CFDP 2274

Welfare Comparisons for Biased Learning

Author(s): 

Publication Date: February 2021

Pages: 43

Abstract: 

We study robust welfare comparisons of learning biases, i.e., deviations from correct Bayesian updating. Given a true signal distribution, we deem one bias more harmful than another if it yields lower objective expected payoffs in all decision problems. We characterize this ranking in static (one signal) and dynamic (many signals) settings. While the static characterization compares posteriors signal-by-signal, the dynamic characterization employs an “efficiency index” quantifying the speed of belief convergence. Our results yield welfare-founded quantifications of the severity of well-documented biases. Moreover, the static and dynamic rankings can conflict, and “smaller” biases can be worse in dynamic settings. 

PDF: 
PDF icon d2274.pdf
See CFDP Version(s): CFDP 2274R