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Section A provides the critical values cψ (α), the αth Quantile of Jψ, for constructing CI’s
and MUE’s for ρ (τ). Section B provides asymptotic theory. Section C is concerned with the
simulation results. Section D extends the methods of the paper for TVP-AR(1) models to
TVP-AR(p) models for p > 1. Section E provides additional empirical results.

A Critical Values cψ (α)

Table SM.1 provides the critical values cψ (α) for α = .025, .05, .5, .95, and .975 and for
ψ between 0 and 500. Given these critical values, one can compute equal-tailed two-sided
CI’s and MUE’s for ρ (τ) based on (3.9) and (3.11), respectively.

Table SM.1: Values of Relevant Quantiles of Jψ for Use with 90% and 95% Equal-Tailed
Two-Sided CI’s and MUE’s

Values of cψ (α), the αth Quantile of Jψ , for Use with 90% and 95% Equal-Tailed Two-Sided CI’s and MUE’s

ψ 0 0.2 0.4 0.6 0.8 1 1.4 1.8 2.2 2.6 3 3.4 3.8

cψ (.025) -3.12 -3.09 -3.05 -3.03 -2.99 -2.98 -2.93 -2.89 -2.85 -2.82 -2.79 -2.77 -2.74

cψ (.05) -2.86 -2.83 -2.79 -2.76 -2.72 -2.70 -2.65 -2.61 -2.57 -2.53 -2.51 -2.48 -2.46

cψ (.5) -1.57 -1.51 -1.47 -1.42 -1.37 -1.34 -1.26 -1.20 -1.14 -1.08 -1.03 -1.00 -0.96

cψ (.95) -0.09 -0.02 0.03 0.08 0.13 0.17 0.24 0.31 0.37 0.42 0.48 0.53 0.56

cψ (.975) 0.23 0.30 0.36 0.40 0.45 0.49 0.55 0.63 0.69 0.74 0.79 0.84 0.87

ψ 4.2 4.6 5 6 7 8 9 10 11 12 13 14 15

cψ (.025) -2.72 -2.70 -2.68 -2.65 -2.60 -2.58 -2.56 -2.54 -2.51 -2.50 -2.48 -2.46 -2.45

cψ (.05) -2.44 -2.41 -2.39 -2.35 -2.31 -2.28 -2.26 -2.23 -2.21 -2.19 -2.18 -2.15 -2.14

cψ (.5) -0.92 -0.90 -0.86 -0.81 -0.75 -0.71 -0.68 -0.65 -0.62 -0.59 -0.58 -0.55 -0.54

cψ (.95) 0.60 0.64 0.68 0.75 0.82 0.86 0.91 0.95 0.98 1.02 1.04 1.05 1.08

cψ (.975) 0.91 0.94 0.99 1.05 1.12 1.17 1.22 1.25 1.29 1.32 1.34 1.37 1.39

ψ 20 25 30 40 50 60 70 80 90 100 200 300 500

cψ (.025) -2.39 -2.35 -2.32 -2.28 -2.25 -2.23 -2.20 -2.19 -2.17 -2.17 -2.11 -2.08 -2.05

cψ (.05) -2.08 -2.05 -2.02 -1.96 -1.94 -1.91 -1.89 -1.88 -1.86 -1.85 -1.80 -1.76 -1.74

cψ (.5) -0.47 -0.42 -0.39 -0.33 -0.30 -0.27 -0.25 -0.23 -0.23 -0.21 -0.15 -0.12 -0.09

cψ (.95) 1.15 1.20 1.24 1.30 1.33 1.37 1.39 1.40 1.41 1.43 1.49 1.52 1.55

cψ (.975) 1.46 1.51 1.56 1.61 1.65 1.67 1.71 1.72 1.72 1.74 1.80 1.83 1.87
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B Theory

B.1 Weaker Assumptions on h for the Case where ρn, µn, and σ2
n

Are Asymptotically Locally Constant

The asymptotic results in Section 7 rely on Assumption 2, which requires that the band-
width h is small enough that nh5 → 0 as n → ∞. This assumption is suitable when the
functions ρn, µn, and σ2

n are asymptotically non-constant in a neighborhood of the time
point of interest τ. However, this condition can be relaxed if the functions ρn, µn, and σ2

n

are constant or asymptotically constant in a neighborhood of τ. In this section, we state an
alternative to Assumption 2 that imposes weaker conditions on h that depend on how close
the functions ρn, µn, and σ2

n are to being asymptotically constant in a neighborhood of τ,
but still allows us to establish the results of Theorems 7.2 and 7.3. In the case of locally
constant functions, the condition on h is just h = o(ln−2(n)).

The functions ρn(·) and µn(·) depend on κn(·) and ηn(·) by the definition of the parameter
space Λn following (7.1).

Definition. Let ℓn be the supremum of the Lipschitz constants of κn(·), ηn(·), and σ2
n(·) and

the absolute value of the second derivative of κn(·) over the interval Iτ,ε2 that contains τ.

In this definition, Iτ,ε2 is as defined in the parameter space Λn in Section 7.1.
As defined, ℓn is a measure of the non-constancy of the functions ρn(·), µn(·), and σ2

n(·).
When ℓn → 0 as n → ∞, these functions become closer to being constant functions in a
neighborhood of τ as the sample size increases.

Assumption 2*. (i) nℓ2
nh

5 → 0 and (ii) h = o(ln−2(n)).

Assumption 2*(i) allows h to converge to zero slower than the condition nh5 → 0 when
ℓn → 0. If nℓ2

n → 0, then h can converge to zero as slowly as o(ln−2(n)).
The following result shows that Assumption 2 can be replaced by the weaker condition

Assumption 2* and Theorems 7.2 and 7.3 still hold.

Theorem B.1. Theorems 7.2 and 7.3 hold with Assumption 2 replaced by Assumption 2*.

The proof of Theorem B.1 is given in Section B.15 below.

B.2 Proof of Theorem 7.1

The proof of Theorem 7.1 uses the following lemma (which is also used elsewhere below).
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By definition, ρn (s) = 1 −κn (s) /bn, see (7.8). When bn → ∞, for s ∈ Iτ,ε2 , define κ∗
n (s)

by
ρn (s) = 1 − κn (s) /bn = exp{−κ∗

n (s) /bn}. (B.2.1)

The function κ∗
n (s) on Iτ,ε2 has the following property when bn → ∞.

Lemma B.1. If bn → ∞ and κn (s) satisfies part (ii) of the parameter space Λn defined
following (7.1), then

sup
s∈Iτ,ε2

∣∣∣∣∣κ∗
n (s)
κn (s) − 1

∣∣∣∣∣ → 0.

The proof of Lemma B.1 follows that of Theorem 7.1.

Proof of Theorem 7.1. Let

CPn (λ) := Pλ (ρ (τ) ∈ CIn,τ ) , (B.2.2)

where Pλ (·) denotes probability under λ ∈ Λn. The results of Theorem 7.1 hold by Theorem
2.1 of Andrews, Cheng, and Guggenberger (2020) (ACG) provided Assumptions A1 and S
of ACG hold with CP in Assumption S equal to 1−α. In applying Theorem 2.1 of ACG, we
let the parameter space Λ in that paper depend on n, as it does in the present paper, which
does not cause any complications for the results of that paper. Sufficient conditions for these
assumptions are Assumptions B and S of ACG by Theorem 2.2 of ACG. Assumptions B and
S of ACG combine to require: For any subsequence {pn}n≥1 of {n}n≥1 and any sequence
{λpn ∈ Λpn}n≥1

for which h∗
pn (λpn) → h∗ ∈ H∗, we have CPpn (λpn) → 1 − α, (B.2.3)

where {h∗
n (λ)}n≥1 is a suitably chosen sequence of functions.1 In the present case, we take

h∗
n (λ) :=

(
h∗
n,1 (λ) , h∗

n,2 (λ) , h∗
n,3 (λ) , h∗

n,4 (λ)
)′
, where

h∗
n,1 (λ) := nh (1 − ρ (τ)) = nh

(
1 −

(
1 − κ (τ)

b

))
= nh

b
κ (τ) ,

h∗
n,2 (λ) := nh

b
,

h∗
n,3 (λ) := b/

(
nh1/2

)
, and

h∗
n,4 (λ) :=

(
κ, µ, σ2

)
, (B.2.4)

1The asterisks on h∗
n(λpn

), h∗, and H∗ do not appear in ACG. They are added here to avoid confusion
with the smoothing parameter h used in this paper.
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where (κ, µ, σ2) are viewed as functions on Iτ,ε2 , rather than on [0, 1]. As required by ACG,
the functions (κ, µ, σ2) in h∗

n,4 (λ) lie in a compact metric space T (under the sup norm) by
the definition of Λn. We can write the smoothing parameter h as h = hn. This implies that
for the subsequence {pn}n≥1, nh becomes pnhpn .

The condition h∗
pn (λpn) → h∗ ∈ H∗ in (B.2.3) implies (i)

(
κpn , µpn , σ

2
pn

)
→ (κ0, µ0, σ

2
0) ∈

T under the sup norm, which implies Assumption 3, (ii) pnhpn/bpn → r0 ∈ [0,∞] , which is
imposed in the subsequence versions of Theorems 7.2 and 7.3 with r0 ∈ [0,∞) and r0 = ∞,
respectively, (iii) bpn/

(
pnh

1/2
pn

)
→ w0 ∈ [0,∞], which implies Assumption 4 and is imposed

in the subsequence versions of Lemma 7.2(b) and Theorem 7.2 when r0 = 0, and (iv)
pnhpn (1 − ρpn (τ)) = pnhpn

bpn
κpn (τ) → r0κ0 (τ) ∈ [0,∞], which holds by (i) and (ii). In the

present case, h∗ = (r0κ0 (τ) , r0, w0, (κ0, µ0, σ
2
0))′ and H∗ = [0,∞] × [0,∞] × [0,∞] × T .

By Theorem 7.2, Assumptions 1, 2, and 3, and pnhpn/bpn → r0 ∈ [0,∞) , which are
implied by h∗

pn (λpn) → h∗ ∈ H∗ with r0 ∈ [0,∞) , we have: Tpn (ρpn (τ)) →d Jψ with ψ =
r0κ0 (τ) for Jψ defined in (3.8). By Theorem 7.3, Assumptions 1, 2, and 3, and pnhpn/bpn →
r0 = ∞, which are implied by h∗

pn (λpn) → h∗ ∈ H∗ with r0 = ∞, we have Tpn (ρpn (τ)) →d Jψ

for ψ = ∞ and J∞ ∼ N(0, 1).
For ψ ∈ [0,∞], the quantiles cψ (α/2) and cψ (1 − α/2) of the distribution of Jψ, which

appear in the definition of CIn,τ , are continuous at all ψ ∈ [0,∞] . The proof of this is given
in the proof of Lemma A.7 of ACG with Z ∼ N (0, 1) replaced by Z = 0 (which simplifies
the proof because some terms that need to be shown to be op (1) are immediately 0 and the
case ψ = 0 is trivial when Z = 0). In consequence, under {λpn ∈ Λn}n≥1,

ψpnhpn ,ρpn (τ) → r0κ0 (τ) implies that

cψpnhpn ,ρpn (τ) (α/2) → cr0κ0(τ) (α/2) and cψpnhpnρpn (τ) (1 − α/2) → cr0κ0(τ) (1 − α/2) . (B.2.5)

Now, we show that the convergence in the first line of (B.2.5) holds. For notational
simplicity, we replace pn by n in the proof of this convergence. We consider three cases.
Case 1: r0 ∈ [0,∞). Case 2: (i) r0 = ∞ and (ii) ρn (τ) > 0 for n sufficiently large. Case 3:
(i) r0 = ∞ and (ii) ρn (τ) ≤ 0 infinitely often as n → ∞. In case 1, nh/bn → r0 < ∞, and
so, bn → ∞, Lemma B.1 applies, and ρn (τ) > 0 for n sufficiently large. Thus, we have

ψpnhpn ,ρpn (τ) = −nh ln (ρn (τ)) = −nh ln (exp{−κ∗
n (τ) /bn})

= nhκn (τ) (1 + o (1)) /bn → r0κ0 (τ) , (B.2.6)

where the second equality holds by (B.2.1), the third equality holds by Lemma B.1, and the
convergence holds by h∗

n (λn) → h∗ ∈ H∗. Thus, case 1 is proved.
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For case 2, by implication (iv) listed above, we have dn := nh (1 − ρn (τ)) → r0κ0 (τ) =
∞. We have ρn (τ) = 1 − dn/nh and ψpnhpn ,ρpn (τ) = −nh ln (1 − dn/nh) for n large by the
definition of ψpnhpn ,ρpn (τ) and the assumption that ρn (τ) > 0 for n sufficiently large by
condition (ii) of case 2. For all d ∈ (0,∞), we have

lim inf
n→∞

ψpnhpn ,ρpn (τ) = lim inf
n→∞

[−nh ln (1 − dn/nh)] ≥ lim inf
n→∞

[−nh ln (1 − d/nh)] (B.2.7)

because the right-hand side quantity is increasing in d and dn → ∞. By a mean value
expansion around 1, ln (1 − d/nh) = (1/dn∗)(−d/nh), where dn∗ ∈ [1−d/nh, 1] and dn∗ → 1.
Hence,

lim inf
n→∞

[−nh ln (1 − d/nh)] → d. (B.2.8)

Since this holds for all d ∈ (0,∞), using (B.2.7), we get lim infn→∞ ψpnhpn ,ρpn (τ) = ∞ =
r0κ0 (τ) , as desired and case 2 is proved.

For case 3, for the subsequence of indices for which ρn (τ) ≤ 0, we have ψpnhpn ,ρpn (τ) = ∞
for all indices, and so, its limit equals ∞ = r0κ0 (τ) , as desired. For the subsequence of
indices for which ρn (τ) > 0, the argument used to prove case 2 applies and the limit is
∞ = r0κ0 (τ) . Thus, case 3 is proved.

