporate additional features. The detailed analysis

is provided in the Supplementary Material; here, we illustrate the main ideas and results.

7.1 General Signal Structure

Thus far, our model assumed a simple signal structure which features only good news. This

is a reasonable assumption for many products whose priors are initially unfavorable but can

be improved dramatically through social learning. For some other products, however, social

learning may involve discovery of poor quality. Our signal structure can be extended to allow

for such a situation via “bad” news.26 Specifically, news can be either good or bad, where

good news means ω = 1 and bad news reveals ω = 0, and the arrival rates of the good news

and bad news are respectively λg > 0 and λb > 0 conditional on the state.27

The relative arrival rate ∆ := λg−λb

λg
of good news proves crucial for both the evolution of

the designer’s belief and the optimal recommendation policy. Thus, we say that the signal

structure is “good” news if ∆ > 0 and “bad” news if ∆ < 0. The posterior of the designer

in the absence of any news evolves according to:

ℓ̇t = −ℓt∆λgµt, ℓ0 = ℓ0. (15)

Intuitively, the belief becomes pessimistic in the good news environment and optimistic in

the bad news environment as time progresses with no news.

As before, the designer reveals both good news and bad news truthfully. The more

important question is whether the designer would recommend the product despite having no

news. Here, the main thrust of our earlier analysis continues to hold. That is, the designer

would like to spam the agents up to the maximum capacity allowed by incentive compatibility

as long as her posterior remains above some threshold. In particular, the optimal policy in

the good news case is virtually identical to that described in Proposition 1, in fact with λ in

the optimal threshold p∗ being replaced by λg.
28

26See Keller and Rady (2015) for the standard bad news model of strategic experimentation.
27More precisely, if a flow of size µ consumes the product over some time interval [t, t+ dt), then during

this time interval the designer learns that the movie is “good” with probability λg(ρ+ µ)dt and “bad” with
probability λb(ρ+ µ)dt.

28At first glance, it may be surprising that the arrival rate λb of the bad news does not affect the optimal
threshold p∗ in the case of good news, and vice versa. The reason is that the tradeoff captured in (10) does
not depend on the arrival rate of bad news. At the same time, the arrival rate of bad news affects both the
duration and the rate of incentive-compatible experimentation. As (15) shows, as λb rises (toward λg), it
slows down the decline of the posterior. Hence, it takes a longer time for the posterior to reach the threshold
level, which means that the agents are induced to experiment for longer (until news arrives or the threshold
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The optimal recommendation policy in the bad news environment has the same cutoff

structure, although the threshold posterior is somewhat different. The formal result, the

proof of which is available in the Supplementary Material, is as follows:

Proposition 4. The first-best policy (absent any news) prescribes no experimentation until

the posterior p rises to p∗∗b and then full experimentation at the rate of α∗∗(p) = 1 thereafter,

for p > p∗∗b , where

p∗∗b := c

(

1− rv

ρ+ r(v + 1
λb
)

)

.

The second-best policy implements the first-best if p0 ≥ c or if p0 ≤ p̂0 for some p̂0 < p∗∗b . If

p0 ∈ (p̂0, c), then the second-best policy prescribes no experimentation until the posterior p

rises to p∗b and then experimentation at the maximum incentive-compatible level thereafter for

any p > p∗b ,
29 where p∗b > p∗∗b . In other words, the second-best policy triggers experimentation

at a later date and at a lower rate than the first-best policy.

Although the structure of the optimal recommendation policy is similar between the good

news and bad news cases, the intertemporal trajectory of experimentation is quite different.

Figure 4 depicts an example with ∆ < 0 and a sufficiently low prior belief. Initially, the

designer finds the prior to be too low to trigger recommendation, and she never spams as

a result. However, as time progresses without receiving any news (good or bad), her belief

improves gradually, and as her posterior reaches the optimal threshold, she begins spamming

at the maximal capacity allowed by incentive compatibility. One difference here is that the

optimal second-best threshold differs from that of the first-best. The designer has a higher

threshold, so she waits longer to trigger experimentation under the second-best policy than

she would under the first-best policy. This is due to the difference in the tradeoffs at the

margin between the two regimes. Although the benefit from not triggering experimentation

is the same between the two regimes, the benefit from triggering experimentation is lower in

the second-best regime due to the constrained experimentation that follows in the regime.

7.2 Heterogenous Costs

Thus far, agents have been assumed to be homogenous, which has greatly simplified the

analysis and made the question of the observability of the agents’ costs moot. To discuss

p∗ is reached), holding constant the per-period experimentation rate. Furthermore, the spamming capacity
can be seen to increase with λb, as the commitment never to recommend in the event of bad news means that
a recommendation is more likely to have been the result of good news. Hence, experimentation increases in
two different senses when λb rises.

29The maximally incentive-compatible level is ᾱ(ℓt) := min

{

1,

(

ℓt

ℓ0

)

−

1
∆ −1

k−ℓt
ℓt

}

.
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Figure 4: Path of α for ∆ < 0 and (c, ρ, p0, r, λg, λb) = (1/2, 1, 2/7, 1/10, 1, 2)).

how our findings generalize, consider first a simple two-type example. Suppose that there are

two cost types, cL and cH , with cH > cL > p0, arising with probabilities qL and qH = 1− qL,

respectively. For concreteness, we assume that

cH/(1− cH) = 12/10, cL/(1− cL) = 11/10, p0 = 1/2, and qH = qL = 1/2.

Furthermore, ρ = r = λ = 1. We contrast two scenarios. In the first, the types are

observable. In the second, they are not.

7.2.1 Observable types

Here, we assume that the designer perfectly observes or infers the type of the agent. In

practice, such an inference may be possible from a user’s past consumption history. For

instance, the frequencies of downloading or streaming movies may indicate a user’s (oppor-

tunity) cost of experimentation, and the online platform may use that information to tailor

its recommendation to the user. With observable costs, the designer can spam an agent with

a maximum probability that depends on his type, namely,

ᾱi(ℓt) := min

{

1,
ℓ0 − ℓt
ki − ℓt

}

,

for i = L,H , where ki := ci/(1− ci).

The optimal policies, described fully in the Supplementary Material, are characterized

by two cutoffs, p2 < p1 < c, in the designer’s belief such that the designer induces both types
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of agents to experiment if p > p1, only low-cost type agents to experiment if p ∈ (p2, p1],

and no agents to experiment if p < p2. The agents induced to experiment do so up to the

maximal probability, which is one under the first-best regime and ᾱi(ℓ) for type i = L,H

under the second-best regime.

As in Section 4, the last threshold is equal to

p2 = p∗∗2 = cL

(

1− rv

ρ+ r(v + 1/λ)

)

,

under both first-best and second-best policies. In the current example, p∗∗2 ≃ .425. The first

threshold differs between under the two regimes. In our example, the threshold is p∗∗1 = 0.451

under the first-best policy and p∗1 = .448 under the second best policy. In other words, the

high-cost agents are induced to experiment longer (in terms of the belief) under the second-

best policy than under the first-best policy. This is attributed to the differing consequences

of triggering the phase in which only low-cost agents experiment. In the first-best case, the

designer can rely on all low-cost agents to experiment from that point on; in the second-

best, she can only credibly ask a fraction of them to experiment. Her alternative channel

for experimentation appears bleaker, and as a result, she is forced to ask high-cost agents

to experiment for lower beliefs than in the first-best case. As before, since experimentation

occurs at a lower rate under the second-best policy, it takes longer to reach each belief

threshold: it takes t∗1 ≃ 1.15 and t∗2 ≃ 1.22 to reach the first and second threshold under

second-best, whereas it takes t∗∗1 ≃ .1 and t∗∗2 ≃ .17 under the first-best policy.

This feature is not specific to the particular numerical example we picked. In the Sup-

plementary Material, we prove that, for the case of good news, and two types, the high-cost

agents are spammed at beliefs below the point at which they should stop under the first-best

policy.

Proposition 5. Both the first-best and second-best policies are characterized by a pair of

thresholds 0 ≤ ℓL ≤ ℓH ≤ ℓ0, such that (i) all agents are asked to experiment with maximum

probability for ℓ ≥ ℓH , (ii) only low-cost agents experiment (with maximum probability) for

ℓ ∈ [ℓL, ℓH), and (iii) no agent experiments for ℓ < ℓL. Furthermore, the belief thresholds are

ℓ∗∗L = ℓ∗L and ℓ∗∗H ≥ ℓ∗H under first-best and second-best policies, respectively, with a strict

inequality whenever ℓ0 > ℓ∗∗H .

Alternatively, one could allow for a continuum of types. Although we are unable to

solve for the optimal policy with full generality, it is possible to solve for the limit policy as

r → 0 in the case of the uniform distribution (and pure good news). Figure 5 depicts the

optimal policies for some parameter values. As time passes, the belief decreases, as does the

threshold cost type above which it is optimal for the designer not to spam (highest curve in

Figure 5). Types below this threshold are spammed to different extents: those whose cost
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Figure 5: Optimal policy with a continuum of cost (here, p0 = 1/2, k ∼ U [0, 2]).

is below the prior (c ≤ p0 = 0.5) are spammed for sure, while those whose cost is above

the prior are spammed to the maximum extent that makes them still willing to follow the

recommendation. Hence, the total rate of experimentation is lower than the highest curve

and equal to the lower curve: at the initial instant, agents with c ≤ p0 are “fully” spammed

whereas agents with higher costs cannot be spammed at all. As time passes and the belief

decreases, higher cost agents can be spammed (although fewer of them are targeted), and

experimentation increases. Eventually, however, the designer focuses on spamming only

lower and lower types only, leading to a decline in rate of experimentation. When this

threshold coincides with the cost type that can be spammed with a probability of one (the

type with c = .5), the first-best policy can be followed. Until then, however, the second-best

threshold is above the first-best threshold, as indicated by the dotted line: a given cost type

(such that c > .5) is spammed at beliefs below those at which he would no longer be asked

to experiment in the first-best.30

7.2.2 Unobservable Costs

If the designer cannot infer agents’ costs, then her ability to tailor recommendations is

severely limited. Specifically, consider our two-type example but assume that the type is

unobservable to the agent. Because the designer cannot use transfers to elicit truth-telling,

and because all types of agents prefer a more honest recommendation, the designer cannot

30Keep in mind, however, that under the first-best policy, types below the dotted threshold are experi-
menting with probability 1, while under the second-best policy, this is not the case for cost types c ≥ 0.5.
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effectively screen agents’ types. In fact, the designer can only choose one probability of

spamming α and has effectively three options regarding its value at any given point in

time:31

1. No spamming: The designer chooses α = 0.

2. Spamming only to the low-cost agents: The designer spams to a fraction α = ᾱL of

agents. A low-cost agent follows that recommendation, while a high-cost agent does

not. Thus, this means, in particular, that at any such time a high-cost agent will not

consume even when the designer sends a genuine recommendation after good news.

3. Spamming to both types of agents: The designer spams to fraction α = ᾱH of agents.

Both types of agents then follow the recommendation, but since ᾱH < ᾱL, experi-

mentation will proceed at a relatively slow rate—although it will be spread across all

agents, as opposed to only the low-cost agents.

Intuitively, the designer triggers the options in the following order: First, she spams to

both types, then only to the low type, and finally to none. It turns out that in this example

the designer skips the first phase and begins with α = ᾱL incentivizing only the low-cost

type to experiment. She does that until her belief reaches p2 := .468, which occurs at time

t2 = .109, assuming that no news has been received by that time. Compared to the observable

case, the designer stops experimenting much sooner (.109 vs. 1.22!), and at a higher belief

(.468 vs. .425) than when types are observable. Furthermore, she stops spamming high-cost

agents altogether—or rather, they do not listen to the designer’s recommendation and will

not consume.

Clearly, experimentation is much costlier when types are unobservable. Given spamming

at ᾱH , not all low-cost agents are induced to experiment and in fact some low-cost agents

receive a “do not consume” recommendation while some high-cost agents receive a “consume”

recommendation. This mismatch makes this option costly (making it suboptimal to use it

it at least in our example). Meanwhile, spamming at rate ᾱL is costly because the designer

must then forego consumption by high-cost agents altogether—even if he has found out that

the product is of high quality. This makes it more expensive to prolong experimentation

with low-cost agents and results in a shorter experimentation spell than when types are

observable.

In sum, unobservability makes spamming costly and pushes the designer toward greater

transparency. In fact, as we show in the Supplementary Material, this push toward trans-

parency is exacerbated with more types. Namely,

31While this claim sounds intuitive, it requires proof, which follows from the general result stated below.
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Proposition 6. When agents’ costs are uniformly distributed and unobservable to the de-

signer, full transparency is optimal.32

8 Conclusion

Early experimentation is crucial for users to discover and adopt potentially valuable products

on a large scale. The purpose of the present paper has been to understand how a recom-

mendation policy can be designed to promote such early experimentation. There are several

takeaways from the current study.

First, “spamming” on a product—namely, recommending a product that has yet to be

found worthy of recommendation—can turn users’ belief favorably toward the product and

can thus incentivize experimentation by early users. Accordingly, spamming can be part of

the socially optimal design of a recommendation system.

Second, spamming is effective only when it is properly underpinned by genuine learning.

Spamming can leverage genuine learning to amplify the incentive but cannot work without

genuine learning. This insight has two useful implications. First, the recommender would be

well-advised to scale up spamming only gradually, beginning at a low level upon the release

of a product, when an agent could not credibly believe that much had been learned about

the product. Excessive spamming or highly inflated reviews at an early stage can backfire

and harm the recommender’s reputation. Second, a recommender could raise the level of

genuine learning by investing in independent reviews of a product. Such an investment in

product reviews can directly contribute to the learning on a product (which can then be

shared with future consumers). But it can also substantially increase the credibility with

which the designer can persuade agents to experiment. This indirect benefit could very well

be as important as the direct benefit.

The optimal recommendation policy involves randomly triggered spamming when recom-

mendation is public, as is often the case with product ratings. And in case users can choose

when to check in for a recommendation, the optimal policy features an early blackout (or a

suppressed recommendation) followed by a flurry of spamming and its gradual phase-out—a

dynamics that encourages early agents to wait for sufficient information to accumulate but

not to free ride on other agents’ experimentation. Several extensions show that the general

thrust of our findings is robust to heterogeneity among users with respect to their costs of

experimentation and to the nature of the information learned from experimentation.

32It is important to note that this result is obtained without any restriction on the (finite) number of
messages the designer may employ and that the designer is allowed to randomize over paths of recommen-
dation. That is, she is allowed to “flip a coin” at time 0—unbeknownst to the agents—and decide on a
particular function (αt)t as a function of the outcome. Such “chattering” controls are often useful but not
in this instance.
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Throughout, we have assumed that the recommender pursues a benevolent policy and

does so with full commitment. These assumptions served to identify a social optimal policy

and can be justified if a recommender competes on a fixed fee (e.g., membership fee) and

offers recommendations on a mix of products with varying vintages. Nevertheless, it is worth

exploring what happens if these assumptions are violated. If the recommender is benevolent

but unable to commit, she will spam excessively to the point of losing credibility, and users

will then simply ignore the recommendation and not consume. Consequently, no experi-

mentation occurs, and the outcome coincides with full transparency. If the recommender

can commit but maximizes consumption (in the event that the recommender earns revenue

proportional to consumption),33 then the recommender will follow a policy similar to our

optimal policy except that she will never stop recommending even after a critical level of

belief is passed. The fuller implications of relaxing these assumptions and other aspects of

a recommendation policy remains a subject for future research.

