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Section A provides the critical values ¢, (@), the o Quantile of J,, for constructing CI’s
and MUE’s for p (7). Section B provides asymptotic theory. Section C is concerned with the
simulation results. Section D extends the methods of the paper for TVP-AR(1) models to
TVP-AR(p) models for p > 1. Section E provides additional empirical results.

A Critical Values ¢, (o)

Table SM.1 provides the critical values ¢, («) for o = .025, .05, .5, .95, and .975 and for
1 between 0 and 500. Given these critical values, one can compute equal-tailed two-sided
CI's and MUE’s for p (1) based on (3.9) and (3.11), respectively.

Table SM.1: Values of Relevant Quantiles of Jy, for Use with 90% and 95% Equal-Tailed
Two-Sided CI's and MUE’s

Values of ¢y (a), the oM Quantile of Jy, for Use with 90% and 95% Equal-Tailed Two-Sided CI’s and MUE’s

P 0 0.2 0.4 0.6 0.8 1 1.4 1.8 2.2 2.6 3 3.4 3.8

¢y ((025) -3.12  -3.09 -3.05 -3.03 -299 -298 -293 -289 -285 -2.82 -2.79 -2.77 -2.74
cy (.05) -2.86 -283 -279 -276 -2.72 -270 -265 -2.61 -2.57 -2.53 -251 -2.48 -2.46
cy (.5) -1.57 -1.51 -147 -142 -137 -134 -1.26 -1.20 -1.14 -1.08 -1.03 -1.00 -0.96
cy (195) -0.09  -0.02 0.03 0.08 0.13 0.17 0.24 0.31 0.37 0.42 0.48 0.53 0.56

cy (:975)  0.23 0.30 0.36 0.40 0.45 0.49 0.55 0.63 0.69 0.74 0.79 0.84 0.87

P 4.2 4.6 5 6 7 8 9 10 11 12 13 14 15

¢y ((025)  -272  -2.70  -2.68 -2.65 -2.60 -2.58 -2.56 -2.54 -2.51 -2.50 -2.48 -2.46 -2.45
cy (.05) -244 -241 -239 -235 -231 -2.28 -2.26 -2.23 -2.21 -2.19 -2.18 -2.15 -2.14
cy (.5) -092 -090 -086 -081 -0.75 -0.71 -0.68 -0.65 -0.62 -0.59 -0.58 -0.55  -0.54
cy (.95) 0.60 0.64 0.68 0.75 0.82 0.86 0.91 0.95 0.98 1.02 1.04 1.05 1.08
cy (1975)  0.91 0.94 0.99 1.05 1.12 1.17 1.22 1.25 1.29 1.32 1.34 1.37 1.39

P 20 25 30 40 50 60 70 80 90 100 200 300 500

¢y ((025) -239  -235 -2.32  -2.28 -2.25 -2.23 -220 -219 -217 -217 -2.11 -2.08 -2.05
cy (.05) -2.08 -205 -202 -19 -194 -191 -189 -188 -1.86 -1.85 -1.80 -1.76 -1.74
cy (.5) -0.47 -042 -039 -033 -0.30 -0.27 -0.25 -0.23 -0.23 -0.21 -0.15 -0.12  -0.09
cy (.95) 1.15 1.20 1.24 1.30 1.33 1.37 1.39 1.40 1.41 1.43 1.49 1.52 1.55

¢y (:975) 1.46 1.51 1.56 1.61 1.65 1.67 1.71 1.72 1.72 1.74 1.80 1.83 1.87




B Theory

B.1 Weaker Assumptions on h for the Case where p,,, u,, and ai

Are Asymptotically Locally Constant

The asymptotic results in Section 7 rely on Assumption 2, which requires that the band-
width A is small enough that nh® — 0 as n — oo. This assumption is suitable when the
functions p,, p,, and 2 are asymptotically non-constant in a neighborhood of the time
point of interest 7. However, this condition can be relaxed if the functions p,, u,, and o2
are constant or asymptotically constant in a neighborhood of 7. In this section, we state an
alternative to Assumption 2 that imposes weaker conditions on A that depend on how close
the functions p,, pn,, and o2 are to being asymptotically constant in a neighborhood of 7,
but still allows us to establish the results of Theorems 7.2 and 7.3. In the case of locally
constant functions, the condition on & is just h = o(In"?(n)).

The functions p,(-) and p,(-) depend on k,(+) and 7, (+) by the definition of the parameter
space A,, following (7.1).

Definition. Let £, be the supremum of the Lipschitz constants of (), 7,(), and o2(+) and

the absolute value of the second derivative of k,(-) over the interval I, ., that contains 7.

In this definition, I, ., is as defined in the parameter space A, in Section 7.1.
As defined, /,, is a measure of the non-constancy of the functions p,(+), u,(-), and 2 (-).
When /¢, — 0 as n — oo, these functions become closer to being constant functions in a

neighborhood of 7 as the sample size increases.
Assumption 2*. (i) nf2h> — 0 and (i) h = o(In"*(n)).

Assumption 2*(i) allows h to converge to zero slower than the condition nh® — 0 when
l, — 0. If nf2 — 0, then h can converge to zero as slowly as o(In"?(n)).

The following result shows that Assumption 2 can be replaced by the weaker condition
Assumption 2* and Theorems 7.2 and 7.3 still hold.

Theorem B.1. Theorems 7.2 and 7.3 hold with Assumption 2 replaced by Assumption 2%,

The proof of Theorem B.1 is given in Section B.15 below.

B.2 Proof of Theorem 7.1

The proof of Theorem 7.1 uses the following lemma (which is also used elsewhere below).



By definition, p, (s) =1 — K, (s) /by, see (7.8). When b, — oo, for s € I, ,, define &} (s)
by
pn (8) =1 — Ky (s) /by, = exp{—k] (5) /bn} (B.2.1)

The function &} (s) on I, ., has the following property when b, — oco.

Lemma B.1. If b, — oo and k, (s) satisfies part (ii) of the parameter space A, defined
following (7.1), then
i (8)

Kin (8)

sup
SEI‘I‘,EQ

—1‘—>0.

The proof of Lemma B.1 follows that of Theorem 7.1.

Proof of Theorem 7.1. Let
CP,(\) =P\ (p(1) e CL,,), (B.2.2)

where Py () denotes probability under A € A,,. The results of Theorem 7.1 hold by Theorem
2.1 of Andrews, Cheng, and Guggenberger (2020) (ACG) provided Assumptions Al and S
of ACG hold with C'P in Assumption S equal to 1 —«. In applying Theorem 2.1 of ACG, we
let the parameter space A in that paper depend on n, as it does in the present paper, which
does not cause any complications for the results of that paper. Sufficient conditions for these
assumptions are Assumptions B and S of ACG by Theorem 2.2 of ACG. Assumptions B and

S of ACG combine to require: For any subsequence {p,},-, of {n}, ., and any sequence

{Apn S Apn }nZl
for which h; (X,,) — h* € H*, we have CF,, (),,) = 1 —q, (B.2.3)

where {h} ()}, is a suitably chosen sequence of functions.! In the present case, we take

!/

By (A) = (B (N By (V) B g () g (M), where

he L (V) == nh (1= p(r)) = nh (1 - (1 - ﬁm)) ),

b b
. nh
hn,2 ()‘) = 77
his (A) == b/ (nh'/?), and
Wy (V) = (K, p,0%) (B.2.4)

!The asterisks on h¥(\,, ), h*, and H* do not appear in ACG. They are added here to avoid confusion
with the smoothing parameter h used in this paper.



where (k, i1, 0%) are viewed as functions on I, ,, rather than on [0, 1]. As required by ACG,
the functions (k, 1, 0%) in k% 4 (A) lie in a compact metric space .7 (under the sup norm) by
the definition of A,,. We can write the smoothing parameter h as h = h,,. This implies that
for the subsequence {p,}, -, nh becomes p,h,, .

The condition A ()\pn)_—> h* € H* in (B.2.3) implies (i) (Kpn, Lo s agn) — (Ko, po, 08) €
Z under the sup norm, which implies Assumption 3, (ii) p,hy, /by, — 70 € [0, 00|, which is
imposed in the subsequence versions of Theorems 7.2 and 7.3 with ry € [0, 00) and ¢y = o0,
respectively, (iii) by, / ( nhl/ 2) — wq € [0, 00], which implies Assumption 4 and is imposed
in the subsequence versions of Lemma 7.2(b) and Theorem 7.2 when ry = 0, and (iv)
Prhp, (1 —pp, (1)) = p’g])ﬂ/ﬁpn (1) — 1oko (1) € [0, 00|, which holds by (i) and (ii). In the
present case, h* = (rokq (TLT) o, Wo, (Ko, o, 02)) and H* = [0, 00] x [0, 00] x [0, 00] x 7.

By Theorem 7.2, Assumptions 1, 2, and 3, and p,h,, /b,, — 10 € [0,00), which are
implied by A5 (A,,) — h* € H* with g € [0,00), we have: T, (pp, (1)) —a Jy With ¢ =
roko (7) for Jy, defined in (3.8). By Theorem 7.3, Assumptions 1, 2, and 3, and p,h,, /b,, —
1o = 00, which are implied by hy (),,) — h* € H* with ro = oo, we have T),, (p,, (7)) —a Jy
for ¢y = oo and J ~ N(0,1).

For ¢ € [0, 00], the quantiles ¢, (/2) and ¢y (1 — «/2) of the distribution of .J,, which
appear in the definition of C'I,, ,, are continuous at all ¢ € [0, 00]. The proof of this is given
in the proof of Lemma A.7 of ACG with Z ~ N (0, 1) replaced by Z = 0 (which simplifies
the proof because some terms that need to be shown to be o, (1) are immediately 0 and the

case ¢ = 0 is trivial when Z = 0). In consequence, under {\,, € An}, -,

Up oy pon (r) — Toko (T) implies that

(@/2) = Crone(r) (@/2) and ¢y, , (1= @/2) = Crpro(r) (1 — /2) . (B.2.5)

prn hpn sPpn, (1)

Now, we show that the convergence in the first line of (B.2.5) holds. For notational
simplicity, we replace p, by n in the proof of this convergence. We consider three cases.
Case 1: 1 € [0,00). Case 2: (i) ro = oo and (ii) p, (1) > 0 for n sufficiently large. Case 3:
(i) 7o = oo and (ii) p, (1) < 0 infinitely often as n — oo. In case 1, nh/b, — 9 < 0o, and
so, b, — 0o, Lemma B.1 applies, and p,, (7) > 0 for n sufficiently large. Thus, we have

Upnhy ppa () = —0h I (py (7)) = —nhn (exp{—~;, (7) /bn})
= nhk, (1) (1 +0(1)) /b, — roko (T), (B.2.6)

where the second equality holds by (B.2.1), the third equality holds by Lemma B.1, and the
convergence holds by A’ (\,) — h* € H*. Thus, case 1 is proved.



For case 2, by implication (iv) listed above, we have d,, := nh (1 — p, (7)) = roko () =
oo. We have p, (1) = 1 — dy/nh and ¥p,p,, ,, () = —nhln (1 —d,/nh) for n large by the
definition of 1, ,, () and the assumption that p, (7) > 0 for n sufficiently large by
condition (ii) of case 2. For all d € (0, 00), we have

Mminf ¢y, p,, (- = Iminf [-nhIn (1 —d, /nh)] > liminf [-nhln (1 —d/nh)]  (B.2.7)

n—oo

because the right-hand side quantity is increasing in d and d, — oo. By a mean value
expansion around 1, In (1 — d/nh) = (1/d,.)(—d/nh), where d,,, € [1—d/nh,1] and d,. — 1.
Hence,

lim inf [—nhln (1 —d/nh)] — d. (B.2.8)

Since this holds for all d € (0, 00), using (B.2.7), we get liminf,, o ¥p.n,, =00 =

+Ppn (7)
roko (T), as desired and case 2 is proved.

For case 3, for the subsequence of indices for which p,, (1) <0, we have ¢, p, . (r) = 00
for all indices, and so, its limit equals oo = rgro (7), as desired. For the subsequence of
indices for which p, (7) > 0, the argument used to prove case 2 applies and the limit is
00 = 1oko (7). Thus, case 3 is proved.

Now, given the convergence in the second line of (B.2.5), we have

CPy, (Ap,)
=Py, (pp, (1) € CL,, )

=Py, (o o (@/2) ST (pp, () <y, (1= 0/2))

- P (CTOKO(T) (@/2) < Jrgro(r) < Cromp(r) (1 — Oz/2))

=1-a, (B.2.9)

where the second equality holds by (3.9), the convergence holds by T}, (p,, (7)) =4 Jy with
1 = rokp (7) and (B.2.5), and the last equality holds by the definition of the quantile ¢, ()
following (3.8). This verifies (B.2.3) and completes the verification of Assumptions B and S
of ACG with CP =1 — « in Assumption S, which completes the proof. [

Proof of Lemma B.1. Because b, — oo and &, (-) is nonnegative and bounded on I, ,

uniformly over n by part (ii) of A,,

sup |pn (s) — 1| = sup fin (5) — 0. (B.2.10)

s€lr e, s€lre, bn



We prove by contradiction that

sup ) g (B.2.11)

SGIT,EQ bn

Let {s;}n>1 be a sequence in I, such that sup,e; _ &7, (s) /by — K, (sn) /bp — 0. Suppose
the claim does not hold. Then, there exists a subsequence {ny}x>1 of {n},>; and a constant
6 > 0 such that sup,e;, k7, (Sn,) /b, = 0 Vk =1, and hence, &3, (sn,) /bn, = 6/2 for all k

large. In consequence,

o (5m,) 1= exXp{ K3, (50) /b, } < exp{—6/2} <1 (B.2.12)

for all k large, where the equality holds by the definition of £, (s) in (B.2.1), which contradicts
(B.2.10) and establishes (B.2.11).

For each s € I, .,, a mean value expansion gives

exp{—#7 (5) /ba} = 1 — exp{—r7 (5) /bn}’ijlbff), (B.2.13)

where ;" (s) lies between &7, (s) and 0. The latter and (B.2.11) give: supye, k7" (s) /by =

o(1).
We have

0=pn(s) =puls) = exp{=ry(s)/bn} = (1= kn(s)/bn)
— —exp{—KZ" (s) /by }’in( 5) | Fn(s), (B.2.14)

bn
where the third equality uses (B.2.13). Equation (B.2.14) gives

o () exp{x,* (s) /b,}, and so

= exp{k,* (s) /bn}, and so,
Aa(s)

i (5) -
sup — 1| = sup |exp{x)*(s)/bn} —1 — 0, (B.2.15)
SGI—;—,EQ KRn (S) 36]7‘752

where the convergence holds by a mean value expansion using sup,cy, . £ (s) /b, = o(1).
O



B.3 Proof of Lemma 7.1

Proof of Lemma 7.1. First, we prove part (a). By definition, [T3, 75| = I,z nn/2. Because

kn () is Lipschitz on I .,, we have

max |k, (t/n) —kn (7)] < Ly max |t/n—71|=0(h), (B.3.1)
tEInT,nh/Q telnT,nh/Q
where the inequality holds for n sufficiently large such that h/2 + 1/n < ey (because then
t € In;pny2 implies that t/n € I .,).

Next, we have

emax |pt = Pnr| = emax Ko (t/0) — K (T)] /bn,

— O (/b)) (B.3.2)

where the first equality holds because p; = p,(t/n) = 1 — k,(t/n)/b, and p,, = pu(7) =
1 — Kp(7) /by, by (7.1) and the second equality uses (B.3.1). This establishes part (a).
Part (b) holds by (B.3.1) with o2 (+) in place of &, (-).
Using (7.3), we have
J

H Pt—k — PfW

k=1

Ct’] - pZLT

te[’nf,nh/2 OSJ <t-T

= max maX
te]nT,nh/Q 0<5<t—-T

< max max )+ 1) max |ps_p —
T t€lpr g2 0Sj<t-Ty G )1§k§j|p ok = Pl

— O (nh-h/b,), (B.3.3)

where the first equality holds by (7.3), the inequality uses standard manipulations and
max (|pi—k|, |pnr|) < 1, and the second equality uses part (a) and j+ 1 < Ty — Ty = O (nh).
Hence, part (c) holds.

Part (d) holds by (B.3.2) with 7, () in place of k, (-). O

B.4 Proof of Lemma 7.2

The proofs of Lemma 7.2(b) and Lemma 7.4 use the following lemma, which is an exten-

sion of Lemma 7.1(a)—(c).

Lemma B.2. Under Assumptions 1 and 3, for a sequence {\, = (pn, fn, 02, Kn, b, Fy,) €

Antns1 and a sequence of integer constants {my, },>1 for which m, — oo and m,/n — 0,
(a‘) ma‘XtEIn.,-ynh/ngz’mn |pt - pn7'| = O<<h’ + %)/bn)7

7



(b) maxes of —o2 | =0(h+ ™), and

nT,nh/2+27nn| t nTt
(¢) MaXie(r,—m,,1p} MAXo<j<m, [Ctj — Phe| = O(mn(h + 52) [by).

Proof of Lemma B.2. The proof of Lemma B.2(a) is the same as that of Lemma
7.1(a) with the following changes. In (B.3.1), I,;pnn/2 is replaced by I pnn/24om, and

[t/n—7| = O(h) is replaced by Lymaxer, ., 2,0, [t/ —7] = O(h+") and
the inequality in (B.3.1) holds for n sufficiently large that h/242m,,/n+1/n < 9, which uses

Lymaxeer, ., »
the assumption that m, /n — 0 (because then t € I,,; nh/242m, implies that t/n € I..,). In
(B.3.2), Inrnn/2 is replaced by Iy np/2+9m, and MaXeer,, .5/ exp{ T KL (t/n) — k5 (T)] /by =
O(h/by) is replaced by maxier, . or0m, €XP{Tne iy, (8/n) = k5 (7)| /by = O((h+"2) /b,) using
the revised version of (B.3.1). This establishes Lemma B.2(a).

