Discussion Paper
Monte Carlo Confidence Sets for Identified Sets
In complicated/nonlinear parametric models, it is generally hard to know whether the model parameters are point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of full parameters and of subvectors in models defined through a likelihood or a vector of moment equalities or inequalities. These CSs are based on level sets of optimal sample criterion functions (such as likelihood or optimally-weighted or continuously-updated GMM criterions).