References

[1] Aumann, R.J., M. Maschler and R.E. Stearns, 1995. Repeated Games With Incomplete

Information, Cambridge: MIT Press.

[2] Ausubel, L., 2004. “An Efficient Ascending-Bid Auction for Multiple Objects,” Ameri-

can Economic Review, 94, 1452–1475.

[3] Banerjee, A., 1993. “A Simple Model of Herd Behavior,” Quarterly Journal of Eco-

nomics, 107, 797–817.

[4] Bikhchandani S., D. Hirshleifer and I. Welch, 1992. “A Theory of Fads, Fashion, Custom,

and Cultural Change as Informational Cascades,” Journal of Political Economy, 100,

992–1026.

[5] Cesari, L., 1983. Optimization-Theory and Applications. Problems with ordinary

differential equations, Applications of Mathematics 17, Berlin-Heidelberg-New York:

Springer-Verlag.

[6] Chamley, C. and D. Gale, 1994. “Information Revelation and Strategic Delay in a Model

of Investment,” Econometrica, 62, 1065–1085.

[7] Dai, W., G. Jin, J. Lee and M. Luca, 2014. “Optimal Aggregation of Consumer Ratings:

An Application to Yelp.com,” working paper, Harvard Business School.

33Revenue may be tied to consumption, because a platform may charge a fee for each book or movie
downloaded but also from the advertising profit associated with streaming or downloading.

33



[8] Ely, J., 2015. “Beeps,” mimeo, Northwestern University.

[9] Ely, J., A. Frankel and E. Kamenica, 2015. “Suspense and Surprise,” Journal of Political

Economy, 123, 215–260.

[10] Frick, M. and Y. Ishii, 2014. “Innovation Adoption by Forward-Looking Social Learn-

ers,” working paper, Harvard.

[11] Gershkov A. and B. Szentes, 2009. “Optimal Voting Schemes with Costly Information

Acquisition,” Journal of Economic Theory, 144, 36–68.

[12] Gul, F. and R. Lundholm, 1995. “Endogenous Timing and the Clustering of Agents’

Decisions,” Journal of Political Economy, 103, 1039–1066.

[13] Halac, M., N. Kartik, and Q. Liu, 2014. “Contests for Experimentation,” mimeo,

Columbia University.

[14] Jindal, N. and B. Liu, 2008. “Opinion Spam and Analysis,” Proceedings of the 2008

International Conference on Web Search and Data Mining, ACM, 219–230.

[15] Kamenica E, and M. Gentzkow, 2011. “Bayesian Persuasion,” American Economic Re-

view, 101, 2590–2615.

[16] Keller, G. and S. Rady, 2015. “Breakdowns,” Theoretical Economics, 10, 175–202.

[17] Keller, G., S. Rady and M. Cripps, 2005. “Strategic Experimentation with Exponential

Bandits,” Econometrica, 73, 39–68.

[18] Kremer, I., Y. Mansour, and M. Perry, 2014. “Implementing the “Wisdom of the

Crowd,”” Journal of Political Economy 122, 988–1012.

[19] Luca, M. and G. Zervas, 2014. “Fake It Till You Make It: Reputation, Competition and

Yelp Review Fraud,” mimeo, Harvard Business School.

[20] Mayzlin, D., Y. Dover and J. Chevalier, 2014. “Promotional Reviews: An Empirical

Investigation of Online Review Manipulation,” American Economic Review, 104, 2421–

2455.

[21] Ostrovsky, M. and M. Schwarz, 2010. “Information Disclosure and Unraveling in Match-

ing Markets,” American Economic Journal: Microeconomics, 2, 34–63.

[22] Papanastasiou, Y., K. Bimpikis and N. Savva, 2014. “Crowdsourcing Exploration,”

mimeo, London Business School.

34



[23] Rayo, L. and I. Segal, 2010. “Optimal Information Disclosure,” Journal of Political

Economy 118, 949–987.

[24] Renault, J., E. Solan, and N. Vieille, 2014. “Optimal Dynamic Information Provision,”

arXiv:1407.5649 [math.PR].

[25] Seierstad, A. and K. Sydsæter, 1987. Optimal Control Theory with Economic Applica-

tions, Amsterdam: North-Holland.

[26] Simon, L.K. and M. Stinchcombe, 1989. “Extensive Form Games in Continuous Time:

Pure Strategies,” Econometrica, 57, 1171–1214.

[27] Smith, L. and P. Sørensen, 2000. “Pathological Outcomes of Observational Learning,”

Econometrica, 68, 371–398.

[28] Smith, L., P. Sørensen, and J. Tian, 2014. “Informational Herding, Optimal Experi-

mentation, and Contrarianism,” mimeo, University of Wisconsin.

Appendix

Proof of Proposition 1. To analyze this tradeoff precisely, we reformulate the designer’s prob-

lem to conform to the standard optimal control framework. First, we switch the roles of vari-

ables so that we treat ℓ as a “time” variable and t(ℓ) := inf{t|ℓt ≤ ℓ} as the state variable,

interpreted as the time it takes for a posterior ℓ to be reached. Up to constant (additive and

multiplicative) terms, the designer’s problem is written as: For problem i = SB, FB,

sup
α(ℓ)

∫ ℓ0

0

e−rt(ℓ)

(

1− k

ℓ
− ρ

(
1− k

ℓ

)
+ 1

ρ+ α(ℓ)

)

dℓ

s.t. t(ℓ0) = 0,

t′(ℓ) = − 1

λ(ρ+ α(ℓ))ℓ
,

α(ℓ) ∈ Ai(ℓ),

where ASB(ℓ) := [0, ᾱ(ℓ)], and AFB := [0, 1].

This transformation enables us to focus on the optimal recommendation policy directly

as a function of the posterior ℓ. Given the transformation, the admissible set no longer

depends on the state variable (since ℓ is no longer a state variable), thus conforming to the

standard specification of the optimal control problem.
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Next, we focus on u(ℓ) := 1
ρ+α(ℓ)

as the control variable. With this change of variable,

the designer’s problem (both second-best and first-best) is restated, up to constant (additive

and multiplicative) terms: For i = SB, FB,

sup
u(ℓ)

∫ ℓ0

0

e−rt(ℓ)

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

dℓ, (16)

s.t. t(ℓ0) = 0,

t′(ℓ) = −u(ℓ)

λℓ
,

u(ℓ) ∈ U i(ℓ),

where the admissible set for the control is USB(ℓ) := [ 1
ρ+ᾱ(ℓ)

, 1
ρ
] for the second-best problem

and UFB(ℓ) := [ 1
ρ+1

, 1
ρ
]. With this transformation, the problem becomes a standard linear

optimal control problem (with state t and control α). A solution exists by the Filippov-Cesari

theorem (Cesari, 1983).

We shall thus focus on the necessary condition for optimality to characterize the optimal

recommendation policy. To this end, we write the Hamiltonian:

H(t, u, ℓ, ν) = e−rt(ℓ)

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

− ν
u(ℓ)

λℓ
. (17)

The necessary optimality conditions state that there exists an absolutely continuous function

ν : [0, ℓ0] such that, for all ℓ, either

φ(ℓ) := λe−rt(ℓ)ℓ

(

ρ

(

1− k

ℓ

)

+ 1

)

+ ν(ℓ) = 0, (18)

or else u(ℓ) = 1
ρ+ᾱ(ℓ)

if φ(ℓ) > 0 and u(ℓ) = 1
ρ
if φ(ℓ) < 0.

Furthermore,

ν ′(ℓ) = −∂H(t, u, ℓ, ν)

∂t
= re−rt(ℓ)

((

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

(ℓ− a.e.). (19)

Finally, transversality at ℓ = 0 implies that ν(0) = 0 (since t(ℓ) is free) .

Note that

φ′(ℓ) = −rt′(ℓ)λe−rt(ℓ)ℓ

(

ρ

(

1− k

ℓ

)

+ 1

)

+ λe−rt(ℓ)

(

ρ

(

1− k

ℓ

)

+ 1

)

+
ρkλe−rt(ℓ)

ℓ
+ ν ′(ℓ),
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or using the formulas for t′ and ν ′,

φ′(ℓ) =
e−rt(ℓ)

ℓ
(r (ℓ− k) + ρλk + λ (ρ (ℓ− k) + ℓ)) , (20)

so φ cannot be identically zero over some interval, as there is at most one value of ℓ for which

φ′(ℓ) = 0. Every solution must be “bang-bang.” Specifically,

φ′(ℓ)
>
=
<
0 ⇔ ℓ

>
=
<
ℓ̃ :=

(

1− λ(1 + ρ)

r + λ(1 + ρ)

)

k > 0.

Also, φ(0) = −λe−rt(ℓ)ρk < 0. So φ(ℓ) < 0 for all 0 < ℓ < ℓ∗, for some threshold ℓ∗ > 0, and

φ(ℓ) > 0 for ℓ > ℓ∗. The constraint u(ℓ) ∈ U i(ℓ) must bind for all ℓ ∈ [0, ℓ∗) (a.e.), and every

optimal policy must switch from u(ℓ) = 1/ρ for ℓ < ℓ∗ to 1/(ρ + ᾱ(ℓ)) in the second-best

problem and to 1/(ρ + 1) in the first-best problem for ℓ > ℓ∗. It remains to determine the

switching point ℓ∗ (and establish uniqueness in the process).

For ℓ < ℓ∗,

ν ′(ℓ) = −r

ρ
e−rt(ℓ)ℓ

1
∆
−1, t′(ℓ) = − 1

ρλℓ
,

so that

t(ℓ) = C0 −
1

ρλ
ln ℓ, or e−rt(ℓ) = C1ℓ

r
ρλ ,

for some constants C1, C0 = −1
r
lnC1. Note that C1 > 0; or else C1 = 0 and t(ℓ) = ∞ for

every ℓ ∈ (0, ℓ∗), which is inconsistent with t(ℓ∗) < ∞. Hence,

ν ′(ℓ) = −r

ρ
C1ℓ

r
ρλ ,

and so (using ν(0) = 0),

ν(ℓ) = − rλ

r + ρλ
C1ℓ

r
ρλ

+1,

for ℓ < ℓ∗. We now substitute ν into φ, for ℓ < ℓ∗, to obtain

φ(ℓ) = λC1ℓ
r
ρλ ℓ

(

ρ

(

1− k

ℓ

)

+ 1

)

− rλ

r + ρλ
C1ℓ

r
ρλ

+1.

We now see that the switching point is uniquely determined by φ(ℓ) = 0, as φ is continuous

and C1 cancels. Simplifying,
k

ℓ∗
= 1 +

λ

r + ρλ
,

which leads to the formula for p∗ in the Proposition (via ℓ = p/(1 − p) and k = c/(1 − c)).

We have identified the unique solution to the program for both first-best and second-best,
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and shown in the process that the optimal threshold p∗ applies to both problems.

The second-best implements the first-best if p0 ≥ c, since then ᾱ(ℓ) = 1 for all ℓ ≤ ℓ0. If

not, then ᾱ(ℓ) < 1 for a positive measure of ℓ ≤ ℓ0. Hence, the second-best implements a

lower and thus a slower experimentation than does the first-best.

As for sufficiency, we use Arrow sufficiency theorem (Seierstad and Sydsæter, 1987, The-

orem 5, p.107). This amounts to showing that the maximized Hamiltonian Ĥ(t, ℓ, ν(ℓ)) =

maxu∈U i(ℓ) H(t, u, ℓ, ν(ℓ)) is concave in t (the state variable), for all ℓ. To this end, it suf-

fices to show that the terms inside the big parentheses in (17) are negative for all u ∈ U i,

i = FB, SB. This is indeed the case:

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

≤1− k

ℓ
−min

{(

ρ

(

1− k

ℓ

)

+ 1

)
1

1 + ρ
,

(

ρ

(

1− k

ℓ

)

+ 1

)
1

ρ

}

=−min

{
k

(1 + ρ)ℓ
,
1

ρ

}

< 0,

where the inequality follows from the linearity of the expression in u(ℓ) and the fact that

u(ℓ) ∈ U i ⊂ [ 1
ρ+1

, 1
ρ
], for i = FB, SB. The concavity of maximized Hamiltonian in t, and

thus sufficiency of our candidate optimal solution, then follows. �

Proof of Proposition 2. Write hP
t for the public history up to time t, and ht for the private

history of the designer — which includes whether or not she received positive feedback by

time t. Let p(ht) denote the designer’s belief given her private history.

- Suppose that, given some arbitrary public history hP
t , the agent is willing to buy at t.

Then, they are willing to buy if nothing more is said afterwards. To put it differently,

the designer can receive her incentive-unconstrained first-best after such a history, and

since this is an upper bound on her payoff, we might assume that this is what she does

(full experimentation as long as she wishes after such a history).

- It follows that the only public histories that are non-trivial are those after which the

agents are not yet willing to buy. Given ht, the designer chooses (possibly randomly)

a stopping time τ , which is the time at which she first tell the agent to buy (she then

gets her first-best). Let F (τ) denote the distribution that she uses to tell them to buy

at time τ conditional on her not having had good news by time τ ; let Ft(τ) denote

the distribution that she uses if she had positive news precisely at time t ≤ τ . We

will assume for now that the designer emits a single “no buy” recommendation at any

given time; we will explain why this is without loss as we proceed.
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- Note that, as usual, once the designer’s belief p(ht) drops below p∗, she might as well use

“truth-telling:” tell agents to abstain from buying unless she has received conclusive

news. This policy is credible, as the agent’s belief is always weakly above the designer’s

belief who has not received positive news, conditional on hP
t . And again, it gives the

designer her first-best payoff, so given that this is an upper bound, it is the solution.

It follows immediately that F (t∗) > 0, where t∗ is the time it takes for the designer’s

belief to reach p∗ absent positive news, given that µt = ρ until then. If indeed F (t) = 1

for some t ≤ t∗, then the agent would not be willing to buy conditional on being told

to do so at some time t ≤ max{t′ : t′ ∈ supp(F )}. (His belief would have to be no more

than his prior for some time below this maximum, and this would violate c > p0.) Note

that Ft(t
∗) = 1 for all t ≤ t∗: conditional on reaching time t∗ at which, without good

news, the designer’s belief would make telling the truth optimal, there is no benefit

from delaying good news if it has occurred. Hence, at any time t > t∗, conditional on

no buy recommendation (so far), it is common knowledge that the designer has not

received good news.

- The final observation: whenever agents are told to buy, their incentive constraint

must be binding (unless it is common knowledge experimentation has stopped and

the designer has learnt that the state is good). If not at some time t, the designer

could increase F (t) (the probability with which she recommends to buy at that date

conditional on her not having received good news yet): she would get her first-best

payoff from doing so; keeping the hazard rate F (dt′)/(1 − F (t′)) fixed at later dates,

future incentives would not change.

Let

H(τ) :=

∫ τ

0

∫ t

0

λρe−λρs(1− F (s))dsFs(dt).

This (non-decreasing) function is the probability that the agent is told to buy for the first

time at some time t ≤ τ given that the designer has learnt that the state is good at some

earlier date s ≤ t. Note that H is constant on τ > t∗, and that its support is the same as

that of F . Because H(0) = 0, F (0) = 0 as well.