The proof of Lemma B.2(b) is the same as that of part (a) with |k, (t/n) — K,(7)|/bn
replaced by |02 — 02 _|.
The proof of Lemma B.2(c) is the same as that of Lemma 7.1(c) with maxir, ., .,
maxo<j<;—7, replaced by max;e(z, 1,—m,} MaXo<j<om,, Which implies that the largest value
of j considered is bounded by 2m,,, rather than nh. This implies that the rhs of (B.3.3) is

changed from O(nh - h/b,) to O(m,, - (b + ™=)/by), which establishes Lemma B.2(c). O
Proof of Lemma 7.2. First, we prove part (a). By recursive substitution of (2.1), we have
Ty—1
Y;o = Z CTo,jO-ToijTofj + CTO,T()}/;)*‘ (B41)
=0
By Markov’s inequality, we only need to show EYj?/n = O (1), which is true because

To—1 2
*2 _ 1 *
EYTO /n =n kK Z CTO,jUTo—jUTo—j + CTo,ToYO

§=0

2
To—1
<2n'E (Z CTo,jUTo—jUTo—j> + 207 E (epy 1, Yy

=0
Ty—1
=2 ¢, 0%, /n+2¢, o EY? n
=0
< 2C5y (Ty/n)+0(1) =0 (1), (B.4.2)

where the first inequality holds by (a + b)2 < 2a®+2b?%, the second equality uses the fact that
{U:}}_, is a martingale difference sequence and EU? = 1 by the definition of the parameter
space A, and the last inequality holds by maxyeqin 07 < Csp, maxjepon|en;| < 1, To =
|nT] — [nh/2] —1 =0 (n), and part (v) of A,,.

8



In consequence, by Markov’s inequality, we have
Yi, =0, (n'?), (B.4.3)

which proves part (a).
Next, we prove part (b). By part (a), Y7, = O,(n'/?). Hence, if wy = oo (in Assumption
4), then
(nh)1/2 i nh1/2
b T b,

and the result of part (b) of the lemma is proved.

0,(1) = 0,(1) (B.4.4)

Hence, to prove part (b), it remains to consider the case where wy < oco. For notational
simplicity, we suppose o¢(7) = 1. By recursive substitution, as in (B.4.1), for a sequence of

integer constants {m,, },>1 for which m,, — oo and m,,/n — 0, we have

mp—1
Y7, = Z T,i0T0—UTo—j + CTymn Y1y -, - (B.4.5)
=0
Similarly to (7.12), we bound |p;| for t € [Ty—m,,, To] by p,, := max{exp{—ro(7)/(2b,)}, —1+
e1}. As in (7.12), it suffices to consider the case where p; > 0 for all ¢ € [0,1]. We have

< - Mnt nr - bn - bn
epex el < max - on— pur| + [pnr — exp{—ro(7)/bu}] + exp{—rio(7)/bn}

<0 ((h + O /bn> +o(1)/by + exp{—ro(7) /ba} < B, (B.4.6)

where b, > €3 > 0, the second inequality uses Lemma B.2(a), (7.8), Assumption 3, and a
mean value expansion, and the last inequality holds using k¢(7) > 0 and the fact that, when

b, — 00, p,, — exp{—ro(7)/b,} > K/b, for some constant K > 0. Hence, for j = 0,...,m,,

. < P (B.4.7)
We have
mp—1 o —1 '
EYr) = Y 07+ Crym  EYDy o, < O(1) 32 7 +7,"0(n)
7=0 =0
1
S O<1)1 — +wmn/bn0(n) _ O(bn) +wmn/bn0<n)’ Where
— 52
w = exp{—kro(7)}, (BAS)

the first equality uses (B.4.5) and the martingale difference property of {U;};>1, the first



inequality uses (B.4.7), max,<, 07 < C3p < oo (by part (i) of A,), and EY;2 = O(n)
(which holds by (B.4.2) with Ty —m,, in place of Tj), the second inequality holds by a bound
on the geometric sum and uses the definition of w, and the last equality uses (7.16).

We are considering the case where # — wy < 00. We take m,, = b,cln(n) for some
finite positive constant ¢ € (0,—1/In(w)). We have m,, — oo, because b,, is bounded away

from zero by condition (ii) of A, and c is positive. We have

My, by :
= nhl/QChl/z In(n) — 0 provided h'/?1In(n) = o(1), (B.4.9)
because ni?;L/Z — wy < oo in the case that we are considering. By Assumption 2, the

condition h'/21In(n) = o(1) holds. Thus, m,, satisfies the required conditions that m,, — oo
and 7= — 0.

Next, we have

Wby s 0 iff % In(w) + In(n) = (cIn(w) + 1) In(n) — —oco (B.4.10)

n

and the latter holds because c¢ln(w) + 1 < 0 by the definition of c.
By (B.4.8) and Markov’s inequality, Y72 = O,(b,) + O,(w™/*n). Using this, we have

nh nh nh

I)TYT*O2 = Op(a) t bTOp(Wm"/b"n) = op(1), (B.4.11)
where the second equality uses ’;—: — 19 = 0 in the present case, Z—g = Z—:i — 0, and

wmn /by — 0 by (B.4.10).

Equation (B.4.11) establishes the desired results for the case wy < 0o, which completes
the proof of part (b).

Next, we prove part (c), which considers the case nh/b, — 19 = 00. Let {m,},>1 be
an arbitrary sequence of positive integers for which m,, — oo and m,/n — 0. Then, by
(B.4.8), EY;? = O(b,) + w™/*O(n). Now, take m,, as defined above, i.e., m, = b,cln(n)
for ¢ € (0, —1/1In(w)). As above, m,, — oco. In addition,

My, b

= n—%ch In(n) — 0 provided hln(n) = O(1), (B.4.12)

nh
b
The condition hIn(n) = O(1) holds by Assumption 2. Now, w™/*O(n) = o(1) by the

argument in (B.4.10) above. Combining this and (B.4.8) gives

where the convergence holds because * — rq = oo, which holds by assumption, iff % — 0.

EY}? = O(by). (B.4.13)

10



This and Markov’s inequality proves part (c) of the lemma. [

B.5 Proof of Lemma 7.3

When b,, — oo, Lemma B.1 and &, () — k¢ () imply that &% () — ko (-) uniformly over
I.., and & (-) is Lipschitz with Lipschitz constant less than 2L, because &, () is Lipschitz
with Lipschitz constant Ls. In the following proofs, for notational simplicity, we let L, be
the Lipschitz constant 2L, for &% (-) since the factor 2 does not affect the asymptotic results.
Now, we prove the local-to-unity asymptotic results with p, () expressed in terms of x7 (-),
rather than &, ().

Proof of Lemma 7.3. We suppress n from Yf}t(s) and U, in the proof. Denote E (X|%;)
by E;X. By the definition of the parameter space A,, we have {U;};_, is a martingale
difference sequence.

We adopt the following notational convention. When the lower index of a sum exceeds
the upper index, the sum is defined to equal zero. In particular, ZTlﬂnhsJ k:(j/n) = 0.

j= T1+|_nhsj+1 n
Then, by the definitions of Y,? in (7.5), s} in (B.2.1), and ¢(s) in (7.9), we have

(nh) Y0
Ti+ \_nhs] 1 Ti1+|nhs| . k
J
(nh)~/? exps —— > K <> op () Uk
k T by j=k+1 n n

T1 + thsJ 1 T %hsj ] i ] k
=(nh)~" exp —— Ky (> — K, () o () Uk
k T o\ S noogen M "

:21415 X AQS. (B51)
Because &}, (+) is Lipschitz on I, .,, we have
max |k, (t/n) — k) (1) < Ly max [t/n—7|=0(h), (B.5.2)
te[’rm’,nh/? telnf,nh/2

where the inequality holds for n sufficiently large such that h/2+41/n < e5. Equation (B.5.2)
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implies that

1 T1+|nhs| ] j
seloa] |nhs| +1 j;1 i (n> o (7)| = jenTutinn) | " (n> i (7) (")
(B.5.3)

because the range of the summation is [T1,Ty + [nhs|] C [T1,Ti + [nh]] C I une for

s € [0, 1] by construction. Therefore,

|nhs| +1 1 Tt Lnh]

Ays =exp {_ b, |nhs| +1 j;1 i (Z)] }

— exp {—L”hfm* 3 7;}: (k% (1) + 0 (h))}

= exp {—sroko (1)}, (B.5.4)

where the convergence holds by Lemma B.1, Assumptions 1 and 3, nh/b, — r¢ as n — oo,
and the continuous mapping theorem (CMT).

To derive the limit distribution of

12 T1+|nhs| 1 k . ] Lk
Aoy = (nh) Z exp bf Z Ky, <n> On U, (B55)

k=T, n

j=T

we use Theorem 2.1 of Hansen (1992). First, we present a few definitions. For any random
arrays { Dy, Whi : Ty < k < Ty;n > 1}, we transform the arrays into random elements on
0, 1] by defining

Dy, (u) := Dy 14 nh) and Wy, (1) := Wy, 1y 4 nhu - (B.5.6)

for u € [0,1]. Define the differences 6,5 := W, — Wy ,—1. Then, we define the stochastic

integral
Ti+|nhs|

/os Dy () dWo (u) = 3. Duiniss (B.5.7)

k=T
for s € [0, 1].
We let

=T

k—T +1 1 k j
Da = * J X
nk = XD { b (k; “Ti+1 ].Z fin (n) Fin m) }

X exp {":_[i“mn m} o0 (7)., (B.5.8)
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D%k::eXP{k_Z;l—i_l(k T1+1z: <> (7’))}
(’f

X exp {k_zﬂl—i_l . } ( ) — o ( ) , and (B.5.9)
—_— g it
ko= (nh) > U; (B.5.10)

Jj=T

for Ty < k < Ty. Next, transform these quantities into random elements on [0, 1] by defining

i T1+nhu) '
D¢ (u) :==exp { <u + nlh> (l)f) (1 +1nhu g;l [H;; (i) o (T)D }

« exp{(u—i— 1h> (Zf) o (T)}an (r), (B.5.11)
s (o) (1) (i & ()= m0])

X exp { (u + 1h> (’Zf) } ( <T1 + [nho) > _o <T)> ,and  (B.5.12)
W, (u) := (nh)*/* TﬁJgH U (B.5.13)

for u € [0, 1].

Then, we have

T1+|nhs| 1 k ,] L
Ags = (nh)—1/2 > exp ™ >k () On <> Uk
n =T

k=T n n
T1+|nhs)| k—T +1 1 k
nh)~Y/? ex ! * (‘7) —r (T
D> ;{ e e () s e
k—T,+1
Y exp{ nal <T>} ou (1) Uy
T1+|nhs] E—T +1 1 k j
+ (nh)_1 2 exp L . () — Ky (1)
k— 1T, 1 k
X exp {H_/i; (T)} <0n () — oy, (7‘)) Uk
by, n
T1+|nhs| T+ |nhs|
= Y Dipp(Woppr —War)+ > D! & Wakir = W)
k=T1 k= Tl

— [ i @) W ) + [ D% () W )



::A2as + AQbs' <B514)

We obtain
1 T1+thuj ]
max Sk () _ &, (T)] <O(h) =0, (B.5.15)
wel0a] |1 +nhu =7 n

by (B.5.2) with &, () in place of &}, (-), [T1,T1 + |nhu]] C [T1, Ty + [nh]] C Lirnn/2, and
Assumption 1. In addition, Lemma B.1 and Assumption 3 imply that

sup |k; (s) — ko (s)] = 0. (B.5.16)

SEIT,EQ

Combining these two results, we have

1 T+ |nhu| ]
=) -k <O (h : B.5.1
w2 [ (3)-mm][somoo o @sa
Then, we have
D2 (u) = D* (u) := exp {uroro (1)} 00 (T) (B.5.18)
by (B.5.16), (B.5.17), and the CMT. We also have
W, ()= B(), (B.5.19)

where B () is a standard Brownian motion on [0, 1], by Theorem 2.3 of McLeish (1974).

Therefore,
Asas = /0 " D2 () AW, (1) = /0 " exp {uroo (1)} 00 (1) dB (u) (B.5.20)

by (B.5.18), (B.5.19), the definition of the parameter space A,,, and Theorem 2.1 of Hansen
(1992), with D? (-) in (B.5.11) and D®(:) in (B.5.18) in the roles of U, (-) and U (-), re-
spectively, and W, (+) in (B.5.13) and B (-) in the roles of Y,, (-) and Y (-), respectively, in
Theorem 2.1 of Hansen (1992).

2
For Agys, because o

(-) is a bounded Lipschitz function on [0,1] and I,/ C [0,1], we
have
max |o, (t/n) — o, (7)| < C, max |t/n—71|=0(h), (B.5.21)

tEIn‘r,nh/2 EIn‘r,nh/Z
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where C, := L3/ (2C5 ). Equation (B.5.21) implies that

o, <T1+W> — 0, (1)

max
u€(0,1]

<O0(h) =0 (B.5.22)

n

by [T1,Th + [nhul] C [T1,T1 + [nh]] C Lz pnne for w € [0,1], and Assumption 1. Then,
D! (u) =0 (B.5.23)

by (B.5.17), (B.5.22), Assumption 3, nh/b, — 19 € [0,00) as n — oo, and the CMT.

Therefore,

Aops = /0 " Db () AW, (u) = 0 (B.5.24)

by the convergence result (B.5.23) and Theorem 2.1 of Hansen (1992), with D? (-) in (B.5.12)
and the zero function on [0, 1] in the roles of U, (-) and U (-), respectively, and W, (-) in
(B.5.13) and B(:) in the roles of Y, (-) and Y (-), respectively, in Theorem 2.1 of Hansen
(1992).

Combining (B.5.20) and (B.5.24), we obtain

Ay = /0 " exp (uroro (1)) 00 (7) dB (1), (B.5.25)

where B (u) is standard Brownian motion.
Therefore, by (B.5.1), (B.5.4), and (B.5.25), we have
(nh)71/2 YT?t(S)/JO (1) = A1s + Ay = / exp{— (s —u)roro (7)} dB (u) (B.5.26)
’ 0

using the CMT and the assumption that nh/b, — ¢ as n — oo.
The subsequence version of Lemma 7.3, see Remark 7.2, which has {p, },>1 in place of

{n}n>1, is proved by replacing n by p,, and h = h,, by h,,, throughout the proof above. [

B.6 Proof of Lemma 7.4

Proof of Lemma 7.4. By recursive substitution, for a sequence of integers {m, },>1 such

that m,, — oo, we write

(24/nh)?Y}, oo (T) = Diy + Day,, where
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mp—1

Dy, = (Q@Z)/Tlh)l/Q Z CTO,jUTo—jUTO—j/UO (7’) and

=0

Day, i= (20 /nh) 2 eqy . Vi . J00 (T). (B.6.1)

We show that Dy, —4 Z; ~ N(0,1). We choose m,, such that Dy, = 0,(1). This requires
that m,, is large enough that cg, ,,, is sufficiently small, but small enough that p; is close to
pnr for all t € [Ty — 2m,,, Ty).
Define
My = by /WM. (B.6.2)

For this choice of m,,, we have

—~
—-
~—
3
=3

= (&) n7 = o(1),
nh — piaf5 = o(h'/?), and (B.6.3)
_ (%) B3/5 — O(h1/2)7

DT
. e
. )
~—

3

—~
—
—
—

~—
3
=
3

3e
SIS

where (i) and (iii) use & — % € (0,00) and (i)—(iii) use h = o(1) by Assumption 1. Given

(B.6.3), Lemma B.2 applies and the error on the rhs of its part (c) is O(m,(h + ™=)/b,) =
o(h/?). Thus,
CTy.mn = P + 0(h1/2) and cry—m,.m, = Pt + 0(h1/2). (B.6.4)

In addition, we have

o = (1= 10 (7) /)™ = expl—rs(Fma b} = exp{—r(r)h~1/%)

= exp{—rig(r)}' T = (@) B < o(h?), where
w = exp{—ro(1)}, T = h VPR (T)/Ko(T), (B.6.5)
the second equality uses the definition of £/ (-) in (B.2.1), the third equality uses (B.6.2), the
fifth equality uses the definitions of w and 7, and the last equality on the second line holds
because 7, — 00 (using £ (7)/ko(7) — 1 by Lemma B.1), w € (0,1) (since x(7) > €4 > 0 by
part (ii) of A,), w22 = o(1) as = 7, — oo (since In(w*2*/?) = rInw+ (5/2)Inx — —o0

as ¥ — o0), and 7, %2 = hY2(kX (1) /ko(7)) /% = O(RY/?).
Equations (B.6.4) and (B.6.5) combine to give

CTymy, = O(h1/2> and CTy—mp,mn — O(hl/Q)‘ (B66)

Next, by recursive substitution, we write the multiplicand Y7 . in Dy, as the sum of
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two quantities, as in (B.6.1), as follows:

To—mp—1
Y;o—mn = Z CTO_mnajO-TO_mn_jUTO_mn_j + CTO_mn7TO_mn}/E)* a’nd
=0
Dy,, = Daiy, + Daoy, where
To—mp—1
Datn = (20/nh) ey m, > CtymniOTy—mn—iUty—m,—j /00 (7) and
=0
Doon = (2w/nh)1/20T0amnCTO*mnaT0*mn}/;]*/O-O (7). (B.6.7)

By part (v) of A,, Er, (Yy)? < Csn. Hence, by Markov’s inequality, Yy = O,(n'/?) and
Doz = ™1 i, €1y —m 1y Op(1) /00 (T) = 0,(R'/?) = 0,(1), (B.6.8)

where the second last equality holds by (B.6.6) and oq (7) > 0 (because o (7) is bounded
below by Cs 1, by part (i) of A,, and C3 1, > 0 by assumption).

To show that Ds,, = 0,(1), it remains to show that Dsy,, = 0,(1). By Markov’s inequality,
it suffices to show that Ep, D3, — 0. Since {U; : t = 1,...,n} is a stationary martingale

difference sequence by part (iv) of A, its elements are uncorrelated. Thus, we have

To—mp—1
EDgln = <2¢/nh>c%o,mn Z C%b—mn,jo-%o—mn—jEUY%o—m"—j/0-0 (T)
7=0
To—mp—1
= @/nh)o(h) Y. O slo0(F) = olL), (B.6.9)
7=0

where the second equality holds by the first result in (B.6.6), ¢, _,, ; <1 (since |p;| < 1 for
all t < n by part (i) of A,), and EU? = 1 for all ¢ < n (by part (iv) of A,) and the third
equality holds because 0, ,, _; is bounded by Csy < oo (by part (i) of A,), oo (1) > 0 (as

noted above), and To —m,, < n. This completes the proof that Day, = 0,(1) and Ds,, = 0,(1).

