CFDP 1849

Sieve Inference on Semi-nonparametric Time Series Models

Author(s): 

Publication Date: February 2012

Pages: 54

Abstract: 

The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a “pre-asymptotic” sieve variance estimator that captures temporal dependence. We construct a “pre-asymptotic” Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled “pre-asymptotic” Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled “pre-asymptotic” Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.

Keywords: 

Weak dependence, Sieve M estimation, Sieve Riesz representor, Irregular functional, Misspecification, Pre-asymptotic variance, Orthogonal series long run variance estimation, F distribution

JEL Classification Codes:  C12, C14, C32

See CFP: 1401