Let P (t) denote the agent’s belief conditional on the (w.l.o.g., unique) history hP
t such

that he is told to buy at time t for the first time. We have, for any time t in the support of

F ,

P (t) =
p0
(
H(dt) + e−ρλtF (dt)

)

p0 (H(dt) + e−ρλtF (dt)) + (1− p0)F (dt)
.

Indifference states that

P (t) = c, or L(t) = k,
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where L(t) is the likelihood ratio

L(t) = ℓ0
H(dt) + e−ρλtF (dt)

F (dt)
.

Combining, we have that, for any t in the support of F ,

(
k/ℓ0 − e−ρλt

)
F (dt) = H(dt).34 (21)

This also holds for any t ∈ [0, t∗], as both sides are zero if t is not in the support of F . Note

that, by definition of H , using integration by parts,

H(τ) =

∫ τ

0

λρe−λρt(1− F (t))Ft(τ)dt.

Integration by parts also yields that

∫ τ

0

(k/ℓ0 − e−ρλt)F (dt) = (k/ℓ0 − e−ρλτ )F (τ)−
∫ τ

0

λρe−λρtF (t)dt.

Hence, given that H(0) = F (0) = 0, we may rewrite the incentive compatibility constraint

as, for all t ≤ t∗,

(k/ℓ0 − e−ρλτ )F (τ) =

∫ τ

0

λρe−λρt((1− F (t))Ft(τ) + F (t))dt,

and note that this implies, given that Ft(τ) ≤ 1 for all t, τ ≥ t, that

(k/ℓ0 − e−ρλτ )F (τ) ≤
∫ τ

0

λρe−λρtdt = 1− e−λρτ ,

so that

F (t) ≤ 1− e−λρt

k/ℓ0 − e−ρλt
, (22)

an upper bound that is achieved for all t ≤ t∗ if, and only if, Ft(t) = 1 for all t ≤ t∗.

Before writing the designer’s objective, let us work out some of the relevant continuation

34If multiple histories of “no buy” recommendations were considered, a similar equation would hold after
any history hP

t for which “buy” is recommended for the first time at date t, replacing F (dt), H(dt) with
F̃ (hP

t ), H̃(hP
t ); F̃ (hP

t ) is then the probability that such a history is observed without the designer having
received good news by then, while H̃(hP

t ) stands for the probability that it does with the designer having
observed good news by then, yet producing history hP

t . Define then F,H : R+ → R+ as (given t) the
expectation F (t) (resp. H(t)) over all public histories hP

t for which t is the first time at which “buy”
is recommended. Taking expectations over such histories hP

t gives (21). The remainder of the proof is
unchanged.
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payoff terms. First, t∗ is given by our familiar threshold defined by the belief ℓt∗ = k λρ+r
λ(1+ρ)+r

;

given that, until t∗, conditional on no buy recommendation, experimentations occurs at rate

ρ, it holds that e−λρt∗ = ℓt∗/ℓ
0.

From time t∗ onward, if the designer has not recommended to buy yet, there cannot have

been good news. Experimentation only occurs at rate ρ from that point on. This history

contributes to the expected total payoff the amount

p0(1− F (t∗))e−(r+λρ)t∗ λρ

r + λρ

1− c

r
.

Indeed, this payoff is discounted by the factor e−rt∗ ; it is only positive if the state is good, and

it is reached with probability p0(1−F (t∗))e−λρt∗ : the probability that the state is good, the

designer has not received any good news and has not given a buy recommendation despite

not receiving any good news. Finally, conditional on that event, the continuation payoff is

equal to ∫ ∞

0

λρe−rs−λρsds · 1− c

r
=

λρ

r + λρ

1− c

r
.

Next, let us consider the continuation payoff if the designer emits a buy recommendation at

time τ ≤ t∗, despite not having received good news. As mentioned, she will then experiment

at maximum rate until her belief drops below p∗. The stopping time τ + t that she will pick

must maximize her expected continuation payoff from time τ onward, given her belief pτ ,

that is,

W (τ) = max
t

{

pτ

(

1− r

λρ+ r
e−(λ(1+ρ)+r)t

)
1− c

r
− (1− pτ )(1− e−rt)

c

r

}

.

The second term is the cost incurred during the time [τ, τ + t] on agents when the state

is bad. The first is the sum of three terms, all conditional on the state being good: (i)

(1 − e−rt)(1 − c)/r, the flow benefit on agents from experimentation during [τ, τ + t]; (ii)

(1 − e−λ(1+ρ)t)e−rt(1 − c)/r, the benefit afterwards in case good news has arrived by time

τ + t; (iii) e−(r+λ(1+ρ))t λρ
r+λρ

(1 − c)/r, the benefit from the free experimentation after time

τ + t, in case no good news has arrived by time τ + t. Taking first-order conditions, this

function is uniquely maximized by

t(τ) =
1

λ(1 + ρ)
ln

(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)

.

Note that we can write W (τ) = pτW1(τ)−(1−pτ )W0(τ), where W1(τ) (W0(τ)) is the benefit

(resp., cost) from the optimal choice of t given that the state is good (resp., bad). Plugging
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in the optimal value of t gives that

w1(τ) := rW1(τ)/(1− c) = 1− r

λρ+ r

(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)−1− r
λ(1+ρ)

,

and

w0(τ) := rW0(τ)/c = 1−
(
ℓτ
k

λ(1 + ρ) + r

λρ+ r

)− r
λ(1+ρ)

.

Note that, given that absent any good news by time t, we have ℓt = ℓ0e−ρt. It follows that

k(1− w0(t))− ℓ0e−λρt(1− w1(t)) = k

(

1− r

λ(1 + ρ) + r

)(
k

ℓt

λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

= Ke
rρ

1+ρ
t, (23)

with

K := k
λ(1 + ρ)

λ(1 + ρ) + r

(
k

ℓ0
λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

.

For future reference, note that, by definition of ℓt∗ ,

Ke
rρ

1+ρ
t∗ = k

λ(1 + ρ)

λ(1 + ρ) + r

(
k

ℓt∗

λρ+ r

λ(1 + ρ) + r

) r
λ(1+ρ)

= k
λ(1 + ρ)

λ(1 + ρ) + r
. (24)

We may finally write the objective. The designer wishes to choose {F, (Fs)
t∗

s=0} so as to

maximize

J = p0
∫ t∗

0

e−rt

(
1− c

r
H(dt) + e−ρλtW1(t)F (dt)

)

− (1− p0)

∫ t∗

0

e−rtW0(t)F (dt) + p0(1− F (t∗))e−(r+λρ)t∗ λρ

r + λρ

1− c

r
.

The first two terms are the payoffs in case a buy recommendation is made over the interval

[0, t∗] and is split according to whether the state is good or bad; the third term is the benefit

accruing if no buy recommendation is made by time t∗.

Multiplying by r
1−c

ert
∗

1−p0
, this is equivalent to maximizing

∫ t∗

0

e−r(t−t∗)
(
ℓ0H(dt) + ℓ0e−ρλtw1(t)F (dt)− kw0(t)F (dt)

)
+ ℓ0(1− F (t∗))e−λρt∗ λρ

r + λρ
.
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We may use (21) (as well as ℓ0e−λρt∗ = ℓt∗ = k λρ+r
λ(1+ρ)+r

) to rewrite this as

∫ t∗

0

e−r(t−t∗)
(
k(1− w0(t))− ℓ0e−ρλt(1− w1(t))

)
F (dt) + (1− F (t∗))

λρk

λ(1 + ρ) + r
.

Using (23), and ignoring the constant term λρk
λ(1+ρ)+r

(irrelevant for the maximization) this

gives

ert
∗

K

∫ t∗

0

e−
r

1+ρ
tF (dt)− λρk

λ(1 + ρ) + r
F (t∗),

or, integrating by parts and using that F (0) = 0, as well as (24),

ert
∗ rK

1 + ρ

∫ t∗

0

e−
r

1+ρ
tF (t)dt +

(

k
λ(1 + ρ)

λ(1 + ρ) + r
− k

λρ

λ(1 + ρ) + r

)

F (t∗),

or finally (using (24) once more to eliminate K)

λk

λ(1 + ρ) + r

(∫ t∗

0

re−
r

1+ρ
(t−t∗)F (t)dt+ F (t∗)

)

.

Note that this objective function is increasing pointwise in F . Hence, it is optimal to set F

as given by its upper bound given by (22), namely, for all t ≤ t∗,

F (t) =
ℓ0(1− e−λρt)

k − ℓ0e−ρλt
,

and for all t ≤ t∗, Ft(t) = 1. �

Proof of Proposition 3. Part (i): Under full transparency, agents who check in at t realize

payoff

Ut = e−rt(ℓ0 − ℓt).

Note that the timing at which agents check in is irrelevant for belief updating (because those

who check in never experiment), so

ℓt = ℓ0e
−λρt.

The function Ut is quasi-concave in t, with a maximum achieved at the time

tFT = − 1

ρλ
ln

ℓ∗

ℓ0
, ℓFT :=

rℓ0
r + λρ

.

Part (ii): This is a perturbation argument around full transparency. Starting from

this policy, consider the following modification. At some time t2 (belief ℓ2), the designer
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is fully transparent (α2 = 0). An instant ∆ > 0 before, however, he recommends to buy

with probability α1 to some fraction κ of the queue Qt1 = t1, so that the agent is indifferent

between checking in and waiting until time t2 = t1 +∆:

ℓ0 − ℓ1 − α1(k − ℓ1) = e−r∆(ℓ0 − ℓ2), (25)

where

ℓ1 = ℓ0e−λρt1 ,

and

ℓ2 = ℓ1e
−λ(ρ∆+κα1t1).

We solve (25) for κ (given ℓ2), and insert into the payoff from this policy:

Wκ = e−rt2

(

(ℓ0 − ℓ2)t2 +
ℓ0

r
− ℓ2

r + λρ

)

.

Transparency is the special case κ = ∆ = 0, t1 = t∗, and we compute a Taylor expansion of

the gain for small enough ∆ with ℓ1 = ℓ∗ + τ∆ and α1 = a1∆
2, with τ, a1 to be chosen. We

pick a1 so that κ = 1, which gives

a1 =
ρ(r + λρ)(λℓ0ρr − 2τ(r + λρ))

2ρ(k(λρ+ r)− ℓ0r)− 2ℓ0r ln
(

r
r+λρ

) ,

and choose τ to maximize the first-order term from the expansion, namely, we set

τ =
λℓ0ρ2r (k(λρ+ r)2 − ℓ0r(λρ+ r)− ℓ0rλ)

(λρ+ r)2
(

ρ(k(λρ+ r)− ℓ0r)− ℓ0r ln
(

r
λρ+r

)) .

Plugging back into the expansion, we obtain

Wκ −W0 =
λ2ℓ0

3
ρ3r3

(

(λρ+ r) ln
(

r
λρ+r

)

− λρ
)

(k(λρ+ r)2 − ℓ0r(λρ+ λ+ r))

(ρ+ 1)(λρ+ r)5
(

ρ(k(λρ+ r)− ℓ0r)− ℓ0r ln
(

r
λρ+r

)) ∆+O(∆2),

and the first term is of the same sign as

ℓ0r(λρ+ r) + ℓ0rλ− k(λρ+ r)2.

Note that this expression is quadratic and concave in (λρ+ r), and positive for (λρ+ r) = 0.

Hence it is positive if and only if it is below the higher of the two roots of the polynomial,
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i.e., if and only if

ρ ≤ 1

λ

(

rℓ0 +
√
rℓ0

√
4kλ+ ℓ0

2k
− r

)

.

Part (iii) is more involved and is provided in Supplementary Material. �
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Learning”

Yeon-Koo Che and Johannes Hörner

April 28, 2015

1 Endogenous Entry: Proof of Proposition 3

Given the optimality of revealing good news whenever it is received, we can without loss

focus on the agents’ check in times and their experimentation decisions as the two control

variables. The optimal policy is therefore described by a process (Xt, αt)t where Xt ≤ t is

the right-continuous measure of all agents that have checked in by time t, and αt ∈ [0, 1]

is the probability of consumption (or experimentation) by agents who check in at time t,

conditional on having received no news by t. As will be seen below, the set of all such

processes is not rich enough to admit an optimal mechanism. We thus consider a richer

space of policies.

Specifically, we allow for the possibility that a mass of agents check in instantaneously—

that is, without elapse of any real time—but sequentially experiment at rates that depend

on the ℓ. Formally, we enrich the policy space so that whenever Xt jumps at t (so a mass of

agents check in at t), we allow the designer to run a second “virtual” clock s ∈ [0, mt], where

mt := Xt −X−
t , where X

−
t := limt′↑tXt′ . This virtual clock does not take any real time, but

can be used to sequence the agents’ check in and experimentation decisions.1

Formally, we use (Xs
t , α

s
t ) to denote the enriched policy, where Xs

t is the mass of agents

who check in by real time t and virtual time s, and αs
t is the experimentation probability

for agents who check in at (t, s). For consistency, we require Xs
t ≥ X−

t′ and Xmt

t = Xt.

The virtual clock can be used to split the atom into flows of agents checking in sequentially,

1The need for the virtual clock, or the enrichment of the strategy space more generally, arises from the
peculiarity of the continuous time game that the soonest next time after any time t is not well defined.
To avoid nonexistence, therefore, it is sometimes necessary to allow for sequential moves that do not take
any real time. See Simon and Stinchcombe (1989) and Ausubel (2004) for adopting similar enrichment of
strategies to guarantee existence of an equilibrium. Note also that the need for the virtual clock disappears
once we formulate the policy as a function of ℓ, in which case a split mass is captured by a time “state”
variable t(ℓ) that is constant for an interval of ℓ’s.
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in which case Xs
t admits density for all s ∈ (0, mt). In such a case, we shall without loss

assume that Xs
t = s+X−

t . The virtual clock also admits the entire mass of agents checking

in simultaneously, in which case Xs
t = Xt for all s. The current framework also allows for

the mass to be split in finite number of lumps.

Throughout, we fix an optimal policy (X,α) and derive properties it must satisfy.

Lemma 1. At the optimal policy, t∗ := inf{t ≥ 0 | Xt > 0} > 0. That is, a mass of agents

are induced to wait for a strictly positive amount of time before they check in.

Proof. Let (ℓt, αt) denote the optimal policy. There exists T > 0 such that the surplus

accruing to agents checking in at T :

e−rT (ℓ0 − ℓT − αT (k − ℓT ))

is strictly positive, or else the policy will be even inferior to the full transparency. To induce

agents to check in any t < T , we must have

e−rt(ℓ0 − ℓt − αt(k − ℓt)) ≥ e−rT (ℓ0 − ℓT − αT (k − ℓT )).

The LHS of this inequality is no greater than ℓ0 − ℓt, which goes to zero as t → 0. This

proves that there exists t∗ > 0 such that no agents will check in at t < t∗. �

Lemma 2. Suppose t̂ ∈ supp(X) and t̂ > X−
t̂
:= limt↑t̂Xt. Then, X jumps at t̂.

The proof consists of two steps.

Step 1. Suppose X does not jump at t̂. Then, there exists ǫ > 0 such that positive density

of agents check in t ∈ (t̂, t̂+ ǫ) and experiment along the locus

α̌(ℓt) := 1− r(k − ℓ0)

r(k − ℓt)− λℓρ
,

and the belief evolves according to ℓ̇ = −λ(ρ+ α̌(ℓt))ℓt.