Now, given the convergence in the second line of (B.2.5), we have

CPpn (λpn)

= Pλpn (ρpn (τ) ∈ CIpn,τ )

= Pλpn

(
cψpnhpn ,ρpn (τ) (α/2) ≤ Tpn (ρpn (τ)) ≤ cψpnhpn ,ρpn (τ) (1 − α/2)

)
→ P

(
cr0κ0(τ) (α/2) ≤ Jr0κ0(τ) ≤ cr0κ0(τ) (1 − α/2)

)
= 1 − α, (B.2.9)

where the second equality holds by (3.9), the convergence holds by Tpn (ρpn (τ)) →d Jψ with
ψ = r0κ0 (τ) and (B.2.5), and the last equality holds by the definition of the quantile cψ (α)
following (3.8). This verifies (B.2.3) and completes the verification of Assumptions B and S
of ACG with CP = 1 − α in Assumption S, which completes the proof.

Proof of Lemma B.1. Because bn → ∞ and κn (·) is nonnegative and bounded on Iτ,ε2

uniformly over n by part (ii) of Λn,

sup
s∈Iτ,ε2

|ρn (s) − 1| = sup
s∈Iτ,ε2

κn (s)
bn

→ 0. (B.2.10)
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We prove by contradiction that
sup
s∈Iτ,ε2

κ∗
n (s)
bn

→ 0. (B.2.11)

Let {sn}n≥1 be a sequence in Iτ,ε2 such that sups∈Iτ,ε2
κ∗
n (s) /bn − κ∗

n (sn) /bn → 0. Suppose
the claim does not hold. Then, there exists a subsequence {nk}k≥1 of {n}n≥1 and a constant
δ > 0 such that sups∈Iτ,ε2

κ∗
nk

(snk) /bnk ≥ δ ∀k ≥ 1, and hence, κ∗
nk

(snk) /bnk ≥ δ/2 for all k
large. In consequence,

ρnk (snk) := exp{−κ∗
nk

(snk) /bnk} ≤ exp{−δ/2} < 1 (B.2.12)

for all k large, where the equality holds by the definition of κ∗
n (s) in (B.2.1), which contradicts

(B.2.10) and establishes (B.2.11).
For each s ∈ Iτ,ε2 , a mean value expansion gives

exp{−κ∗
n (s) /bn} = 1 − exp{−κ∗∗

n (s) /bn}κ
∗
n (s)
bn

, (B.2.13)

where κ∗∗
n (s) lies between κ∗

n (s) and 0. The latter and (B.2.11) give: sups∈Iτ,ε2
κ∗∗
n (s) /bn =

o(1).
We have

0 = ρn (s) − ρn (s) = exp{−κ∗
n (s) /bn} − (1 − κn (s) /bn)

= − exp{−κ∗∗
n (s) /bn}κ

∗
n (s)
bn

+ κn (s)
bn

, (B.2.14)

where the third equality uses (B.2.13). Equation (B.2.14) gives

κ∗
n (s)
κn (s) = exp{κ∗∗

n (s) /bn}, and so,

sup
s∈Iτ,ε2

∣∣∣∣∣κ∗
n (s)
κn (s) − 1

∣∣∣∣∣ = sup
s∈Iτ,ε2

|exp{κ∗∗
n (s) /bn} − 1| → 0, (B.2.15)

where the convergence holds by a mean value expansion using sups∈Iτ,ε2
κ∗∗
n (s) /bn = o(1).
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B.3 Proof of Lemma 7.1

Proof of Lemma 7.1. First, we prove part (a). By definition, [T1, T2] = Inτ,nh/2. Because
κn (·) is Lipschitz on Iτ,ε2 , we have

max
t∈Inτ,nh/2

|κn (t/n) − κn (τ)| ≤ L4 max
t∈Inτ,nh/2

|t/n− τ | = O (h) , (B.3.1)

where the inequality holds for n sufficiently large such that h/2 + 1/n ≤ ε2 (because then
t ∈ Inτ,nh/2 implies that t/n ∈ Iτ,ε2).

Next, we have

max
t∈Inτ,nh/2

|ρt − ρnτ | = max
t∈Inτ,nh/2

|κn (t/n) − κn (τ)| /bn

= O (h/bn) , (B.3.2)

where the first equality holds because ρt = ρn(t/n) = 1 − κn(t/n)/bn and ρnτ = ρn(τ) =
1 − κn(τ)/bn by (7.1) and the second equality uses (B.3.1). This establishes part (a).

Part (b) holds by (B.3.1) with σ2
n (·) in place of κn (·).

Using (7.3), we have

max
t∈Inτ,nh/2

max
0≤j≤t−T1

∣∣∣ct,j − ρjnτ
∣∣∣ := max

t∈Inτ,nh/2
max

0≤j≤t−T1

∣∣∣∣∣∣
j∏

k=1
ρt−k − ρjnτ

∣∣∣∣∣∣
≤ max

t∈Inτ,nh/2
max

0≤j≤t−T1
(j + 1) max

1≤k≤j
|ρt−k − ρnτ |

= O (nh · h/bn) , (B.3.3)

where the first equality holds by (7.3), the inequality uses standard manipulations and
max (|ρt−k| , |ρnτ |) ≤ 1, and the second equality uses part (a) and j + 1 ≤ T2 − T1 = O (nh).
Hence, part (c) holds.

Part (d) holds by (B.3.2) with ηn (·) in place of κn (·).

B.4 Proof of Lemma 7.2

The proofs of Lemma 7.2(b) and Lemma 7.4 use the following lemma, which is an exten-
sion of Lemma 7.1(a)–(c).

Lemma B.2. Under Assumptions 1 and 3, for a sequence {λn = (ρn, µn, σ2
n, κn, bn, Fn) ∈

Λn}n≥1 and a sequence of integer constants {mn}n≥1 for which mn → ∞ and mn/n → 0,

(a) maxt∈Inτ,nh/2+2mn
|ρt − ρnτ | = O((h+ mn

n
)/bn),
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(b) maxt∈Inτ,nh/2+2mn
|σ2
t − σ2

nτ | = O(h+ mn
n

), and

(c) maxt∈{T0−mn,T0} max0≤j≤mn |ct,j − ρjnτ | = O(mn(h+ mn
n

)/bn).

Proof of Lemma B.2. The proof of Lemma B.2(a) is the same as that of Lemma
7.1(a) with the following changes. In (B.3.1), Inτ,nh/2 is replaced by Inτ,nh/2+2mn and
L4 maxt∈Inτ,nh/2 |t/n−τ | = O(h) is replaced by L4 maxt∈Inτ,nh/2+2mn

|t/n−τ | = O(h+ mn
n

) and
the inequality in (B.3.1) holds for n sufficiently large that h/2+2mn/n+1/n ≤ ε2, which uses
the assumption that mn/n → 0 (because then t ∈ Inτ,nh/2+2mn implies that t/n ∈ Iτ,ε2). In
(B.3.2), Inτ,nh/2 is replaced by Inτ,nh/2+2mn and maxt∈Inτ,nh/2 exp{xnt}|κ∗

n(t/n) − κ∗
n(τ)|/bn =

O(h/bn) is replaced by maxt∈Inτ,nh/2+2mn
exp{xnt}|κ∗

n(t/n)−κ∗
n(τ)|/bn = O((h+mn

n
)/bn) using

the revised version of (B.3.1). This establishes Lemma B.2(a).
The proof of Lemma B.2(b) is the same as that of part (a) with |κn(t/n) − κn(τ)|/bn

replaced by |σ2
t − σ2

nτ |.
The proof of Lemma B.2(c) is the same as that of Lemma 7.1(c) with maxt∈Inτ,nh/2

max0≤j≤t−T1 replaced by maxt∈{T0,T0−mn} max0≤j≤2mn , which implies that the largest value
of j considered is bounded by 2mn, rather than nh. This implies that the rhs of (B.3.3) is
changed from O(nh · h/bn) to O(mn · (h+ mn

n
)/bn), which establishes Lemma B.2(c).

Proof of Lemma 7.2. First, we prove part (a). By recursive substitution of (2.1), we have

Y ∗
T0 =

T0−1∑
j=0

cT0,jσT0−jUT0−j + cT0,T0Y
∗

0 . (B.4.1)

By Markov’s inequality, we only need to show EY ∗2
T0 /n = O (1), which is true because

EY ∗2
T0 /n = n−1E

T0−1∑
j=0

cT0,jσT0−jUT0−j + cT0,T0Y
∗

0

2

≤ 2n−1E

T0−1∑
j=0

cT0,jσT0−jUT0−j

2

+ 2n−1E (cT0,T0Y
∗

0 )2

= 2
T0−1∑
j=0

c2
T0,jσ

2
T0−j/n+ 2c2

T0,T0EY
∗

0
2/n

≤ 2C3,U (T0/n) +O(1) = O (1) , (B.4.2)

where the first inequality holds by (a+ b)2 ≤ 2a2 +2b2, the second equality uses the fact that
{Ut}nt=1 is a martingale difference sequence and EU2

t = 1 by the definition of the parameter
space Λn, and the last inequality holds by maxt∈[1,n] σ

2
t ≤ C3,U , maxj∈[0,T0] |cT0,j| ≤ 1, T0 =

⌊nτ⌋ − ⌊nh/2⌋ − 1 = O (n), and part (v) of Λn.
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In consequence, by Markov’s inequality, we have

Y ∗
T0 = Op

(
n1/2

)
, (B.4.3)

which proves part (a).
Next, we prove part (b). By part (a), Y ∗

T0 = Op(n1/2). Hence, if w0 = ∞ (in Assumption
4), then

(nh)1/2

bn
Y ∗
T0 = nh1/2

bn
Op(1) = op(1) (B.4.4)

and the result of part (b) of the lemma is proved.
Hence, to prove part (b), it remains to consider the case where w0 < ∞. For notational

simplicity, we suppose σ0(τ) = 1. By recursive substitution, as in (B.4.1), for a sequence of
integer constants {mn}n≥1 for which mn → ∞ and mn/n → 0, we have

Y ∗
T0 =

mn−1∑
j=0

cT0,jσT0−jUT0−j + cT0,mnY
∗
T0−mn . (B.4.5)

Similarly to (7.12), we bound |ρt| for t ∈ [T0−mn, T0] by ρn := max{exp{−κ0(τ)/(2bn)},−1+
ε1}. As in (7.12), it suffices to consider the case where ρt ≥ 0 for all t ∈ [0, 1]. We have

max
t∈[T0−mn,T0]

|ρt| ≤ max
t∈[T0−mn,T0]

|ρt − ρnτ | + |ρnτ − exp{−κ0(τ)/bn}| + exp{−κ0(τ)/bn}

≤ O
(

(h+ mn

n
)/bn

)
+ o(1)/bn + exp{−κ0(τ)/bn} ≤ ρn, (B.4.6)

where bn ≥ ε3 > 0, the second inequality uses Lemma B.2(a), (7.8), Assumption 3, and a
mean value expansion, and the last inequality holds using κ0(τ) > 0 and the fact that, when
bn → ∞, ρn − exp{−κ0(τ)/bn} ≥ K/bn for some constant K > 0. Hence, for j = 0, ...,mn,

cT0,j ≤ ρjn. (B.4.7)

We have

EY ∗2
T0 =

mn−1∑
j=0

c2
T0,jσ

2
T0−j + c2

T0,mnEY
∗2
T0−mn ≤ O(1)

mn−1∑
j=0

ρ2j
n + ρ2mn

n O(n)

≤ O(1) 1
1 − ρ2

n

+ ωmn/bnO(n) = O(bn) + ωmn/bnO(n), where

ω : = exp{−κ0(τ)}, (B.4.8)

the first equality uses (B.4.5) and the martingale difference property of {Ut}t≥1, the first
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inequality uses (B.4.7), maxt≤n σ2
t ≤ C3,U < ∞ (by part (i) of Λn), and EY ∗2

T0−mn = O(n)
(which holds by (B.4.2) with T0 −mn in place of T0), the second inequality holds by a bound
on the geometric sum and uses the definition of ω, and the last equality uses (7.16).

We are considering the case where bn
nh1/2 → w0 < ∞. We take mn = bnc ln(n) for some

finite positive constant c ∈ (0,−1/ ln(ω)). We have mn → ∞, because bn is bounded away
from zero by condition (ii) of Λn and c is positive. We have

mn

n
= bn
nh1/2 ch

1/2 ln(n) → 0 provided h1/2 ln(n) = o(1), (B.4.9)

because bn
nh1/2 → w0 < ∞ in the case that we are considering. By Assumption 2, the

condition h1/2 ln(n) = o(1) holds. Thus, mn satisfies the required conditions that mn → ∞
and mn

n
→ 0.

Next, we have

ωmn/bnn → 0 iff mn

bn
ln(ω) + ln(n) = (c ln(ω) + 1) ln(n) → −∞ (B.4.10)

and the latter holds because c ln(ω) + 1 < 0 by the definition of c.
By (B.4.8) and Markov’s inequality, Y ∗2

T0 = Op(bn) +Op(ωmn/bnn). Using this, we have

nh

b2
n

Y ∗2
T0 = Op(

nh

bn
) + nh

b2
n

Op(ωmn/bnn) = op(1), (B.4.11)

where the second equality uses nh
bn

→ r0 = 0 in the present case, nh
b2
n

= nh
bn

1
bn

→ 0, and
ωmn/bnn → 0 by (B.4.10).

Equation (B.4.11) establishes the desired results for the case w0 < ∞, which completes
the proof of part (b).

Next, we prove part (c), which considers the case nh/bn → r0 = ∞. Let {mn}n≥1 be
an arbitrary sequence of positive integers for which mn → ∞ and mn/n → 0. Then, by
(B.4.8), EY ∗2

T0 = O(bn) + ωmn/bnO(n). Now, take mn as defined above, i.e., mn = bnc ln(n)
for c ∈ (0,−1/ ln(ω)). As above, mn → ∞. In addition,

mn

n
= bn
nh
ch ln(n) → 0 provided h ln(n) = O(1), (B.4.12)

where the convergence holds because nh
bn

→ r0 = ∞, which holds by assumption, iff bn
nh

→ 0.
The condition h ln(n) = O(1) holds by Assumption 2. Now, ωmn/bnO(n) = o(1) by the
argument in (B.4.10) above. Combining this and (B.4.8) gives

EY ∗2
T0 = O(bn). (B.4.13)
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This and Markov’s inequality proves part (c) of the lemma.