Next, we consider Dy,,. By change of variables with ¢ = T — 7, we have

To

Dln = (2w/nh)1/2 Z CTQ,TQ*’L'O-’L'U’I:/O-O (T) s <B610>

i=To—mn+1

where {U; : t = 0, ...,n} is a stationary martingale difference sequence under F,,. We apply the
CLT in Hall and Heyde (1980) with X,,; = (2¢)/nh)"%cy, 1,_i0:U; /o (7) , with the number of
summands being m,, — 1, rather than n, and with the o-fields F,,; being the o-fields G; in part

(iv) of A,,. We need to verify a Lindeberg condition and a conditional variance condition. To
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verify the former, for any ¢, > 0, we have

To
P ( Z E(X211(|Xm| > e)|Fnio1) > 5)

i=To—mnp+1

To
<6t Y EXZ X >
i=To—mn+1
To

= 0" (2¢/nh) Z CQTO,TO—i(Ug/US (T>>EUi21((2¢/nh)C%O,TO—i(U?/Og (r)U? > &%)

i=Top—mnp+1
To

(2/nh) >0

i=To—mn+1
= O(1)EU1(2¢(Csy /og (7))UL > nhe?)
= o(1), (B.6.11)

< 5t (Csp /oy (7)) BURL(2¢(Cay /og (7)) UE > nhe?)

where the first inequality holds by Markov’s inequality, the first equality holds by the defini-
tion of X,;, and the second inequality holds because o7 < Cyy by part (i) of Ay, ¢f, 5 < 1
(since |p:| < 1), and {U;} are identically distributed by part (iv) of A,. The second last
equality in (B.6.11) holds because

To
(2¢/nh) > g =1+o0(1), (B.6.12)
i=To—mn+1

as shown below. The last equality in (B.6.11) holds because, for £ := €?/(2¢C3 17 /0 (1)) > 0,
EUL(U} > nh&) = BUFL([UT /(nh€)] > 1) < BU} (nhé)™' = 0 (B.6.13)

using EFU} < M < oo by part (iv) of A, and nh — co by Assumption 1.
To show (B.6.12), we have

To

(nh)™" > (Gymei — PRTY) = (nh) Tmpo(R?) = o(1), (B.6.14)
i=Top—mn+1
where the first equality uses [c3, 7 _; — p23| = le g — P27 - lenmi + PR <

2lerymo—i — pLot (since |pX~| |en, 1—il < 1) and Lemma B.2(c) with an error O(m,(h +

™) /b,) that is shown above to be o(h'/?) and the last equality holds because m,, = b,/h'/®
by (B.6.2), and so, (nh)'m,h'/? = b,/(nh7/1°) = (b,/nh)h3/** = (1/ry + o(1))h*/10 = o(1)

since rg > 0.
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Next, we show that

To

2¢/nh) Y P2 =1 4 0(1). (B.6.15)

i=To—mn+1

This holds because (i) Y707, 1 P20 = X7 ot = (1= ppm D) /(1 = p,) using
a change of variables, (i) p2m+Y = exp{—2x*(7)(m, + 1)/b,} — 0, for x*(-) defined in
(B.2.1), using m,, /b, = 1/hY/> = oo and k(1) = ko(7) > 0 (by Lemma B.1, Assumption 3,

and part (ii) of A,, which guarantees that xo(7) > 0), and
(iil) nh(1 = p2.) = nh(1 — pnr) (1 + pnr) = (L + ppr)nhi, (1) /by — 2k0(T)ro = 210. (B.6.16)

Equations (B.6.14) and (B.6.15) combine to establish (B.6.12). This completes the verifica-
tion of the Lindeberg condition in (B.6.11).

Now, we prove the conditional variance condition. We have

To

To
Y EB(XZ|Fui)—1=2¢/nh) > cgyg0i/0g (1) -
i=Top—mnp+1 1=Top—mn+1
To

= (2¢/nh) Y. P62 /o8 (1) — 1+ o(1)
i=To—mp+1
To

= (2¢/nh) 3 ) —1+0(1)

i=To—mn+1

= o(1), (B.6.17)

where the first equality uses F(U?|G;_1) = 1 a.s. by part (iv) of A,, and the second equality
holds by the same argument as used to show (B.6.14) since ¢?/02 (7) is uniformly bounded.
The third equality in (B.6.17) holds because

To

2¢/nh) Y. pRD0? fog (1) — 1
i=To—mn+1
< (Ty—i)
< (24 /nh To—i) . ma; —
<@ 3 e max lod = b (7)o ()
— (1+o(1) _ max jo? — o (7) /o3 (7)
= o(1), (B.6.18)

where the second last equality in (B.6.18) holds by (B.6.15) and the last equality in (B.6.18)
holds by Lemma B.2(b), O(h+422) = o(1) (since h — 0 and m,/n — 0), and 0. = 02(7) —
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o2 (1) (by Assumption 3). Hence, the conditional variance condition in (B.6.17) holds. By
the CLT of Hall and Heyde (1980), we have

Dln —d Zl ~ N(O, 1), (B619)

as desired.

By (B.5.19), W,(-) = B(:) and by (B.6.19), Dy, —4 Z;. These results can be shown
to hold jointly because W, (-) and Dy, depend on the same random variables {U,}:<,. By
(B.5.13), W,,(u) is a linear function of {U; : t > T1} for all u € [0,1]. By (B.6.10), Dy, is
a linear function of {U; : t < Ti}. Since {U,;}+<, is a martingale difference sequence, these
properties imply that Cov(W,,(u), Dy,,) = 0 for all u € [0, 1]. In consequence, W, (u) and Dy,
are asymptotically independent, i.e., B(-) and Z; are independent. [

B.7 Proof of Lemma 7.5

In this section, for notational simplicity in the proof, we assume that o2 (1) = 1. If this

is not assumed, numerous quantities in the proof needed to be rescaled by 1/0¢ (7).

Proof of Lemma 7.5. First, we prove part (a). We have

(nh)*1/2yz(s) — (nh)*l/z(ut(s) + Yigs) + Co(s),t(s)-10 Y71,
= o(1) + (nh) "' 2Y,{) + (20) ey ao)-m, (200 /nh) V2V,
= I,(s) + (2¢) V2 exp{—1bs} Z, =: I;(s), (B.7.1)

where the first equality holds by (2.1) and (7.4), the second equality holds by part (i) of
A,, and Assumption 1, the convergence holds by Lemma 7.3, Lemma 7.4, which uses the
assumption that ro € (0,00), and ¢;()4(s)—1, = exp{—s}, which we now establish.

By Lemma 7.1(c),

Ci(s),t(s)~Top = PO~ L O(nh?/b,) = exp{—kX(T)(t(s) — Ty)/bn} + 0(1) (B.7.2)
= exp{—r, (T)([nhs] +1)/b,} + o(1) — exp{—ro(T)ros} = exp{—1s},

where the O(nh?/b,) term holds uniformly over s € [0,1], x¥(7) is defined in (B.2.1), the
second equality uses nh/b, — ry < oo and h — 0 by Assumption 1, the third equality
holds by the definition of ¢(s) in (7.9) and Ty = T) — 1, the convergence uses Lemma B.1,
Assumption 3, and nh/b, — 19, and the final equality uses the definition of ¢ = roro(T).
This completes the proof of part (a).
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The proofs of parts (b) and (c) use the technique developed in Phillips (1987). For

example, for part (b), we have

T 1 1

)3 v, = /0 (k)2 Yy ds >4 /0 I, (s) ds, (B.7.3)
t=T1

where the convergence holds by the CMT and part (a) and ¢ = rokg (7).

For part (c), we have

1>

(nh) 2 S YR, = /0 1 [(nh) 2 Yi(] ds —4 /0 12 (s) ds, (B.7.4)

t=T,

where the convergence holds by the CMT and part (a).
To prove part (d), define W, (s) := (nh) ™/ Zt]’;;}nh‘gkl Uy for s € [0,1] and define the

stochastic integral

/0 1 (00| AW, (5) = () ™12 S Ui, (B.7.5)

t=T1

By Assumption 3, Lemma 7.1(b), and the triangle inequality, we have

2
max o2 = 1] =, 0, (B.7.6)
which implies
max 1) = 1| =5 0 (B.7.7)

since o, is nonnegative. By the functional central limit theorem for martingale difference

sequences, we have

W, (s) = B (s). (B.7.8)

Therefore, we use Theorem 2.1 of Hansen (1992) and obtain

(nh)~Y/? t;; Uyoy — /O 1 (10| AW () —+4 /0 dB(s). (B.7.9)

To prove part (e), we define the stochastic integral

1 T
/0 [(nh) ™Y, oue| AW (5) = (nh) ™ 3 YiaUier. (B.7.10)

t=T1

By part (a), we have
(nh)™*Yigy = I (s) . (B.7.11)
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We also know that max o] ‘O't(s) — 1’ —, 0 by (B.7.7). Thus, by the CMT we have
(nh) Y9010 = (nh) " Yy + (nh) V2 Vi) (010 — 1) = I3 (). (B.7.12)

Equations (B.7.8) and (B.7.12) hold jointly due to the common underlying martingale

-----

(nh)~" Z Y, Uyoy = /0 1 (nh) ™2 Yy 0ue)| AW, (5) = /O 1 I (s)dB(s), (B.7.13)

t=T1
where the convergence holds by Theorem 2.1 of Hansen (1992), with (nh)™*/? Yi(yo.y and
I () in the roles of U, () and U (-), respectively, and W, (-) and B (-) in the roles of Y,, (:)
and Y (+), respectively, in Theorem 2.1 of Hansen (1992).

The proof of part (f) is analogous to that of part (c), and thus, is omitted.

Part (g) holds by the same argument as given above for parts (a)—(c) and (e), but with
Yis) = Hes) + Yt((JS) + Cy(s),1(s)-1, Y7, TePlaced by fuy(s) + Y;((]S) in part (a), which simplifies the
proof because the initial condition Y7 does not appear.

The subsequence version of Lemma 7.5, see Remark 7.2, which has {p, },>1 in place of

{n}n>1, is proved by replacing n by p, and h = h,, by h,, throughout the proof above. [

B.8 Proof of Theorem 7.2
In this section, for notational simplicity in the proof, we assume that o (1) = 1.

Proof of Theorem 7.2. First, we prove Theorem 7.2 for the case where ry € (0,00). To
start, we show that the denominator of (7.10) divided by oq (7) converges in distribution to
I 175, (s) ds, where 1 = rorq (7).

t=T1

= (nh)~? ZQ (Yio1)? - ((nh)” ZZ Yt—l)

—d /01 137 (s)ds — (/01 I (s) ds>2 = /01 115, (s) ds, (B.8.1)

where the convergence holds by Lemma 7.5(b) and (c) and the CMT.
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Next, we show the numerator of (7.10) converges in distribution to [ I}, (s)dB (s). For
any t =T}, ..., Ty, we have

Yi = ponYi-1 = (e — ponhi—1) + (ptY;*_l + 0Up — pO,nYt*_1>
= 0:Us + (e — pomtie—1) + (pr — pon) V21 + (pr — pom) ce-14-1-1, Y7, (B.8.2)

where the first equality holds by (2.1) and the last equality holds by (7.5). Substituting
(B.8.2) into the numerator of (7.10) gives

T L
(nh) > (Yier = Yonor) (Vi = ponYicn)
t=T,
1 & X~
=mh) Y (Vi = Yon 1) ol
t=T1
1 2 v
+ (nh)™ ) (Yt_l - Ynh,_l) (41e — pontie—1)
t=T1
1 I -
+ ()™ (Yo = Vo) (o1 = pon) Y2
t=T,
1 2 v
+ (nh)~ Z (Yt—l — Ynh7—1) (Pt — pon) Ct—1,0-1-1, Y7,
t=T1
== Al + A2 + Ag + A4. (B83)
For A;, we have
To o
A= b)Y (Y = Yonr) ol
t=T}
T2 . T2
= (k)" Y. VioU; — [(nh)‘”2 Ynh7,1} (nh)""* 3" oyl
t=T1 t=T1

[ I () dB (s) - / I (s) ds / 4B (s) = / I (s)dB (s)., (B.8.4)

where the convergence holds by Lemma 7.5(b), (d), and (e).
For A,, we have

2
T B
’A2’2 = (nh)_l Z (thl - Ynh,71> (Mt - po,nutq)
t=T1
5 T . 9 T )
< |(nh) Z (Yifl - Ynh,fl) Z (e — ponte—1)
t=T1 t=T1
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< [(nh)z i <Yt4 _Ynh,1>2:|

t=T1

Ts Ts
x {2 ST (=) 2 (s — pO,nNt1)2]

t=T, t=T1

< [(nh)_2 i (thl _?nh,71>2

t=T1

x 2 |nh — 1) +nh (1= pon)? 2
ln Jnax (1t = pe—1)” +nh (1= poy) 20X i

= 0, (1) [nhO (n7%) + nhO ((nh)?)| = 0, (1), (B.8.5)

where the first inequality holds by the Cauchy-Schwarz (CS) inequality, the second inequality
uses the fact that (a +b)° < 2(a®+b?), and the second last equality holds by (B.8.1),
maxye(r ) | — te—1| < La/n by the Lipschitz condition on yi(-), |1 — pon| = O ((nh)_1>,
and maxe(r, 1) 147 is O (1).

For As, we have

2

T2 .
Asl* = |h) ™32 (Yo = V1) (o = pon) Y2
t=T1
[ 72 Ty 2' [ 2 foo \2
< |h) 3 (Yier = Yano1) | | 2 (= pon)” (Vi21)
t=T} 1 =N
| L& - 2] 2 2
< |(nh) tZle (Yies = Yona) | |(nh) Jpax (pr = pon)
PRt 2
x| (nh)™" ) <Y1:0—1>
t=T1,
=0, (1)O ((nh)*n"?) 0, (1) = 0, (1), (B.8.6)

where the first inequality holds by the CS inequality and the second last equality
holds by (B.8.1), Lemma 7.1(a), and Lemma 7.5(f). Note that Lemma 7.1(a) implies

maxe|r, 15 (Pt — p07n)2 = O (n?%) because under Hy and when nh/b, = O (1),

2
. 2: . _ 2: -2
max (P = pon) QJ{%?&’%Q] e pm) (O (h/ba) (bu/nh) nh/b,)* = O (n7%).
(B.8.7)
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For A4, we have

2

Ty
| Ayl = |(nh) ™! > (Yt—l - Ynh,—l) (Pt = Pon) Ct—1,4-1-1, YT,
t=T}
- P | [ & 2 2 %2

< |(nh) Z (Yt—l — Yo —1) Z (Pt — pon) Ci14-1-1, Y1y
t=T1 1 ="

< am2 2 vy — 7o )2 o 2|y

> (” ) tzj;l( t—1 — Y nn —1) | _n te%%,z] (Pt — pon) To

=0,(1)O (nh-n"2) O, (n) = 0, (1), (B.8.8)

where the first inequality holds by the CS inequality, the second inequality uses
maxie(r,1) Cry_1y < 1, and the second last equality holds by (B.4.3), (B.8.1), and (B.8.7).

Therefore, we obtain

Ts

(nh)_l Z (Yt—l — ?nh,fl) (Y — ponYic1) = A1+ 0, (1) =4 /01 Ih, (s)dB(s) (B.8.9)

t=T,

from (B.8.4), (B.8.5), (B.8.6), and (B.8.8).
Combining (B.8.1) and (B.8.9), we have

1 -1 1
nh (s — o) —a ( /0 2, (s)ds) /0 I, (s) dB (s) (B.8.10)
by the CMT.

Next, for the t-statistic 1), (po,,), we have

(nh)1/2 (Pnr — p07n> _ nh (Pnr — p)

T (pon) = ~ : B.8.11
(pO, ) 5., (nhé\%”—>1/2 ( )
Thus, by (3.4), (3.5), (B.8.1), (B.8.10), and the CMT, we only need to show
2 gL - - 2
62, = ()™ 3 [Yi= Yo = pur (Y = Vonoa) | =5 L. (B.8.12)

t=T1
First, we replace p,, with pg, in (B.8.12):

~ -1 Z N ~ N 2
62, =(mh) " 3 [Yi = Yo = fur (Yier = Voo )|

t=T1
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T

= (nh)_l Z [Yt - ?nh — Po,n (Yt—l - ?nh,—l)]
t=T1
Ts

+ (nh)_l Z [(PO,n - ﬁm') (thl - ?nhﬁl)r

t=T,

+2 (”h)_l f: {)/t — Y — pon (Yt—l — ?nh,—l)} [(Po,n — Pnr) (Yt—l — ?nh,—l)]

t=T1

2

We show that A5 —, 1 and Ag —, 0, which together imply A; —, 0 by the CS inequality.

For As, we have

Ty L L 9
(”h)_l Z [Y;e —Yon — pon (Ytq - Ynh,q)}
t=T1
—1 & 2 — — 2
= (nh) Z (Y;t - IOO,nY;—l) + (Ynh - pO,nYnh,—l)
t=T
1 n -
+2mh) > (Van = ponY 1) (Y = ponYio)
t=T,
= A51 + A52 + A53. (B814)

First, we show that As; converges in probability to 1. By (B.8.2), we have

2
gy = (nh)~ S | U Ut = pontiea) + (o= pon) Vi

=T, +(pt = pon) Ct-14-1-1,Y7,
L& 2
:(nh)_ Z (UtUt)
t=T,
-1 Iz 2
+ (nh)" > [(Mt — ponti-1) + (pr — pos) Yiii + (pr — pon) Ct—l,t—l—ToYfko}
t=T1
| &
+2(mh) Yl [(1e = pomtti—r) + (pr = pon) Y21 + (o1 = pon) c14-1-1, Y7, |
t=T1
= As11 + A1z + Asis. (B.8.15)

For Asi1, we have

() S (U = () S U+ (k)Y (02— 1) U (B.8.16)
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By the weak law of large numbers, (nh)~' 372 2, UZ =, 1 as n — co. We also have

P
(nh) t; ( 1) U? ter[r:lpa%} 1‘ nh)~ Z Uf =o0,(1 (B.8.17)
=T t=T,
where the equality holds by (B.7.7). Therefore,
T
Asii = (nh) 1Y (0ulh)? =, 1 (B.8.18)
t=T,

Next, we have S5 (1 — posr)® = 0(1), S0 (ot — pon)* (V2)" = 0,(1), and
Y2 (pe = pon)’ oy g Y52 = 0, (1), by (B.8.5), (B.8.6), and (B.8.8), respectively. These
results and the CS inequality yield As12 —, 0. Finally, using the CS inequality again gives
As13 —p 0. Therefore, by the CMT we have A5; —, 1.