Proof. For ǫ > 0 sufficiently small, Xt admits density xt > 0 for t ∈ (t̂, t̂ + ǫ). Consider

the agents who check in during this time interval. We shall consider the implication of the

property of the optimal policy that the designer cannot be better off by redistributing within

this time interval while maintaining their incentive to comply with the redistribution. Fix

any t ∈ (t̂, t̂ + ǫ), and let t′ = t + 2dt < t∗ + ǫ, and the designer reduces the flow of the

agents who check in during [t, t + dt) by δ < xt and increases the flow of the agents who

check in during [t+dt, t+2dt) by the same δ, while ensuring that the agents are indifferent

over the check in times during that interval. This operation is feasible for sufficiently small
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δ ∈ (0, xt). For the original policy to be optimal, such an operation should not lower the

posterior (in likelihood) ℓt′ (since a lower ℓt′ means a higher learning benefit which is strictly

preferred under commitment).

We thus require that the operation cannot lower ℓt′ . To study the effect of the operation

on ℓt′ , let α1 := αt, α2 := αt+dt, α3 := αt+2dt, and ℓ1 := ℓt, ℓ2 := ℓt+dt, ℓ3 := ℓt+2dt. A few

conditions must be satisfied:

- Agents are indifferent over consuming at time t and t+ dt, i.e.,

ℓ0 − ℓ1 − α1(k − ℓ1) = e−rdt(ℓ0 − ℓ2 − α2(k − ℓ2)).

- Since the flow of consumers picking time t is (x − δ) while the flow at time t + dt is

(x+ δ), the beliefs at ℓ2 and ℓ3 must satisfy

ℓ2 = ℓ1e
−λ(ρ+(x−δ)α1)dt,

and

ℓ3 = ℓ2e
−λ(ρ+(x+δ)α2)dt.

We now fix ℓ1 and α1 (and hence the utility for a regular consumer to choose the first instant),

and solve this system for ℓ2, ℓ3, α2, as a function of δ, α1, ℓ1. Differentiate ℓ3 with respect to

δ, and evaluate the derivative at δ = 0 to get:

sgn

(
∂ℓ3
∂δ

∣
∣
∣
∣
δ=0

)

:= sgn

(

(α(ℓt)− αt)(dt)
2 + o((dt)2)

)

.

This shows that if αt > α̌(ℓt), there exists δ ∈ (0, xt) and t′ > 0 sufficiently small such

that the redistribution of agents lowers the posterior at t′, a contradiction to its optimality.

Hence, we conclude that αt ≤ α̌(ℓt) for any t ∈ T0.

Next suppose αt < α̌(ℓt). Then, since Xt < t for all t ∈ (t̂, t̂+ ǫ), a perturbation from the

optimal policy considered above, with δ < 0 (meaning shifting forward the check-in time of

some flow of agents), is feasible and will also lower the posterior, contradicting the optimality

of the original policy.

Given the experimentation policy follows the locus α̌(·), the belief must follow the law of

motion. �

Step 2. X must jump at t̂.

Proof. By Step 1, for some ǫ > 0, a positive flow of agents check in at each t ∈ (t̂, t̂+ ǫ) and

experiment along the locus α̌(ℓt) := 1 − r(k−ℓ0)
r(k−ℓt)−λℓρ

. For the optimal policy to be incentive
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compatible, the agents must be indifferent along the locus α̌(·). In particular, the payoff of

agents who check in at t ∈ (t̂, t̂+ ǫ),

e−rt(ℓ0 − ℓt − α̌(ℓt)(k − ℓt)), (1)

must be constant in t, where the belief ℓt evolves according to ℓ̇ = −λ(ρ+ α̌(ℓt))ℓt. One can

check that this is not the case. In particular, the payoff (1) decreases in t, which contradicts

incentive compatibility. �

Lemma 3. If X jumps at t̂, then Xs
t̂
admits no atom at s ∈ [0, mt̂]. In other words, any

atom of X[·] is split into a flow of agents checking in continuously according to the virtual

clock.

Proof. Suppose to the contrary that X
[·]
t̂

jumps at ŝ ∈ [0, mt̂], and let m := X ŝ
t̂
− lims↑ŝX

s
t̂

be the mass of agents who experiment simultaneously with probability α > 0 at the virtual

clock s = ŝ. These agents enjoy the expected payoff of

e−rt̂(ℓ0 − ℓŝt̂ + α(k − ℓŝt̂)),

where ℓŝ
t̂
:= lims↑ŝ ℓ

s
t̂
is the belief just before (t̂, ŝ), and ℓŝ+ds

t̂
:= ℓŝ

t̂
e−λ(αm+O(ds)) is the belief

just after, for small ds > 0. Consider now a deviation in which the designer splits mass

δ ∈ (0, m) out of mass m and move it by ds in the virtual clock. After the experimentation

by the first mass m− δ, the belief becomes

ℓ̂ŝ+ds
t̂

= ℓŝt̂e
−λ(α(m−δ)+O(ds)),

which is smaller than, and bounded away from, ℓŝ
t̂
for any ds > 0. The second mass δ of

agents can be induced to experiment at rate α̂ such that

e−rt̂(ℓ0 − ℓ̂ŝ+ds
t̂

+ α̂(k − ℓ̂ŝ+ds
t̂

)) = e−rt̂(ℓ0 − ℓŝt̂ + α(k − ℓŝt̂)).

Since ℓ̂ŝ+ds
t̂

is smaller than and is bounded away from ℓŝ
t̂
, it follows that α̂ − α is bounded

away from zero for any ds. Hence, the deviation results in the belief,

ℓŝ
t̂
e−λ(α(m−δ)+α̂δ+O(ds)) < ℓŝ

t̂
e−λ(αm+O(ds)) = ℓŝ+ds

t̂
,

for ds small enough. This is a contradiction to the optimality of the original policy. We

therefore conclude that Xs
t̂
is atomless in s. �

Remark 3. The argument of Lemma 3 also implies that the optimal policy is not well defined

without the enriching of the space. Lemmas 1 and 2 imply that a positive of mass of agents

is induced to wait before they check in, and check in at some time t∗ > 0. But it is never
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optimal for them to check in all simultaneously. The argument given in the proof of Lemma

3 suggests that it is optimal to split the mass and move them later, with an arbitrarily small

delay.

We next investigate an atom X . As Lemma 3 suggests, any atom must be split. We

derive a necessary condition for the endpoint of the atom split.

Lemma 4. Let (αs
t , ℓ

s
t)s∈[0,mt] be the process of experimentation and beliefs associated with a

split atom at t. Then, defining

ᾱ(ℓ) :=
rℓ0 − ℓ(ρλ + r)

rk − ℓ(ρλ+ r)
,

it must hold that there exists a (unique) (αs
t , ℓ

s
t) with s ∈ [0, mt] such that ℓst = α̂(ℓst ).

Proof. Let there be a mass at t, with Xt − X−
t > 0, and Lemma 3, the mass is split with

(α−, ℓ−) and (α+, ℓ+) denoting start and end points of the split mass. We shall consider a

variation which moves the a small segment of the mass forward or backward slightly, and ask

when such a variation is profitable. Specifically, we move a segment {Xs
t }ts′ of agents with

sufficiently small mass m := X t
t −Xs′

t forward in time by a small interval dt > 0 subject to

the constraint that the moved agents enjoy the same discounted payoffs, and that the belief

at time t + dt remain the same as before, namely ℓ+ − λρℓ+dt. We then derive the belief

at (t, s′), denoted ℓ′, that would allow for such a move to be feasible. If ℓ′ > ℓs
′

t , then this

means that starting from ℓs
′

t , it is indeed possible to move the segment that would result in

the belief at t+dt being strictly lower than ℓ+, a welfare improvement. So, the optimality of

the original policy will require that ℓ′ ≤ ℓs
′

t . We shall show that this requirement produces

a condition: α+ ≤ ᾱ(ℓ+).

To begin, consider the variation. First, we require the agents involved in the moved

segment to be indifferent to the move. In particular, the agents at the end point of the

moved split must enjoy the utility equal to:

Ut = e−rt
(
ℓ0 − ℓ+ − α+(k − ℓ+)

)
.

Upon differentiating, this means that

(k − ℓ+)dα+ = ((1− α+)ρλℓ+ − r(ℓ0 − ℓ+ − α+(k − ℓ+)))dt, (2)

using that dℓ+ = −λρℓ+dt, which follows from the requirement that the belief at t+dt must

be equal to ℓ+ − λρℓ+dt, the level that would prevail at t+ dt had there been no variation.

Meanwhile, the agents involved in the split atom must be indifferent along the process

(ασ, ℓσ)σ∈[0,m], where σ is the new virtual clock that is run to sequence the agents who are
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moved. Let (α1, ℓ1) := (α0, ℓ0) be the start point of the moved agents. The end point is

(αm, ℓm) = (α+, ℓ+). The indifference means that

ℓ0 − ℓσ − ασ(k − ℓσ) = ℓ0 − ℓ+ − α+(k − ℓ+),

for all σ ∈ [0, m]. Hence,

ασ = α(ℓσ) :=
h− ℓσ

k − ℓσ
, (3)

where h := ℓ+ + α+(k − ℓ+).

Now, the equation
dℓσ

ds
= −λℓσα(ℓσ)

can be solved for the virtual time s(ℓ) that it takes to reach a given belief:

s′(ℓ) = − k − ℓ

λℓ(h− ℓ)
,

which gives, along the curve,

s(ℓ) = C − k ln ℓ+ (h− k) ln(h− ℓ)

λh
, C ∈ R.

Now recall that s(ℓ+)− s(ℓ1) = m. We therefore obtain:

m =
k ln ℓ1 + (h− k) ln(h− ℓ1)

λh
− k ln ℓ+ + (h− k) ln(h− ℓ+)

λh
. (4)

We may derive dℓ1 from this expression, by totally differentiating with respect to α+ and

ℓ+, using (2). This yields (as a change for a given dt)

dℓ1 =

ℓ1 (h− ℓ1)

(
k(h−ℓ0)r

(
ln
(

h−ℓ+

h−ℓ1

)
+ln( ℓ1

ℓ+
)
)

h
− hλρ(h−ℓ1)(k−ℓ+)−(h−ℓ0)(ℓ+−ℓ1)r(h−k)

(h−ℓ+)(h−ℓ1)

)

h (k − ℓ1)
dt+ o(dt).

We now consider doing this for a small change m. That is, we are considering delaying by dt

the experimentation performed by a small mass m (that is, picking a small measure of those

agents supposed to check in, and delaying this checking-in –making sure they are willing to

wait). To be clear, the change in m is small (so that Taylor expansions apply to (4)), but

given this m, we take dt to be small (so that the previous differential holds approximately).

Expanding ℓ1 from (4) in m gives that (in terms of m)

ℓ1 = ℓ+ + λα+ℓ+m+ o(m).
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This is the impact of the mass m on the belief at the end of the splitting. We now delay their

experimentation by dt, and use the expression for dℓ1. Because some background learning

would have occurred after the original splitting during the dt interval, to evaluate the new

belief at t, we must account for the learning. To obtain the effect on the new belief at t

consistent with the move, we are moving backward in time, so we must add ρλℓ1dt (we had

already subtract λρℓ+dt).2 In sum, the effect on the belief that must prevail at t for the

above variation to be possible must equal:

dℓ1 + λρℓ1dt =
ℓ+

k − ℓ+
(
(α+k − ℓ0)r + (1− α+)ℓ+(r + λρ)

)
λm+ o(m).

If this expression were positive, this means that the new belief at t consistent with this move

is higher than the original belief at (t, s′), meaning that it would be possible to move the

agents in a way that keeps the incentives of all agents intact and yields a lower belief at

t + dt. Since the latter move would be strictly profitable for the designer, the optimality of

the original policy requires the expression above to be nonpositive, or

α+ ≤ rℓ0 − ℓ+(ρλ+ r)

rk − ℓ+(ρλ+ r)
.

Similar reasoning applies at the start of the atom splitting, pushing backward in time by dt

a small mass m of experimenters. For this not be profitable, we then get

α− ≥ rℓ0 − ℓ−(ρλ+ r)

rk − ℓ−(ρλ+ r)
.

Combining the inequalities, we conclude that the atom splitting must cross the locus

(ℓ, α̂(ℓ)). It is readily checked from (3) that the slope of the locus αs
t (ℓ) is larger than the

slope dα/dℓ along the locus (αs
t , ℓ

s
t )s∈[0,mt], so that they cross only once. �

Lemma 5. Suppose αt > 0 at t > 0.3 Then, the discounted utility of the agents who check

in before cannot be strictly higher.

Proof. We will prove that the discounted utility of an agent at time t is not boundedly lower

than those who check in immediately before. The argument can be extended, as mentioned

below, to show that the agents’ discounted utility does not decline over time. Suppose that

the utility of an agent at time t is boundedly lower than the utility of an agent who has not

checked in at time t− ǫ, for all ǫ > 0. The reasoning below assumes a gradual check in over

some interval [t−∆, t+∆], but can be adjusted (in case there is a mass point). Let α denote

2The change of experimentation due to agents arriving during the interval [t, t+ dt) and possibly asked
to experiment is of order dt · dm and so ignored.

3In case X has a mass point at t, we select αt := sups α
s
t .
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the probability of recommendation at times [t−∆, t). More precisely, let α = limτ↑t ατ and

let ∆ > 0 be such that |ατ − α| < ε for all τ ∈ [t − ∆, t), for some fixed ε > 0 arbitrarily

small.)

Similarly, let α′ denote the probability of recommendation at times [t, t+∆) (again, take

limits in the obvious way.) Because the utility is boundedly lower at times in [t, t +∆), we

may increase the probability α by some δ > 0 and decrease α′ by the same amount, so that

(i) the total experimentation (and hence belief) at time t + ∆ is the same before and after

the change, (ii) agents supposed to check in at times [t−∆, t) prefer to do so than to check

at times [t, t +∆). Clearly, agents checking in at time [t, t +∆) gain from this change and

so will still check in.4

We ask, when does such a change increase welfare? By construction, it does not affect

what happens before (agents before certainly don’t want to wait now) nor after (the belief

at t +∆ hasn’t changed). Hence, the change in payoff is

(ℓ0 − ℓ− (α + δ)(k − ℓ) + e−r∆(ℓ0 − ℓ∆ − (α′ − δ)(k − ℓ∆)) + o(∆),

where ℓ, ℓ∆ are the beliefs at the beginning of each subinterval. Taking derivatives with

respect to δ and then a Taylor expansion with respect to ∆, evaluated at δ = 0, gives that

the derivative equals

(ℓ(1 + ρ+ r)− rk)∆ + o(∆),

where we normalize λ to 1 (Alternatively, replace all occurrences of r by r/λ). Hence, such

a change is profitable if ℓ > rc
1+ρ+r

. Thus, we may assume otherwise.

If the change in utility is not bounded below by some constant, the same reasoning

applies, but δ = δ(τ) must be chosen so that δ(t) = 0, δ(τ) > 0 for τ < t, and δ(τ) > 0 for

τ > t, such that agents do not wish to change their check-in time over these intervals. If

there is an atom at t, then there must be an black-out immediately before t, and a similar

reasoning applies for moving a small mass m′ of split atom backward in time and raise their

experimentation by small δ. Both extensions are omitted.