B.5 Proof of Lemma 7.3

When bn → ∞, Lemma B.1 and κn (·) → κ0 (·) imply that κ∗
n (·) → κ0 (·) uniformly over

Iτ,ε2 and κ∗
n (·) is Lipschitz with Lipschitz constant less than 2L4 because κn (·) is Lipschitz

with Lipschitz constant L4. In the following proofs, for notational simplicity, we let L4 be
the Lipschitz constant 2L4 for κ∗

n (·) since the factor 2 does not affect the asymptotic results.
Now, we prove the local-to-unity asymptotic results with ρn (·) expressed in terms of κ∗

n (·),
rather than κn (·) .

Proof of Lemma 7.3. We suppress n from Y 0
n,t(s) and Un,t in the proof. Denote E (X| Gi)

by EiX. By the definition of the parameter space Λn, we have {Ut}nt=1 is a martingale
difference sequence.

We adopt the following notational convention. When the lower index of a sum exceeds
the upper index, the sum is defined to equal zero. In particular, ∑T1+⌊nhs⌋

j=T1+⌊nhs⌋+1 κ
∗
n (j/n) = 0.

Then, by the definitions of Y 0
t in (7.5), κ∗

n in (B.2.1), and t(s) in (7.9), we have

(nh)−1/2 Y 0
t(s)

= (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

− 1
bn

T1+⌊nhs⌋∑
j=k+1

κ∗
n

(
j

n

)σn
(
k

n

)
Uk

= (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

− 1
bn

T1+⌊nhs⌋∑
j=T1

κ∗
n

(
j

n

)
−

k∑
j=T1

κ∗
n

(
j

n

)σn
(
k

n

)
Uk

= exp

− 1
bn

T1+⌊nhs⌋∑
j=T1

κ∗
n

(
j

n

)
×

(nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

 1
bn

k∑
j=T1

κ∗
n

(
j

n

)σn
(
k

n

)
Uk


=:A1s × A2s. (B.5.1)

Because κ∗
n (·) is Lipschitz on Iτ,ε2 , we have

max
t∈Inτ,nh/2

|κ∗
n (t/n) − κ∗

n (τ)| ≤ L4 max
t∈Inτ,nh/2

|t/n− τ | = O (h) , (B.5.2)

where the inequality holds for n sufficiently large such that h/2+1/n ≤ ε2. Equation (B.5.2)
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implies that

max
s∈[0,1]

∣∣∣∣∣∣
 1

⌊nhs⌋ + 1

T1+⌊nhs⌋∑
j=T1

κ∗
n

(
j

n

)− κ∗
n (τ)

∣∣∣∣∣∣ ≤ max
j∈[T1,T1+⌊nh⌋]

∣∣∣∣κ∗
n

(
j

n

)
− κ∗

n (τ)
∣∣∣∣ = O (h)

(B.5.3)
because the range of the summation is [T1, T1 + ⌊nhs⌋] ⊂ [T1, T1 + ⌊nh⌋] ⊂ Inτ,nh/2 for
s ∈ [0, 1] by construction. Therefore,

A1s = exp

−⌊nhs⌋ + 1
bn

 1
⌊nhs⌋ + 1

T1+⌊nhs⌋∑
j=T1

κ∗
n

(
j

n

)
= exp

{
−⌊nhs+ 1⌋

nh

nh

bn
(κ∗

n (τ) +O (h))
}

⇒ exp {−sr0κ0 (τ)} , (B.5.4)

where the convergence holds by Lemma B.1, Assumptions 1 and 3, nh/bn → r0 as n → ∞,
and the continuous mapping theorem (CMT).

To derive the limit distribution of

A2s = (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

 1
bn

k∑
j=T1

κ∗
n

(
j

n

)σn
(
k

n

)
Uk, (B.5.5)

we use Theorem 2.1 of Hansen (1992). First, we present a few definitions. For any random
arrays {Dn,k,Wn,k : T1 ≤ k ≤ T2;n ≥ 1}, we transform the arrays into random elements on
[0, 1] by defining

Dn (u) := Dn,T1+⌊nhu⌋ and Wn (u) := Wn,T1+⌊nhu⌋. (B.5.6)

for u ∈ [0, 1]. Define the differences δn,k := Wn,k − Wn,k−1. Then, we define the stochastic
integral ∫ s

0
Dn (u) dWn (u) :=

T1+⌊nhs⌋∑
k=T1

Dn,kδn,k+1 (B.5.7)

for s ∈ [0, 1].
We let

Da
n,k := exp

k − T1 + 1
bn

 1
k − T1 + 1

k∑
j=T1

κ∗
n

(
j

n

)
− κ∗

n (τ)


× exp
{
k − T1 + 1

bn
κ∗
n (τ)

}
σn (τ) , (B.5.8)
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Db
n,k := exp

k − T1 + 1
bn

 1
k − T1 + 1

k∑
j=T1

κ∗
n

(
j

n

)
− κ∗

n (τ)


× exp
{
k − T1 + 1

bn
κ∗
n (τ)

}(
σn

(
k

n

)
− σn (τ)

)
, and (B.5.9)

Wn,k := (nh)−1/2
k−1∑
j=T1

Uj (B.5.10)

for T1 ≤ k ≤ T2. Next, transform these quantities into random elements on [0, 1] by defining

Da
n (u) := exp


(
u+ 1

nh

)(
nh

bn

) 1
1 + nhu

T1+⌊nhu⌋∑
j=T1

[
κ∗
n

(
j

n

)
− κ∗

n (τ)
]

× exp
{(

u+ 1
nh

)(
nh

bn

)
κ∗
n (τ)

}
σn (τ) , (B.5.11)

Db
n (u) := exp


(
u+ 1

nh

)(
nh

bn

) 1
1 + nhu

T1+⌊nhu⌋∑
j=T1

[
κ∗
n

(
j

n

)
− κ∗

n (τ)
]

× exp
{(

u+ 1
nh

)(
nh

bn

)
κ∗
n (τ)

}(
σn

(
T1 + ⌊nhu⌋

n

)
− σn (τ)

)
, and (B.5.12)

Wn (u) := (nh)−1/2
T1+⌊nhu⌋−1∑

j=T1

Uj (B.5.13)

for u ∈ [0, 1].
Then, we have

A2s = (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

 1
bn

k∑
j=T1

κ∗
n

(
j

n

)σn
(
k

n

)
Uk

= (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

k − T1 + 1
bn

 1
k − T1 + 1

k∑
j=T1

κ∗
n

(
j

n

)
− κ∗

n (τ)


× exp
{
k − T1 + 1

bn
κ∗
n (τ)

}
σn (τ)Uk

+ (nh)−1/2
T1+⌊nhs⌋∑
k=T1

exp

k − T1 + 1
bn

 1
k − T1 + 1

k∑
j=T1

κ∗
n

(
j

n

)
− κ∗

n (τ)


× exp
{
k − T1 + 1

bn
κ∗
n (τ)

}(
σn

(
k

n

)
− σn (τ)

)
Uk

=
T1+⌊nhs⌋∑
k=T1

Da
n,k (Wn,k+1 −Wn,k) +

T1+⌊nhs⌋∑
k=T1

Db
n,k (Wn,k+1 −Wn,k)

=
∫ s

0
Da
n (u) dWn (u) +

∫ s

0
Db
n (u) dWn (u)
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=:A2as + A2bs. (B.5.14)

We obtain

max
u∈[0,1]

∣∣∣∣∣∣ 1
1 + nhu

T1+⌊nhu⌋∑
j=T1

[
κn

(
j

n

)
− κn (τ)

]∣∣∣∣∣∣ ≤ O (h) → 0, (B.5.15)

by (B.5.2) with κn (·) in place of κ∗
n (·), [T1, T1 + ⌊nhu⌋] ⊂ [T1, T1 + ⌊nh⌋] ⊂ Inτ,nh/2, and

Assumption 1. In addition, Lemma B.1 and Assumption 3 imply that

sup
s∈Iτ,ε2

|κ∗
n (s) − κ0 (s) | → 0. (B.5.16)

Combining these two results, we have

max
u∈[0,1]

∣∣∣∣∣∣ 1
1 + nhu

T1+⌊nhu⌋∑
j=T1

[
κ∗
n

(
j

n

)
− κ∗

n (τ)
]∣∣∣∣∣∣ ≤ O (h) → 0. (B.5.17)

Then, we have
Da
n (u) ⇒ Da (u) := exp {ur0κ0 (τ)}σ0 (τ) (B.5.18)

by (B.5.16), (B.5.17), and the CMT. We also have

Wn (·) ⇒ B (·) , (B.5.19)

where B (·) is a standard Brownian motion on [0, 1], by Theorem 2.3 of McLeish (1974).
Therefore,

A2as =
∫ s

0
Da
n (u) dWn (u) ⇒

∫ s

0
exp {ur0κ0 (τ)}σ0 (τ) dB (u) (B.5.20)

by (B.5.18), (B.5.19), the definition of the parameter space Λn, and Theorem 2.1 of Hansen
(1992), with Da

n (·) in (B.5.11) and Da (·) in (B.5.18) in the roles of Un (·) and U (·), re-
spectively, and Wn (·) in (B.5.13) and B (·) in the roles of Yn (·) and Y (·), respectively, in
Theorem 2.1 of Hansen (1992).

For A2bs, because σ2
n (·) is a bounded Lipschitz function on [0, 1] and Iτ,h/2 ⊂ [0, 1], we

have
max

t∈Inτ,nh/2
|σn (t/n) − σn (τ)| ≤ Cσ max

t∈Inτ,nh/2
|t/n− τ | = O (h) , (B.5.21)
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where Cσ := L3/ (2C3,L). Equation (B.5.21) implies that

max
u∈[0,1]

∣∣∣∣∣σn
(
T1 + ⌊nhu⌋

n

)
− σn (τ)

∣∣∣∣∣ ≤ O (h) → 0 (B.5.22)

by [T1, T1 + ⌊nhu⌋] ⊂ [T1, T1 + ⌊nh⌋] ⊂ Inτ,nh/2 for u ∈ [0, 1], and Assumption 1. Then,

Db
n,τ (u) ⇒ 0 (B.5.23)

by (B.5.17), (B.5.22), Assumption 3, nh/bn → r0 ∈ [0,∞) as n → ∞, and the CMT.
Therefore,

A2bs =
∫ s

0
Db
n (u) dWn (u) ⇒ 0 (B.5.24)

by the convergence result (B.5.23) and Theorem 2.1 of Hansen (1992), with Db
n (·) in (B.5.12)

and the zero function on [0, 1] in the roles of Un (·) and U (·), respectively, and Wn (·) in
(B.5.13) and B (·) in the roles of Yn (·) and Y (·), respectively, in Theorem 2.1 of Hansen
(1992).

Combining (B.5.20) and (B.5.24), we obtain

A2s ⇒
∫ s

0
exp (ur0κ0 (τ))σ0 (τ) dB (u) , (B.5.25)

where B (u) is standard Brownian motion.
Therefore, by (B.5.1), (B.5.4), and (B.5.25), we have

(nh)−1/2 Y 0
n,t(s)/σ0 (τ) = A1s + A2s ⇒

∫ s

0
exp {− (s− u) r0κ0 (τ)} dB (u) (B.5.26)

using the CMT and the assumption that nh/bn → r0 as n → ∞.
The subsequence version of Lemma 7.3, see Remark 7.2, which has {pn}n≥1 in place of

{n}n≥1, is proved by replacing n by pn and h = hn by hpn throughout the proof above.

B.6 Proof of Lemma 7.4

Proof of Lemma 7.4. By recursive substitution, for a sequence of integers {mn}n≥1 such
that mn → ∞, we write

(2ψ/nh)1/2Y ∗
T0/σ0 (τ) = D1n +D2n, where
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D1n := (2ψ/nh)1/2
mn−1∑
j=0

cT0,jσT0−jUT0−j/σ0 (τ) and

D2n := (2ψ/nh)1/2cT0,mnY
∗
T0−mn/σ0 (τ) . (B.6.1)

We show that D1n →d Z1 ∼ N(0, 1). We choose mn such that D2n = op(1). This requires
that mn is large enough that cT0,mn is sufficiently small, but small enough that ρt is close to
ρnτ for all t ∈ [T0 − 2mn, T0].

Define
mn = bn/h

1/5. (B.6.2)

For this choice of mn, we have

(i) mn
n

=
(
bn
nh

)
h4/5 = o(1),

(ii) mnh
bn

= h4/5 = o(h1/2), and
(iii) m2

n

nbn
=
(
bn
nh

)
h3/5 = o(h1/2),

(B.6.3)

where (i) and (iii) use bn
nh

→ 1
r0

∈ (0,∞) and (i)–(iii) use h = o(1) by Assumption 1. Given
(B.6.3), Lemma B.2 applies and the error on the rhs of its part (c) is O(mn(h + mn

n
)/bn) =

o(h1/2). Thus,
cT0,mn = ρmnnτ + o(h1/2) and cT0−mn,mn = ρmnnτ + o(h1/2). (B.6.4)

In addition, we have

ρmnnτ = (1 − κn(τ)/bn)mn = exp{−κ∗
n(τ)mn/bn} = exp{−κ∗

n(τ)h−1/5}

= exp{−κ0(τ)}h−1/5κ∗
n(τ)/κ0(τ) = (ωγnγ5/2

n )γ−5/2
n = o(h1/2), where

ω : = exp{−κ0(τ)}, γn := h−1/5κ∗
n(τ)/κ0(τ), (B.6.5)

the second equality uses the definition of κ∗
n(·) in (B.2.1), the third equality uses (B.6.2), the

fifth equality uses the definitions of ω and γn, and the last equality on the second line holds
because γn → ∞ (using κ∗

n(τ)/κ0(τ) → 1 by Lemma B.1), ω ∈ (0, 1) (since κ(τ) ≥ ε4 > 0 by
part (ii) of Λn), ωxx5/2 = o(1) as x = γn → ∞ (since ln(ωxx5/2) = x lnω + (5/2) ln x → −∞
as x → ∞), and γ−5/2

n = h1/2(κ∗
n(τ)/κ0(τ))−5/2 = O(h1/2).