For Asy, by (B.8.2) we have

1>
(A52)1/2 = (nh)il Z (Y; — ponYio1)
t=T1
_ (nh)fl i orUs + (1t — pontie—1) + (pr — pon) Y24 0, (B.8.19)
=Ty + (P — pon) Ct—1,4-1-1, Y7,

where the convergence holds by Lemma 7.5(d), the results stated after (B.8.18), and the CS
inequality.

The convergence of As3 —, 0 follows from As; —, 1, As2 —, 0, and the CS inequality.
Combining the results gives A5 —, 1.

For Ag, we have

Ty

As = (k)™ 3 [(pon = ur) (it = Vonoa)|
— (pon — Pur)? X (nh) ™ _ZT (Vi = V)’
= 0, ((nh)™*) x O, (nh) = 0, (1), (B.8.20)

where the third equality holds by (B.8.1) and (B.8.10).

In conclusion, we have proved (B.8.12), which leads to
1/2
" (o) (/ I ) / I, () dB (s) (B.8.21)
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for the case where 7o € (0, 00).

Now, we prove the results of Theorem 7.2 for the case where ry = 0. The idea is to use
the same proof as given above for ry > 0, except with Y;_; (= ey + Y2, + Ct71,t717T0Yi~k0)
split into the two pieces ;1 + Y;O_l and ¢;_14-1-71,Y7,- To deal with the first component
w1 + Y2 |, we use the argument given above for 79 > 0 using the results of Lemma 7.5(g),
which holds even when 7 = 0. Then, we show that the second component ¢; 1, 1-7,Y7,
has a negligible asymptotic effect because ¢;—1;_1_7, is quite close to the constant 1 since
ro = 0. The reason it has a negligible asymptotic effect is that the LS regression in-
cludes a constant term and hence, ¢;_14 17, Y7, only enters the LS estimator p,, through
(cro14-1-1, — (NA) 1.2 T1 Cs—1,5-1-1y) Y7, Which is close to (1 —1)Y7 . Combining this with
Lemma 7.2(b), we show that its impact is asymptotically negligible.

We have

1_ < 1— p="To| 4 O(nh/b
117 ool = gy [ e O

= 1—p" + O(nh/b,)

= 1—exp{—x;(7)nh/b,} + O(nh/b,)

— 1= (1 - (P)(nh/b) exp{Ca}) + O(nh/by)

= O(nh/b,), (B.8.22)

where the inequality holds by Lemma 7.1(c) and O(nh?/b,) = O(nh/b,), the first equality
uses To — 1 — Ty = 2|nh /2], which we denote by nh for simplicity, the second equality holds
by the definition of 7 (7) given in (B.2.1), the third equality holds by a mean value expansion
with ¢, lying between 0 and —x (7)nh/b,, and hence, |(,| < & (7)nh/b, = O(nh/b,) = o(1)
using k(1) = O(1) (by k,(7) < Cy < 00 by part (ii) of A, and Lemma B.1) and nh/b, —
ro = 0, and the last equality holds by «’(7) = O(1) and ¢, — 0.

Equation (B.8.22) yields

max |¢;—1¢—1-1, — Cun| = O(nh/b,,), where ¢,;, := (nh)~ Z Cs—1,5—1—Tp- (B.8.23)
te[Th,Ts] =T,

Now, consider the denominator of the normalized LS estimator given in (7.10) and (B.8.1).
We have

Ty

(nh)~ Z (Yiog — Yon 1)

t=T1
1>

_ _ —0 _ )2
= (nh)™? > (Nt—l +Y2, - (Foup—1 + Y 1) + (Ce—14-1-75 — Cnn) YTO)
t=T1
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1>
_ _ —0 2 _ _ "
= (nh)~? Z (Mt—l +Y2, - (Finp,—1 + Ynh,—l)) +(nh)™" max (c-14-1-15 — Cnh)2 YT02

=Ty te[Th, T3]
20,(1)(nh)~1/? te1-Ty — Con| - |V
+20,(1)(nh) 2 max [eiovioam, — el V5
2 & 0 0 2
- (nh)_ Z (Mt—l + Y;ffl - (ﬁnh,—l + Ynh,71>)
t=T,

+(nh) "' O((nh/b,)?)o, (b2/nh) + O,(1)(nh)~20(nh/by)oy (bn/(nh)?)
1
Sy / 132, (s)ds, (B.8.24)
o D
where i, , = (nh)~! o2 Hiets ?Zh’_l = (nh)1 24, Y2, the first equality uses (2.1)
and (7.5), the second equality uses (nh) ™22 |1 + Y2 — (Tp 1 + ?2,%71)’ = 0,(1)
by Lemma 7.5(g)(b) (which refers to Lemma 7.5(b) adjusted according to Lemma 7.5(g), i.e.,
with Y;_; replaced by p; 1+ Y2 ;) and with absolute values added to p;_1 +Y;” ; (which does
not affect the argument), the third equality holds using (B.8.23) and Lemma 7.2(b), and the
convergence holds because (nh)~*O((nh/b,)?)o, (b2 /nh) = 0,(1), O,(1)(nh)~Y20(nh/b,) x
Op (bn /(nh)Y/ 2) = 0,(1), and the first summand on the lhs converges in distribution to

Jo I33,(s)ds by the same argument as in (B.8.1) but with s,y + ¥;2, in place of ¥;_; and
using Lemma 7.5(g), which uses u;_; + Y;? ; and applies when rq = 0.

Next, for the numerator of the normalized LS estimator p,, given in (7.10) and (B.8.3),
we decompose Y;_1 — Y 1 into pyy—1 + Y2 — (i1 + ?Zh’_l) and (¢;—14-1-1 — Con) Y7,

in each of the summands Ay, ..., A4 in (B.8.3). Thus, we write

T

A = (nh)_l Z (Yt—l - 7nh,-1)0tUt = Ay + Ajz, where
t=T,
T . T
Ayy = (nh) ™Y (e + V20U — (nh) ™2 (B 1 + Vo 1)) (0h) 72 3" oyl and
t=T1 t=T1
Ts
A12 = (nh)fl Z (Ct—l,t—l—To - Enh)o'tUtY;O- <B825>
t=T,
We have
1 1 1 1
Alr —ba / I3(s)dB(s) — / [;;(s)ds/ dB(s) = / I3, (s)dB(s), (B.8.26)
0 0 0 0o

where the convergence holds by Lemma 7.5(g)(b) (which refers to Lemma 7.5(b) adjusted
according to Lemma 7.5(g)), Lemma 7.5(g)(e), and Lemma 7.5(d).
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For A5, we have

T2 T2
Var ((nh)_1 > (cterp-1-m — Cnh)UtUt) = (nh) 7> (Co14-1-1 — Can)’07

t=T1 t=T1

= O((nh)™") max (ci-1e-1-, — Cun)” = O((nh))O((nh/b,)*) = O(nh/by),

te [Tl ,TQ]

(B.8.27)

where the third equality uses (B.8.23). Hence,

(nh)Y/2\ _, (nh)'% b, 1
A =0, < b Y, =0y b, nhi2) = Op (nl/2> = 0p(1), (B.8.28)

where the second equality uses Lemma 7.2(b). Combining (B.8.25)—(B.8.28) gives: A; —4

Iy I}, (s)dB(s) in the g = 0 case, just as in the 79 > 0 case considered in (B.8.4).

When ¢ = 0, we have Ay = 0,(1) and A3 = 0,(1) (where Ay and Aj are defined in (B.8.3))
by the same arguments as in (B.8.5) and (B.8.6) using (nh) ™2 25 (Yio1 = Yon-1)2 = O,(1)
by (B.8.24).

When ry = 0, for A4 (defined in (B.8.3)), we have

Ts L
|Ayl* < {(nh)™2 > (Vi — Ynh,—1)2] lnh max (p — pon)’| Yy

=T te(T1,T5)

= 0,(1)nhO(n"2)0,(n) = O,(h) = 0,(1), (B.8.29)

where the inequality holds by the first three lines of (B.8.8) and the first equality uses (B.8.7),
(B.8.24), and Lemma 7.2(a).

This completes the proof of (B.8.9) concerning the numerator of the normalized LS
estimator in the o = 0 case. Combined with the result for the denominator in (B.8.24), this
establishes the result of (B.8.10) for the normalized LS estimator in the ry = 0 case.

For the t-statistic, as in (B.8.11) and (B.8.12), it remains to show that 62—, 1. For
ro = 0, this holds by the same argument as given in (B.8.13)—(B.8.20) for the ry > 0 with the
only change needed being that (nh)™ 3325 (Yio1 — Y,u_1)% = Oy(nh) in the third equality
of (B.8.20) by (B.8.24) when 7y = 0, rather than by (B.8.1).

The subsequence versions of Lemma 7.3, Lemma 7.5, and Theorem 7.2, see Remark 7.2,
which have {p,},>1 in place of {n},>1, are proved by replacing n by p, and h = h,, by h,,
throughout the proofs above. [
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B.9 Proof of Lemma 7.6

In this section, for notational simplicity in the proof, we assume that o2 (1) = 1.

Proof of Lemma 7.6(a). To prove part (a), we let ;2 ¢; joy_;U;—; = 0. Then, by (7.4),

we have

— 2
1/2 &
B (1 - p(2),n) (nh)™ > Y,
i =T
r 2
1/2 B To—1 t—T1
=k (1 - Pg,n) / (nh) ' > (Z Ct,jUt—jUt—j>
L t=T1—1 \ j=0
TQ 1 t—T1 2
(1 pOn) Y E (Z Ct,j 04— Us- J)
t=T,
TQ 1 t—T1 s—=T
+ (1 pO n) Z E (Z Ct ,i0t— zUt 1) (Z Cs,jgsjUsj) 1 {t # S}
t,s=T1 7=0
= Ael + Aeg, (Bgl)

where the first equality holds by (7.5).

We show |Ac| = o(1) and |Ae| = o(1), which

establish part (a) by Markov’s inequality.

For |A.1|, we have

To—1 -1 2
’Ael| = (1 - pg,n) (nh> ? Z E (Z Ct,jatjUtj>
=Ty j=0
, Tt
- (1 - pan) (nh)™ > > EUE jcf ;07
t=T1 j=0
TQ 1t—-T4
S (]' ) Z Z p Ut —7
t=T1 7=0
) T2 1 oo 0
—2j
< oy ot () O 2 3

0 (1) 0 (b,") (nh) > O (nhb,) =

o(1), (B.9.2)

where the second equality uses the fact that {U,}}_, is a martingale difference sequence, the

first inequality holds by (7.13), and the second last equality holds by (B.7.7) and (7.16).
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For |Ags|, we have
|Ay| = (1 - pg,n) (nh)” ZtTi nE (ZE;? Ct,iat—iUt—i)
x (Zi o cayoiiUsg) 1{t # s}

To—1 t—1 t—T4 s—T1

:2(1 ) Z ZEZCtlatlUtzZCSJUSJ 5=j

t=T1+1 s=T, 1=0
To—1 t—1 s—T1

=2 (1 POn> Z Z Z EU JCtJJF(t 565303 J

t=T14+1 s=T1 7=0

) To—1 t—1 s—T1 0i
74J
= 2ter[1%’?}7{“2] ot (1 Po ") . ;ﬂ SZTI Pn Z
<o0Mmo(b,')(nh) 20 (nhbi) =0 (by/nh) =0(1), (B.9.3)

where the first equality uses the fact that ¢ and s are symmetric, the last inequality holds
by (B.7.7), (7.16), and (7.19), and the last equality holds by b, = o (nh).

Therefore, by Markov’s inequality, we have

1/2 &
(1=p%,) " (nh) 1tZT Y2, =, 0. (B.9.4)
=11

O

Proof of Lemma 7.6(b). To prove part (b), we have

T
Bl(1=ph,) n) " 3 (V)
t=T
t—T1 2
:(1 pOn) Z E (Z Ctjo-t jUt ])
t=T1—1
—1t-T
:(1 IOOn) Z Z Ctjo-t J
t=T1 j=0
—1¢-T Tl '
= (1 pOn) Z Z p ( pOn) Z Z (Ct] pg,]n) O-t2—j
t=T, j=0 t=T1 j=0
T2 1¢t-T1
+ (]- Po n) Z Z 10 ( -7 O-g (T)>
t=T1 j7=0
— Ay + Apy + Aps. (B.9.5)

We show Ay =14 0(1), Ape = 0(1), and Apz = o (1).
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For Ay, we have

T2 1t-T, To—1

A= (1=p2,) ) S = (1= 03, ) ()™ Y (1= ) (1 g2,)
t=T1 j=0 t=T1
=1—( Lnfp =140 (b,/nh)=1+0(1), (B.9.6)

where the third equality uses the change of coordinates k =t — 77 + 1 and the second last
equality uses (7.16).

For Ay,, we have

To—1t—T o
| = (1= p3,.) ()™ | X2 3 (= i) o7,
t=T1 7=0
T2 1t—Ty o
J
< max o} (1= pf,,) (nh tZTl ]ZO ¢ty = Pl
TQ 1¢t-T, )
< O(1) (1 pOn) oy }cm p%,n\
t=T1 7=0
To—1t—-T1 )
<OMO (b,") (k)™ > > A Lah/by = O (h) = 0(1), (B.9.7)
t=Ty j=0

where the second inequality holds by (B.7.6), the last inequality uses (7.14), and the second
last equality holds by (7.17).

For Ay3, we have

—1t-T4

|As| = (1= p3,,) (nh S (o7, — o3 (7))
t=T1 j=0
TQ 1t—Th
< 2 2
< Josx |0y — 0 (1| (1= 55,,) (nh tZTl ]Z; oo
= o(1)O (b,") (nh) ™" O (nhb,) = 0(1), (B.9.8)
where the second last equality uses (B.7.6) and (7.16).
Combining (B.9.6), (B.9.7), and (B.9.8), we obtain
L& 2
E|(1=p},) ()Y (V2) | =1+0(1). (B.9.9)
t=T1
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2
Next, we show E [(1 - pg’n) (nh) ' r " (Ytol)q =14 o(1) by observing

2 -1 & 0 \2 ’
B (1= pin) )™ 3 (1)
=11
(1 2 \? -2 i 0 \2/u0 \2
=(1=d) e S (V) (vi)
Lt1,t2=T1
(1 2 )2 2 ol N2 [ 0\2
=(1-p,) ) E| Y (V) (VD)
_tl,tQZTlfl
To—1 t1—T1 2
=(1-p2.) (nh)~ E (Zi:O Ctl,io'tl—iUtl—i)
( IOO,n) n th;Tl X (252;0% Ctz,jo'tgijtQ,j)Q

Cty i1 Cty,i2 Cta,j1 Cto,ja Ot1—i1 Ot —in Oto—51 Ota—ja

X FE (Ut1*i1 Utl*i2 Utz*jl Utz*jz)

—(1-p2,) 2 Y % Z

t1,t2=1T1 11,i2=0 j1,52=0

Y

To—1 t1=Ty to— [

(B.9.10)

where the third equality holds by YOO = 0 and (7.5). All expectations in the last line are zero
unless (i) all the indices on the four innovation terms coincide or (ii) there are two groups
of two indices that each coincide or (iii) three larger indices coincide.

In case (i), we must have iy = iy =i, j; = jo = j and t; — i3 = t3 — j1, which implies

Ct1,i1 Ct1,i2 Cta,j1 Cta, 52 EUtl —1i1 Utl —ig Ut2 —Jj1 Utz —§20t1—i1 Ot1—i2Ota—j1 Ota—ja

= Ct?l,icfg,jEU;l—il {ti—i=ty—j} Ufl_i- (B.9.11)

Substituting (B.9.11) into the right-hand side of (B.9.10), we have

To—1 t1—T4 to— .
2
(1_p0,n) nh Z Z Z ctl zctngUt 11 {tl _Z_tQ_j}atl 7
t1,to=T1 =0 j5=0
To—1 t1—

< (1 Po,n> ter[%?;}ﬂ ot M (nh)~ tlg:Tl ;} . Z i, 1{t1 —i =ty — j}
9 To—1 To—1t—T )
<O (1-p3,) 4202 > Z o2 (nh) 2y S Y
t1>to=T i=t1—t2 t=T7 =0
2 To—1 to—1T1 T2 11T
=0 (1-p,) (nh)2 > 0t > PO (1-p2,) )2 Y Y At
t1>to=T1 t=T1 =0
To—1 t1— TQ 1 oo
<0 (1-72,) (nh)” Z > *”Z*“k W) (1= 7,) ()2 3 > pt
=Ti+1 =1 t=T} =0
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=0 ((nh)") =0(1), (B.9.12)

where the first inequality holds by EU}! < M, the second inequality uses (B.7.7) and (7.13),
the first equality uses the change of coordinates k = i — (¢; — t2), and the second last equality
holds by Y22, % = (1 —p%)"" = O (b,) and (7.16).

In case (ii), we must have (iil) (i; =iy =7 and j; = jo = j and t; — i # ty — j) or (ii2)
(ty—iy = ty—j1 and t — iy = to— jo and i, # is) or (ii3) (t, —1 = to—jo and ty — iy = to— jy
and i; # is).