Let us now recall that the total continuation payoff is given by

J =

∫

s≥t

e−rs(ℓ0 − ℓs − αs(k − ℓs))ds.

Because ℓ̇ = −(ρ+α)ℓs, we can substitute to obtain an expression that only depends on ℓ, ℓ̇,

integrate by parts to eliminate the terms involving ℓ̇, and ignoring constants, obtain that,

4Adding small δ > 0 to α does not violate the incentive constraint for consumption since the constraint
is not binding.
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up to a constant, J is equal to

J =

∫

s≥t

e−rs(ℓ0 − ℓs − αs(k − ℓs))ds

=

∫

s≥t

e−rs(ℓ0 − ℓs + (ρ+
ℓ̇

λℓs
)(k − ℓs))ds

=

∫

s≥t

e−rs

(

ℓ0 − (1 + ρ)ℓs −
ℓ̇s
λ

+
ℓ̇

λℓs
k

)

ds

=

∫

s≥t

e−rs(ℓ0 − (1 + ρ)ℓs)ds− e−rt

(
ℓs
λ

− ln ℓs
λ
k

)∞

t

−
∫

s≥t

e−rsr

(
ℓs
λ

− ln ℓs
λ
k

)

ds

= −1

λ

∫

s≥t

e−rs (λ(1 + ρ) + r)ℓs − rk ln ℓs) ds+ Const.

The derivative of the integrand with respect to ℓ is

rk − (λ(1 + ρ) + r)ℓ > 0.

Hence, given t as defined above, we note that this derivative is positive: if we replace the

trajectory {ℓτ : τ ≥ t} by a trajectory {ℓ̂τ : τ ≥ t}, with ℓ̂τ ≥ ℓτ (with a strict inequality for

some non-zero measure interval of times), the payoff increases. Hence, decrease α at time

t (or rather, fix a time higher than, but arbitrarily close to t and decrease α at that time),

and adjust ατ for all later τ ∈ T0 so that incentives to check in do not change. This requires

non-positive changes in ατ (which can be expressed in terms of a differential equation),

and results in a higher trajectory ℓ̂, and hence an increase in payoff. We thus obtain a

contradiction. �

Lemma 6. Xt = 0 for t < t∗ and Xt = t for t ≥ t∗.

Proof. By Lemma 1, t∗ := inf{t ≥ 0|Xt > 0} > 0. Since X−
t∗ = 0 < t∗, by Lemma 2, X has

a mass point at t∗. Further, by Lemma 3, the atom at t∗ must be split. Let (α+, ℓ+) be the

end point of the split atom at t∗. Then, by Lemma 4, α+ ≤ α̂(ℓ+). One can show hat α̂(·)
is steeper than α(·).

We next show that for any t > t∗, Xt = t. Suppose to the contrary that there exists

t′ > t such that Xt′ < t′. Then, by Lemmas 2–4, X has an atom at t′, and it is split, and the

splitting crosses the locus α̂(·). But this is impossible, since by Lemma 5, the agents’ utility

never strictly decrease for t ∈ [t∗, t′], and this means that during that interval, α can never

rise at a faster rate in ℓ than α(ℓ) (the locus followed in the first split atom) does. Since

Xt′ = t′ for all t′ > t, and since X is required to be right continuous, the claim follows. �

Armed with the lemmas, we now complete our characterization of the optimal policy.
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Proof of Proposition 3 and the solution algorithm. Lemmas 4-6 pin down the struc-

ture of the optimal policy: there exist times t∗ > 0 and T > t∗ such that agents who arrive

before t∗ wait until t∗; the accumulated mass is split at t∗; and then the agents who arrive

after t∗ check in upon arrival and experiment at a rate that falls to zero at T . All agents’

discounted payoff is constant for all argents arriving prior to T , and the agents arriving after

T enjoys payoff according to full transparency regime. This structure, along with further nec-

essary conditions, enables us to derive an one-dimensional family of optimal policies indexed

by the belief ℓ̄ at which agents’ experimentation stops fully.

Initially, we fix both ℓ̄ and t∗. The variables to be determined are (ℓ−, α+, ℓ+, T ), where

T is such that ℓT = ℓ̄. Several conditions are derived to determine these variables. First,

since only background learning occurs during the blackout, the (designer’s) belief just prior

to the splitting must satisfy

ℓ− = ℓ0e−λρt∗ . (5)

Second, the agents associated with split mass must be indifferent across the locus (αs
t , ℓ

s
t )s∈[0,t∗].

This requires (3). This, together with the fact that the entire mass of t∗ is split, gives rise

to an equation (4) with m = t∗, or

t∗ =
k ln ℓ− + (h− k) ln(h− ℓ−)

λh
− k ln ℓ+ + (h− k) ln(h− ℓ+)

λh
, (6)

where h := ℓ+ + α+(k − ℓ+).

Third, by Lemma 6, agents check in as they arrive during the the smooth tapering phase,

and by Lemma 5, they must experiment at levels that make them all indifferent. Hence,

during the t ∈ (t∗, T ), (αt, ℓt) must satisfy the indifference condition:

e−rt(ℓ0 − ℓt − αt(k − ℓt)) = e−rT (ℓ0 − ℓ̄), (7)

and the belief evolution condition:

ℓt = ℓ̄eλ
∫ T

t
(ρ+αs)ds. (8)

Given (t∗, ℓ̄), conditions (7) and (8) uniquely determine (α+, ℓ+) as a function of T .5

In sum, the conditions (5)–(8) uniquely pin down T, ℓ−, α+, ℓ+ as functions of (ℓ̄, t∗).

Next, we hold ℓ̄ fixed and characterize the condition for optimal choice of t∗. In particular,

we use the fact that for a fixed ℓ̄, T must be minimized. This follows from the fact that

the earlier time T at which a given belief ℓ̄ is reached without affecting the payoff of the

5Essentially, given any T > t∗, the two conditions give rise to a differential equation that runs from T
backward to t∗, with the initial value (αT , ℓT ) = (0, ℓ̄), which admits a unique solution (αt, ℓt), the end point
of which is (α+, ℓ+).
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agents who arrive before, the higher the payoff is for all agents arriving afterwards, and thus

the higher the overall welfare is. This means that, as t∗ is varied slightly by dt, subject to

the constraint that all agents who arrive before T should enjoy the same payoff, the optimal

choice of T remains constant. Since the variation should not alter T at the optimum, as t∗

is raised by dt, the last phase is shortened by length dt. Hence, the variation affects ℓ+, the

belief at which (going backward) the differential equation ends, by:

dℓ+ = −λ(ρ+ α+)ℓ+dt. (9)

Next, the variation keeps the payoff of early agents constant. Totally differentiating the

indifference condition, we obtain the change in α+ arising from the variation:

r(ℓ0 − ℓ+ − α+(k − ℓ+))dt = −(1− α+)dℓ+ − (k − ℓ+)dα+. (10)

Now, since the initial phase has been lengthened by dt, we should have

ℓ− + dℓ− = ℓ0e
−λρ(t∗+dt),

or
dℓ−

ℓ−
= −λρdt. (11)

Finally, substituting from (5) into (6) to eliminate t∗, we get

ℓ+ + α+(k − ℓ+)

ρ
ln
ℓ−

ℓ0
= k ln

ℓ+

ℓ−
+ (1− α+)(k − ℓ+) ln

(

1 +
ℓ+ − ℓ−

α+(k − ℓ+)

)

, (12)

The effect of the variation on the end points of split mass can be obtained by totally differen-

tiating (12). The resulting equation, after (9)–(11) are substituted into it, must hold for any

small dt. This gives rise to another condition, which is too long and cumbersome to include

here. This condition, together with the earlier observations, pins down (t∗, T, ℓ−, α+, ℓ+) as

functions of only one variable, ℓ̄. (Incidentally, one can vary ℓ̄ and trace out the locus of

(ℓ+, α+) at which the atom splitting terminates under the optimal policy, yielding a dashed

locus in Figure 2.)

Let t∗(ℓ̄), α+(ℓ̄), ℓ+(ℓ̄), T (ℓ̄) be the key variables of the optimal policy as functions of ℓ̄.

The resulting welfare is:

U(ℓ̄) := T (ℓ̄)e−rt∗(ℓ̄)(ℓ0 − ℓ+(ℓ̄)− α+(t∗)(k − ℓ+(ℓ̄))) +

∫ ∞

T (ℓ̄)

e−rt(ℓ0 − ℓt)dt.

where

ℓt := ℓ̄e−λρ(t−T (ℓ̄)), ∀t ≥ T (ℓ̄).
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To characterize the optimal policy, it remains to choose ℓ̄ to maximize U(ℓ̄). A closed

form solution on the optimal ℓ̄, or a simple characterization, is difficult to come by.6 But a

numerical solution for the optimal ℓ̄, and thus the optimal policy, can be obtained. Figure 2

in the paper describes the optimal policy for the case (r, λ, ρ, k, ℓ0) = (1/2, 2, 1/5, 15, 9).

The optimal policy employs a “blackout” until t∗ ≃ 1.45, and the mass accumulated by

then is then split at time t∗ into (sequential) check in; this mass experiments along the locus

that starts from (α−, ℓ−) ≃ (0.017, 5.04) and ends at (α+, ℓ+) ≃ (.066, 4.52). After time t∗,

the agents check in as they arrive. They experiment along the locus of (α, ℓ)’s that begins

at (α+, ℓ+) and tapers gradually down to (α, ℓ) ≃ (0, 2.72). �

2 General Signal Structure: Proof from Section 7.1

Here, we extend our model to allow for both good news and bad news. Specifically, if a flow

of size µ consumes the good over some time interval [t, t+dt), then the designer learns during

this time interval that the movie is “good” with probability λg(ρ + µ)dt, that it is “bad”

with probability λb(ρ+ µ)dt, where λg, λb ≥ 0, and ρ is the rate of background learning.

The designer commits to the following policy: At time t, she recommends the movie to

a fraction γt ∈ [0, 1] of agents if she learns the movie to be good, a fraction βt ∈ [0, 1] if she

learns it to be bad, and she recommends to fraction αt ∈ [0, 1] if no news has arrived by t.

Clearly,

µt = ρ+ αt.

The designer’s belief evolves according to

ṗt = −(λg − λb)µtpt(1− pt), (13)

with the initial value p0 = p0. It is worth noting that the evolution of the posterior depends

on the relative arrival rates of the good news and the bad news. If λg > λb (so the good news

arrive faster than the bad news), then “no news” leads the designer to form a pessimistic

inference on the quality of the movie, with the posterior falling. By contrast, if λg < λb, then

“no news” leads to on optimistic inference, with the posterior rising. We label the former

case good news case and the latter bad news case. Recall that main body of the paper

treats the special case of λb = 0, a pure good news case.

Let gt and bt denote the probability that the designer’s belief is 1 and 0, respectively.

6In particular, we have no proof that this constrained maximization admits a unique solution ℓ̄. There
might be (presumably non-generic) parameter configurations for which this is the case, in which case there
would be multiple optimal policies.
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Given the experimentation rate µt, these probabilities evolve according to

ġt = (1− gt − bt)λgµtpt, (14)

with the initial value g0 = 0, and

ḃt = (1− gt − bt)λbµt(1− pt), (15)

with the initial value b0 = 0.7 Further, these beliefs must form a martingale:

p0 = gt · 1 + bt · 0 + (1− gt − bt)pt. (16)

The designer chooses the policy (α, β, γ), measurable, to maximize social welfare, namely

W(α, β, χ) :=

∫

t≥0

e−rtgtγt(1− c)dt+

∫

t≥0

e−rtbtβt(−c)dt+
∫

t≥0

e−rt(1− gt − bt)αt(pt − c)dt,

where (pt, gt, bt) must follow the required laws of motion: (13), (14), (15), and (16), where

µt = ρ+ αt is the total experimentation rate and r is the discount rate of the designer.8

Given policy (α, β, γ), conditional on being recommended to watch the movie, the agent

will have the incentive to watch the movie, if and only if the expected quality of the movie—

the posterior that it is good—is no less than the cost, or

gtγt + (1− gt − bt)αtpt
gtγt + btβt + (1− gt − bt)αt

≥ c. (17)

The following is immediate:

Lemma 7. It is optimal for the designer to disclose the breakthrough (both good and bad)

news immediately. That is, an optimal policy has γt ≡ 1, βt ≡ 0.

Proof. If one raises γt and lowers βt, it can only raise the value of objective W and relax

(17) (and do not affect other constraints). �

7These formulae are derived as follows. Suppose the probability that the designer has seen the good news
by time t and the probability that she has seen the bad news by t are respectively gt and bt. Then, the
probability of the good news arriving by time t + dt and the probability of the bad news arriving by time
t+ dt are, respectively, and to the first-order,

gt+dt = gt + λgµtptdt(1− gt − bt) and bt+dt = bt + λbµt(1 − pt)dt(1− gt − bt).

Dividing these equations by dt and taking the limit as dt → 0 yields (14) and (15).
8More precisely, the designer is allowed to randomize over the choice of policy (α, β, γ) (using a relaxed

control, as such randomization is defined in optimal control). A corollary of our results is that there is no
gain for him from doing so.
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Using ℓt =
pt

1−pt
, (13) can be restated as:

ℓ̇t = −ℓt∆λgµt, ℓ0 :=
p0

1− p0
, (18)

where ∆ := λg−λb

λg
, assuming for now λg > 0.

The two other state variables, namely the posteriors gt and bt on the designer’s belief,

are pinned down by ℓt (and thus by pt) at least when λg 6= λb (i.e., when no news is not

informationally neutral.) (We shall remark on the case of the neutrality case ∆ = 0.)

Lemma 8. If ∆ 6= 0, then

gt = p0

(

1−
(
ℓt
ℓ0

) 1
∆

)

and bt = (1− p0)

(

1−
(
ℓt
ℓ0

) 1
∆
−1
)

.

Proof. Let κt := p0/(p0 − gt). Note that κ0 = 1. Then, it follows from (14) and (16) that

κ̇t = λgκtµt, κ0 = 1. (19)

Dividing both sides of (19) by the respective sides of (18), we get,

κ̇t

ℓ̇t
= − κt

ℓt∆
,

or
κ̇t
κt

= − 1

∆

ℓ̇t
ℓt
.

It follows that, given the initial condition,

κt =

(
ℓt
ℓ0

)− 1
∆

.

We can then unpack κt to recover gt, and from this we can obtain bt via (16). �

This result is remarkable. A priori, there is no reason to expect that the designer’s belief

pt serves as a “sufficient statistic” for the posteriors that the agents attach to the arrival of

news, since different histories for instance involving even different experimentation over time

could in principle lead to the same p.
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Next, substitute gt and bt into (17) to obtain:

αt ≤ ᾱ(ℓt) := min







1,

(
ℓt
ℓ0

)− 1
∆ − 1

k − ℓt
ℓt







, (20)

if the normalized cost k := c/(1− c) exceeds ℓt and ᾱ(ℓt) := 1 otherwise.

The next lemma will figure prominently in our characterization of the second-best policy

later.

Lemma 9. If ℓ0 < k and ∆ 6= 0, then ᾱ(ℓt) is zero at t = 0, and increasing in t, strictly so

whenever ᾱ(ℓt) ∈ [0, 1).9

Proof. We shall focus on

α̃(ℓ) :=

(
ℓ
ℓ0

)− 1
∆ − 1

k − ℓ
ℓ.