Equations (B.6.4) and (B.6.5) combine to give

cT0,mn = o(h1/2) and cT0−mn,mn = o(h1/2). (B.6.6)

Next, by recursive substitution, we write the multiplicand Y ∗
T0−mn in D2n as the sum of
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two quantities, as in (B.6.1), as follows:

Y ∗
T0−mn :=

T0−mn−1∑
j=0

cT0−mn,jσT0−mn−jUT0−mn−j + cT0−mn,T0−mnY
∗

0 and

D2n = D21n +D22n, where

D21n := (2ψ/nh)1/2cT0,mn

T0−mn−1∑
j=0

cT0−mn,jσT0−mn−jUT0−mn−j/σ0 (τ) and

D22n := (2ψ/nh)1/2cT0,mncT0−mn,T0−mnY
∗

0 /σ0 (τ) . (B.6.7)

By part (v) of Λn, EFn(Y ∗
0 )2 ≤ C5n. Hence, by Markov’s inequality, Y ∗

0 = Op(n1/2) and

D22n = h−1/2cT0,mncT0−mn,T0−mnOp(1)/σ0 (τ) = op(h1/2) = op(1), (B.6.8)

where the second last equality holds by (B.6.6) and σ0 (τ) > 0 (because σ0 (τ) is bounded
below by C3,L by part (i) of Λn and C3,L > 0 by assumption).

To show that D2n = op(1), it remains to show that D21n = op(1). By Markov’s inequality,
it suffices to show that EFnD2

21n → 0. Since {Ut : t = 1, ..., n} is a stationary martingale
difference sequence by part (iv) of Λn, its elements are uncorrelated. Thus, we have

ED2
21n = (2ψ/nh)c2

T0,mn

T0−mn−1∑
j=0

c2
T0−mn,jσ

2
T0−mn−jEU

2
T0−mn−j/σ0 (τ)

= (2ψ/nh)o(h)
T0−mn−1∑

j=0
σ2
T0−mn−j/σ0 (τ) = o(1), (B.6.9)

where the second equality holds by the first result in (B.6.6), c2
T0−mn,j ≤ 1 (since |ρt| ≤ 1 for

all t ≤ n by part (i) of Λn), and EU2
t = 1 for all t ≤ n (by part (iv) of Λn) and the third

equality holds because σ2
T0−mn−j is bounded by C3,U < ∞ (by part (i) of Λn), σ0 (τ) > 0 (as

noted above), and T0 −mn ≤ n. This completes the proof that D21n = op(1) and D2n = op(1).
Next, we consider D1n. By change of variables with i = T0 − j, we have

D1n = (2ψ/nh)1/2
T0∑

i=T0−mn+1
cT0,T0−iσiUi/σ0 (τ) , (B.6.10)

where {Ut : t = 0, ..., n} is a stationary martingale difference sequence under Fn.We apply the
CLT in Hall and Heyde (1980) with Xni = (2ψ/nh)1/2cT0,T0−iσiUi/σ0 (τ) , with the number of
summands being mn−1, rather than n, and with the σ-fields Fni being the σ-fields Gi in part
(iv) of Λn. We need to verify a Lindeberg condition and a conditional variance condition. To
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verify the former, for any ε, δ > 0, we have

P

 T0∑
i=T0−mn+1

E(X2
n,i1(|Xn,i| > ε)|Fn,i−1) > δ


≤ δ−1

T0∑
i=T0−mn+1

EX2
n,i1(X2

n,i > ε2)

= δ−1(2ψ/nh)
T0∑

i=T0−mn+1
c2
T0,T0−i(σ2

i /σ
2
0 (τ))EU2

i 1((2ψ/nh)c2
T0,T0−i(σ2

i /σ
2
0 (τ))U2

i > ε2)

≤ δ−1

(2ψ/nh)
T0∑

i=T0−mn+1
c2
T0,T0−i

 (C3,U/σ
2
0 (τ))EU2

1 1(2ψ(C3,U/σ
2
0 (τ))U2

1 > nhε2)

= O(1)EU2
1 1(2ψ(C3,U/σ

2
0 (τ))U2

1 > nhε2)

= o(1), (B.6.11)

where the first inequality holds by Markov’s inequality, the first equality holds by the defini-
tion of Xni, and the second inequality holds because σ2

i ≤ C3,U by part (i) of Λn, c
2
T0,T0−i ≤ 1

(since |ρt| ≤ 1), and {Ui} are identically distributed by part (iv) of Λn. The second last
equality in (B.6.11) holds because

(2ψ/nh)
T0∑

i=T0−mn+1
c2
T0,T0−i = 1 + o(1), (B.6.12)

as shown below. The last equality in (B.6.11) holds because, for ξ := ε2/(2ψC3,U/σ
2
0 (τ)) > 0,

EU2
1 1(U2

1 > nhξ) = EU2
1 1([U2

1/(nhξ)] > 1) ≤ EU4
1 (nhξ)−1 → 0 (B.6.13)

using EU4
1 ≤ M < ∞ by part (iv) of Λn and nh → ∞ by Assumption 1.

To show (B.6.12), we have

(nh)−1
T0∑

i=T0−mn+1
(c2
T0,T0−i − ρ2(T0−i)

nτ ) = (nh)−1mno(h1/2) = o(1), (B.6.14)

where the first equality uses |c2
T0,T0−i − ρ2(T0−i)

nτ | = |cT0,T0−i − ρT0−i
nτ | · |cT0,T0−i + ρT0−i

nτ | ≤
2|cT0,T0−i − ρT0−i

nτ | (since |ρT0−i
nτ |, |cT0,T0−i| ≤ 1) and Lemma B.2(c) with an error O(mn(h +

mn
n

)/bn) that is shown above to be o(h1/2) and the last equality holds because mn = bn/h
1/5

by (B.6.2), and so, (nh)−1mnh
1/2 = bn/(nh7/10) = (bn/nh)h3/10 = (1/r0 + o(1))h3/10 = o(1)

since r0 > 0.
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Next, we show that

(2ψ/nh)
T0∑

i=T0−mn+1
ρ2(T0−i)
nτ = 1 + o(1). (B.6.15)

This holds because (i) ∑T0
i=T0−mn+1 ρ

2(T0−i)
nτ = ∑mn−1

j=0 ρ2j
nτ = (1 − ρ2(mn+1)

nτ )/(1 − ρ2
nτ ) using

a change of variables, (ii) ρ2(mn+1)
nτ = exp{−2κ∗

n(τ)(mn + 1)/bn} → 0, for κ∗
n(·) defined in

(B.2.1), using mn/bn = 1/h1/5 → ∞ and κ∗
n(τ) → κ0(τ) > 0 (by Lemma B.1, Assumption 3,

and part (ii) of Λn, which guarantees that κ0(τ) > 0), and

(iii) nh(1 − ρ2
nτ ) = nh(1 − ρnτ )(1 + ρnτ ) = (1 + ρnτ )nhκn(τ)/bn → 2κ0(τ)r0 = 2ψ. (B.6.16)

Equations (B.6.14) and (B.6.15) combine to establish (B.6.12). This completes the verifica-
tion of the Lindeberg condition in (B.6.11).

Now, we prove the conditional variance condition. We have

T0∑
i=T0−mn+1

E(X2
n,i|Fn,i−1) − 1 = (2ψ/nh)

T0∑
i=T0−mn+1

c2
T0,T0−iσ

2
i /σ

2
0 (τ) − 1

= (2ψ/nh)
T0∑

i=T0−mn+1
ρ2(T0−i)
nτ σ2

i /σ
2
0 (τ) − 1 + o(1)

= (2ψ/nh)
T0∑

i=T0−mn+1
ρ2(T0−i)
nτ − 1 + o(1)

= o(1), (B.6.17)

where the first equality uses E(U2
i |Gi−1) = 1 a.s. by part (iv) of Λn and the second equality

holds by the same argument as used to show (B.6.14) since σ2
i /σ

2
0 (τ) is uniformly bounded.

The third equality in (B.6.17) holds because

(2ψ/nh)
T0∑

i=T0−mn+1
ρ2(T0−i)
nτ |σ2

i /σ
2
0 (τ) − 1|

≤ (2ψ/nh)
T0∑

i=T0−mn+1
ρ2(T0−i)
nτ · max

j∈[T0−mn,T0]
|σ2
j − σ2

0 (τ) |/σ2
0 (τ)

= (1 + o(1)) max
j∈[T0−mn,T0]

|σ2
j − σ2

0 (τ) |/σ2
0 (τ)

= o(1), (B.6.18)

where the second last equality in (B.6.18) holds by (B.6.15) and the last equality in (B.6.18)
holds by Lemma B.2(b), O(h+ mn

n
) = o(1) (since h → 0 and mn/n → 0), and σ2

nτ = σ2
n(τ) →
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σ2
0 (τ) (by Assumption 3). Hence, the conditional variance condition in (B.6.17) holds. By

the CLT of Hall and Heyde (1980), we have

D1n →d Z1 ∼ N(0, 1), (B.6.19)

as desired.
By (B.5.19), Wn(·) ⇒ B(·) and by (B.6.19), D1n →d Z1. These results can be shown

to hold jointly because Wn(·) and D1n depend on the same random variables {Ut}t≤n. By
(B.5.13), Wn(u) is a linear function of {Ut : t ≥ T1} for all u ∈ [0, 1]. By (B.6.10), D1n is
a linear function of {Ut : t < T1}. Since {Ut}t≤n is a martingale difference sequence, these
properties imply that Cov(Wn(u), D1n) = 0 for all u ∈ [0, 1]. In consequence, Wn(u) and D1n

are asymptotically independent, i.e., B(·) and Z1 are independent.

B.7 Proof of Lemma 7.5

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1. If this

is not assumed, numerous quantities in the proof needed to be rescaled by 1/σ0 (τ) .

Proof of Lemma 7.5. First, we prove part (a). We have

(nh)−1/2Yt(s) = (nh)−1/2(µt(s) + Y 0
t(s) + ct(s),t(s)−T0Y

∗
T0)

= o(1) + (nh)−1/2Y 0
t(s) + (2ψ)−1/2ct(s),t(s)−T0(2ψ/nh)1/2Y ∗

T0

⇒ Iψ(s) + (2ψ)−1/2 exp{−ψs}Z1 =: I∗
ψ(s), (B.7.1)

where the first equality holds by (2.1) and (7.4), the second equality holds by part (i) of
Λn and Assumption 1, the convergence holds by Lemma 7.3, Lemma 7.4, which uses the
assumption that r0 ∈ (0,∞), and ct(s),t(s)−T0 ⇒ exp{−ψs}, which we now establish.

By Lemma 7.1(c),

ct(s),t(s)−T0 = ρt(s)−T0
nτ +O(nh2/bn) = exp{−κ∗

n(τ)(t(s) − T0)/bn} + o(1) (B.7.2)

= exp{−κ∗
n(τ)(⌊nhs⌋ + 1)/bn} + o(1) → exp{−κ0(τ)r0s} = exp{−ψs},

where the O(nh2/bn) term holds uniformly over s ∈ [0, 1], κ∗
n(τ) is defined in (B.2.1), the

second equality uses nh/bn → r0 < ∞ and h → 0 by Assumption 1, the third equality
holds by the definition of t(s) in (7.9) and T0 = T1 − 1, the convergence uses Lemma B.1,
Assumption 3, and nh/bn → r0, and the final equality uses the definition of ψ = r0κ0(τ).
This completes the proof of part (a).
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The proofs of parts (b) and (c) use the technique developed in Phillips (1987). For
example, for part (b), we have

(nh)−3/2
T2∑
t=T1

Yt−1 =
∫ 1

0

[
(nh)−1/2 Yt(s)

]
ds →d

∫ 1

0
I∗
ψ (s) ds, (B.7.3)

where the convergence holds by the CMT and part (a) and ψ = r0κ0 (τ).
For part (c), we have

(nh)−2
T2∑
t=T1

Y 2
t−1 =

∫ 1

0

[
(nh)−1/2 Yt(s)

]2
ds →d

∫ 1

0
I∗2
ψ (s) ds, (B.7.4)

where the convergence holds by the CMT and part (a).
To prove part (d), define Wn (s) := (nh)−1/2∑T1+⌊nhs⌋−1

t=T1 Ut for s ∈ [0, 1] and define the
stochastic integral ∫ 1

0

[
σt(s)

]
dWn (s) := (nh)−1/2

T2∑
t=T1

Utσt. (B.7.5)

By Assumption 3, Lemma 7.1(b), and the triangle inequality, we have

max
s∈[0,1]

∣∣∣σ2
t(s) − 1

∣∣∣ →p 0, (B.7.6)

which implies
max
s∈[0,1]

∣∣∣σt(s) − 1
∣∣∣ →p 0 (B.7.7)

since σt is nonnegative. By the functional central limit theorem for martingale difference
sequences, we have

Wn (s) ⇒ B (s) . (B.7.8)

Therefore, we use Theorem 2.1 of Hansen (1992) and obtain

(nh)−1/2
T2∑
t=T1

Utσt =
∫ 1

0

[
σt(s)

]
dWn (s) →d

∫ 1

0
dB (s) . (B.7.9)

To prove part (e), we define the stochastic integral

∫ 1

0

[
(nh)−1/2 Yt(s)σt(s)

]
dWn (s) := (nh)−1

T2∑
t=T1

Yt−1Utσt. (B.7.10)

By part (a), we have
(nh)−1/2 Yt(s) ⇒ I∗

ψ (s) . (B.7.11)
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We also know that maxs∈[0,1]

∣∣∣σt(s) − 1
∣∣∣ →p 0 by (B.7.7). Thus, by the CMT we have

(nh)−1/2 Yt(s)σt(s) = (nh)−1/2 Yt(s) + (nh)−1/2 Yt(s)
(
σt(s) − 1

)
⇒ I∗

ψ (s) . (B.7.12)

Equations (B.7.8) and (B.7.12) hold jointly due to the common underlying martingale
difference process {Ut}t=T1,...,T2

. Therefore, we have

(nh)−1
T2∑
t=T1

Yt−1Utσt =
∫ 1

0

[
(nh)−1/2 Yt(s)σt(s)

]
dWn (s) →d

∫ 1

0
I∗
ψ (s) dB (s) , (B.7.13)

where the convergence holds by Theorem 2.1 of Hansen (1992), with (nh)−1/2 Yt(·)σt(·) and
I∗
ψ (·) in the roles of Un (·) and U (·), respectively, and Wn (·) and B (·) in the roles of Yn (·)

and Y (·), respectively, in Theorem 2.1 of Hansen (1992).
The proof of part (f) is analogous to that of part (c), and thus, is omitted.
Part (g) holds by the same argument as given above for parts (a)–(c) and (e), but with

Yt(s) = µt(s) + Y 0
t(s) + ct(s),t(s)−T0Y

∗
T0 replaced by µt(s) + Y 0

t(s) in part (a), which simplifies the
proof because the initial condition Y ∗

T0 does not appear.
The subsequence version of Lemma 7.5, see Remark 7.2, which has {pn}n≥1 in place of

{n}n≥1, is proved by replacing n by pn and h = hn by hpn throughout the proof above.

