This paper proposes simple, data-driven, optimal rate-adaptive inferences on a structural function in semi-nonparametric conditional moment restrictions. We consider two types of hypothesis tests based on leave-one-out sieve estimators. A structure- space test (ST) uses a quadratic distance between the structural functions of endogenous variables; while an image-space test (IT) uses a quadratic distance of the conditional moment from zero. For both tests, we analyze their respective classes of nonparametric alternative models that are separated from the null hypothesis by the minimax rate of testing. That is, the sum of the type I and the type II errors of the test, uniformly over the class of nonparametric alternative models, cannot be improved by any other test. Our new minimax rate of ST differs from the known minimax rate of estimation in nonparametric instrumental variables (NPIV) models. We propose computationally simple and novel exponential scan data-driven choices of sieve regularization parameters and adjusted chi-squared critical values. The resulting tests attain the minimax rate of testing, and hence optimally adapt to the unknown smoothness of functions and are robust to the unknown degree of ill-posedness (endogeneity). Data-driven confidence sets are easily obtained by inverting the adaptive ST. Monte Carlo studies demonstrate that our adaptive ST has good size and power properties in finite samples for testing monotonicity or equality restrictions in NPIV models. Empirical applications to nonparametric multi-product demands with endogenous prices are presented.
This paper develops a new method informed by data and models to recover information about investor beliefs. Our approach uses information embedded in forward-looking asset prices in conjunction with asset pricing models. We step back from presuming rational expectations and entertain potential belief distortions bounded by a statistical measure of discrepancy. Additionally, our method allows for the direct use of sparse survey evidence to make these bounds more informative. Within our framework, market-implied beliefs may differ from those implied by rational expectations due to behavioral/psychological biases of investors, ambiguity aversion, or omitted permanent components to valuation. Formally, we represent evidence about investor beliefs using a novel nonlinear expectation function deduced using model-implied moment conditions and bounds on statistical divergence. We illustrate our method with a prototypical example from macro-finance using asset market data to infer belief restrictions for macroeconomic growth rates.
In complicated/nonlinear parametric models, it is generally hard to determine whether the model parameters are (globally) point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of parameters in econometric models defined through a likelihood or a vector of moments. The CSs for the identified set or for a function of the identified set (such as a subvector) are based on inverting an optimal sample criterion (such as likelihood or continuously updated GMM), where the cutoff values are computed via Monte Carlo simulations directly from a quasi posterior distribution of the criterion. We establish new Bernstein-von Mises type theorems for the posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR statistics in partially identified models, allowing for singularities. These results imply that the Monte Carlo criterion-based CSs have correct frequentist coverage for the identified set as the sample size increases, and that they coincide with Bayesian credible sets based on inverting a LR statistic for point-identified likelihood models. We also show that our Monte Carlo optimal criterion-based CSs are uniformly valid over a class of data generating processes that include both partially- and point-identified models. We demonstrate good finite sample coverage properties of our proposed methods in four non-trivial simulation experiments: missing data, entry game with correlated payoff shocks, Euler equation and finite mixture models. Finally, our proposed procedures are applied in two empirical examples.