Recall ᾱ(ℓ) = min{1, α̃(ℓ)}. Since ℓt falls over t when ∆ > 0 and rises over t when ∆ < 0. It

suffices to show that α̃(·) is decreasing when ∆ > 0 and increasing when ∆ < 0.

We make several preliminary observations. First, α̃(ℓ) ∈ [0, 1) if and only if

1− (ℓ/ℓ0)
1
∆ ≥ 0 and kℓ

1
∆
−1ℓ

− 1
∆

0 > 1. (21)

Second,

α̃′(ℓ) =
(ℓ0/ℓ)

1
∆h(ℓ, k)

∆(k − ℓ)2
, (22)

where

h(ℓ, k) := ℓ− k(1−∆)− k∆(ℓ/ℓ0)
1
∆ .

Third, (21) implies that
dh(ℓ, k)

dℓ
= 1− kℓ

1
∆
−1ℓ

− 1
∆

0 < 0, (23)

on any range of ℓ over which α̃ ≤ 1. Note

h(0, k) = −k(1−∆) = −k λb
λg

≤ 0. (24)

It follows from (23) and (24) that h(ℓ, k) < 0 for any ℓ ∈ (0, k) and α̃(ℓ) ∈ [0, 1). By (22),

this last fact implies that α̃′(ℓ) < 0 if ∆ > 0 and α̃′(ℓ) > 0 if ∆ < 0, as was to be shown. �

9The case ∆ = 0 is similar: the same conclusion holds but ᾱ need to be defined separately.
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Substituting the posteriors from Lemma 8 into the objective function and using µt =

ρ+αt, and with normalization of the objective function, the second-best program is restated

as follows:

[SB] sup
α

∫

t≥0

e−rtℓ
1
∆
t

(

αt

(

1− k

ℓt

)

− 1

)

dt

subject to

ℓ̇t = −∆λg(ρ+ αt)ℓt, (25)

proposition

0 ≤ αt ≤ ᾱ(ℓt). (26)

Obviously, the first-best program, labeled [FB], is the same as [SB], except that the

upper bound for ᾱ(ℓt) is replaced by 1. We next characterize the optimal recommendation

policy. The precise characterization depends on the sign of ∆, i.e., whether the environment

is that of predominantly good news or bad news.

2.1 “Good news” environment: ∆ > 0

The analysis is similar to that for Proposition 1 in the paper. As in the paper, we first

switch the roles of variables so that we treat ℓ as a “time” variable and t(ℓ) := inf{t|ℓt ≤ ℓ}
as the state variable, interpreted as the time it takes for a posterior ℓ to be reached. Up

to constant (additive and multiplicative) terms, the designer’s problem is written as: For

problem i = SB, FB,

sup
α(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
− ρ

(
1− k

ℓ

)
+ 1

ρ+ α(ℓ)

)

dℓ.

s.t. t(ℓ0) = 0,

t′(ℓ) = − 1

∆λg(ρ+ α(ℓ))ℓ
,

α(ℓ) ∈ Ai(ℓ),

where ASB(ℓ) := [0, ᾱ(ℓ)], and AFB := [0, 1].

This transformation enables us to focus on the optimal recommendation policy directly

as a function of the posterior ℓ. Given the transformation, the admissible set no longer

depends on the state variable (since ℓ is no longer a state variable), thus conforming to the
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standard specification of the optimal control problem.

Next, we focus on u(ℓ) := 1
ρ+α(ℓ)

as the control variable. With this change of variable,

the designer’s problem (both second-best and first-best) is restated, up to constant (additive

and multiplicative) terms: For i = SB, FB,

sup
u(ℓ)

∫ ℓ0

0

e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

dℓ, (27)

s.t. t(ℓ0) = 0,

t′(ℓ) = − u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where the admissible set for the control is USB(ℓ) := [ 1
ρ+ᾱ(ℓ)

, 1
ρ
] for the second-best problem

and UFB(ℓ) := [ 1
ρ+1

, 1
ρ
]. With this transformation, the problem becomes a standard linear

optimal control problem (with state t and control α). A solution exists by the Filippov-Cesari

theorem (Cesari, 1983).

The characterization of the solution is summarized in the proposition which extends

Proposition 1 of the paper for the general good news case.

Proposition 1. The second-best policy prescribes, absent any news, the maximal experi-

mentation at α(p) = ᾱ( p
1−p

) until the posterior falls to p∗g, and no experimentation α(p) = 0

thereafter for p < p∗g, where

p∗g := c

(

1− rv

ρ+ r(v + 1
λg
)

)

,

where v := 1−c
r

is the continuation payoff upon the arrival of good news. The first-best

policy has the same structure with the same threshold posterior, except that ᾱ(p) is replaced

by 1. If p0 ≥ c, then the second-best policy implements the first-best, where neither No

Social Learning nor Full Transparency can. If p0 < c, then the second-best induces a slower

experimentation/learning than the first-best.

Proof. We first focus on the necessary condition for optimality to characterize the optimal

recommendation policy. To this end, we write the Hamiltonian:

H(t, u, ℓ, ν) = e−rt(ℓ)ℓ
1
∆
−1

(

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

)

− ν
u(ℓ)

∆λgℓ
. (28)

The necessary optimality conditions state that there exists an absolutely continuous function
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ν : [0, ℓ0] such that, for all ℓ, either

φ(ℓ) := ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

+ ν(ℓ) = 0, (29)

or else u(ℓ) = 1
ρ+ᾱ(ℓ)

if φ(ℓ) > 0 and u(ℓ) = 1
ρ
if φ(ℓ) < 0.

Furthermore,

ν ′(ℓ) = −∂H(t, u, ℓ, ν)

∂t
= re−rt(ℓ)ℓ

1
∆
−1

((

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

(ℓ− a.e.). (30)

Finally, transversality at ℓ = 0 implies that ν(0) = 0 (since t(ℓ) is free) .

Note that

φ′(ℓ) = −rt′(ℓ)∆λge−rt(ℓ)ℓ
1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

+ λge
−rt(ℓ)ℓ

1
∆
−1

(

ρ

(

1− k

ℓ

)

+ 1

)

+ ρk∆λge
−rt(ℓ)ℓ

1
∆
−2 + ν ′(ℓ),

or using the formulas for t′ and ν ′,

φ′(ℓ) = e−rt(ℓ)ℓ
1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) , (31)

so φ cannot be identically zero over some interval, as there is at most one value of ℓ for which

φ′(ℓ) = 0. Every solution must be “bang-bang.” Specifically,

φ′(ℓ)
>
=
<
0 ⇔ ℓ

>
=
<
ℓ̃ :=

(

1− λg(1 + ρ∆)

r + λg(1 + ρ)

)

k > 0.

Also, φ(0) ≤ 0 (specifically, φ(0) = 0 for ∆ < 1 and φ(0) = −∆λge
−rt(ℓ)ρk for ∆ = 1). So

φ(ℓ) < 0 for all 0 < ℓ < ℓ∗g, for some threshold ℓ∗g > 0, and φ(ℓ) > 0 for ℓ > ℓ∗g. The constraint

u(ℓ) ∈ U i(ℓ) must bind for all ℓ ∈ [0, ℓ∗) (a.e.), and every optimal policy must switch from

u(ℓ) = 1/ρ for ℓ < ℓ∗g to 1/(ρ + ᾱ(ℓ)) in the second-best problem and to 1/(ρ + 1) in the

first-best problem for ℓ > ℓ∗g. It remains to determine the switching point ℓ∗g (and establish

uniqueness in the process).

For ℓ < ℓ∗g,

ν ′(ℓ) = −r
ρ
e−rt(ℓ)ℓ

1
∆
−1, t′(ℓ) = − 1

ρ∆λgℓ

so that

t(ℓ) = C0 −
1

ρ∆λg
ln ℓ, or e−rt(ℓ) = C1ℓ

r
ρ∆λg
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for some constants C1, C0 = −1
r
lnC1. Note that C1 > 0; or else C1 = 0 and t(ℓ) = ∞ for

every ℓ ∈ (0, ℓ∗g), which is inconsistent with t(ℓ∗g) <∞. Hence,

ν ′(ℓ) = −r
ρ
C1ℓ

r
ρ∆λg

+ 1
∆
−1
,

and so (using ν(0) = 0),

ν(ℓ) = − r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ ,

for ℓ < ℓ∗g. We now substitute ν into φ, for ℓ < ℓ∗g, to obtain

φ(ℓ) = ∆λgC1ℓ
r

ρ∆λg ℓ
1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

− r∆λg
r + ρλg

C1ℓ
r

ρ∆λg
+ 1

∆ .

We now see that the switching point is uniquely determined by φ(ℓ) = 0, as φ is continuous

and C1 cancels. Simplifying,
k

ℓ∗g
= 1 +

λg
r + ρλg

,

which leads to the formula for p∗g in the Proposition (via ℓ = p/(1 − p) and k = c/(1 − c)).

We have identified the unique solution to the program for both first- and second-best, and

shown in the process that the optimal threshold p∗ applies to both problems.

The second-best implements the first-best if p0 ≥ c, since then ᾱ(ℓ) = 1 for all ℓ ≤ ℓ0. If

not, then ᾱ(ℓ) < 1 for a positive measure of ℓ ≤ ℓ0. Hence, the second-best implements a

lower and thus a slower experimentation than does the first-best.

As for sufficiency, we use Arrow sufficiency theorem (Seierstad and Sydsæter, 1987, The-

orem 5, p.107). This amounts to showing that the maximized Hamiltonian Ĥ(t, ℓ, ν(ℓ)) =

maxu∈U i(ℓ) H(t, u, ℓ, ν(ℓ)) is concave in t (the state variable), for all ℓ. To this end, it suf-

fices to show that the terms inside the big parentheses in (28) are negative for all u ∈ U i,

i = FB, SB. This is indeed the case:

1− k

ℓ
−
(

ρ

(

1− k

ℓ

)

+ 1

)

u(ℓ)

≤1− k

ℓ
−min

{(

ρ

(

1− k

ℓ

)

+ 1

)
1

1 + ρ
,

(

ρ

(

1− k

ℓ

)

+ 1

)
1

ρ

}

=−min

{
k

(1 + ρ)ℓ
,
1

ρ

}

< 0,

where the inequality follows from the linearity of the expression in u(ℓ) and the fact that

u(ℓ) ∈ U i ⊂ [ 1
ρ+1

, 1
ρ
], for i = FB, SB. The concavity of maximized Hamiltonian in t, and

thus sufficiency of our candidate optimal solution, then follows. �
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2.2 “Bad news” environment: ∆ < 0

The analysis is qualitatively the same for the general bad news case. The same change of

variable produces the following program for the designer: For problem i = SB, FB,

sup
u

∫ ∞

ℓ0
e−rt(ℓ)ℓ

1
∆
−1

((

1− k

ℓ

)

(1− ρu(ℓ))− u(ℓ)

)

dℓ,

s.t. t(ℓ0) = 0,

t′(ℓ) = − u(ℓ)

∆λgℓ
,

u(ℓ) ∈ U i(ℓ),

where as before USB(ℓ) := [ 1
ρ+α(ℓ)

, 1
ρ
] and UFB(ℓ) := [ 1

ρ+1
, 1
ρ
]. Again, a solution exists

Filippov-Cesari theorem (Cesari, 1983).

Proposition 2. The first-best policy (absent any news) prescribes no experimentation until

the posterior p rises to p∗∗b , and then full experimentation at the rate of α(p) = 1 thereafter,

for p > p∗∗b , where

p∗∗b := c

(

1− rv

ρ+ r(v + 1
λb
)

)

.

The second-best policy implements the first-best if p0 ≥ c or if p0 ≤ p̂0 for some p̂0 < p∗∗b .

If p0 ∈ (p̂0, c), then the second-best policy prescribes no experimentation until the posterior

p rises to p∗b , and then maximal experimentation at the rate of ᾱ( p
1−p

) thereafter for any

p > p∗b, where p
∗
b > p∗∗b . In other words, the second-best policy triggers experimentation at a

later date and at a lower rate than does the first-best.

Proof. As before, the necessary conditions for the second-best policy now state that there

exists an absolutely continuous function ν : [0, ℓ0] such that, for all ℓ, either

ψ(ℓ) := −φ(ℓ) = ∆λge
−rt(ℓ)ℓ

1
∆

(

ρ

(

1− k

ℓ

)

+ 1

)

− ν(ℓ) = 0, (32)

or else u(ℓ) = 1
ρ+α(ℓ)

if ψ(ℓ) > 0 and u(ℓ) = 1
ρ
if ψ(ℓ) < 0. The formula for ν ′(ℓ) is the

same as before, given by (30). Finally, transversality at ℓ = ∞ (t(ℓ) is free) implies that

limℓ→∞ ν(ℓ) = 0.

Since ψ(ℓ) = −φ(ℓ), we get from (32) that

ψ′(ℓ) = −e−rt(ℓ)ℓ
1
∆
−2 (r (ℓ− k) + ρ∆λgk + λg (ρ (ℓ− k) + ℓ)) .

Letting ℓ̃ :=
(

1− λg(1+ρ∆)
r+λg(1+ρ)

)

k, namely the solution to ψ(ℓ) = 0. Then, ψ is maximized at

20



ℓ̃, and is strictly quasi-concave. Since limℓ→∞ h(ℓ) = 0, this means that there must be a

cutoff ℓ∗b < ℓ̃ such that ψ(ℓ) < 0 for ℓ < ℓ∗b and ψ(ℓ) > 0 for ℓ > ℓ∗b . Hence, the solution is

bang-bang, with u(ℓ) = 1/ρ if ℓ < ℓ∗b , and u(ℓ) = 1/(ρ+ α(ℓ)) if ℓ > ℓ∗b .

The first-best policy has the same cutoff structure, except that the cutoff may be different

from ℓ∗b . Let ℓ
∗∗
b denote the first-best cutoff.

First-best policy: We shall first consider the first best policy. In that case, for ℓ > ℓ∗∗b ,

t′(ℓ) = − 1

∆λg(1 + ρ)ℓ

gives

e−rt(ℓ) = C2ℓ
r

(1+ρ)∆λg ,

for some non-zero constant C2. Then

ν ′(ℓ) = − rk

1 + ρ
C2ℓ

r
(1+ρ)∆λg

+ 1
∆
−2

and limℓ→∞ ν(ℓ) = 0 give

ν(ℓ) = − rk∆λg
r + (1 + ρ)(1−∆)λg

C2ℓ
r

(1+ρ)∆λg
+ 1

∆
−1
.

So we get, for ℓ > ℓ∗∗b ,

ψ(ℓ) = −∆λgC2ℓ
r

(1+ρ)∆λg ℓ
1
∆
−1 (ℓ(1 + ρ)− kρ) +

rk∆λg
r + (1 + ρ)(1−∆)λg

C2ℓ
r

(1+ρ)∆λg
+ 1

∆
−1
.

Setting ψ(ℓ∗∗b ) = 0 gives

k

ℓ∗∗b
=
r + (1 + ρ)(1−∆)λg
r + ρ(1 −∆)λg

=
r + (1 + ρ)λb
r + ρλb

= 1 +
λb

r + ρλb
,

or

p∗∗b = c

(

1− rv

ρ+ r(v + 1
(1−∆)λg

)

)

= c

(

1− rv

ρ+ r(v + 1
λb
)

)

.

