The drift-diffusion model (DDM) is a model of sequential sampling with diffusion signals, where the decision maker accumulates evidence until the process hits either an upper or lower stopping boundary and then stops and chooses the alternative that corresponds to that boundary. In perceptual tasks, the drift of the process is related to which choice is objectively correct, whereas in consumption tasks, the drift is related to the relative appeal of the alternatives. The simplest version of the DDM assumes that the stopping boundaries are constant over time. More recently, a number of papers have used nonconstant boundaries to better fit the data. This paper provides a statistical test for DDMs with general, nonconstant boundaries. As a by-product, we show that the drift and the boundary are uniquely identified. We use our condition to nonparametrically estimate the drift and the boundary and construct a test statistic based on finite samples.
We study how long-lived rational agents learn from repeatedly observing a private signal and each others’ actions. With normal signals, a group of any size learns more slowly than just four agents who directly observe each others’ private signals in each period. Similar results apply to general signal structures. We identify rational groupthink—in which agents ignore their private signals and choose the same action for long periods of time—as the cause of this failure of information aggregation.
We analyze how to optimally engage in social distancing in order to minimize the spread of an infectious disease. We identify conditions under which any optimal policy is single-peaked, i.e., first engages in increasingly more social distancing and subsequently decreases its intensity. We show that an optimal policy might delay measures that decrease the transmission rate substantially to create herd-immunity and that engaging in social distancing sub-optimally early can increase the number of fatalities. Finally, we find that optimal social distancing can be an effective measure and can substantially reduce the death rate of a disease.
We analyze how to optimally engage in social distancing (SD) in order to minimize the spread of an infectious disease. We identify conditions under which the optimal policy is single-peaked, i.e., first engages in increasingly more social distancing and subsequently decreases its intensity. We show that the optimal policy might delay measures that decrease the transmission rate substantially to create “herd-immunity” and that engaging in social distancing sub-optimally early can increase the number of fatalities. Finally, we find that optimal social distancing can be an effective measure in substantially reducing the death rate of a disease.
A key part of decentralized consensus protocols is a procedure for random selection, which is the source of the majority of miners cost and wasteful energy consumption in Bitcoin. We provide a simple economic model for random selection mechanism and show that any PoW protocol with natural desirable properties is outcome equivalent to the random selection mechanism used in Bitcoin.