In case (iil), we have

Cty i1 Cty iz Cta,j1 Cla,jo EUtl —1i1 Utl —ig Ut2 —Jj1 Utz —§20t1—i1 0t1—i2Ota—j1 Ota—ja

= ¢} ¢}, BUL UL _ Uty —i#ty—jyo; 00,5 (B.9.13)

Substituting (B.9.13) into the right-hand side of (B.9.10), we have

To—1 t1—T4 to—
2 2 2
(1 - pO,n) Z Z Z Ctl 1Ct2 ]Ut1 ZUtz ]E (Ut1 'LUtQ ]) 1 {tl —1 % Z52 - ]}
t1,lo= =0 j=0
To—1 t1-—T4 to—
2 2
(1_p0»n> Z Z Z c151 1Ct2jat1 ’LO-tQ ]]]-{tl _Z#tQ_j}
t1,to=T1 =0 35=0
To—1 t1—T to—
2
(1 - pO,n) Z Z Z Ctl thg ]0t1 i0ty— —j
t1,to=T7 1=0 35=0
To—1 t1—=T4 to—
2 2
- (1_p07n) nh Z Z Z Ct1zct2]at1 ZOtQ jﬂ{tl_l_tQ_]}
ti,to=T71 =0 35=0
To—1 t1—T4 to—
_ 2 7,+j
—(1=p2) o XY Z
t1,to=T1 =0 j5=0
To—1 t1—T4 to— 2( )
2 i+j
+ (1 - pO,n) nh Z Z Z (Ctl zctg i~ Pon )
t1,to=T1 =0 35=0
To—1 t1—T4 to—

N (RN ORED DS Zcmcm(an 0% — b (r)) —o(1)

t1,to=T1 =0 35=0
:IAb4 + Ab5 + Ab(; +o0 (1) 5 (B914)

where the first equality holds by E[U?|%,_1] = 1 a.s. and the third equality holds by
(B.9.12).

Because Ay, = A7}, we obtain Ay = 1+ 0(1) from (B.9.6). Thus, for case (iil), we only
need to show Ay = o (1) and Ay = o (1).
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For Aps, we have

To—1 t1—Ty to—

’AbS, < ( —Po n) nh Z Z Z |:Ct2J ct1 i pgfn C?Q,j - p(QJ?nH
ti,to=Ty i=0 j=0
To—1 t1—T4 to— )
<(1- n) DS Z (P +phigpl ") 2Lah/b,
ti,to=T1 i=0 j=0
To—1 t1— ) to—T1 )
S SRS S WAl o
t1,to=T7 =0 7=0
= O (b2 (h/bn) (nh)~ 2(nh)zbibn) =0 (h)=o0(1), (B.9.15)

where the first inequality uses the triangle inequality, the second inequality holds by (7.13)
and (7.14), the first equality uses the fact that ¢; and ¢, are symmetric, and the second
equality holds by (7.16) and (7.17).

For A, we have

To—1 t1—-T4 to—

| Aps| < (1_P8,n) mh) Y Y Z , th”‘atl Tt — 04 (7’)’

t1,to=T1 =0 35=0
To—1 t1—Ty to—

o} op, — 0y (T) ’ Z > Z 72t = O (h), (B.9.16)

t1,to=T1 =0 =0

<O (bf) max
t1,t2€[T1,T2]

where the second inequality uses (7.13) and the equality holds by

To—1 t1—T4 to—

S S ) < iy (1-22) " = 0((nhb,)?) (B.9.17)

t1,to=T1 =0 35=0

and
2 2 4
- 2 s > 2 g2 = _ B.9.1
_SEI%?%] ol —op (T)‘te%i);?] o; +t6%i§2] o; — g (7’)‘ O (h) (B.9.18)

This completes case (iil).
Since case (ii2) and (ii3) are symmetric, we only prove the result for case (ii2) and show

it is 0 (1). Observe that when t; — iy =ty — ji, t1 — ia = to — jo, and iy # io,

Ct1,i1 Ct1,i2 Cta,j1 Cta, 52 EUt1 —i1 Ut1 —i2 Ut2 —Jj1 Utz —§20t1—i10t1—i2 Ota—j1 Ota—jo

1{iy # i2} 07 _;, 00 _s,- (B.9.19)

_ 2 2
= Ciq,i1 Cty,ia Cta iy —(t1—t2) Cta,ia—(t1 —t2) EUt1 21U t1—io

t1—12
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Substituting (B.9.19) into the right-hand side of (B.9.10), we have

To—1 t1-T1 to— . . . ) ) )
1— 2 nh Z Z Z Cty,i1Ct1,i2 Cta i1 —(t1—t2) Cla io—(t1—t2) ]l {21 7é 22}
P xEBU?_ U2 _.o%  o?
ty,to="T t1,i2= 0]1 ,j2=0 t1—i1 Y t1—iaY t1—i1 Y t1—i2
9 To—1
2 -2 2 2
<2 (1 - IOD,n) (nh) Z Z Ct1,i1 Cty,ia Cta to—(t1—i1) Cta,ta—(t1—i2) Oty —iy T 1 —in
t1>to=T1 i1,i2=t1—t2
To—1 t—T

+(1-p2) Y Y oot
t=T i1,i2=0
<< max Ut>42(1—p2 )2(nh)_2 Til Z ﬁ“ﬂﬁm (mi)tta=(t =)
te[T1, 12 o > ta=TY i1,d2=t1 —t2 "
4 ) T2 1 o 2 )
— 11+12
lam) @) o0y &
111112
9 To—1 t1—1T1
=0 (1=4t,) () X A 3 AT 0((h)7)
t1>te=1T1 il,ig—tl to
To—1
SO (1) T Y S g 0 ((un) )
t1>to=T1 l1,l2=0
2 -1 —92
<o (1-p3,) ) > p2 2 (1-22)  +0((mh)™)
t1>to=T

= 0(1) 0 (b;2) (nh) "> O (nhb,) O (82) + O ((nh) ") = O ((nh/ba) ") =0(1), (B.9.20)

where the second equality uses the changes of coordinates l; = iy — (t; —t2) and Iy =
iy — (t1 — t2), the last inequality holds by (7.16), the second last equality holds by (7.19),
and the last equality uses b, /nh = o(1). This completes case (ii2).

In case (iii) we must have (iiil) (t; — i3 = t1 — iy =ty — j1 > to — jo) or (iii2) (¢} — i3 =
ty— iy =ty — jo >ty — j1) or (ili3) (b — 6y = to — jo = to — j1 > t1 — iz) or (iiid)
(th —do =ty —jo=1ta—J1 > t1 — 01).

Now, we prove the desired result for case (iiil). Note that in this case, it must be true

that 1W=1y=1 and jg > jl =17 — (tl — tg), which 1mphes

Ct1,i1 Cty ia Cta,j1 Cta g2 EUtl —i1 Utl —i2 Ut2 —J1 Ut2 —j20t1—i10t1—i20ta—j1 Ota—jo

= ¢}, iCtaim(t1t2)Cta g BUL, Upy i1 {j > i — (t1 — t2)} 0} 01, (B.9.21)

Substituting (B.9.21) into the right-hand side of (B.9.10), we have
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To—1 t1-Ty to—1T,

l—pg,n)g(nh)ﬂ Z Z Ct1 iCta,i—(t1—t2) Ct2JEUt1 zUt2 —J ]‘

t1,t2=T1 11,i2=0 j1,j2=0 X :H‘ {j > Z - (tl - t2)} O-tl—io-t2_j

Tp—1
§< max O't> 1 /)(2)’n>2(nh)_2 22: Z Z poiti-(ti—ta) ’E t1—iUts— J‘

te[T, T2 t1>to="Th i=t1—t2 j=i—(t1—t2)+1
To—1t—T1 t—T;

—i—( max at> (l—pg’n)Q(nh)_2 SN g ‘EUE’?iUt,j‘

telhn, T3] =Ty i=0 j=itl
i To—1 T2 1 co oo
<o) |en? ¥ Y Y et Y 3 g ]
L t1>to=T i=t1—ta j=i— (t1 t2)+1 t=T1 1=0 j=0
[ To—1 t,-T t1—Ty—i
=0(5,2) |mn)> X Y gty p;+0(bi/nh)]
L t1>to=T1 i=t1—ty =1
[ Ty—1
=0(5,2) |mh) Y U0 (82) + 0 (B2 /nh) | = O (ba/nh) =0(1),  (B.9.22)
t1>to=T

where the second inequality holds by HAPlder’s inequality and part (iv) of A,: |[FUU,_;| <
E|UU,;| < (EU?)3/4 (EU;*_J->1/4 < M for j > 0, and (B.7.7), the first equality holds by
the change of coordinates | = j — i+ (t; —t2) — 1 and (7.15), the second equality uses the
change of variables k =i — (t; — t3), (7.15), and (7.16), and the second last equality holds
by (7.19).

The proofs for cases (iii2)-(iii4) are analogous to case (iiil) and thus are omitted.

Combining cases (i)—(iii), we have

T> 2

El(1-p2,)mn) Y (V)] =1+001). (B.9.23)

t=T1

Note that by Markov’s inequality, for any random variable X,

EB(X,—1)° EX?-2EX,+1

P(X,—1]>¢) < 5 =

(B.9.24)

Let X, := (1 —pan)( h 'y T (Yto_1>2. Then, substituting (B.9.9) and (B.9.23) into
(B.9.24), we have

Ty

(1-22,) )Y (¥2,) =, 1. (B.9.25)

t=T,
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Proof of Lemma 7.6(c). To prove part (c), by a central limit theorem for a triangular

array of martingale differences as in Corollary 3.1 in Hall and Heyde (1980), it is sufficient to

establish the Lindeberg condition (i) 32/27, E [¢?1{|¢] > 6}|¥—1] —p 0 for any § > 0 and
2 — 1/2 2 1250 —

(ii) Zt 20 E(G1%-1) = 1, where ¢ = (nh)~ ( P0n> 200U for ¢ = T, ..., To.

To prove (i), by Markov’s inequality, it is enough to show that 327 E [(Z1{|¢| > 6}] — 0

for any 0 > 0. By Y025 E[¢P1{|¢] > 6}] < 24 E[¢}] /6%, it is then sufficient to show

t T1 [Ct] = 0(1), which is true because

S B[] = (1= ,) )2 S B (Y Uien)

t=T, t=T1

(1-02.) o2 Y B[(v2)" B (U] )] o

t=T1,

T2 1

§O<bn)]\/[ max o (nh)~ ZE( )

te [T1 T2 =Ty

TQ 1 4

~0(i7) ¥ 8

t=T1

<0(b?) ( X Ut>4(nh)‘2 Til til

t—T,

Z 01Ut

Ct,51Ct,52Ct,j3 Ct s ‘

tElTyT] =Ty jrgagaga=0| XE (Ut UjyUrj, Upj,)
TQ 1 |t—T t—T1 t—=T t—T
SO(b;z) Z ZP]M"‘?’ZPnHJ 1{27&]}4_42 Z —37,+jM1/2
t=T1 | 7=0 1,j=0 =0 j=i+1
=0 (b;,2) (k)2 nh (O (by) + O (B2) + O (82)) = 0 (1), (B.9.26)

where the second equality uses the law of iterated expectations, the first inequality uses
E|UM% 1] < M as. and (7.16), the third equality uses (B.7.7), and the last inequality
holds by dividing the sum into three cases of (i) all four indices on the four innovation terms
coincide, (ii) two pairs of two indices coincide, and (iii) three larger indices coincide and
(7.13).

To prove (ii), by part (b) we have (1 — pan) (nh) 'SP ( P 1) =140, (1). Thus,

> B () = (1= ,) ) 55 (1) B [v2] 4] o

=(1= ) Y ()’
+@—@ammlg<mo%ﬁ—ﬁw»
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—140,(1)+0,(1) =, 1, (B.9.27)

where the second equality holds by F [U?|%;_1] = 1 a.s. and the last equality holds by part
(b) and

t=T1
2 2 2 gt 0 \2
< sy, ot = @] (L= pb) o) 3 (¥
= 0(1) O, (1) =0,(1). (B.9.28)

]

B.10 Proof of Lemma 7.7
In this section, for notational simplicity in the proof, we assume that o2 (7) = 1.

Proof of Lemma 7.7(a). First, we prove part (a). We have

Ts

(1 — Pom (nh)™* > (Ytq - ﬁnh,—1)

2

= (1 — pin) (nh) ™ i [3@0_1 + (Mt—l - ﬁnh,—l) + Ci-14-1-1, Y7, :
t=T1
1 T21 2
=(1=p3,) )™ 32 (V)
t=T1

2
L (,ut—l - ﬁnh,—1> + Cl%—l,t—l—ToYTff +2 (“t—l o ﬁnhrl) Yto—l
=1y | 12 (,Ut—l - ﬁnh,fl) Coo1-1-1, Y7, + 2V e YT,

= (1-p3,) (nh)~" Z (Yto_l)2 + ;Aai. (B.10.1)

t=T,

2
By Lemma 7.6(b), (1 - pan> (nh) 'SP (Yt(ll) —, 1. Hence, we need to show 37, A,; in
(B.10.1) converges in probability to 0. By the CS inequality, we only need to show A,; — 0
and Age —, 0.
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For A, we have

Ts

_ 2 -1 — 2 -1 2 _
Au = (1= ) (0™ 3 (pees =T 1) < O (B:7), s (e = 1) = 0 (1),
(B.10.2)
where the last equality holds by Lemma 7.1(d) and the triangle inequality.
For A,», we have
Awp = (1 - IOOn) Z Ct 1,t—1— TOY;OQ =O(b Z g0 Op(bn)
t=T1 t=T

= O(b;1)(nh)rO(b,) O, (b)) = Op(b,/nh) = 0,(1), (B.10.3)

where the second equality uses 1 — pg,, = —£n(7)/bn, kn(7) = O(1) (by part (ii) of A,),
(7.13), and Lemma 7.2(c), which applies because the lemma assumes that nh/b, — ro = oo,
the third equality uses (7.16), and the last equality holds because nh/b, — rq = oo. This
completes the proof of part (a). [

Proof of Lemma 7.7(b). To prove part (b), it suffices to show that

Ay = (1- /)g,n>1/2(?nh,—1 = Tnp,—1) = 0p(1). (B.10.4)
We have
Ay = Ap1 + Ape, where (B.10.5)
Ay = (1 - p0n)1/2 nh)~ tZT Y, | and Ay 7(1_/)0”1/2 nh)~ tZT Ct1,-1-T Y73, -

By Lemma 7.6(a), Ay = 0,(1). In addition, we have

|[Ase] < (1= pj,) "2 (nh)” Z P Y < 06, 2) (nh) O () 0, (0,?) = 0,(1),
t=T1
(B.10.6)
where the first inequality uses (7.13), the second inequality uses 3/ 2;, 4171 < (1—p,) ! =
O(by,) (by (7.15)) and Lemma 7.2(c), which applies because nh/b, — ro = oo, which is an
assumption of the lemma, and the equality holds because b,,/nh — 0. Hence, A, = 0,(1) and

part (b) is established. [
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B.11 Proof of Lemma 7.8
In this section, for notational simplicity in the proof, we assume that o2 (1) = 1.

Proof of Lemma 7.8(a). To prove part (a), we express

Yoot = Tgp1 = Yy + (Mtfl - ﬁnh,_1> + C-1-1-m Y7 (B.11.1)

and

Y, — o, — Pon (Yt4 - ﬁnh,—l)

= oiUs + (pr = pon) Y21 + (e = Tan) = pon (Mt—l - ﬁnh,q) + (pt — pon) Ct—1,0-1-1, Y7, -
(B.11.2)

Substituting (B.11.1) and (B.11.2) into the left-hand side of part (a), we have

T:
(1= 22,)" h) 2 52 (Vs = Fins) [Ye = T — o (Yior = Fiun )]
t=T1

2 1/2 —-1/2 g 0

= (1 - Po,n) (nh) > Yol
t=T1,

1/2

+ (1 — pg,n) (nh)fl/2

(P = pon) (Yf_l)Z Y2y (= Foa) = Y2100 (11 = Tl 1)
+Y21 (pe = pon) Com10-1-1, Y7, + (/LH - ﬁnh,_l) 01Uy
T + (Mt—l - ﬁnh,—1> (pe = pon) Y21 + (Mt—l - ﬁnh,—1) (Ht = Tn)
X tszl —Po.n (Mt—l - ﬁnh,_1)2 + (Mt—l - ﬁnh,_l) (Pt — Pon) Ct-1,4-1-1, Y7,
+ci-14-1-1, Y1, 0eUs + com10-1-1, Y7, (P — pon) Yi2u
+ei1t1-1 Y7y (e — Fp) — Ce—14-1-75 Y7, Pon (,U/tfl - ﬁnh,—l)
+C%fl,t717TO (pe — pon) Y72

1/2 3 P 14
= (1=p3,) " (nh)™"? tz; Y2, 0U, + ;Aci, (B.11.3)
=11 1=

where A, is the i term in the second last line of (B.11.3). For example,

(k)3 (= po) (v2,)" (B.11.4)

t=T1

Ag = (1 — pg,n)l/2
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and

1/2 _ I _
Ao = (1=p5,) " (b)Y (e — T - (B.11.5)
t=T1
By Lemma 7.6(c), we have
1/2 Iz
(1-45.) 2 (n) 12 S Y2 00U —a N (0,1). (B.11.6)
t=T1

Therefore, we need to show Y12, A.; converges in probability to 0. We examine each of its
components one by one.

First, we consider A, . Let Y, be the constant parameter version of Y,? based on Po.n and
onr and with Ty — T lagged innovations (which does not depend on t), rather than t — T}

lags. That is,
To—T

V= Y phponUsy for t € [T1,To). (B.11.7)

=0
Here, the superscript ¢ stands for “constant parameter.”

We decompose A.; into three terms:

Ag = Aag + Acp + Ac 3z, where
T5

Aag 1= (1= p0,) 2 (h) 2 3" (o — pon) BV,

t=T,

Ts

Aaz = (1=p3, )2 (n) 723 (pr = pon) (V20)* = (Y2,)?) , and
t=T1
T

Aag 5= (1= ,) V2007 3 (o= o) (V)P = BOEL)Y) . (BILY)

t=T,

We show that A., = o,(1) for b = 1,2,3, provided Assumption 2 holds, which yields
Acl = Op(]_>.