Second-best policy. We now characterize the second-best cutoff. There are two cases,

depending upon whether α(ℓ) = 1 is incentive-feasible at the threshold ℓ∗∗b that characterizes

the first-best policy. In other words, for the first-best to be implementable, we should have
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ᾱ(ℓ∗∗) = 1, which requires

ℓ0 ≥ k

(
r + ρλb

r + (1 + ρ)λb

)1−∆

=: ℓ̂0.

Observe that since ∆ < 0, ℓ̂0 < ℓ∗∗. If ℓ0 ≤ ℓ̂0, then the designer begins with no experimen-

tation and waits until the posterior belief improves sufficiently to reach ℓ∗∗, at which point

the agents will be asked to experiment with full force, i.e., with ᾱ(ℓ) = 1, that is, given that

no news has arrived by that time. This first-best policy is implementable since, given the

sufficiently favorable prior, the designer will have built sufficient “credibility” by that time.

Hence, unlike the case of ∆ > 0, the first best can be implementable even when ℓ0 < k.

Suppose ℓ0 < ℓ̂0. Then, the first-best is not implementable. That is, ᾱ(ℓ∗∗b ) < 1. Let ℓ∗b
denote the threshold at which the constrained designer switches to ᾱ(ℓ). We now prove that

ℓ∗b > ℓ∗∗b .

For the sake of contradiction, suppose that ℓ∗b ≤ ℓ∗∗b . Note that ψ(x) = limℓ→∞ φ(ℓ) = 0.

This means that
∫ ∞

ℓ∗
b

ψ′(ℓ)dℓ =

∫ ∞

ℓ∗
b

e−rt(ℓ)ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) dℓ = 0,

where ψ′(ℓ) = −φ′(ℓ) is derived using the formula in (32).

Let t∗∗ denote the time at which ℓ∗∗b is reached along the first-best path. Let

f(ℓ) := ℓ
1
∆
−2 ((r + λbρ)k − (r + λg(ρ+ 1))ℓ) .

We then have ∫ ∞

ℓ∗
b

e−rt∗∗(ℓ)f(ℓ)dℓ ≥ 0, (33)

(because ℓ∗b ≤ ℓ∗∗b ; note that f(ℓ) ≤ 0 if and only if ℓ > ℓ̃, so h must tend to 0 as ℓ → ∞
from above), yet

∫ ∞

ℓ∗
b

e−rt(ℓ)f(ℓ)dℓ = 0. (34)

Multiplying ert
∗∗(ℓ̃) on both sides of (33) gives

∫

ℓ∗
b

e−r(t∗∗(ℓ)−t∗∗(ℓ̃))f(ℓ)dℓ ≥ 0. (35)
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Likewise, multiplying ert(ℓ̃) on both sides of (34) gives

∫ ∞

ℓ∗
b

e−r(t(ℓ)−t(ℓ̃))f(ℓ)dℓ = 0. (36)

Subtracting (35) from (36) gives

∫

ℓ∗
b

(

e−r(t(ℓ)−t(ℓ̃)) − e−r(t∗∗(ℓ)−t∗∗(ℓ̃))
)

f(ℓ)dℓ ≤ 0. (37)

Note t′(ℓ) ≥ (t∗∗)′(ℓ) > 0 for all ℓ, with strict inequality for a positive measure of ℓ. This

means that e−r(t(ℓ)−t(ℓ̃)) ≤ e−r(t∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ > ℓ̃, and e−r(t(ℓ)−t(ℓ̃)) ≥ e−r(t∗∗(ℓ)−t∗∗(ℓ̃)) if ℓ < ℓ̃,

again with strict inequality for a positive measure of ℓ for ℓ ≥ ℓ∗∗b (due to the fact that the

first best is not implementable; i.e., ᾱ(ℓ∗∗b ) < 1). Since f(ℓ) < 0 if ℓ > ℓ̃ and f(ℓ) > 0 if

ℓ < ℓ̃, we have a contradiction to (37).

For sufficiency, the same argument as with Proposition 1 establishes that the maximized

Hamiltonian will necessarily be concave in t, which implies optimality of our candidate

solution, by Arrow’s sufficiency theorem. �

2.3 “Neutral news” environment: ∆ = 0

In this case, the designer’s posterior on the quality of the good remains unchanged in the

absence of breakthrough news. Experimentation could be still desirable for the designer. If

p0 ≥ c, then the agents will voluntarily consume the good, so experimentation is clearly self-

enforcing. If p0 < c, then the agents will not voluntarily consume, so spamming is needed to

incentivize experimentation. As before the optimal policy has the familiar cutoff structure.

Proposition 3. The second-best policy prescribes, absent any news, the maximal experimen-

tation at ᾱt if p0 ≥ p∗0, and no experimentation if p0 < p∗0, where p
∗
0 := p∗g(= p∗∗b ) and ᾱt

(given in the Appendix) is increasing and convex in t and reaches 1 when t∗ = k−ℓ0
λb(ℓ0−kρ)

ln ℓ0
kρ
.

The first-best policy has the same structure with the same threshold posterior, except that ᾱt

is replaced by 1. The first-best is implementable if and only if p0 ≥ c or p0 < p∗0.

Proof. In that case, ℓ = ℓ0. The objective rewrites

W =

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0
αt(p0 − gt)

)

dt

=

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0

(
ġt
λg

− (p0 − gt)ρ

))

dt
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=

∫

t≥0

e−rt

(

gt(1− c) +
p0 − c

p0

(

r
gt
λg

− (p0 − gt)ρ

))

dt + Const. (Integr. by parts)

=

∫

t≥0

e−rtgt

(

1− c+
p0 − c

p0

(
r

λg
+ ρ

))

dt+ Const.

= Const.×
∫

t≥0

e−rtgt ((ℓ0 − k)(r + λgρ) + λgℓ0) dt+ Const.,

and so we see that it is best to set gt to its maximum or minimum value depending on the

sign of (ℓ0 − k)(r + λgρ) + λgℓ0, specifically, depending on

k

ℓ0
≶ 1 +

λg
r + λgρ

,

which is the relationship that defines ℓ∗g = ℓ∗∗b . Now, gt is maximized by setting ατ = ᾱτ and

minimized by setting ατ = 0 (for all τ < t).

We can solve for ᾱt from the incentive compatibility constraint, plug back into the dif-

ferential equation for gt and get, by solving the ordinary differential equation,

gt =

(

e
λg(ℓ0−kρ)t

k−ℓ0 − 1

)

ℓ0(k − ℓ0)ρ

(1 + ℓ0)(ℓ0 − kρ)
,

and finally

ᾱt =
ℓ0

ρk−ℓ0

ρ

(

1−e
λg(ℓ0−ρk)t

k−ℓ0

) − (k − ℓ0)
,

which is increasing in t and convex in t (for γ > l0) and equal to 1 when

λgt
∗ =

k − ℓ0
ℓ0 − kρ

ln
ℓ0
kρ
.

The optimal policy in that case is fairly obvious: experiment at maximum rate until t∗, at

rate 1 from that point on (conditional on no feedback). �
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3 Heterogeneous Costs: Proofs from Section 7.2

3.1 Proof of Proposition 4

The objective function reads

∫

t≥0

e−rt (gt(1− c̄) + (1− gt − bt)(qHαH(pt − cL) + qLαL(pt − cL)) dt,

where c̄ := qHcH + qLcL. Substituting for gt, bt and re-arranging, this gives

∫

t≥0

e−rtℓ(t)

(

αH(t)qH

(

1− cH

(

1 +
1

ℓ(t)

))

+ αL(t)qL

(

1− cL

(

1 +
1

ℓ(t)

))

− (1− c̄)

)

dt.

As before, it is more convenient to work with t(ℓ) as the state variable, and doing the change

of variables gives

∫ ℓ0

0

e−rt(ℓ)

(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

dℓ,

where for j = L,H , xj(ℓ) := 1 − cj
(
1 + 1

ℓ

)
+ 1−c̄

ρ
, and uj(ℓ) :=

qjαj(t(ℓ))

ρ+qLαL(t(ℓ))+qHαH (t(ℓ))
are the

control variables that take values in the sets U j(ℓ) = [uk, ūk] (whose definition depends on

first- vs. second-best). This is to be maximized subject to

t′(ℓ) =
uH(ℓ) + uL(ℓ)− 1

ρλℓ
.

As before, we invoke Pontryagin’s principle. There exists an absolutely continuous function

η : [0, ℓ0] → R, such that, a.e.,

η′(ℓ) = re−rt(ℓ)

(

xH(ℓ)uH(ℓ) + xL(ℓ)uL(ℓ)−
1− c̄

ρ

)

,

and uj is maximum or minimum, depending on the sign of

φj(ℓ) := ρλℓe−rt(ℓ)xj(ℓ) + η(ℓ).

This is because this expression cannot be zero except for a specific value of ℓ = ℓj . Namely,

note first that, because xH(ℓ) < xL(ℓ) for all ℓ, at least one of uL(ℓ), uH(ℓ) must be extremal,

for all ℓ. Second, upon differentiation,

φ′
H(ℓ) = e−rt(ℓ)

((

λ− r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))
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implies that, if φH(ℓ) = 0 were identically zero over some interval, then uL(ℓ) would be

extremal over this range, yielding a contradiction, as the right-hand side cannot be zero

identically, for uL(ℓ) = ūL(ℓ). Similar reasoning applies to uL(ℓ), considering φ
′
L(ℓ). Hence,

the optimal policy is characterized by two thresholds, ℓH , ℓL, with ℓ0 ≥ ℓH ≥ ℓL ≥ 0, such

that both types of regular consumers are asked to experiment whenever ℓ ∈ [ℓH , ℓ0], low-cost

consumers are asked to do so whenever ℓ ∈ [ℓL, ℓ0], and neither is asked to otherwise.

We now characterize the threshold beliefs under first-best and second-best policies. Through-

out, we shall use superscript ∗∗ to denote the first-best and superscript ∗ to denote the

second-best policy. By the principle of optimality, the threshold ℓL must coincide with

ℓ∗ = ℓ∗∗ in the case of only one type of regular consumers (with cost cL). To compare ℓ∗H
and ℓ∗∗H , we proceed as in the bad news case, by noting that, in either case,

φH(ℓH) = 0,

and

φH(ℓL) = φL(ℓL) + ρλℓLe
−rt(ℓL)(xH(ℓL)− xL(ℓL)) = −ρλe−rt(ℓL)(cH − cL) (1 + ℓL) .

Hence,
∫ ℓH

ℓL

ert(ℓL)φ′
H(ℓ)dℓ = ρλ(cH − cL) (1 + ℓL)

holds both for the first- and second-best. Note now that, in the range [ℓL, ℓH ],

ert(ℓL)φ′
H(ℓ) = e

−r
∫ ℓ

ℓH

uL(l)+uH (l)−1

ρλl
dl

((

λ− r

ρ

)

(1− c̄) + ρλ(1− cH) + ruL(ℓ)(cH − cL)

(

1 +
1

ℓ

))

.

Because ᾱL(ℓ) > ᾱH(ℓ), ū
∗
L(ℓ) > ū∗∗L (ℓ), and also ū∗∗L (ℓ) + ū∗∗H (ℓ) ≥ ū∗L(ℓ) + ū∗H(ℓ), so that,

for all ℓ in the relevant range,

ert(ℓL)
dφ∗∗

H (ℓ)

dℓ
< ert(ℓL)

dφ∗
H(ℓ)

dℓ
,

and it then follows that ℓ∗H < ℓ∗∗H . �
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3.2 Uniform Cost: Derivation of the Optimum

We characterize the recommendation policy as r → 0. To derive this policy, let us first

describe the designer’s payoff. This is his payoff in expectation. Her objective is

∫ t1

0

e−rt

[
∫ ℓ0

1+ℓ0

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫ c̄

kt
1+kt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc +

∫ ℓ0
1+ℓ0

0

1 + ℓt
1 + ℓ0

(
ℓt

1 + ℓt
− c

)

dc

]

dt

+

∫ ∞

t1

e−rt

[
∫ c̄

0

ℓ0 − ℓt
1 + ℓ0

(1− c) dc+

∫ kt
1+kt

0

1 + ℓt
1 + ℓ0

(
ℓt

1 + ℓt
− c

)

dc

]

dt.

To understand this expression, consider t < t1. Types in t ∈ (ℓ0, kt) derive no surplus,

because they are indifferent between buying or not (what they gain from being recommended

to buy when the good has turned out to be good is exactly offset by the cost of doing so when

this is myopically suboptimal). Hence, their contribution to the expected payoff cancels out

(but it does not mean that they are disregarded, because their behavior affects the amount

of experimentation.) Types above kt get recommended to buy only if the good has turned

out to be good, in which case they get a flow surplus of λ · 1 − c = 1 − c. Types below ℓ0
have to purchase for both possible posterior beliefs, and while the flow revenue is 1 in one

case, it is only pt = ℓt/(1 + ℓt) in the other case.

The payoff in case t ≥ t1 can be understood similarly. There are no longer indifferent

types. In case of an earlier success, all types enjoy their flow payoff 1 − c, while in case of

no success, types below γt still get their flow pt − c.

This expression can be simplified to

J(k) =

∫ ∞

0

e−rt

[
∫ ℓ0

1+ℓ0
∧ kt

1+γt

0

(
ℓ0

1 + ℓ0
− c

)

dc+

∫ k̄

1+k̄

γt
1+γt

ℓ0 − ℓt
1 + ℓ0

(1− c) dc

]

dt

=

∫ ∞

0

e−rt

[

ℓ0
1 + ℓ0

(
ℓ0

1 + ℓ0
∧ γt
1 + γt

)

− 1

2

(
ℓ0

1 + ℓ0
∧ k̄t
1 + γt

)2
]

dt

+

∫ ∞

0

e−rt

[

ℓ0 − ℓt
1 + ℓ0

(

k̄

1 + k̄
− kt

1 + kt
− 1

2

((
k̄

1 + k̄

)2

−
(

γt
1 + γt

)2
))]

dt,

with the obvious interpretation. For t ≥ t1,

ℓ̇t = −ℓt
∫ kt

1+kt

0

dc

c̄
= −ℓt

c̄

kt
1 + kt

,
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while for t ≤ t1, it holds that

ℓ̇t = −ℓt
(

p0
c̄
+

∫ γt
1+γt

p0

αt(k)
dc

c̄

)

= −ℓt
c̄

(

p0 +

∫ γt
1+γt

p0

ℓ0 − ℓt
k(c)− ℓt

dc

)

= −ℓt
c̄

[
ktℓt + ℓ0

(1 + γt)(1 + ℓ0)
− ℓ0 − ℓt

(1 + ℓt)2
ln

(1 + kt)(ℓ0 − ℓt)

(1 + ℓ0)(kt − ℓt)

]

.

Finally, note that the value of k0 is free.

To solve this problem, we apply Pontryagin’s maximum principle. Consider first the case

t ≥ t1. The Hamiltonian is then

H(ℓ, γ, µ, t) =
e−rt

2(1 + kt)2

(

2kt(1 + kt)
ℓ0

1 + ℓ0
− k2t +

(k̄ − kt)(2 + γt + k̄)(ℓ0 − ℓt)

(1 + k̄)2(1 + ℓ0)

)

−µtℓt
γt(1 + k̄)

(1 + γt)k̄
,

where µ is the co-state variable. The maximum principle gives, taking derivatives with

respect to the control γt,

µt = −e−rtk̄
kt − ℓt

(1 + k̄)(1 + kt)(1 + ℓ0)ℓt
.

