CFDP 1721

Nonparametric Estimation in Random Coefficients Binary Choice Models

Author(s): 

Publication Date: August 2009

Pages: 50

Abstract: 

This paper considers random coefficients binary choice models. The main goal is to estimate the density of the random coefficients nonparametrically. This is an ill-posed inverse problem characterized by an integral transform. A new density estimator for the random coefficients is developed, utilizing Fourier-Laplace series on spheres. This approach offers a clear insight on the identification problem. More importantly, it leads to a closed form estimator formula that yields a simple plug-in procedure requiring no numerical optimization. The new estimator, therefore, is easy to implement in empirical applications, while being flexible about the treatment of unobserved heterogeneity. Extensions including treatments of non-random coefficients and models with endogeneity are discussed.

Keywords: 

Inverse problems, Discrete choice model

See CFP: 1378