Now, we consider A.; ;. We have

To—T1 To—T1 ) To—T 95
E(Y;C—I)Q = U?LT Z Z p%,npg,nEUt—j—lUt—k—l = 072LT Z pO?n? (Bllg)
j=0 k=0 §=0

which does not depend on ¢, and hence, can be taken out of the sum over ¢ in the definition
of Acl,l .
By definition,

Pt — Pon = pon(t/n) — pon(T) = Kon(T) /by — Kon(t/n)/by (B.11.10)
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using part (ii) in the definition of A,. Using the condition in A,, that (-) is a twice con-
tinuously differentiable function , by a two-term Taylor expansion of kg, (t/n) around 7, we

obtain
Ko (/1) = Kon(T) = Ko, (T)(t/n —T) + K0, (o) (t /1 — 7)2, (B.11.11)

where 7, lies between ¢/n and 7, and hence, lies between T3 /n and Ty /n for t € [T, T5] .
Let o, := |nh/2]. Using Ty := [n7| — |nh/2] and Ty := |n7] + |nh/2] by (3.1), we have

Ts [nT]+an |nT]-1
dt—nr)= > (t—-nr)+ > (t—n7)+ |n7]—nt (B.11.12)
t=T1 t=|n1|+1 t=|n1|—an

In addition, we have

|nT|+an an
> (t—n7) =) (s+ |[nT] — n7) and
t=[n7)+1 s=1
LnTJ_l Qn
> (t—n1)=> (-s+ |[nT| —n7), (B.11.13)
t=|n7]—an s=1

where the first line uses a change of variables with s = ¢t — [n7] and the second line uses a
change of variables with s = —t 4+ |n7|. Combining (B.11.12) and (B.11.13) gives

22 (t/n—71)=2n"" QZZ(ULTJ —n7)+n(|nt] —n7) =0 ta,) = O(h). (B.11.14)

Using (B.11.8)—(B.11.11) and (B.11.14), we get

1>

[Actal = B2, (1= p3,) (k)™ Phi (1) 3 (8/n = 7)

t=T}

Ts
+E(Y 1), (1= p3,)' 2 (nh) ™2 37 kG, (Faa) (/0 — 1)

< CE(Y2,)%0, (1= pg,) 7 (nh) =12 (O(h) + i (t/n— T)z)
= O(b;" (1= g5 ,) 2 (k)% (h + nh - h?)) (B.11.15)

— O, 02 ((h/n)"> + (nl?)/2)) = O((h/n)* + (nh*)/2) = o(1),

for some finite constant C' for which ‘m67n(r)‘ < C and sup,,, 'Iig’n(%mt)’ < C, where the
inequality uses these inequalities and (B.11.14), the second equality uses E(Y,¢;)* = O((1 —
P5.,)"") by (B.11.9) and [t/n — 7| < h because [t —n7| < nh/2 for t € [T}, T3], and the
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third equality uses (1 — p3,)™"/? = O(bY?) (by (7.16) with py,, in place of p,), the fourth
equality holds because b;/? = O(1), and the last equality holds by h — 0 (by Assumption
1) and nh® — 0 (by Assumption 2).

Next, we consider A, 2. We have

T
’ACI,Q‘ < (1- Pg,n)l/z ter[ljlﬂ?%] lpr — pO,n|<nh)71/2 Z |}/;(i1 +Y°,|- |Y;e(i1 - Y2

t=T,

Ts
= O(b,"*)O(h/b,)(nh) 2 3 V2 + Y2 - V2, = Y], (B.11.16)

=T1

where the equality uses Lemma 7.1(a).
We have
t—1-T ) To-T1
V2, =Y = 3 (c1j0i1 = P0u0nr)Uij1— Y pou0nrUijoa. (B.11.17)
Jj=0 j=t-T1

Combining (B.11.16) and (B.11.17) gives

El|Aaz| < (b;,"2)O(h/by)(nh) ™"/ i 2max{(B(Y,21)*)"?, (B(Y,<1)*)'?)

n

t=T1
t—1-T1 ' 2\ /2
X2 max E Z (Ct—l,jat—j—l_pg]mo_m’)Ut—j—l s
j=0
Tt 9\ 1/2
El Y. pbnonrUija (B.11.18)
Jj=t=T

using the triangle and CS inequalities.
We have (E(Y,)?)Y? = O(b}/?) uniformly over ¢ € [T}, T3] by the discussion following
(B.11.15). In addition,

t—1-T4 2 t—1-T4
02 _ o . _ 2 2
EY2) =E| XY aaoaUga| = > 100
=0

J=0

< Capd po=Csp(l—p2)"" = O(by) (B.11.19)

=0

uniformly over ¢ € [Ty, Ty, where the inequality uses (7.13) and the bound C3; on ¢?(+) in
part (i) of A, and the last equality uses (7.16). So, (E(Y,2,)?)"/? = O(b}/?).

45



Next, we have

let1,j01—5-1 = PhnOne| < o1 jileiry = Phul +|ponl o j 1 = onrl < jLO(B/b) +PLO(R),

(B.11.20)
where the second inequality uses (7.14), a uniform bound on oy_;_; across t,j, and
MaXe(ry, 1] |0t—j—1—0nr| = O(h) by Lemma 7.1(b) and 0y_;_1—0nr = (07 ;_1—05,)/(01—j-1+

onr). In consequence, we obtain

2
t—1-T1 ) t—1-T1 )
E ( Z (Ct—l,jUt—j—l - Pé,nffm)Ut—j—1> = Z (Ct—l,jUt—j—l - pé,nan’F)zEUtz—j—l
j=0 Jj=0

(Z]zp% 2h2/62> +0 (Z 2]h2> = O3 /b2) + O(b,h?) = O(b,h?),
(B.11.21)
where the second equality uses (B.11.20) and EU? =1 for all ¢, and the third equality uses

(7.16) and (7.18).
In addition,

2
Th
(Z p{)no'm'Ut] 1) = Z IO U EUt2] 1— n'rpOn Tl)zp

j=t—T Jj=t=T1

= o2 pon V(=030 = ool T“0<bn>. (B.11.22)

And so,

j =t— T1 t:Tl

2 1/2 .
2
( ( Z pOnanTUt —J— 1) ) S Z |Po7n|t_TlO(b,1/2)
t=T1

8

< O Y. lal = OB (1= 5,)7" = O*)0,) = O, (B11.2)

=0
Combining (B.11.18), (B.11.19), (B.11.21), and (B.11.23), gives
E|Aq 5| < O0B;Y)O(h/b,)(nh) Y2 nhO(bY/?)O(bYh)

+O(b; Y O(h/b,) (nh) 20O (53/?) (B.11.24)
= O(n2hP2b1%) + O(n~Y2RY2612) = O((nh®)Y?) + O((b, /nh)Y?h) = o(1),

where the last equality uses nh® — 0 by Assumption 2, h — 0 by Assumption 1, and
b,/nh — 0 in the “stationary” case. By Markov’s inequality, this gives A.12 = 0,(1).
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Now, we consider A.; 3. Below we reuse calculations in (B.9.10)-(B.9.22), which bound

the term
Ty 2 7 2
ESE = B |(1— 2,) (k)" 3 (V22| = (1= g8, )2nh) 2B | 3 (v2,)?| , whereas
t=T1 t=T}
T 2
EA; 5= (1= p0,)0h) B | 3 (o= pon) (V20)* E(Yf_l)Q)] . (B.11.25)
t=T,

The terms ES; and EA? ; are similar, but differ as follows. The quantities (1 — pj,,)* =
O(b;,?) and (nh)~? appear in ES2, whereas (1—pj,,) = O(b,") and (nh)~" appear in EA?, ;.
The quantity maxyeir, 7] |pt — po|* = O(h?*/b2) (by Lemma 7.1(a)) appears in the bound we
obtain on EA? , but does not appear in the bound on ES. The difference between Y |,
which appears in S, and Y,° ;, which appears in EAzm, is not important because the same
bounds can be employed with either one. The term S,, is based on summands (Y} ;)?, which
do not have mean 0, whereas A, 3 is based on mean zero summands (Y, )* — E(Y,<,)?,
which is an important difference.

Analogously to (B.9.10), we can write

2

Ts
E Y (Y)* - E(Ye,)?
t=T1
To—1 t1—T1 ) 2 to—T} . 2
=K Z Z p%),na-nTUh—i - E(YE)Q Z pz),nanTUtz—j - E(Yt§)2
t1,to=T1—1 =0 7=0

To—1
= O.;lrrE Z ( Z pOnpOn Ut1 ZlUt1 —1i2 EUtlilUt1i2))

t1,ta=T1—1 \41,i2=0

( Z p{) np Utz - Utz —J2 EU@*J& Utz*jz ))
J1,52=0
To—1 =T to—

4 ia J1 J2
= Onr Z Z Z pO npO,npO,npO,n
t1,t2=T1—111,i2=0 j1,72=0
X E(Utl—h Utl—iz - EUtl—’h Utl—iQ ) (Utz—jl Utz—jz - EUtz—h Utz—jz)

To—1 —T1 to—Th

= O_fw Z Z Z pO npO npO np(]n

t1,ta=T1—111,i2=0 j1,52=0

X (EUtl—il Utl—iz Ut2—j1 Utz—jz - EUtl_il Utl—i2 ’ EUtz—jl Utz—jz)' (B1126)

The term EA? 4 equals the rhs of (B.11.26) multiplied by (1—pj,,)(nh)~" and with (p, 11 —

Pon)(Pra+1 — Pon) inserted after the three summation signs.
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As discussed following (B.9.10), the expectations EUy, _;, U, —i,Up,—j, U, —j, in the last
line of (B.9.10) are all zero except when the indices fall in cases (i), (ii), or (iii), which
are defined there. Furthermore, case (ii) is subdivided into cases (iil), (ii2), and (ii3) just
above (B.9.13). The difference between the expectations on the rhs of (B.11.26) and that
of (B.9.10) is that the former has nityiinjiis = EUn—iyUt—iy - EUs,—j,Ur,—j, subtracted
off, whereas the latter does not. The quantity 7,4yi,i,,5, 15 non-zero iff ¢y = iy and j; =
jo. The case i; = iy and j; = jo with t; — iy = t5 — j; is case (i). The case iy = is
and j; = jo with ¢; — iy # ty — j1 is case (iil). Hence, the expectations on the rhs of
(B.11.26) are all zero except when the indices fall in cases (i), (ii), and (iii), just as in
(B.9.10). In addition, in case (iil), the expectations on the rhs of (B.11.26) are zero, because
EU,-i,Upy—iyUty—,Uyy—j, = BUE_, Up . = EU} _, EU?
equality holds because t; — i1 # ta — j; in case (iil). We conclude that the expectations on
the rhs of (B.11.26) are non-zero only in cases (i), (ii2), (ii3), and (iii).

Now, we use the calculations in (B.9.11)—(B.9.22) to bound the terms in (B.11.26) when
the indices fall in cases (i), (ii2), (ii3), and (iii).

For case (i), using (B.9.11) and (B.9.12), we have: the sum over the indices in case (i)
on the rhs of (B.11.26) is

= Ni1toirisjrjo» Where the second

To—1 t1— 1 s
Z Z o Zp‘““rO Z 3Pt = O(nhb?), (B.11.27)
=T1—1 ¢=1 t1=T71 =0

where the last equality uses (7.16) and 22, p* = O(b,). As noted above, EAZ 5 equals the
rhs of (B.11.26) multiplied by (1—p,,)(nh)~" = O(b,")(nh)~" and with (pg, 41— pon) (P41 —
po,n) inserted after the three summands, where maxeey 1] |1 — po.n|> = O(R?/b2) by Lemma
7.1(a). In consequence, a bound on the sum of the terms in EA?, ;5 that correspond to indices
in case (i) is

O(b,, 1) (nh)'O(h?* /b2)O(nhb?) = O(b,'h?) = o(1). (B.11.28)

For case (ii2), using (B.9.19) and (B.9.20), we have: the sum over the indices in case (ii2)
on the rhs of (B.11.26) is

To—1 To—1 oo
o) > pAht)(1 - 1) > 3 72072 = O(nhbl) + O(nhb2) = O(nhb?),
t1>to=T1 t=T1 i1,i2=0

(B.11.29)
where the first equality uses (7.16). Since the bound in (B.11.29) is larger than that in
(B.11.27) by the factor b,, (B.11.28) implies that the sum of the terms in EA? ; that corre-
spond to indices in case (ii2) is O(h?) = o(1). Cases (ii2) and (ii3) are symmetric. So, the

same result holds for case (ii3).
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For case (iii), using (B.9.21) and (B.9.22), we have: the sum over the indices in case (iii)

on the rhs of (B.11.26) is

Z 2= O(B2) + O(nhb?) = O(nhb3) + O(nhb?) = O(nhb?). (B.11.30)
t1>to=T1
Since the bounds in (B.11.29) and (B.11.30) are the same, the sum of the terms in EAZ 4
that correspond to indices in case (iii) is O(h?) = o(1).
To conclude, we have EA? 5 = o(1). Hence, by Markov’s inequality, Ae 3 = 0,(1). This
concludes the proof that

A = 0p(1). (B.11.31)
For A.,, we have
9 9 \1/2 —1/2 & _ 0 i
EA02 =F (1 - pO,n) (nh> Z (:ut - :unh) Y;f—l
t=T1

1 e

=(1=p3,) (nh) ™" 30 (e = i) (s = i) B (Y2, Y2
t,s=T}
L T t—T1 s—1T1

=0 (b£1> (nh)™ > (e = Fn) (s = Fpp) D D Ct-1,iCs1,j01—1-i0s—1—;

t,s=T1 i=0 j=0

) (Ut—l—iUs—l—j)

<0 (1) (™ (s, oo ) (2 S e +ZZ)

t,s€[T1,T2] t>s=T7 i=t—s t=T1 1=0

0 (5") (uh)™ O (*/12) (0 (ki) + O (b)) = O (1) = 0 (1), (B11.32

where the inequality holds by dividing the case into ¢ = s and t # s and (7.13) and the

fourth equality uses the change of coordinates | =i — (t —s) and k =t — s, (7.16), (7.19),

Lemma 7.1(d) and the triangle inequality. Then, we have A., —, 0 by Markov’s inequality.
The proof of A.3 —, 0 is the same as that of A, —, 0 and is omitted.

For A.4, we have

2

1>
1/2 _ X
EA?A = E (1 - :0(2),71) (nh) 12 Z (pt - pO,n) Ct—l,t—l—TOY;go_lyTo
t=T1
1 &
=0 (bﬁl) (nh)_ Z (/)t - po,n) (/)s - Po,n) thl,tflngcs—l,s—l—TOE}len(),lyjfo2
t,s=T1
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Ts
<0 (b;l) (nh)fl Z (Ptt 1 T,Olo n)s([is - po,n) Ct—1,t—1-TpCs—1,5—1—Tp .
to=Ti41 | X 2ico  2jo | G-1iCs—1;BU1-iUs 15 Y7

T2 ( _ _
_ - P pO,n) (ps Po,n) Ct—1,t—1-ToCs—1,5—1—T
=00, ) mm) 2 > [ ! bt 0

t—1-T 2 *2
t>s=T1+1 X Zi:t—s Ct—l,icsfl,’if(tfs)EUt_l_iYTO

Ts t—1-T1
+ 0 (b#) (”h)_l Z [(Pt - PO,n)2 C?—l,t—l—Tg Z C?—l,iEUtQ—l—iYC;’kOQ

t=T1+1 i=0
Ty [ t—1-T,
< O(bgl) (nh)_lO(hQ/bi> Z ﬁ; 1-To+s—1—To Z 721 (t—s) (n)
t>s=T1+1 L i=t—s
T [ t—1-T,
+0 (b)) (nh)"h O (R2/B2) 3 P2 Z P
t=T1+1

=0 (b,") (nh)"" O (B?/52) O (b;”;) O (n)+ 0 (b; ) (nh)™' O (h2 /b2) O (82) O (n)
=0 (h) =o0(1), (B.11.33)

where the first inequality holds by maxer, )07 < Csy, the second inequality holds by
Lemma 7.1(a), (B.4.2), (7.13), and E [U?|%,_1] = 1 a.s., the third equality uses the law of
iterated expectations (LIE) and part (iv) of A, and the fourth equality holds by the change
of variables | = 2i — (t — s) and (7.16). Then, by Markov’s inequality, we have A.4 —, 0.

For A5, we have

Ty 2

1/2 _ _
EA%;=E (1 - Pg,n) (nh) 2 > (Mt—l - Mnh,—l) o:Us
t=T1
2 L 2 oprr2
= (1 - pO,n) (nh) Z (/’Ltfl - ﬁnh,—l) o EUt
t=T1
< 0 (b,") (nh) "' nhO (K2/B2) Csr = 0 (1), (B.11.34)
where the inequality holds by
_ 2 2 2 /72
_ < _ —

e (s =) < max (m—p)” = O (h/57) (B.11.35)

using Lemma 7.1(d) and the triangle inequality. By Markov’s inequality, we obtain A.; —, 0.
The proof of

1/2 _ Iz .
A= (1= p8a) ()72 30 (pees = P 1) (e = pon) Y2y =, 0 (B.11.36)

t=T1

is quite similar to that of A, — 0 given in (B.11.32), and hence, is omitted.
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The proofs of

1/2 _ I
| = (1= p3,) ()™ (i1 = Toapr) (e = Ton)| = 0 (B.11.37)
t=T
and
9 \1/2 —1/2 I . 2
Al = (1= p5,) " 0h) ™3 pom (pte-1 = Tip 1) | =0 (B.11.38)
t=T,

are identical, thus we only prove the result for A.s. An application of the triangle inequality

gives

5 \1/2 _1/2 5 5 ,5\1/2\
Aal < (1= i) " o) PO @uh) max (= ) = O (7)) = 0 (1),
(B.11.39)
where the second last equality holds by Lemma 7.1(d) and the triangle inequality and the
last equality holds by Assumption 2.