The adjoint equation states that

µ̇ = −∂H
∂ℓ

=
e−rt

2(1 + k̄)2(1 + ℓ0)(1 + kt)2ℓt

(
k2t (2(1 + k̄)2 + ℓt)− k̄(2 + k̄)(2kt + 1)ℓt

)
,

after inserting the value for µt. Differentiate the formula for µ, combine to get a differential

equation for kt. Letting r → 0, and changing variables to k(ℓ), we finally obtain

2(1 + k̄)2
(1 + ℓ)γ(ℓ)

1 + γ(ℓ)
γ′(ℓ) = k̄(2 + k̄)(1 + 2γ(ℓ))− γ(ℓ)2.

Along with k(0) = 0, k > 0 we get

γ(ℓ) =
k̄(2 + k̄)ℓ+ (1 + k̄)

√

k̄(2 + k̄)ℓ(1 + ℓ)

(1 + k̄)2 + ℓ
.

This gives us, in particular, γ(l0). Note that, in terms of cost c, this gives

c(ℓ) =

√

k̄(2 + k̄)ℓ/(1 + ℓ)

1 + k̄
,

We now turn to the Hamiltonian for the case t ≤ t1, or γt ≥ ℓ0. It might be that the solution

is a “corner” solution, that is, all agents experiment (γt = k̄). Hence, we abuse notation,
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and solve for the unconstrained solution γ: the actual solution should be set at min{k̄, γt}.
Proceeding in the same fashion, we get again

µt = −e−rtk̄
γt − ℓt

(1 + k̄)(1 + γt)(1 + ℓ0)ℓt
,

and continuity of µ (which follows from the maximum principle) is thus equivalent to the

values of γ(ℓ) obtained from both cases matching at ℓ = ℓ0. The resulting differential

equation for γ(ℓ) admits no closed-form solution. It is given by

(4k0 (k0 + 2) + ℓ(ℓ+ 2) + 5) k(ℓ)2 − k0 (k0 + 2)
(
(ℓ+ 1)2 + 4ℓ0

)
− 4ℓ0

− 2 (k0 (k0 + 2) (ℓ(ℓ+ 2) + 2ℓ0 − 1) + 2 (ℓ0 − 1)) k(ℓ)

= 2
(k0 + 1) 2

1 + ℓ
(k(ℓ) + 1) ((ℓ− 2ℓ0 − 1) k(ℓ)− ℓ0 + ℓ (ℓ0 + 2)) log

(
(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (ℓ− k(ℓ))

)

+ 2 (k0 + 1) 2(ℓ+ 1)k′(ℓ)

(

(ℓ0 − ℓ) log

(
(ℓ− ℓ0) (k(ℓ) + 1)

(ℓ0 + 1) (l − k(ℓ))

)

− (ℓ+ 1) (ℓk(ℓ) + ℓ0)

k(ℓ) + 1

)

.

This suffices to represent the solution, as we have done in Figure 5 in the main body. �

3.3 Proof of Proposition 5

We allow the designer to randomize over finitely many paths of experimentation, so there

are finitely many possible posterior beliefs, 1, pj, j = 1, . . . , J . We allow then for multiple

(finitely many) recommendations R. So a policy is now a collection (αR
j , γ

R
j )j, depending

on the path j that is followed. Along the path j, conditional on the posterior being 1, a

recommendation R is given by probability γRj , and conditional on the posterior being pj, the

probabilities αR
j are used. One last parameter is the probability with which each path j is

being used, µj.

Correspondingly, there are as many thresholds γR as recommendations; namely, given

recommendation R, a consumer buys if his cost is no larger than

cR =

∑

j µj

(
p0−pj
1−pj

βR
j + 1−p0

1−pj
pjα

R
j

)

∑

j µj

(
p0−pj
1−pj

βR
j + 1−p0

1−pj
αR
j

) ,

Hence we set

γR =

∑

j µj

(
αR
j ℓj + βR

j (ℓ0 − ℓj)
)

∑

j µjαR
j

.
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We remark for future reference that

∑

R

γR
∑

j

µjα
R
j =

∑

R

∑

j

µj

(
αR
j ℓj + βR

k (ℓ0 − ℓj)
)

=
∑

j

µj

((
∑

R

αR
j

)

ℓj +

(
∑

R

βR
j

)

(ℓ0 − ℓj)

)

=
∑

j

µjℓ0 = ℓ0.

We now turn to the value function. We have that

rV (ℓ1, . . . , ℓJ) =
∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αR
j

∫ cR

0

(pj − x)dx+
ℓ0 − ℓj
1 + ℓ0

∑

R

βR
j

∫ cR

0

(1− x)dx

)

−
∑

j

ℓjµj

(
∑

R

αR
j

∫ cR

0

dx

)

∂V (ℓ1, . . . , ℓJ)

∂ℓj
.

We shall do a few manipulations. First, we work on the flow payoff. From the first to the

second equation, we gather terms involving the revenue (“pj” and 1) on one hand, and cost

(“x”) on the other. From the second to the third, we use the definition of γR (in particular,

note that the term in the numerator of γR appears in the expressions). The last line uses

the remark above.

∑

j

µj

(

1 + ℓj
1 + ℓ0

∑

R

αR
j

∫ cR

0

(
ℓj

1 + ℓj
− x

)

dx+
ℓ0 − ℓj
1 + l0

∑

R

βR
j

∫ cR

0

(1− x)dx

)

=
1

1 + ℓ0

∑

R

cR
∑

j

µk

(
ℓjα

R
j + (ℓ0 − ℓj)β

R
j

)
− 1

2(1 + ℓ0)

∑

R

(cR)2
∑

j

µj

(
(1 + ℓj)α

R
j + (ℓ0 − ℓj)β

R
j

)

=
1

1 + ℓ0

∑

R

γR

1 + γR

(

γR
∑

j

µjα
R
j

)

− 1

2(1 + ℓ0)

∑

R

(
γR

1 + γR

)2
(

(1 + γRj )
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(γR)2

1 + γR

(
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

(

γR − γR

1 + γR

)(
∑

j

µjα
R
j

)

=
1

2(1 + ℓ0)

∑

R

γR
∑

j

µjα
R
j − 1

2(1 + ℓ0)

∑

R

γR

1 + γR

(
∑

j

µjα
R
j

)

=
ℓ0 −

∑

j µjxj

2(1 + ℓ0)
,
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where we define

xj :=
∑

R

γR

1 + γR
αR
j .

Let us now simplify the coefficient of the partial derivative

µj

(
∑

R

αR
j

∫ cR

0

dx

)

= µj

∑

R

αR
j

γR

1 + γR
= µjxj .

To conclude, given (µj) (ultimately, a choice variable as well), the optimality equality sim-

plifies to

rV (ℓ1, . . . , ℓJ) =
ℓ0

2(1 + ℓ0)
−
∑

j

max
xj

µjxj

{
1

2(1 + ℓ0)
+ ℓj

∂V (ℓ1, . . . , ℓJ)

∂ℓj

}

,

or letting W = 2(1 + ℓ0)V − ℓ0
r
,

rW (ℓ1, . . . , ℓJ) +
∑

j

µj max
xj

xj

{

1 + ℓj
∂W (ℓ1, . . . , ℓJ)

∂ℓj

}

= 0.

where (xj)j must be feasible, i.e., appropriate values for (α, γ) must exist. This is a tricky

restriction, and the resulting set of (xj) is convex, but not necessarily a polytope. In par-

ticular, it is not the product of the possible quantities of experimentation that would obtain

if the agents knew which path were followed, ×j

[
ℓj

1+ℓj
, ℓ0
1+ℓ0

]

. It is a strictly larger set: by

blurring recommendation policies, he can obtain pairs of amounts of experimentation outside

this set, although not more or less in all dimensions simultaneously.

Let us refer to this set as BJ . This set is of independent interest, as it is the relevant

set of possible experimentation schemes independently of the designer’s objective function.

This set is difficult to compute, as for a given J , we must determine what values of x can

be obtained for some number of recommendations. Even in the case J = 2, this requires

substantial effort, and it is not an obvious result that assuming without loss that ℓ1 ≥ ℓ2,

B2 is the convex hull of the three points

xP :=

( ∑

j µjℓj

1 +
∑

j µjℓj
,

∑

j µjℓj

1 +
∑

j µjℓj

)

, xS :=

(
ℓ1

1 + ℓ1
,

ℓ2
1 + ℓ2

)

, xA :=

(
ℓ0 − µ2ℓ2

1 + ℓ0 − µ2(1 + ℓ2)
,

ℓ2
1 + ℓ2

)

,

and the two curves

SU :=

(

x1, 1 +
µ2(1− x1)

µ1 − (1 + ℓ0)(1− x1)

)

,
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for x1 ∈
[

ℓ1
1+ℓ1

, ℓ0−µ2ℓ2
1+ℓ0−µ2(1+ℓ2)

]

, and

SL :=

(

x1, x1 +
(x1 − (1− x1)ℓ0)(x1 − (1− x1)(µ1ℓ1 + µ2ℓ2))

µ2(µ1ℓ1 + µ2ℓ2 + ℓ0ℓ2 − (1 + ℓ0)(1 + ℓ2)x1)

)

,

for x1 ∈
[ ∑

j µjℓj

1+
∑

j µjℓj
, ℓ1
1+ℓ1

]

, that intersect at the point

(
ℓ1

1 + ℓ1
,

ℓ0 − µ1ℓ1
1 + ℓ0 − µ1(1 + ℓ1)

)

.

It is worth noting that the point
(

ℓ0
1+ℓ0

, ℓ0
1+ℓ0

)

lies on the first (upper) curve, and that the slope

of the boundary at this point is −µ1/µ2: hence, this is the point within B2 that maximizes
∑

j µjxj . See Figure 1 below. To achieve all extreme points, more than two messages are

necessary (for instance, achieving xS requires three messages, corresponding to the three

possible posterior beliefs at time t), but it turns out that three suffice.

x2

0.70

0.75

0.80

0.90

0.85

0.70

0.65

0.75 0.85 0.900.750 x1

Figure 1: Region B2 of feasible (x1, x2) in the case J = 2 (here, for ℓ0 = 5, ℓ1 = 3, ℓ2 =
2, µ1 = 2/3.

In terms of our notation, the optimum value of a non-randomized strategy is

W S(ℓ) = −e r
ℓE1+r

(r

ℓ

)

.
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We claim that the solution to the optimal control problem is given by the “separating”

strategy, given µ and l = (ℓ1, . . . , ℓK), for the case J = 2 to begin with. That is,

W (l) = W S(l) := −
∑

j

µjW
S(ℓj).

To prove this claim, we invoke a verification theorem (see, for instance, Theorem 5.1 in

Fleming and Soner, 2005). Clearly, this function is continuously differentiable and satisfies

the desired transversality conditions on the boundaries (when ℓj = 0). We must prove that

it achieves the maximum. Given the structure of B2, we have to ensure that for every state

ℓ and feasible variation (∂x1, ∂x2), starting from the policy x = xS , the cost increases. That

is, we must show that
∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj ≥ 0,

for every ∂x such that (i) ∂x2 ≥ 0, (ii) ∂x2 ≥ −µ1

µ2

1+ℓ1
1+ℓ2

∂x1. (The first requirement comes

from the fact that xS minimizes x2 over B2; the second comes from the other boundary line

of B2 at xS .) Given that the result is already known for J = 1, we already know that this

is true for the special cases ∂xj = 0, ∂x−j ≥ 0. It remains to verify that this holds when

∂x2 = −µ1

µ2

1 + ℓ1
1 + ℓ2

∂x1,

i.e., we must verify that, for all ℓ1 ≥ ℓ2,

(1 + ℓ1)ℓ2
dW S(ℓj)

dℓ2
− (1 + ℓ2)ℓ1

dW S(ℓj)

dℓ1
≥ ℓ2 − ℓ1,

or rearranging,

ℓ2
1 + ℓ2

(
dW S(ℓj)

dℓ2
− 1

)

− ℓ1
1 + ℓ1

(
dW S(ℓj)

dℓ1
− 1

)

≥ 0,

which follows from the fact that the function ℓ 7→ ℓ
1+ℓ

(
d
[
re

r
ℓ E1+r( r

ℓ )
]

dℓ
− 1

)

is decreasing.

To conclude, starting from ℓ1 = ℓ2 = ℓ0, the value of µ is irrelevant: the optimal strategy

ensures that the posterior beliefs satisfy ℓ1 = ℓ2. Hence, the principal does not randomize.

The argument for a general J is similar. Fix ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓJ . We argue below below

that, at xS, all possible variations must satisfy, for all j′ = 1, . . . , J ,

J∑

j=j′

µj(1 + ℓj)∂xj ≥ 0,
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It follows that we have

∑

j

µj

(

1 + ℓj
dW S(ℓj)

dℓj

)

∂xj =
ℓ1

1 + ℓ1

(
dW S(ℓ1)

dℓ1
− 1

) J∑

j′=1

µj′(1 + ℓj′)∂xj′ +

J−1∑

j=1

(
ℓj+1

1 + ℓj+1

(
dW S(ℓj+1)

dℓj+1
− 1

)

− ℓj
1 + ℓj

(
dW S(ℓj)

dℓj
− 1

)) J∑

j′=j+1

µj′(1 + ℓj′)∂xj′ ≥ 0,

by monotonicity of the map ℓ
ℓ+1

(
∂WS(ℓ)

∂ℓ
− 1
)

, as in the case J = 2.

To conclude, we argue that, from xS, all variations in BJ must satisfy, for all j′,

J∑

j=j′

µj(1 + ℓj)∂xj ≥ 0.

In fact, we show that all elements of B satisfy

J∑

j=j′

µk ((1 + ℓj)xj − ℓj) ≥ 0,

and the result will follow from the fact that all these inequalities trivially bind at xS. Consider

the case j′ = 1, the modification for the general case is indicated below. To minimize

J∑

j=1

µj(1 + ℓj)xj,

over BJ , it is best, from the formula for xj (or rather, γ
R that are involved), to set γR

′

= 1

for some R′ for which αR′

j = 0, all j. (To put it differently, to minimize the amount of

experimentation conditional on the low posterior, it is best to disclose when the posterior

belief is one.) It follows that

∑

j

µj [(1 + ℓj)xj − ℓj]

=
∑

j

µj

[

(1 + ℓj)
∑

R

αR
j

∑

k′ µj′ℓj′α
R
j′

∑

j′ µk′(1 + ℓj′)α
R
j′
− ℓj

]

=
∑

R

µj(1 + ℓj)α
R
j

∑

j′ µj′ℓj′α
R
j′

∑

j′ µj′(1 + ℓj′)αR
j′
−
∑

j

µjℓj

=
∑

R

∑

j′

µj′ℓj′α
R
j′ −

∑

j

µjℓj =
∑

j′

µj′ℓj′
∑

R

αR
j′ −

∑

j

µjℓj = 0.
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The same argument generalizes to other values of j′. To minimize the corresponding sum,

it is best to disclose the posterior beliefs that are above (i.e., reveal if the movie is good, or

if the chosen j is below j′), and the same argument applies, with the sum running over the

relevant subset of states. �
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