B.8 Proof of Theorem 7.2

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1.

Proof of Theorem 7.2. First, we prove Theorem 7.2 for the case where r0 ∈ (0,∞). To
start, we show that the denominator of (7.10) divided by σ0 (τ) converges in distribution to∫ 1

0 I
∗2
D,ψ (s) ds, where ψ = r0κ0 (τ) .

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2

= (nh)−2
T2∑
t=T1

(Yt−1)2 − (nh)−1
(
Y nh,−1

)2

= (nh)−2
T2∑
t=T1

(Yt−1)2 −

(nh)−3/2
T2∑
t=T1

Yt−1

2

→d

∫ 1

0
I∗2
ψ (s) ds−

(∫ 1

0
I∗
ψ (s) ds

)2
=
∫ 1

0
I∗2
D,ψ (s) ds, (B.8.1)

where the convergence holds by Lemma 7.5(b) and (c) and the CMT.
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Next, we show the numerator of (7.10) converges in distribution to
∫ 1

0 I
∗
D,ψ (s) dB (s). For

any t = T1, ..., T2, we have

Yt − ρ0,nYt−1 = (µt − ρ0,nµt−1) +
(
ρtY

∗
t−1 + σtUt − ρ0,nY

∗
t−1

)
= σtUt + (µt − ρ0,nµt−1) + (ρt − ρ0,n)Y 0

t−1 + (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0 , (B.8.2)

where the first equality holds by (2.1) and the last equality holds by (7.5). Substituting
(B.8.2) into the numerator of (7.10) gives

(nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1)

= (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
σtUt

+ (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(µt − ρ0,nµt−1)

+ (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(ρt − ρ0,n)Y 0

t−1

+ (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

=: A1 + A2 + A3 + A4. (B.8.3)

For A1, we have

A1 = (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
σtUt

= (nh)−1
T2∑
t=T1

Yt−1σtUt −
[
(nh)−1/2 Y nh,−1

]
(nh)−1/2

T2∑
t=T1

σtUt

→d

∫ 1

0
I∗
ψ (s) dB (s) −

∫ 1

0
I∗
ψ (s) ds

∫ 1

0
dB (s) =

∫ 1

0
I∗
D,ψ (s) dB (s) , (B.8.4)

where the convergence holds by Lemma 7.5(b), (d), and (e).
For A2, we have

|A2|2 =

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(µt − ρ0,nµt−1)

∣∣∣∣∣∣
2

≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
  T2∑

t=T1

(µt − ρ0,nµt−1)2


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≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2


×

2
T2∑
t=T1

(µt − µt−1)2 + 2
T2∑
t=T1

(µt−1 − ρ0,nµt−1)2


≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2


× 2
[
nh max

t∈[T1,T2]
(µt − µt−1)2 + nh (1 − ρ0,n)2 max

t∈[T1,T2]
µ2
t−1

]
= Op (1)

[
nhO

(
n−2

)
+ nhO

(
(nh)−2

)]
= op (1) , (B.8.5)

where the first inequality holds by the Cauchy-Schwarz (CS) inequality, the second inequality
uses the fact that (a+ b)2 ≤ 2 (a2 + b2), and the second last equality holds by (B.8.1),
maxt∈[T1,T2] |µt − µt−1| ≤ L2/n by the Lipschitz condition on µ (·), |1 − ρ0,n| = O

(
(nh)−1

)
,

and maxt∈[T1,T2] µ
2
t is O (1).

For A3, we have

|A3|2 =

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(ρt − ρ0,n)Y 0

t−1

∣∣∣∣∣∣
2

≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
 T2∑

t=T1

(ρt − ρ0,n)2
(
Y 0
t−1

)2


≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
 [(nh)2 max

t∈[T1,T2]
(ρt − ρ0,n)2

]

×

(nh)−2
T2∑
t=T1

(
Y 0
t−1

)2


= Op (1)O
(
(nh)2 n−2

)
Op (1) = op (1) , (B.8.6)

where the first inequality holds by the CS inequality and the second last equality
holds by (B.8.1), Lemma 7.1(a), and Lemma 7.5(f). Note that Lemma 7.1(a) implies
maxt∈[T1,T2] (ρt − ρ0,n)2 = O (n−2) because under H0 and when nh/bn = O (1),

max
t∈[T1,T2]

(ρt − ρ0,n)2 =
(

max
t∈[T1,T2]

|ρt − ρnτ |
)2

= (O (h/bn) (bn/nh)nh/bn)2 = O
(
n−2

)
.

(B.8.7)
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For A4, we have

|A4|2 =

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

∣∣∣∣∣∣
2

≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
 T2∑

t=T1

(ρt − ρ0,n)2 c2
t−1,t−1−T0Y

∗2
T0


≤

(nh)−2
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
 [nh max

t∈[T1,T2]
(ρt − ρ0,n)2

]
Y ∗2
T0

= Op (1)O
(
nh · n−2

)
Op (n) = op (1) , (B.8.8)

where the first inequality holds by the CS inequality, the second inequality uses
maxt∈[T0,T2] c

2
t,t−T0 ≤ 1, and the second last equality holds by (B.4.3), (B.8.1), and (B.8.7).

Therefore, we obtain

(nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1) = A1 + op (1) →d

∫ 1

0
I∗
D,ψ (s) dB (s) (B.8.9)

from (B.8.4), (B.8.5), (B.8.6), and (B.8.8).
Combining (B.8.1) and (B.8.9), we have

nh (ρ̂nτ − ρ0,n) →d

(∫ 1

0
I∗2
D,ψ (s) ds

)−1 ∫ 1

0
I∗
D,ψ (s) dB (s) (B.8.10)

by the CMT.

Next, for the t-statistic Tn (ρ0,n), we have

Tn (ρ0,n) = (nh)1/2 (ρ̂nτ − ρ0,n)
ŝnτ

= nh (ρ̂nτ − ρ)
(nhŝ2

nτ )
1/2 . (B.8.11)

Thus, by (3.4), (3.5), (B.8.1), (B.8.10), and the CMT, we only need to show

σ̂2
nτ := (nh)−1

T2∑
t=T1

[
Yt − Y nh − ρ̂nτ

(
Yt−1 − Y nh,−1

)]2
→p 1. (B.8.12)

First, we replace ρ̂nτ with ρ0,n in (B.8.12):

σ̂2
nτ = (nh)−1

T2∑
t=T1

[
Yt − Y nh − ρ̂nτ

(
Yt−1 − Y nh,−1

)]2
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= (nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)]2

+ (nh)−1
T2∑
t=T1

[
(ρ0,n − ρ̂nτ )

(
Yt−1 − Y nh,−1

)]2

+ 2 (nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)] [
(ρ0,n − ρ̂nτ )

(
Yt−1 − Y nh,−1

)]
=: A5 + A6 + A7. (B.8.13)

We show that A5 →p 1 and A6 →p 0, which together imply A7 →p 0 by the CS inequality.
For A5, we have

(nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)]2

= (nh)−1
T2∑
t=T1

(Yt − ρ0,nYt−1)2 +
(
Y nh − ρ0,nY nh,−1

)2

+ 2 (nh)−1
T2∑
t=T1

(
Y nh − ρ0,nY nh,−1

)
(Yt − ρ0,nYt−1)

=: A51 + A52 + A53. (B.8.14)

First, we show that A51 converges in probability to 1. By (B.8.2), we have

A51 = (nh)−1
T2∑
t=T1

 σtUt + (µt − ρ0,nµt−1) + (ρt − ρ0,n)Y 0
t−1

+ (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0

2

= (nh)−1
T2∑
t=T1

(σtUt)2

+ (nh)−1
T2∑
t=T1

[
(µt − ρ0,nµt−1) + (ρt − ρ0,n)Y 0

t−1 + (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0

]2

+ 2 (nh)−1
T2∑
t=T1

σtUt
[
(µt − ρ0,nµt−1) + (ρt − ρ0,n)Y 0

t−1 + (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0

]
=: A511 + A512 + A513. (B.8.15)

For A511, we have

(nh)−1
T2∑
t=T1

(σtUt)2 = (nh)−1
T2∑
t=T1

U2
t + (nh)−1

T2∑
t=T1

(
σ2
t − 1

)
U2
t . (B.8.16)
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By the weak law of large numbers, (nh)−1∑T2
t=T1 U

2
t →p 1 as n → ∞. We also have

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

(
σ2
t − 1

)
U2
t

∣∣∣∣∣∣ ≤ max
t∈[T1,T2]

∣∣∣σ2
t − 1

∣∣∣ (nh)−1
T2∑
t=T1

U2
t = op (1) , (B.8.17)

where the equality holds by (B.7.7). Therefore,

A511 = (nh)−1
T2∑
t=T1

(σtUt)2 →p 1. (B.8.18)

Next, we have ∑T2
t=T1 (µt − ρ0,nµt−1)2 = o (1), ∑T2

t=T1 (ρt − ρ0,n)2
(
Y 0
t−1

)2
= op (1), and∑T2

t=T1 (ρt − ρ0,n)2 c2
t−1,t−1−T0Y

∗2
T0 = op (1), by (B.8.5), (B.8.6), and (B.8.8), respectively. These

results and the CS inequality yield A512 →p 0. Finally, using the CS inequality again gives
A513 →p 0. Therefore, by the CMT we have A51 →p 1.

For A52, by (B.8.2) we have

(A52)1/2 =

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

(Yt − ρ0,nYt−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

 σtUt + (µt − ρ0,nµt−1) + (ρt − ρ0,n)Y 0
t−1

+ (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0

∣∣∣∣∣∣ →p 0, (B.8.19)

where the convergence holds by Lemma 7.5(d), the results stated after (B.8.18), and the CS
inequality.

The convergence of A53 →p 0 follows from A51 →p 1, A52 →p 0, and the CS inequality.
Combining the results gives A5 →p 1.

For A6, we have

A6 = (nh)−1
T2∑
t=T1

[
(ρ0,n − ρ̂nτ )

(
Yt−1 − Y nh,−1

)]2

= (ρ0,n − ρ̂nτ )2 × (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2

= Op

(
(nh)−2

)
×Op (nh) = op (1) , (B.8.20)

where the third equality holds by (B.8.1) and (B.8.10).
In conclusion, we have proved (B.8.12), which leads to

Tn (ρ0,n) →d

(∫ 1

0
I∗2
D,ψ (s) ds

)−1/2 ∫ 1

0
I∗
D,ψ (s) dB (s) (B.8.21)
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for the case where r0 ∈ (0,∞).
Now, we prove the results of Theorem 7.2 for the case where r0 = 0. The idea is to use

the same proof as given above for r0 > 0, except with Yt−1 (= µt−1 + Y 0
t−1 + ct−1,t−1−T0Y

∗
T0)

split into the two pieces µt−1 + Y 0
t−1 and ct−1,t−1−T0Y

∗
T0 . To deal with the first component

µt−1 + Y 0
t−1, we use the argument given above for r0 > 0 using the results of Lemma 7.5(g),

which holds even when r0 = 0. Then, we show that the second component ct−1,t−1−T0Y
∗
T0

has a negligible asymptotic effect because ct−1,t−1−T0 is quite close to the constant 1 since
r0 = 0. The reason it has a negligible asymptotic effect is that the LS regression in-
cludes a constant term, and hence, ct−1,t−1−T0Y

∗
T0 only enters the LS estimator ρ̂nτ through

(ct−1,t−1−T0 − (nh)−1∑T2
s=T1 cs−1,s−1−T0)Y ∗

T0 , which is close to (1 − 1)Y ∗
T0 . Combining this with

Lemma 7.2(b), we show that its impact is asymptotically negligible.
We have

max
t∈[T1,T2]

|1 − ct−1,t−1−T0| ≤ max
t∈[T1,T2]

|1 − ρt−1−T0
nτ | +O(nh/bn)

= 1 − ρnhnτ +O(nh/bn)

= 1 − exp{−κ∗
n(τ)nh/bn} +O(nh/bn)

= 1 − (1 − κ∗
n(τ)(nh/bn) exp{ζn}) +O(nh/bn)

= O(nh/bn), (B.8.22)

where the inequality holds by Lemma 7.1(c) and O(nh2/bn) = O(nh/bn), the first equality
uses T2 − 1 − T0 = 2⌊nh/2⌋, which we denote by nh for simplicity, the second equality holds
by the definition of κ∗

n(τ) given in (B.2.1), the third equality holds by a mean value expansion
with ζn lying between 0 and −κ∗

n(τ)nh/bn, and hence, |ζn| ≤ κ∗
n(τ)nh/bn = O(nh/bn) = o(1)

using κ∗
n(τ) = O(1) (by κn(τ) ≤ C4 < ∞ by part (ii) of Λn and Lemma B.1) and nh/bn →

r0 = 0, and the last equality holds by κ∗
n(τ) = O(1) and ζn → 0.