For A.9, we have

1/2 _ Iz .
|[Aco| = (1 - Pgn) (nh) 2 Z (Mt—l - ﬁnh,_1) (Pt = pon) Ct-14-1-1, Y7,

t=T1
-1/2 -1/2 i —t—1-T *
<0 (bn ) (nh) L seloTy] | — pus el [Pt — ponl Z Pn |,

t=T,

=0 (b,"2) (nh) ™20 (h) O (h/b,) O (b) O, (n''?) = O, (K*?b,?),  (B.11.40)

where the second last equality holds by Lemma 7.1(a) and (d), (B.4.3), and (7.15).
For A.ip, we have

Ts
EAZ,=FE|(1- Pg,n)l/Q(nh)_l/Q Z Ct—1,0-1-10 Y7, 04Ut

=T
= (1 - Pon Z Ct Lt—1-To 7 EUtQYCFoz
t= T1
< (1 pon Z 7215 1— To EY;{?
=T
< O(b; 1) (nh)"tO(b,)O(b,) = O(b, /nh) = o(1), (B.11.41)

where the second equality uses the martingale difference properties of {U;}i<,, the first
inequality uses (7.13) and E(UZ|Y;?) = 1 a.s. by part (iv) of A, the second inequality uses

Lemma 7.2(c), which applies because nh/b, — ry = oo is an assumption of the lemma, and
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(7.15), and the last equality holds because b,/nh — 0. Equation (B.11.41) and Markov’s
inequality give A.19 = 0,(1).
For Aclh we have: Acll = Ac4 = Op(l) by (B1133)

For A1, we have

1>
|Acia| = |(1 = p5,) 2 (nh) ™2 > comnpmiomy (et — B 1) Ye,
t=T

Ts
< (1= p5,) b)Y 30 BT max fu — | Y
t=T1 [T1.T2]

= O(b,"?)(nh) " 20(b)O(h/b,) Oy (b)/*) = Op((nh)~"2h) = 0,(1),
(B.11.42)

where the inequality uses (7.13), the second equality uses (7.15), Lemma 7.1(d), and Lemma
7.2(c).
We have |A613’ = |p0,nAcl2| = Op(l) (since Aclg = Op<1) and |p0,n‘ S 1)

For A.i4, we have

Ts
|Acia| = |(1 - pan)l/?(nh)_lﬂ Z C?—l,t—l—To (pe — PO,n)Yﬂ)?
t=T1

T>
< (U= ) ) S P o oV

=Ty te[T1,T>
= O(b,"?)(nh) 7 20(b,)O(h/b,) Oy (by,)
= O,((by/nh)?h) = 0,(1), (B.11.43)

where the inequality uses (7.13), the second equality uses (7.15), Lemma 7.1(a), and Lemma
7.2(c).
By (B.11.31)—(B.11.43), we obtain

14
> Ay =, 0. (B.11.44)
i=1
Combining (B.11.3), (B.11.6), and (B.11.44), we have
2 \1/2 L1 & — _ _
(1=08,) " h) ™23 (Yes = Fanet) | Yo = T — pon (Yier = i) | = N (0,1),

t=T1

(B.11.45)

as desired. O
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Proof of Lemma 7.8(b). To prove part (b), by Lemma 7.7(b), we have

(1=22.)"" (Yoot = T ) = 05 (1). (B.11.46)

Thus, we only need to show

Ts
(nh)~"/? > [Yt — Hpp — PO (thl - ﬁnh,—l)} =0, (1). (B.11.47)
t=T1
This is done by examining each component of (B.11.47) and showing it is O, (1). Specifically,
by (B.11.2), we expand

1>
(nh) ™2 3" e~ T~ p0n (Yt — o1 )]

t=T,

_ (nh)—l/Q %2: o U + (pe — pon) Y21 + (te — Tp)

5
v =) Ay (B.11.48)
t=T, | —Pon (Mt—l - Mnh,_1> + (Pt — pon) thl,tflfTOYC;‘ko i=1

We observe that A4 = O, (1) by the central limit theorem for martingale difference sequences.
The proof of Ay = o0, (1) is almost the same as that of A. except that (i) Az does not
have the (1 — p(z)’n)l/2 multiplicand, which is O (b;1/2> and (ii) Ag has p; — po,, in place
of u — M,, both of which have the same order of O (h/b,) of maximum intertemporal
difference on [T7, 75| by Lemma 7.1(a) and (d). Thus, following an argument identical to
that in (B.11.32), we have

A =0 (0)*) 0, (hb,'/?) = O, (h) = 0, (1). (B.11.49)

By the definitions of A3 and Agy, we get Ags = Agy = 0. Finally, we derive Ag5 = 0, (1) by

observing

Ts
Ags| < max — ponl (nh)~1? p-h
[Ass| < max |o = pon| (nh) ;T:I Pl

=0 (h/b,) (nh) 2O (b)) O, (n'?) = O, (h'?) = 0, (1), (B.11.50)

*
YTO

where the first equality holds by Lemma 7.1(a), (B.4.3), and (7.15).
Thus, >2_, Ag; = 0, (1), (B.11.47) holds, and the proof is complete. [

B.12 Proof of Theorem 7.3

In this section, for notational simplicity in the proof, we assume that o2 (7) = 1.
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Proof of Theorem 7.3. Recall from (7.20) that

-1/2 .
(1 - pg,n) (nh)1/2 (Pnr — pO,n)

(1= p2,) " k) 258 (Yt = Vont) (Vi = ponYi)

= e AN (B.12.1)
(1 — Pg,n) (nh)™" Xi2p (Yt—l - Ynh,—l)
We analyze the denominator and numerator of (B.12.1) separately.
First, for the denominator of (B.12.1), we have
2 L v 2
(1 - Po,n> (nh)™" > <Yt—1 - Ynh,—l)
t=T1,
2 -1 > _ 2 9 — _ 2
= (1 - Po,n) (nh) Z (Yt—l - Mnh,—1> - (1 - /)o,n) (Ynh,—l - Mnh,—l)
t=T
= Af1 + Afg. <B122)

By Lemma 7.7(a) and (b), we have Ay —, 1 and Apy —, 0, respectively. Therefore, we

have
Ts

(1= 03,) ()™ S (YVies = Yono) =5 L. (B.12.3)

t=T1

Next, for the numerator of (B.12.1), we have

5 \1/2 12 I _
I Po,n) (nh) Z (Yt—l - Ynh,—l) (Y; — pO,nYt—l)

<
(

(1 2\ R . I .
(1=p%,) " ()™ > (Yes = Tan1) [V = Toon = Pon (Yeet = T )]

=T
T
+ (1 - pg,n)l/Q (nh)~'/? > (?nh,q - ﬁnh,—l) [Yt — Hup — Pon (thl - ﬁnh,—lﬂ
=T}
:ZAf3 —|— Af4. <B124)

By Lemma 7.8(a) and (b), we have Ap3 —4 N (0,1) and Apy —, 0, respectively. Therefore,
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we obtain

To s
(1=22,)"" (n0) 2 3 (Yies = Vot ) (Vi = ponYiot) —a N (0,1). (B.12.5)

t=T,

Combining (B.12.3) and (B.12.5), we have
9 \~1/2 1/2 /-~

(1=p%,) " (0h)"? (Bur — pon) —a N (0,1). (B.12.6)

For the t-statistic T}, (po.n), by (3.4), (3.5), (B.12.6), and the CMT, we only need to show

(nh)il ZETl {Yt - ?nh - ﬁnr (Y;—l - ?nhrl)r
(1 - pan) (nh) 'SP (Yt_1 — ?nh,—1>2

(1-p3,) &, = S, 1 (B12.7)

Equation (B.12.3) shows that the denominator converges in probability to one. For the
numerator of (B.12.7), we have

(”h)_1 %2: Pft — Y — Prnr (Yt—l - ?nh,—1>}2

t?jl B B 2
= (nh)il Z [Y;f - Ynh — Pon (Y;t—l - Ynh,—l)}
t=T1
+ (nh)_l i [(ﬁm — Pon) (Yt—l — ?nh,—l)}2
t=T1

+9 (nh)fl i { (Pnr — Po.n) (Y;t—l - ?nh,—l) }

t=T1

X {Yi —Yuh — Pon (Y;S—l - Ynh,—l)]
Ay + Ag + Ay, (B.12.8)

We show Aps —, 1 and Ay —, 0, which imply A7 —, 0 by the CS inequality.
For Ays, we have

(nh)_l > {YE —Yun — pon (Y;ffl — ?nh,q)r
t=T1
Ty

= (nh)" Z {Y} — Toun — Pon (Yt—l - ﬁnh,fl>}

t=T}

+ [?nh = Pnh — Pon (?nh,—l - ﬁnh,—1)]2

) (nh)fl i { [Yt — Hpp — Pon (Y;f—l — ﬁnh,—l)} }

t=T1

2

X [Ynh = Hpp, = Po,n (Yt—1 — ﬁm,-l)]
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::Aff)l —+ Af52 + Af53. <B129)

We show A5y —, 1 and Agsy —, 0, which imply A3 —, 0. Recall that by (B.11.2), we

have

Ay = (nh)fl f: U+ (pr — pon) Y2y + (1 — i)
Po.n (Mt—l - ﬁnh,—1) + (Pt — pon) Ct-1,0-1-1, Y7,

t=T,
1 & 2
= (Tlh)i Z (O‘tUt)
t=T1
2
+ (nh)_l & (pt - poyn) }/to—l + (/’Lt - ﬁnh)
t=Ty | —Pon (Mt—1 - ﬁnh,q) +(pt — pon) Ci—1,4-1-1, Y7,
2 (nh)—l i o.U (pt - pO,n) }/to—l + (lu’t - ﬂnh)
tYt _ *
t=T —Po,n (,U/tfl - ,unh,_1) + (pe — pon) thl,tflfTOYTO
::AfE)ll —+ Af512 -+ Af513. (B1210)

By (B.8.18), we have Af51; —, 1. For A5y, we have

(nh)”" Z (0= pon) Y2,
Ster[rilfi}:%zl (pt B Po,n)Z (1 B '0(2)7")_1 (1 o pg’”) (nh)_l i <Yt0—1)2
= O ((h/ba)?) O (b2) 0, (1) = 0, (1), (B.12.11)

where the first equality holds by Lemmas 7.1(a) and 7.6(b), and the fact that (1 — pgm)_l =

O (b,). Additionally, by Lemmas 7.1(a), 7.1(d), and 7.2(a), and (7.16), we have

Ty

(nh) ™" 3" (e = Ti)* = 0, (B.12.12)
t=T1
and

1 & 2

(nh)™" > [(Pt — Pon) Ct—l,t—l—TOijo}

t=T1
—1 —2(t— T1 - —1 2 .
<(nh)™" max (pi—pon) Py (n) = Oy ((nh) ™" (h/ba)* nbs) = 0, (1) .

t=T,
(B.12.13)
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Similarly to (B.12.12), we have

L1 2
(nh) ™3 [pom (11 = Tan—a) | =5 0 (B.12.14)
t=T}
since |po,| < 1. By (B.12.11)-(B.12.14) and the CS inequality, we have A5 —, 0. Then,
by Agsi1 —p 1, Afs12 —p 0, and the CS inequality, we have Afs13 —, 0. Thus, A —, 1.

Next, for A5, we have

Yoh — Bpn — Pon (?nh,fl - ﬁnh,—l)
15

=(nh)"" Y [UtUt + (e = pon) Vil + (pr = pon) Ct—l,t—l—ToYﬂ]

t=T1

:ZAf521 + Af522 + Af523. (B1215)

By the weak law of large numbers, Afso1 —, 0. For Ajs0, we have

A?522 = {(nh)_l 22: [(Pt — Pon) Yﬁl} }

t=T1
_ T>
< Jax (pi - pon)’ (1= 05,) 1 (1=p%,.) (nh)™ tZT:1 (Yto_l)Q
= O (h?/b2) O (bn) Op (1) = 0, (1), (B.12.16)

where the inequality holds by the CS inequality and the second last equality holds by Lemmas
7.1(a) and 7.6(b).

For Ajsq3, we have

|Agsasl =|(nh) ™ i [(pe = pon) 111, Y7
< (nh) ™1 O (h/by) O (bn) Oy (n''?) = 0, (1), (B.12.17)

where the inequality holds by Lemmas 7.1(a) and 7.2(a), (7.13), and (7.15). Combining the
results, we have Agp; —, 1.
For Agg, we use (B.12.6) and obtain

Ty

(nh)_l Z {(ﬁm’ - Po,n) (Yt—l - ?nh,—l)]

t=T1,

2
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Ts

= [ 1— pan)_l nh (Pnr — Po,n)z} [(1 - pan) (nh)" Y (Ytq - ?nh,fl>2 / (nh)

t=T,

= 0,(1)0,(1)/ (nh) = 0, (1), (B.12.18)

where the second equality holds by (B.12.3) and (B.12.6).

Therefore, we have shown that the quantity in (B.12.8) equals 1 + o, (1). This and
(B.12.3) establish (B.12.7) and the proof of the result for the t-statistic is complete.

The subsequence versions of Lemmas 7.6-7.8 and Theorem 7.3, see Remark 7.3, which
have {p,}n>1 in place of {n},>1, are proved by replacing n by p, and h = h, by h,,
throughout the proofs above. [

B.13 Proof of Lemma 7.9

Proof of Lemma 7.9. By the definition of Bopt, Ly (h opt)/ Lin (h) < 1Vn > 1. So, the result
of the lemma follows from L, (hopt)/Ln(R) > 1+ 0,(1). We have

Ln(?lom) _ ( 0pt) (?L )_|_20n(?b0pt)
Ln(h) Ln<h> Ly(h)
. Lo(R) —2C,(h) - Ch(hopt)
B Lo (h) Ln(h)
=1 @) 5 Cullton)
Ln(h) Ln(h)
= 1+0p(1), (B.13.1)

where the inequality holds because B minimizes L, (h) 2C,,(h) over H,, and the last equality
opt Cn(
(h) < L (hop

holds using Assumption 5 and | opt) ] = 0,(1) since hey minimizes L, (k) and

using Assumption 5 again. [

B.14 Proof of Lemma 7.10

Proof of Lemma 7.10. We have: ECy,(h) = 0 because (i) E(Uy|Gi—1) = 0 a.s. by the
definition of A,, which applies by Assumption 6(a) and (ii) Y;—; and p;_1(h) are functions of
(Ui—1, ..., U1, Yy) provided t > nh and these variables are in G;_; by the definition of A,,. Let

ny ;= n — nh. Next, we have

n

Var (Cy,(h)) = E (”*1 > oU(fie—1(h) — pu + Vi1 (pr—1(h) — Pt)))

t:nhn\ax+ 1
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n

=n.? Y 0;EU(fi-1(h) = e+ Yie1(pe1(h) — po))?
t=nhmax+1

=n,’ Z o7 E(fi—1(h) — iy + Y21 (-1 (h) — pr))?

t=nhmax+1

< Csy - n; ' ELg,(h), (B.14.1)

where the first equality holds because ECy,(h) = 0, the second equality holds because,
if t > s (and t > nhgax), EU(fu—1(h) — i + Yi1(pe—1(h) — pi))Us(fis—1(h) — ps +
Yoo1(Ps—1(h) = ps)) = 0 by (i) since (fe-1(h), Yi-1, p-1(h), Us, fis—1(h), Ys-1, ps-1(h)) are
functions of (U;_1, ..., U1, Yy") and these variables are in G;_1, and analogously if ¢ < s, the
third equality holds because E(U?|G;_1) = 1 a.s. by the definition of A, and the inequality
holds by the bound Csyr on the variance function o(+) by the definition of A, which implies
that o7 < Csy and the definition of Lo, (h).?

For any positive constant K,

Can(h) ) ( Can(h) >
P(iéﬂ Va2 (o) S %;WP Va2 o))
ECy,(h)? 1
= h;;n £ Var(Cyn(h)) K2 K2 (B.142)

for all n > 1, where the second inequality holds by Markov’s inequality. In consequence,

OZn(h)

s> Cap ()
1/2 ’ = sup -
&V arl2(Con(h))| hera

Ct 6 * (B Lan(R))?2

O,(1) = su

= , (B.14.3)
heHn

where the equality holds by (B.14.2) and the inequality holds by (B.14.3).We have

n2Con(h) O3 €Y (ELgn(h))/?
CoP & (ELan(h)V? 1a/* Lon(h)

1/2 EL . h 1/2
= 0,(1) - sup & (1/2 2n(1)) .
heHn Tx Lgn(h)

sup

sup
heHn heHn

Con(h) ‘ _
Lan(h)

(B.14.4)

20ne could consider ECy,, (h)™ for some even number m > 2, rather than the variance of Cy, (k). With
ii.d. observations {Y;};<,, this would yield a bound that decreases to zero faster as a function of n, than
n; ', which appears in (B.14.1) for the case of m = 2. However, in the present model, a faster rate is not
obtained for m > 2 because the summands in the m-fold sum are zero only when the largest index of

U,Uy - - - Uy is unique, not when any index is unique, as occurs with i.i.d. summands.
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The right-hand side expression is 0,(1) iff

Ly (h)
hei, 172 1/2
gn (RQn(h>)

1/2 1/2 :
g it ™ (Ran(h)) L iff ninfyey, Ron(h)

— 0
heHn 531/2 gn ,

p 00 1

(B.14.5)
where the first “iff” uses Ro,(h) = E Lo, (h), the second “iff” uses Assumption 6(c), the third
“iff” uses Assumption 6(d), and the last condition holds by Assumption 6(e). In consequence,

SUPpep, %ZEZ;‘ = 0,(1). This, combined with Assumption 6(b) and Lo, (h) > 0 Vh, verifies

Assumption 5. [

B.15 Proof of Theorem B.1

To show that Theorem 7.3 holds with Assumption 2 replaced by Assumption 2%, the
proof of Theorem B.1 uses the following extension of Lemma 7.1 that improves its bounds

in the case where ¢,, — 0 as n — oo.

Lemma B.3. Under Assumptions 1 and 3,
(a) maxernm) [pr — por| = O(Lah/by),
(b) maxieir 1) o7 — o7, = O(Lah),
(c) maxien 1) |y — phel = O(lunh? [by), and
(d) MmaXe [Ty, |11t = pinr| = O(Lh/by,).