Equation (B.8.22) yields

max
t∈[T1,T2]

|ct−1,t−1−T0 − cnh| = O(nh/bn), where cnh := (nh)−1
T2∑
s=T1

cs−1,s−1−T0 . (B.8.23)

Now, consider the denominator of the normalized LS estimator given in (7.10) and (B.8.1).
We have

(nh)−2
T2∑
t=T1

(Yt−1 − Y nh,−1)2

= (nh)−2
T2∑
t=T1

(
µt−1 + Y 0

t−1 − (µnh,−1 + Y
0
nh,−1) + (ct−1,t−1−T0 − cnh)Y ∗

T0

)2
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= (nh)−2
T2∑
t=T1

(
µt−1 + Y 0

t−1 − (µnh,−1 + Y
0
nh,−1)

)2
+ (nh)−1 max

t∈[T1,T2]
(ct−1,t−1−T0 − cnh)2 Y ∗2

T0

+2Op(1)(nh)−1/2 max
t∈[T1,T2]

|ct−1,t−1−T0 − cnh| · |Y ∗
T0|

= (nh)−2
T2∑
t=T1

(
µt−1 + Y 0

t−1 − (µnh,−1 + Y
0
nh,−1)

)2

+(nh)−1O((nh/bn)2)op
(
b2
n/nh

)
+Op(1)(nh)−1/2O(nh/bn)op

(
bn/(nh)1/2

)
→d

∫ 1

0
I∗2
D,ψ(s)ds, (B.8.24)

where µnh,−1 = (nh)−1∑T2
t=T1 µt−1, Y

0
nh,−1 = (nh)−1∑T2

t=T1 Y
0
t−1, the first equality uses (2.1)

and (7.5), the second equality uses (nh)−3/2∑T2
t=T1

∣∣∣µt−1 + Y 0
t−1 − (µnh,−1 + Y

0
nh,−1)

∣∣∣ = Op(1)
by Lemma 7.5(g)(b) (which refers to Lemma 7.5(b) adjusted according to Lemma 7.5(g), i.e.,
with Yt−1 replaced by µt−1 +Y 0

t−1) and with absolute values added to µt−1 +Y 0
t−1 (which does

not affect the argument), the third equality holds using (B.8.23) and Lemma 7.2(b), and the
convergence holds because (nh)−1O((nh/bn)2)op (b2

n/nh) = op(1), Op(1)(nh)−1/2O(nh/bn) ×
op
(
bn/(nh)1/2

)
= op(1), and the first summand on the lhs converges in distribution to∫ 1

0 I
∗2
D,ψ(s)ds by the same argument as in (B.8.1) but with µt−1 + Y 0

t−1 in place of Yt−1 and
using Lemma 7.5(g), which uses µt−1 + Y 0

t−1 and applies when r0 = 0.
Next, for the numerator of the normalized LS estimator ρ̂nτ given in (7.10) and (B.8.3),

we decompose Yt−1 − Y nh,−1 into µt−1 + Y 0
t−1 − (µnh,−1 + Y

0
nh,−1) and (ct−1,t−1−T0 − cnh)Y ∗

T0

in each of the summands A1, ..., A4 in (B.8.3). Thus, we write

A1 = (nh)−1
T2∑
t=T1

(Yt−1 − Y nh,−1)σtUt = A11 + A12, where

A11 := (nh)−1
T2∑
t=T1

(µt−1 + Y 0
t−1)σtUt − (nh)−1/2(µnh,−1 + Y

0
nh,−1))(nh)−1/2

T2∑
t=T1

σtUt and

A12 := (nh)−1
T2∑
t=T1

(ct−1,t−1−T0 − cnh)σtUtY ∗
T0 . (B.8.25)

We have

A11 →d

∫ 1

0
I∗
ψ(s)dB(s) −

∫ 1

0
I∗
ψ(s)ds

∫ 1

0
dB(s) =

∫ 1

0
I∗
D,ψ(s)dB(s), (B.8.26)

where the convergence holds by Lemma 7.5(g)(b) (which refers to Lemma 7.5(b) adjusted
according to Lemma 7.5(g)), Lemma 7.5(g)(e), and Lemma 7.5(d).
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For A12, we have

V ar

(nh)−1
T2∑
t=T1

(ct−1,t−1−T0 − cnh)σtUt

 = (nh)−2
T2∑
t=T1

(ct−1,t−1−T0 − cnh)2σ2
t

= O((nh)−1) max
t∈[T1,T2]

(ct−1,t−1−T0 − cnh)2 = O((nh)−1)O((nh/bn)2) = O(nh/b2
n),

(B.8.27)

where the third equality uses (B.8.23). Hence,

A12 = Op

(
(nh)1/2

bn

)
Y ∗
T0 = Op

(
(nh)1/2

bn

bn
nh1/2

)
= Op

( 1
n1/2

)
= op(1), (B.8.28)

where the second equality uses Lemma 7.2(b). Combining (B.8.25)–(B.8.28) gives: A1 →d∫ 1
0 I

∗
D,ψ(s)dB(s) in the r0 = 0 case, just as in the r0 > 0 case considered in (B.8.4).
When r0 = 0, we have A2 = op(1) and A3 = op(1) (where A2 and A3 are defined in (B.8.3))

by the same arguments as in (B.8.5) and (B.8.6) using (nh)−2∑T2
t=T1(Yt−1 −Y nh,−1)2 = Op(1)

by (B.8.24).
When r0 = 0, for A4 (defined in (B.8.3)), we have

|A4|2 ≤

(nh)−2
T2∑
t=T1

(Yt−1 − Y nh,−1)2

 [nh max
t∈[T1,T2]

(ρt − ρ0,n)2
]
Y ∗2
T0

= Op(1)nhO(n−2)Op(n) = Op(h) = op(1), (B.8.29)

where the inequality holds by the first three lines of (B.8.8) and the first equality uses (B.8.7),
(B.8.24), and Lemma 7.2(a).

This completes the proof of (B.8.9) concerning the numerator of the normalized LS
estimator in the r0 = 0 case. Combined with the result for the denominator in (B.8.24), this
establishes the result of (B.8.10) for the normalized LS estimator in the r0 = 0 case.

For the t-statistic, as in (B.8.11) and (B.8.12), it remains to show that σ̂2
nτ →p 1. For

r0 = 0, this holds by the same argument as given in (B.8.13)–(B.8.20) for the r0 > 0 with the
only change needed being that (nh)−1∑T2

t=T1(Yt−1 − Y nh,−1)2 = Op(nh) in the third equality
of (B.8.20) by (B.8.24) when r0 = 0, rather than by (B.8.1).

The subsequence versions of Lemma 7.3, Lemma 7.5, and Theorem 7.2, see Remark 7.2,
which have {pn}n≥1 in place of {n}n≥1, are proved by replacing n by pn and h = hn by hpn
throughout the proofs above.
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B.9 Proof of Lemma 7.6

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1.

Proof of Lemma 7.6(a). To prove part (a), we let ∑−1
j=0 ct,jσt−jUt−j = 0. Then, by (7.4),

we have

E

(1 − ρ2
0,n

)1/2
(nh)−1

T2∑
t=T1

Y 0
t−1

2

= E

(1 − ρ2
0,n

)1/2
(nh)−1

T2−1∑
t=T1−1

t−T1∑
j=0

ct,jσt−jUt−j

2

=
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1

E

t−T1∑
j=0

ct,jσt−jUt−j

2

+
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t,s=T1

E

t−T1∑
i=0

ct,iσt−iUt−i

s−T1∑
j=0

cs,jσs−jUs−j

1 {t ̸= s}

=: Ae1 + Ae2, (B.9.1)

where the first equality holds by (7.5). We show |Ae1| = o (1) and |Ae2| = o (1), which
establish part (a) by Markov’s inequality.

For |Ae1|, we have

|Ae1| =
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1

E

t−T1∑
j=0

ct,jσt−jUt−j

2

=
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1

t−T1∑
j=0

EU2
t−jc

2
t,jσ

2
t−j

≤
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1

t−T1∑
j=0

ρ2j
n σ

2
t−j

≤ max
t∈[T1,T2]

σ2
t

(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1

∞∑
j=0

ρ2j
n

= O (1)O
(
b−1
n

)
(nh)−2 O (nhbn) = o (1) , (B.9.2)

where the second equality uses the fact that {Ut}nt=1 is a martingale difference sequence, the
first inequality holds by (7.13), and the second last equality holds by (B.7.7) and (7.16).
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For |Ae2|, we have

|Ae2| =

∣∣∣∣∣∣
(
1 − ρ2

0,n

)
(nh)−2∑T2−1

t,s=T1 E
(∑t−T1

i=0 ct,iσt−iUt−i
)

×
(∑s−T1

j=0 cs,jσs−jUs−j
)
1 {t ̸= s}

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1+1

t−1∑
s=T1

E
t−T1∑
i=0

ct,iσt−iUt−i

s−T1∑
j=0

cs,jσs−jUs−j

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
(
1 − ρ2

0,n

)
(nh)−2

T2−1∑
t=T1+1

t−1∑
s=T1

s−T1∑
j=0

EU2
s−jct,j+(t−s)cs,jσ

2
s−j

∣∣∣∣∣∣
≤ 2 max

t∈[T1,T2]
σ2
t

(
1 − ρ2

0,n

)
(nh)−2

∣∣∣∣∣∣
T2−1∑
t=T1+1

t−1∑
s=T1

ρt−sn

s−T1∑
j=0

ρ2j
n

∣∣∣∣∣∣
≤ O (1)O

(
b−1
n

)
(nh)−2 O

(
nhb2

n

)
= O (bn/nh) = o (1) , (B.9.3)

where the first equality uses the fact that t and s are symmetric, the last inequality holds
by (B.7.7), (7.16), and (7.19), and the last equality holds by bn = o (nh).

Therefore, by Markov’s inequality, we have

(
1 − ρ2

0,n

)1/2
(nh)−1

T2∑
t=T1

Y 0
t−1 →p 0. (B.9.4)

Proof of Lemma 7.6(b). To prove part (b), we have

E

(1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2


=
(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1−1

E

t−T1∑
j=0

ct,jσt−jUt−j

2

=
(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

c2
t,jσ

2
t−j

=
(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

ρ2j
0,n +

(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

(
c2
t,j − ρ2j

0,n

)
σ2
t−j

+
(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

ρ2j
0,n

(
σ2
t−j − σ2

0 (τ)
)

=: Ab1 + Ab2 + Ab3. (B.9.5)

We show Ab1 = 1 + o (1), Ab2 = o (1), and Ab3 = o (1).
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For Ab1, we have

Ab1 =
(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

ρ2j
0,n =

(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

(
1 − ρ

2(t−T1+1)
0,n

) (
1 − ρ2

0,n

)−1

= 1 − (nh)−1
⌊nh⌋∑
k=1

ρ2k
0,n = 1 +O (bn/nh) = 1 + o (1) , (B.9.6)

where the third equality uses the change of coordinates k = t − T1 + 1 and the second last
equality uses (7.16).

For Ab2, we have

|Ab2| =
(
1 − ρ2

0,n

)
(nh)−1

∣∣∣∣∣∣
T2−1∑
t=T1

t−T1∑
j=0

(
c2
t,j − ρ2j

0,n

)
σ2
t−j

∣∣∣∣∣∣
≤ max

t∈[T1,T2]
σ2
t

(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

∣∣∣c2
t,j − ρ2j

0,n

∣∣∣
≤ O (1)

(
1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

∣∣∣ct,j − ρj0,n
∣∣∣

≤ O (1)O
(
b−1
n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

jρj−1
n L1h/bn = O (h) = o (1) , (B.9.7)

where the second inequality holds by (B.7.6), the last inequality uses (7.14), and the second
last equality holds by (7.17).

For Ab3, we have

|Ab3| =
(
1 − ρ2

0,n

)
(nh)−1

∣∣∣∣∣∣
T2−1∑
t=T1

t−T1∑
j=0

ρ2j
0,n

(
σ2
t−j − σ2

0 (τ)
)∣∣∣∣∣∣

≤ max
t∈[T1,T2]

∣∣∣σ2
t − σ2

0 (τ)
∣∣∣ (1 − ρ2

0,n

)
(nh)−1

T2−1∑
t=T1

t−T1∑
j=0

ρ2j
0,n

= o (1)O
(
b−1
n

)
(nh)−1 O (nhbn) = o (1) , (B.9.8)

where the second last equality uses (B.7.6) and (7.16).
Combining (B.9.6), (B.9.7), and (B.9.8), we obtain

E

(1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
 = 1 + o (1) . (B.9.9)
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Next, we show E
[(

1 − ρ2
0,n

)
(nh)−1∑T2

t=T1

(
Y 0
t−1

)2
]2

= 1 + o (1) by observing

E

(1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
2

=
(
1 − ρ2

0,n

)2
(nh)−2 E

 T2∑
t1,t2=T1

(
Y 0
t1−1

)2 (
Y 0
t2−1

)2


=
(
1 − ρ2

0,n

)2
(nh)−2 E

 T2−1∑
t1,t2=T1−1

(
Y 0
t1

)2 (
Y 0
t2

)2


=
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

E


(∑t1−T1

i=0 ct1,iσt1−iUt1−i
)2

×
(∑t2−T1

j=0 ct2,jσt2−jUt2−j
)2


=
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i1,i2=0

t2−T1∑
j1,j2=0

 ct1,i1ct1,i2ct2,j1ct2,j2σt1−i1σt1−i2σt2−j1σt2−j2

×E (Ut1−i1Ut1−i2Ut2−j1Ut2−j2)

 ,
(B.9.10)

where the third equality holds by Y 0
T0 = 0 and (7.5). All expectations in the last line are zero

unless (i) all the indices on the four innovation terms coincide or (ii) there are two groups
of two indices that each coincide or (iii) three larger indices coincide.

In case (i), we must have i1 = i2 = i, j1 = j2 = j and t1 − i1 = t2 − j1, which implies

ct1,i1ct1,i2ct2,j1ct2,j2EUt1−i1Ut1−i2Ut2−j1Ut2−j2σt1−i1σt1−i2σt2−j1σt2−j2

= c2
t1,ic

2
t2,jEU

4
t−i1 {t1 − i = t2 − j}σ4

t1−i. (B.9.11)

Substituting (B.9.11) into the right-hand side of (B.9.10), we have

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,jEU

4
t−i1 {t1 − i = t2 − j}σ4

t1−i

≤
(
1 − ρ2

0,n

)2
max

t∈[T1,T2]
σ4
tM (nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

c2
t1,i

t2−T1∑
j=0

c2
t2,j1 {t1 − i = t2 − j}

≤ O (1)
(
1 − ρ2

0,n

)2
2 (nh)−2

T2−1∑
t1>t2=T1

t1−T1∑
i=t1−t2

ρ4i−2(t1−t2)
n + (nh)−2

T2−1∑
t=T1

t−T1∑
i=0

ρ4i
n


= O (1)

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

ρ2(t1−t2)
n

t2−T1∑
k=0

ρ4k
n +O (1)

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t=T1

t−T1∑
i=0

ρ4i
n

≤ O (1)
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1=T1+1

t1−T1∑
l=1

ρ2l
n

∞∑
k=0

ρ4k
n +O (1)

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t=T1

∞∑
i=0

ρ4i
n
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= O
(
(nh)−1

)
= o (1) , (B.9.12)

where the first inequality holds by EU4
t < M , the second inequality uses (B.7.7) and (7.13),

the first equality uses the change of coordinates k = i−(t1 − t2), and the second last equality
holds by ∑∞

k=0 ρ
4k
n = (1 − ρ4

n)−1 = O (bn) and (7.16).
In case (ii), we must have (ii1) (i1 = i2 = i and j1 = j2 = j and t1 − i ̸= t2 − j) or (ii2)

(t1 − i1 = t2 −j1 and t1 − i2 = t2 −j2 and i1 ̸= i2) or (ii3) (t1 − i1 = t2 −j2 and t1 − i2 = t2 −j1

and i1 ̸= i2).
In case (ii1), we have

ct1,i1ct1,i2ct2,j1ct2,j2EUt1−i1Ut1−i2Ut2−j1Ut2−j2σt1−i1σt1−i2σt2−j1σt2−j2

= c2
t1,ic

2
t2,jEU

2
t1−iU

2
t2−j1 {t1 − i ̸= t2 − j}σ2

t1−iσ
2
t2−j. (B.9.13)

Substituting (B.9.13) into the right-hand side of (B.9.10), we have

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,jσ

2
t1−iσ

2
t2−jE

(
U2
t1−iU

2
t2−j

)
1 {t1 − i ̸= t2 − j}

=
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,jσ

2
t1−iσ

2
t2−j1 {t1 − i ̸= t2 − j}

=
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,jσ

2
t1−iσ

2
t2−j

−
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,jσ

2
t1−iσ

2
t2−j1 {t1 − i = t2 − j}

=
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

ρ
2(i+j)
0,n

+
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

(
c2
t1,ic

2
t2,j − ρ

2(i+j)
0,n

)

+
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,j

(
σ2
t1−iσ

2
t2−j − σ4

0 (τ)
)

− o(1)

=:Ab4 + Ab5 + Ab6 + o (1) , (B.9.14)

where the first equality holds by E [U2
t | Gt−1] = 1 a.s. and the third equality holds by

(B.9.12).
Because Ab4 = A2

b1, we obtain Ab4 = 1 + o (1) from (B.9.6). Thus, for case (ii1), we only
need to show Ab5 = o (1) and Ab6 = o (1).

35



For Ab5, we have

|Ab5| ≤
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

[
c2
t2,j

∣∣∣c2
t1,i − ρ2i

0,n

∣∣∣+ ρ2i
0,n

∣∣∣c2
t2,j − ρ2j

0,n

∣∣∣]

≤
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

(
ρ2j
n iρ

i−1
n + ρ2i

n jρ
j−1
n

)
2L1h/bn

=
(
1 − ρ2

0,n

)2
(4L1h/bn) (nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

iρi−1
n

t2−T1∑
j=0

ρ2j
n

= O
(
b−2
n (h/bn) (nh)−2 (nh)2 b2

nbn
)

= O (h) = o (1) , (B.9.15)

where the first inequality uses the triangle inequality, the second inequality holds by (7.13)
and (7.14), the first equality uses the fact that t1 and t2 are symmetric, and the second
equality holds by (7.16) and (7.17).

For Ab6, we have

|Ab6| ≤
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

c2
t1,ic

2
t2,j

∣∣∣σ2
t1−iσ

2
t2−j − σ4

0 (τ)
∣∣∣

≤ O
(
b−2
n

)
max

t1,t2∈[T1,T2]

∣∣∣σ2
t1σ

2
t2 − σ4

0 (τ)
∣∣∣ (nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

ρ2(i+j)
n = O (h) , (B.9.16)

where the second inequality uses (7.13) and the equality holds by

T2−1∑
t1,t2=T1

t1−T1∑
i=0

t2−T1∑
j=0

ρ2(i+j)
n ≤ (nh)2

(
1 − ρ2

n

)−2
= O

(
(nhbn)2

)
(B.9.17)

and

max
t,s∈[T1,T2]

∣∣∣σ2
t σ

2
s − σ4

0 (τ)
∣∣∣

≤ max
s∈[T1,T2]

∣∣∣σ2
s − σ2

0 (τ)
∣∣∣ max
t∈[T1,T2]

σ2
t + max

t∈[T1,T2]

∣∣∣σ2
t − σ2

0 (τ)
∣∣∣ = O (h) . (B.9.18)

This completes case (ii1).
Since case (ii2) and (ii3) are symmetric, we only prove the result for case (ii2) and show

it is o (1). Observe that when t1 − i1 = t2 − j1, t1 − i2 = t2 − j2, and i1 ̸= i2,

ct1,i1ct1,i2ct2,j1ct2,j2EUt1−i1Ut1−i2Ut2−j1Ut2−j2σt1−i1σt1−i2σt2−j1σt2−j2

= ct1,i1ct1,i2ct2,i1−(t1−t2)ct2,i2−(t1−t2)EU
2
t1−i1U

2
t1−i21 {i1 ̸= i2}σ2

t1−i1σ
2
t1−i2 . (B.9.19)
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Substituting (B.9.19) into the right-hand side of (B.9.10), we have

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i1,i2=0

t2−T1∑
j1,j2=0

 ct1,i1ct1,i2ct2,i1−(t1−t2)ct2,i2−(t1−t2)1 {i1 ̸= i2}
×EU2

t1−i1U
2
t1−i2σ

2
t1−i1σ

2
t1−i2


≤ 2

(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

t1−T1∑
i1,i2=t1−t2

ct1,i1ct1,i2ct2,t2−(t1−i1)ct2,t2−(t1−i2)σ
2
t1−i1σ

2
t1−i2

+
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t=T1

t−T1∑
i1,i2=0

c2
t,i1c

2
t,i2σ

2
t−i1σ

2
t−i2

≤
(

max
t∈[T1,T2]

σt

)4

2
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

t1−T1∑
i1,i2=t1−t2

ρi1+i2+t2−(t1−i1)+t2−(t1−i2)
n

+
(

max
t∈[T1,T2]

σt

)4 (
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t=T1

∞∑
i1,i2=0

ρ2(i1+i2)
n

= O (1)
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

ρ2(t2−t1)
n

t1−T1∑
i1,i2=t1−t2

ρ2(i1+i2)
n +O

(
(nh)−1

)

= O (1)
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

ρ2(t1−t2)
n

t2−T1∑
l1,l2=0

ρ2(l1+l2)
n +O

(
(nh)−1

)

≤ O (1)
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

ρ2(t1−t2)
n

(
1 − ρ2

n

)−2
+O

(
(nh)−1

)
= O (1)O

(
b−2
n

)
(nh)−2 O (nhbn)O

(
b2
n

)
+O

(
(nh)−1

)
= O

(
(nh/bn)−1

)
= o (1) , (B.9.20)

where the second equality uses the changes of coordinates l1 = i1 − (t1 − t2) and l2 =
i2 − (t1 − t2), the last inequality holds by (7.16), the second last equality holds by (7.19),
and the last equality uses bn/nh = o (1). This completes case (ii2).

In case (iii) we must have (iii1) (t1 − i1 = t1 − i2 = t2 − j1 > t2 − j2) or (iii2) (t1 − i1 =
t1 − i2 = t2 − j2 > t2 − j1) or (iii3) (t1 − i1 = t2 − j2 = t2 − j1 > t1 − i2) or (iii4)
(t1 − i2 = t2 − j2 = t2 − j1 > t1 − i1).

Now, we prove the desired result for case (iii1). Note that in this case, it must be true
that i1 = i2 = i and j2 > j1 = i− (t1 − t2), which implies

ct1,i1ct1,i2ct2,j1ct2,j2EUt1−i1Ut1−i2Ut2−j1Ut2−j2σt1−i1σt1−i2σt2−j1σt2−j2

= c2
t1,ict2,i−(t1−t2)ct2,jEU

3
t1−iUt2−j1 {j > i− (t1 − t2)}σ3

t1−iσt2−j. (B.9.21)

Substituting (B.9.21) into the right-hand side of (B.9.10), we have
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∣∣∣∣∣∣
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1,t2=T1

t1−T1∑
i1,i2=0

t2−T1∑
j1,j2=0

 c2
t1,ict2,i−(t1−t2)ct2,jEU

3
t1−iUt2−j

×1 {j > i− (t1 − t2)}σ3
t1−iσt2−j

∣∣∣∣∣∣
≤
(

max
t∈[T1,T2]

σt

)4

2
(
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t1>t2=T1

t1−T1∑
i=t1−t2

t2−T1∑
j=i−(t1−t2)+1

ρ3i+j−(t1−t2)
n

∣∣∣EU3
t1−iUt2−j

∣∣∣
+
(

max
t∈[T1,T2]

σt

)4 (
1 − ρ2

0,n

)2
(nh)−2

T2−1∑
t=T1

t−T1∑
i=0

t−T1∑
j=i+1

ρ3i+j
n

∣∣∣EU3
t−iUt−j

∣∣∣
≤ O

(
b−2
n

) (nh)−2
T2−1∑

t1>t2=T1

t1−T1∑
i=t1−t2

t2−T1∑
j=i−(t1−t2)+1

ρ3i+j−(t1−t2)
n + (nh)−2

T2−1∑
t=T1

∞∑
i=0

∞∑
j=0

ρ3i+j
n


= O

(
b−2
n

) (nh)−2
T2−1∑

t1>t2=T1

t1−T1∑
i=t1−t2

ρ4i−2(t1−t2)
n

t1−T1−i∑
l=1

ρln +O
(
b2
n/nh

)
= O

(
b−2
n

) (nh)−2
T2−1∑

t1>t2=T1

ρ2(t1−t2)
n O

(
b2
n

)
+O

(
b2
n/nh

) = O (bn/nh) = o (1) , (B.9.22)

where the second inequality holds by HÃPlder’s inequality and part (iv) of Λn: |EU3
t Ut−j| ≤

E |U3
t Ut−j| ≤ (EU4

t )3/4 (
EU4

t−j

)1/4
< M for j > 0, and (B.7.7), the first equality holds by

the change of coordinates l = j − i + (t1 − t2) − 1 and (7.15), the second equality uses the
change of variables k = i − (t1 − t2), (7.15), and (7.16), and the second last equality holds
by (7.19).

The proofs for cases (iii2)-(iii4) are analogous to case (iii1) and thus are omitted.
Combining cases (i)–(iii), we have

E

(1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
2

= 1 + o (1) . (B.9.23)

Note that by Markov’s inequality, for any random variable Xn

P (|Xn − 1| > ε) ≤ E (Xn − 1)2

ε2 = EX2
n − 2EXn + 1

ε2 . (B.9.24)

Let Xn :=
(
1 − ρ2

0,n

)
(nh)−1∑T2

t=T1

(
Y 0
t−1

)2
. Then, substituting (B.9.9) and (B.9.23) into

(B.9.24), we have

(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
→p 1. (B.9.25)
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Proof of Lemma 7.6(c). To prove part (c), by a central limit theorem for a triangular
array of martingale differences as in Corollary 3.1 in Hall and Heyde (1980), it is sufficient to
establish the Lindeberg condition (i) ∑T2

t=T1 E [ζ2
t 1 {|ζt| > δ}| Gt−1] →p 0 for any δ > 0 and

(ii) ∑T2
t=T1 E (ζ2

t | Gt−1) →p 1, where ζt := (nh)−1/2
(
1 − ρ2

0,n

)1/2
Y 0
t−1σtUt for t = T1, ..., T2.