Proof of Lemma B.3. Part (a) holds by the proof of Lemma 7.1(a) by replacing the
Lipschitz bound L, in (B.3.1) by ¢, which implies that the rhs bound in (B.3.1) becomes
O(£,h). In turn, the rhs bound in (B.3.2) becomes O(¢,,h/b,,). Parts (b)-(d) then hold by
the same argument as in the proof of Lemma 7.1 with the additional term ¢,, appearing in

each of the error bounds. [

Proof of Theorem B.1. First, we show that Theorem 7.2 holds with Assumption 2 re-
placed by Assumption 2*. Assumption 2 enters the proof of Theorem 7.2 only through its
application of Lemma 7.2(b), which relies on Assumption 2. In turn, Assumption 2 enters
the proof of Lemma 7.2(b) only through its use in (B.4.10) to show that h'/?In(n) = o(1).
Since the latter holds under Assumption 2*(ii), this completes the proof for Theorem 7.2
under Assumption 2%*.

Next, we show that Theorem 7.3 holds with Assumption 2 replaced by Assumption 2*.

Assumption 2 enters the proof of Theorem 7.3 only through its application of Lemmas
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7.7 and 7.8(a), which both use Assumption 2. Assumption 2 enters the proof of Lemma
7.7 only through its application of Lemma 7.2(c), which relies on Assumption 2. In turn,
Assumption 2 enters the proof of Lemma 7.2(c) only through its use in (B.4.12) to show that
hin(n) = o(1). The latter holds under Assumption 2*(ii).

Assumption 2 is used in the proof of Lemma 7.8(a) in equations (B.11.15), (B.11.24), and
(B.11.39) and because the proof applies Lemma 7.2(c) (which we have just shown to hold
under Assumption 2*(ii)). To verify (B.11.15) using Assumption 2* in place of Assumption
2, we bound [k( ,,(Tn¢)| by £, in the fourth last line of (B.11.15) (which is why £, is defined
to bound the absolute value of second derivative of ,(-) = ko, (-) over the interval I, .,).
This leads to £, Y24, (t/n — 7)? appearing in place of /2, (t/n — 7)? in the third last line
of (B.11.15), which in turn leads to £,nh - h? appearing in place of nh - h? in the second last
line of (B.11.15). The latter leads to (nf2h°)'/? appearing in place of (nh®)*/? in two places
in the last line of (B.11.15). Since (nf2h°)*/2? = o(1) by Assumption 2*(i), (B.11.15) holds
under Assumption 2%*.

To verify (B.11.24) under Assumption 2*, we employ Lemma B.3(b) and (c) to yield the
rhs of (B.11.20) to be jp., O (£,,h/b,) + 72 O(L,,h) rather than 552 *O(h/b,) +p,O(h) (which
is why /,, is defined to bound the Lipschitz constants for x,(-) and o2(-) over the interval
I,.,). In consequence, each of the terms on the last line of (B.11.21) gets multiplied by £2,
and so, the rhs of (B.11.21) becomes O(£2b,h?). In turn, this causes O(£,b/?h) to appear in
place of O(b}/2h) at the end of the first line of (B.11.24). And this causes O(n'/2¢,h%/2b1/?)
and O((nf%2h°)'/2) to appear in place of O(n'/2h%/2b;1/2) and O((nh®)'/?), respectively, in
the last line of (B.11.24). Since O((nf2h%)Y/?) = o(1) under Assumption 2*(i), (B.11.24)
holds under Assumption 2*.

To verify (B.11.39) under Assumption 2* we employ Lemma B.3(d) to yield the
bound O((nf?h?/b2)Y/?) rather than the bound O((nh°/b2)/?) in (B.11.39).  Since
O((n2nh°/b2)1/?) = o(1) under Assumption 2*(i) (which is why ¢, is defined to bound the
Lipschitz constant for n,(-) over the interval I, .,), (B.11.39) holds under Assumption 2*.
This completes the proof. []

C Additional Simulation Results

For a discussion of the results given in Figures SM.1-SM.4 below, see Section 5 of the

paper.
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(b) sin 0.90-1.00-1.00, time-varying p and o

(a) sin 1.00-0.90-1.00, time-varying p and o
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(d) sin 0.80-1.00-0.80, time-varying p and o

Time

(c) sin 1.00-0.80-1.00, time-varying p and o

1.00-

1.00-

o o

o o
& ) = 3

0.60-

[S) o o > o
abuey 3NN ‘spunog 19 BAY doa

o 1

o o
& ) = 3

0.60-

[S) o o > o
abuey 3N ‘spunog 19 BAY doa

0.40-

0.40-

o
<
-

o
<
-

o o
dO [enoY pue [euiwoN

0 o

o o
dD [enoy pue [euiwoN

0.85-

0.85-

1.00

0.80

0.60

0.40

0.20

0.00

1.00

0.80

0.60

0.40

0.20

0.00

Time

(f) sin 0.60-1.00-0.60, time-varying u and o
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CP’s and AL’s of CI's for p (7) and MAD’s of the MUE of p (1)

62



(b) linear 1.00-0.90, time-varying p and o

(a) linear 0.90-1.00, time-varying p and o
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(d) linear 0.90-0.60, time-varying p and o

(¢) linear 0.60-0.90, time-varying p and o
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(b) flat-lin 0.99-0.80, time-varying p and o

(a) flat-lin 0.99-0.80, constant p and o
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(d) flat 0.75, time-varying p and o
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(b) kinked 0.80-1.00-0.80, time-varying p and o

(a) kinked 0.80-1.00-0.80, constant u and o
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D Extension to TVP-AR(p) Models

Here we discuss how the methods introduced in the paper for a TVP-AR(1) model can
be extended to a TVP-AR(p) model. We combine the approach discussed above with a
method for constant parameter AR(p) models that is similar to, but somewhat different
from, methods that have been considered in the literature to date. It is similar to Hansen’s
(1999) grid bootstrap, also see Mikusheva (2007, Sec. 7), but uses asymptotic critical values,
rather than bootstrap critical values, which eases computation considerably in the time-
varying case because the tabulated quantiles for the AR(1) case can be utilized (with an
adjustment of the 1), value that is employed). Asymptotic results for p > 1 are beyond the
scope of this paper and are not provided here.

Consider the following TVP-AR(p) model written in augmented Dickey-Fuller (ADF)

form:

Y, = + Y, and
p—1
Vi =pY 4 ) BpAY] 4+ oy, for t =1,...,n, (D.1)
j=1
where AY;* , =V,*, V", for j=1,....,p— 1. Here, y, p;, 01, and U are as in Section 2.
The coefficients 3;; are possibly time varying and satisfy analogous properties to those of fi;.
The parameter p; is the sum of the p AR coefficients. It is the parameter of interest because
it is a suitable measure of the persistence of the time series, see Andrews and Chen (1994,
Sec. 2.2) for a discussion. As in Section 2, p; := p(t/n) and, for 7 € (0,1), we consider
estimation and inference concerning p (7).

To construct a CI for p(7) in the AR(p) model, we proceed as follows. First, consider
the regression of Y; on a constant, Y;_;, AY;_4,...,AY,_,4y for t = T, ..., T,, where AY; :=
Y, — Y;_1. For arbitrary py € (—1,1], let T}, (po, p) be the t-statistic for testing the null
hypothesis that the coefficient on the regressor Y, ; in this regression equals py. Second,
compute B(po) € RP7! from the regression of ¥; — pp¥;_1 on a constant, AY; 1,...,AY; 51
for t =17, ...,T5. Third, one computes

p—1

for pg > 0 and ¢y, ,:= oo for py <0, where Apo) :==1— ZBj(po).

A(po) j=1

—nhln(po)

P =
nhva )

(D.2)
A nominal 1 — « equal-tailed two-sided CI for p(7) is given by the formula in (3.10) with
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T, (po, p) in place of T}, (pg) and with @bfm, po 10 place of ¥y 4, in the critical values. A median-
unbiased interval estimator p,, of p(7) is defined as in Section 3.3 with the same changes.
For the motivation behind the definition of ¥?, above, see Hansen (1995, 1999).

Note that the only computational difference between the above CI’s for p in the TVP-
AR(1) and TVP-AR(p) models is that the latter requires the computation of 3(p) for a fine
grid of py values and each value 7 of interest. In contrast, if one replaces the critical values
cyr (@/2) and ¢yr (1 — @/2) by the /2 and 1 — o/2 quantiles of a bootstrap test statistic,
e.g., as in Hansen’s (1999) grid bootstrap, then one needs to simulate these quantiles for
a fine grid of py values for each 7 of interest, which is computationally quite expensive for
reasonable choices of the number of simulation repetitions.

Some empirical applications with p = 6 and 12 are reported in Section E below.

E Additional Empirical Results

In this section, we present results for some additional time series in the IFS dataset and
some in the FRED dataset. Some of these series require a TVP-AR(p) model for p > 1.

As noted in the Introduction, and described in Section D of the Supplemental Material,
the methods introduced above for the TVP-AR(1) model can be extended to TVP-AR(p)
models with p > 1. In the TVP-AR(p) model, the parameter p; is the sum of the autore-
gressive coefficients at time ¢, or equivalently, the coefficient at time ¢ on the lagged Y; value
in the augmented Dickey-Fuller representation of the model. This coefficient is a suitable
measure of the persistence of the time series at time ¢, e.g., see Andrews and Chen (1994,
Sec. 2.2).

For each time series, we estimate a TVP-AR(p) model with p = 1,6, 12 and examine the
degree of autocorrelation of the corresponding residuals by computing Ljung-Box tests with
six lags of the residuals. For each time series, we present the results from the TVP-AR(p)
model with the smallest value of p for which the null hypothesis of no autocorrelation is not
rejected at the 5% level. When p € {6,12}, the MUE’s and CI’s are for the time-varying
autoregressive parameter corresponding to the lagged dependent variable in ADF form. We

group the results based on the selected p in the figures.

First, we consider additional time series from the IF'S dataset, which include real exchange
rate series for Norway, Canada, and Japan, interest rate series for Australia, Canada, and the
US, and inflation series for Switzerland. The definition of real exchange rates and inflation
are the same as described in Section 6.1 and 6.2, respectively. For the interest rate series,

we use the monthly interbank interest rate, which is a key monetary tool for central banks
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to achieve their policy goals. More details about the length, time period, and frequency of
the additional IF'S series can be found in Tables SM.2-SM.4.

Figure SM.5 presents the MUE’s and 90% CI’s of p (¢) for the additional real exchange
rate series. We fit a TVP-AR(1) model for Norway and TVP-AR(6) model for Canada
and Japan based on the Ljung-Box tests results. Across all three countries, the MUE’s
are close to one with reasonably tight 90% CI’s. The selected nhys values are quite large,
consistent with the parameter estimates that show little time variation. The results echo the
empirical findings of high real exchange rate persistence for the developed countries presented
in Section 6.2.

Figure SM.6 shows that the MUE’s of p (t) for the interest rate series from a TVP-AR(6)
model are close to one with a moderate degree of variation over time. Most notable are the
estimates of p (t) for Canada and the US during the period around 2012 when the MUE’s
drop to as low as .7. The 90% CI’s are fairly tight. In comparison, the constant parameter
MUE’s from an AR(6) model are uniformly one for the three series.

Figure SM.9(a)—(b) summarizes the results for estimating a TVP-AR(12) model for the
Switzerland inflation series. The MUE’s of p (¢) are quite volatile over time, ranging between
-.6 and 1 in Figure SM.9(a). This is different from the constant parameter estimate which
is close to .9, highlighting the importance of allowing for possible time variation in the

autoregressive parameters in these models.

Second, we consider the FRED series. We have a total of eight time series for the US,
including the 10 year bond yield, average wages for the manufacturing sector, industrial
production, real GDP per capita, real GNP, real GNP per capita, S&P 500 index, and the
unemployment rate. We provide details about the length, time period, and frequency of the
FRED series in Tables SM.3-SM 4.

Figures SM.7-SM.8 show the results from estimating a TVP-AR(6) model for the US
FRED series for which the null hypothesis of no autocorrelation is not rejected at the 5%
level. In Figure SM.7(e) and (f), there are some variation in the MUE’s of p () for the US
unemployment rate series, however the magnitude is small. For all other series in Figures
SM.7-SM.8, the MUE’s of p (¢) are uniformly one or very close to one over time and almost
the same as constant parameter estimates. All of the 90% CI’s are tight with a length smaller
than .02. The selected nh,s values are large, in line with the parameter estimates that show
little time variation. Hence, the methods proposed in the paper deliver a constant parameter
unit root, or near unit root, model in circumstances in which such a model is appropriate.

Figure SM.9(c)—(f) provides the results for fitting a TVP-AR(12) model to the time series
on the S&P 500 index and the US industrial production. For the S&P 500 index series, the
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MUE’s of p(t) are one and similar to the constant parameter estimates. The results are
consistent with predictions from a random walk hypothesis for the US stock markets. For
the US industrial production series, the MUE’s of p (¢) in Figure SM.9(e) are close to 1 for
most of the time except before 1925 and after 2010. It may be caused by a boundary effect.

Table SM.2: Autocorrelation Test Results for Residuals from Estimating TVP-AR(1) Model

~ Ljung-Box Test

From To Frequency n Nhoys
p-Value
US Inflation 1/2/1955 1/10/2022 monthly 813 125 27
US Inflation 1/2/1955 1/10/2022 monthly 813 188 28
Canada Inflation 1/2/1955 1/10/2022  monthly 813 125 .38
Canada Inflation 1/2/1955 1/10/2022 monthly 813 188 .22
Germany Inflation 1/2/1955 1/10/2022  monthly 813 125 .76
Germany Inflation 1/2/1955 1/10/2022  monthly 813 188 .81
UK Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 823 .52
UK Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 1,234 .51
Sweden Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 823 .28
Sweden Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 1,234 .28
Switzerland Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 393 .56
Switzerland Real Exchange Rate 1/1/1957  1/8/2022  monthly 788 590 .54
Norway Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 823 .37
Norway Real Exchange Rate 1/1/1957 1/8/2022  monthly 788 1,234 .38
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Table SM.3: Autocorrelation Test Results for Residuals from Estimating TVP-AR(6) Model

~ Ljung-Box Test

From To Frequency n Nhys
p-Value
Canada Real Exchange Rate 1/1/1957 1/8/2022  Monthly 788 823 1.00
Canada Real Exchange Rate 1/1/1957  1/8/2022  Monthly 788 1,234 1.00
Japan Real Exchange Rate 1/1/1957 1/8/2022  Monthly 788 823 .81
Japan Real Exchange Rate 1/1/1957 1/8/2022  Monthly 788 1,234 .84
Australia Interest Rate 1/5/1976  1/4/2017  Monthly 492 160 97
Australia Interest Rate 1/5/1976  1/4/2017  Monthly 492 240 .98
Canada Interest Rate 1/5/1976  1/4/2017  Monthly 492 95 .95
Canada Interest Rate 1/5/1976  1/4/2017  Monthly 492 143 .97
US Interest Rate 1/5/1976  1/4/2017  Monthly 492 103 .98
US Interest Rate 1/5/1976  1/4/2017  Monthly 492 155 97
US 10yr Bond Yield 2/1/1962 20/1/2023 Daily 15248 16,006 1.00
US 10yr Bond Yield 2/1/1962 20/1/2023 Daily 15248 24,009 1.00
US Average Wages Manufacturing 1/1/1939 1/12/2022  Monthly 1008 152 12
US Average Wages Manufacturing 1/1/1939 1/12/2022  Monthly 1008 228 .27
US Unemployment Rate 1/1/1948 1/12/2022  Monthly 900 900 .98
US Unemployment Rate 1/1/1948 1/12/2022  Monthly 900 1,350 .99
US Real GDP Per Capita 1/1/1947 1/7/2022  Quarterly 303 317 97
US Real GDP Per Capita 1/1/1947  1/7/2022  Quarterly 303 476 .98
US Real GNP 1/1/1947 1/7/2022 Quarterly 303 317 1.00
US Real GNP 1/1/1947 1/7/2022 Quarterly 303 476 48
US Real GNP Per Capita 1/1/1947  1/7/2022  Quarterly 303 317 .96
US Real GNP Per Capita 1/1/1947 1/7/2022 Quarterly 303 476 99

Table SM.4: Autocorrelation Test Results for Residuals from Estimating TVP-AR(12) Model

Ljung-Box Test

From To Frequency n nh
p-Value

Switzerland Inflation  1/2/1955 1/10/2022  Monthly ~ 813 125 96
Switzerland Inflation 1/2/1955  1/10/2022  Monthly 813 188 .63
S&P 500 Index 24/1/2013 23/1/2023  Daily 2517 2,518 1.00
S&P 500 Index 24/1/2013  23/1/2023 Daily 2517 3,777 1.00

US Industrial Production  1/1/1919  1/12/2022  Monthly 1248 368 1.00
US Industrial Production  1/1/1919 1/12/2022  Monthly = 1248 551 97
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(a) Norway Real Exchange Rate, n/fzus = 823 (b) Norway Real Exchange Rate, 1.5n/I{u5 =1,234
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Figure SM.5: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR Models:
Norway Real Exchange Rate (TVP-AR(1)), Canada and Japan Real Exchange Rate (TVP-
AR(6)) B



(a) Australia Interest Rate, n/i;us = 160
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Figure SM.6: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: Australia, Canada, and the US Interest Rate



(a) US 10yr Bond Yield, nhys = 16,006 (b) US 10yr Bond Yield, 1.5nhys = 24,009
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Figure SM.7: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: US 10yr Bond Yield, US Average Wages Manufacturing, and US Unemployment
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(a) US Real GDP Per Capita, n/I{u5 = 317 (b) US Real GDP Per Capita, 1.571/]{”5 = 476
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Figure SM.8: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: US Real GDP Per Capita, US Real GNP, and US Real GNP Per Capita
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(a) Switzerland Inflation, n/fzus =125 (b) Switzerland Inflation, 1.5n/fzus = 188
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Figure SM.9: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(12)
Models: Switzerland Inflation, S&P 500 Index, and US Industrial Production
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