To prove (i), by Markov’s inequality, it is enough to show that ∑T2
t=T1 E [ζ2

t 1 {|ζt| > δ}] → 0
for any δ > 0. By ∑T2

t=T1 E [ζ2
t 1 {|ζt| > δ}] ≤ ∑T2

t=T1 E [ζ4
t ] /δ2, it is then sufficient to show∑T2

t=T1 E [ζ4
t ] = o (1), which is true because

T2∑
t=T1

E
[
ζ4
t

]
=
(
1 − ρ2

0,n

)2
(nh)−2

T2∑
t=T1

E
(
Y 0
t−1Utσt

)4

=
(
1 − ρ2

0,n

)2
(nh)−2

T2∑
t=T1

E
[(
Y 0
t−1

)4
E
(
U4
t

∣∣∣Gt−1
)]
σ4
t

≤ O
(
b−2
n

)
M max

t∈[T1,T2]
σ4
t (nh)−2

T2−1∑
t=T1

E
(
Y 0
t

)4

= O
(
b−2
n

)
(nh)−2

T2−1∑
t=T1

E

t−T1∑
j=0

ct,jσt−jUt−j

4

≤ O
(
b−2
n

)(
max

t∈[T1,T2]
σt

)4

(nh)−2
T2−1∑
t=T1

t−T1∑
j1,j2,j3,j4=0

∣∣∣∣∣∣ ct,j1ct,j2ct,j3ct,j4

×E (Ut−j1Ut−j2Ut−j3Ut−j4)

∣∣∣∣∣∣
≤ O

(
b−2
n

)
(nh)−2

T2−1∑
t=T1

t−T1∑
j=0

ρ4j
n M + 3

t−T1∑
i,j=0

ρ2(i+j)
n 1 {i ̸= j} + 4

t−T1∑
i=0

t−T1∑
j=i+1

ρ3i+j
n M1/2


= O

(
b−2
n

)
(nh)−2 nh

(
O (bn) +O

(
b2
n

)
+O

(
b2
n

))
= o (1) , (B.9.26)

where the second equality uses the law of iterated expectations, the first inequality uses
E [U4

t | Gt−1] < M a.s. and (7.16), the third equality uses (B.7.7), and the last inequality
holds by dividing the sum into three cases of (i) all four indices on the four innovation terms
coincide, (ii) two pairs of two indices coincide, and (iii) three larger indices coincide and
(7.13).

To prove (ii), by part (b) we have
(
1 − ρ2

0,n

)
(nh)−1∑T2

t=T1

(
Y 0
t−1

)2
= 1 + op (1). Thus,

T2∑
t=T1

E
(
ζ2
t

∣∣∣Gt−1
)

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
E
[
U2
t

∣∣∣Gt−1
]
σ2
t

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2

+
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2 (
σ2
t − σ2

0 (τ)
)
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=1 + op (1) + op (1) →p 1, (B.9.27)

where the second equality holds by E [U2
t | Gt−1] = 1 a.s. and the last equality holds by part

(b) and
∣∣∣∣∣∣
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2 (
σ2
t − σ2

0 (τ)
)∣∣∣∣∣∣

≤ max
t∈[T1,T2]

∣∣∣σ2
t − σ2

0 (τ)
∣∣∣
∣∣∣∣∣∣
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
∣∣∣∣∣∣

= o (1)Op (1) = op (1) . (B.9.28)

B.10 Proof of Lemma 7.7

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1.

Proof of Lemma 7.7(a). First, we prove part (a). We have

(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Yt−1 − µnh,−1

)2

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

[
Y 0
t−1 +

(
µt−1 − µnh,−1

)
+ ct−1,t−1−T0Y

∗
T0

]2

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2

+
(
1 − ρ2

0,n

)
× (nh)−1

T2∑
t=T1

 (µt−1 − µnh,−1

)2
+ c2

t−1,t−1−T0Y
∗2
T0 + 2

(
µt−1 − µnh,−1

)
Y 0
t−1

+2
(
µt−1 − µnh,−1

)
ct−1,t−1−T0Y

∗
T0 + 2Y 0

t−1ct−1,t−1−T0Y
∗
T0


=:
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2
+

5∑
i=1

Aai. (B.10.1)

By Lemma 7.6(b),
(
1 − ρ2

0,n

)
(nh)−1∑T2

t=T1

(
Y 0
t−1

)2
→p 1. Hence, we need to show ∑5

i=1 Aai in
(B.10.1) converges in probability to 0. By the CS inequality, we only need to show Aa1 → 0
and Aa2 →p 0.
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For Aa1, we have

Aa1 =
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
µt−1 − µnh,−1

)2
≤ O

(
b−1
n

)
max

t,s∈[T0,T2]
(µt − µs)2 = o (1) ,

(B.10.2)

where the last equality holds by Lemma 7.1(d) and the triangle inequality.
For Aa2, we have

Aa2 = (1 − ρ2
0,n)(nh)−1

T2∑
t=T1

c2
t−1,t−1−T0Y

∗2
T0 = O(b−1

n )(nh)−1
T2∑
t=T1

ρ2(t−1−T0)
n Op(bn)

= O(b−1
n )(nh)−1O(bn)Op(bn) = Op(bn/nh) = op(1), (B.10.3)

where the second equality uses 1 − ρ0,n = −κn(τ)/bn, κn(τ) = O(1) (by part (ii) of Λn),
(7.13), and Lemma 7.2(c), which applies because the lemma assumes that nh/bn → r0 = ∞,

the third equality uses (7.16), and the last equality holds because nh/bn → r0 = ∞. This
completes the proof of part (a).

Proof of Lemma 7.7(b). To prove part (b), it suffices to show that

Ab := (1 − ρ2
0,n)1/2(Y nh,−1 − µnh,−1) = op(1). (B.10.4)

We have

Ab = Ab1 + Ab2, where (B.10.5)

Ab1 : = (1 − ρ2
0,n)1/2(nh)−1

T2∑
t=T1

Y 0
t−1 and Ab2 := (1 − ρ2

0,n)1/2(nh)−1
T2∑
t=T1

ct−1,t−1−T0Y
∗
T0 .

By Lemma 7.6(a), Ab1 = op(1). In addition, we have

|Ab2| ≤ (1 − ρ2
0,n)1/2(nh)−1

T2∑
t=T1

ρt−1−T0
n |Y ∗

T0| ≤ O(b−1/2
n )(nh)−1O(bn)Op(b1/2

n ) = op(1),

(B.10.6)
where the first inequality uses (7.13), the second inequality uses ∑T2

t=T1 ρ
t−1−T0
n ≤ (1−ρn)−1 =

O(bn) (by (7.15)) and Lemma 7.2(c), which applies because nh/bn → r0 = ∞, which is an
assumption of the lemma, and the equality holds because bn/nh → 0. Hence, Ab = op(1) and
part (b) is established.
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B.11 Proof of Lemma 7.8

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1.

Proof of Lemma 7.8(a). To prove part (a), we express

Yt−1 − µnh,−1 = Y 0
t−1 +

(
µt−1 − µnh,−1

)
+ ct−1,t−1−T0Y

∗
T0 (B.11.1)

and

Yt − µnh − ρ0,n
(
Yt−1 − µnh,−1

)
= σtUt + (ρt − ρ0,n)Y 0

t−1 + (µt − µnh) − ρ0,n
(
µt−1 − µnh,−1

)
+ (ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0 .

(B.11.2)

Substituting (B.11.1) and (B.11.2) into the left-hand side of part (a), we have

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Yt−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]

=
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

Y 0
t−1σtUt

+
(
1 − ρ2

0,n

)1/2
(nh)−1/2

×
T2∑
t=T1



(ρt − ρ0,n)
(
Y 0
t−1

)2
+ Y 0

t−1 (µt − µnh) − Y 0
t−1ρ0,n

(
µt−1 − µnh,−1

)
+Y 0

t−1 (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0 +

(
µt−1 − µnh,−1

)
σtUt

+
(
µt−1 − µnh,−1

)
(ρt − ρ0,n)Y 0

t−1 +
(
µt−1 − µnh,−1

)
(µt − µnh)

−ρ0,n
(
µt−1 − µnh,−1

)2
+
(
µt−1 − µnh,−1

)
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

+ct−1,t−1−T0Y
∗
T0σtUt + ct−1,t−1−T0Y

∗
T0 (ρt − ρ0,n)Y 0

t−1

+ct−1,t−1−T0Y
∗
T0 (µt − µnh) − ct−1,t−1−T0Y

∗
T0ρ0,n

(
µt−1 − µnh,−1

)
+c2

t−1,t−1−T0 (ρt − ρ0,n)Y ∗2
T0


=:
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

Y 0
t−1σtUt +

14∑
i=1

Aci, (B.11.3)

where Aci is the ith term in the second last line of (B.11.3). For example,

Ac1 :=
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(ρt − ρ0,n)
(
Y 0
t−1

)2
(B.11.4)
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and
Ac2 :=

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

Y 0
t−1 (µt − µnh) . (B.11.5)

By Lemma 7.6(c), we have

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

Y 0
t−1σtUt →d N (0, 1) . (B.11.6)

Therefore, we need to show ∑14
i=1 Aci converges in probability to 0. We examine each of its

components one by one.
First, we consider Ac1. Let Y c

t be the constant parameter version of Y 0
t based on ρ0,n and

σnτ and with T2 − T1 lagged innovations (which does not depend on t), rather than t − T1

lags. That is,

Y c
t :=

T2−T1∑
j=0

ρj0,nσnτUt−j for t ∈ [T1, T2] . (B.11.7)

Here, the superscript c stands for “constant parameter.”
We decompose Ac1 into three terms:

Ac1 = Ac1,1 + Ac1,2 + Ac1,3, where

Ac1,1 : = (1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

(ρt − ρ0,n)E(Y c
t−1)2,

Ac1,2 : = (1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

(ρt − ρ0,n)
(
(Y 0

t−1)2 − (Y c
t−1)2

)
, and

Ac1,3 : = (1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

(ρt − ρ0,n)
(
(Y c

t−1)2 − E(Y c
t−1)2

)
. (B.11.8)

We show that Ac1,b = op(1) for b = 1, 2, 3, provided Assumption 2 holds, which yields
Ac1 = op(1).

Now, we consider Ac1,1. We have

E(Y c
t−1)2 = σ2

nτ

T2−T1∑
j=0

T2−T1∑
k=0

ρj0,nρ
k
0,nEUt−j−1Ut−k−1 = σ2

nτ

T2−T1∑
j=0

ρ2j
0,n, (B.11.9)

which does not depend on t, and hence, can be taken out of the sum over t in the definition
of Ac1,1.

By definition,

ρt − ρ0,n := ρ0,n(t/n) − ρ0,n(τ) = κ0,n(τ)/bn − κ0,n(t/n)/bn (B.11.10)
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using part (ii) in the definition of Λn. Using the condition in Λn that κ (·) is a twice con-
tinuously differentiable function , by a two-term Taylor expansion of κ0,n(t/n) around τ, we
obtain

κ0,n(t/n) − κ0,n(τ) = κ′
0,n(τ)(t/n− τ) + κ′′

0,n(τ̃n,t)(t/n− τ)2, (B.11.11)

where τ̃n,t lies between t/n and τ, and hence, lies between T1/n and T2/n for t ∈ [T1, T2] .
Let αn := ⌊nh/2⌋. Using T1 := ⌊nτ⌋ − ⌊nh/2⌋ and T2 := ⌊nτ⌋ + ⌊nh/2⌋ by (3.1), we have

T2∑
t=T1

(t− nτ) =
⌊nτ⌋+αn∑
t=⌊nτ⌋+1

(t− nτ) +
⌊nτ⌋−1∑

t=⌊nτ⌋−αn

(t− nτ) + ⌊nτ⌋ − nτ. (B.11.12)

In addition, we have

⌊nτ⌋+αn∑
t=⌊nτ⌋+1

(t− nτ) =
αn∑
s=1

(s+ ⌊nτ⌋ − nτ) and

⌊nτ⌋−1∑
t=⌊nτ⌋−αn

(t− nτ) =
αn∑
s=1

(−s+ ⌊nτ⌋ − nτ), (B.11.13)

where the first line uses a change of variables with s = t − ⌊nτ⌋ and the second line uses a
change of variables with s = −t+ ⌊nτ⌋. Combining (B.11.12) and (B.11.13) gives

T2∑
t=T1

(t/n− τ) = 2n−1
αn∑
s=1

(⌊nτ⌋ − nτ) + n−1(⌊nτ⌋ − nτ) = O(n−1αn) = O(h). (B.11.14)

Using (B.11.8)–(B.11.11) and (B.11.14), we get

|Ac1,1| =

∣∣∣∣∣∣E(Y c
t−1)2b−1

n (1 − ρ2
0,n)1/2(nh)−1/2κ′

0,n(τ)
T2∑
t=T1

(t/n− τ)

+E(Y c
t−1)2b−1

n (1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

κ′′
0,n(τ̃n,t)(t/n− τ)2

∣∣∣∣∣∣
≤ CE(Y c

t−1)2b−1
n (1 − ρ2

0,n)1/2(nh)−1/2

O(h) +
T2∑
t=T1

(t/n− τ)2


= O(b−1

n (1 − ρ2
0,n)−1/2(nh)−1/2

(
h+ nh · h2

)
) (B.11.15)

= O(b−1
n b1/2

n

(
(h/n)1/2 + (nh5)1/2

)
) = O((h/n)1/2 + (nh5)1/2) = o(1),

for some finite constant C for which
∣∣∣κ′

0,n(τ)
∣∣∣ ≤ C and supt,n

∣∣∣κ′′
0,n(τ̃n,t)

∣∣∣ ≤ C, where the
inequality uses these inequalities and (B.11.14), the second equality uses E(Y c

t−1)2 = O((1 −
ρ2

0,n)−1) by (B.11.9) and |t/n− τ | ≤ h because |t− nτ | ≤ nh/2 for t ∈ [T1, T2] , and the
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third equality uses (1 − ρ2
0,n)−1/2 = O(b1/2

n ) (by (7.16) with ρ0,n in place of ρn), the fourth
equality holds because b−1/2

n = O(1), and the last equality holds by h → 0 (by Assumption
1) and nh5 → 0 (by Assumption 2).

Next, we consider Ac1,2. We have

|Ac1,2| ≤ (1 − ρ2
0,n)1/2 max

t∈[T1,T2]
|ρt − ρ0,n|(nh)−1/2

T2∑
t=T1

|Y 0
t−1 + Y c

t−1| · |Y 0
t−1 − Y c

t−1|

= O(b−1/2
n )O(h/bn)(nh)−1/2

T2∑
t=T1

|Y 0
t−1 + Y c

t−1| · |Y 0
t−1 − Y c

t−1|, (B.11.16)

where the equality uses Lemma 7.1(a).
We have

Y 0
t−1 − Y c

t−1 =
t−1−T1∑
j=0

(ct−1,jσt−j−1 − ρj0,nσnτ )Ut−j−1 −
T2−T1∑
j=t−T1

ρj0,nσnτUt−j−1. (B.11.17)

Combining (B.11.16) and (B.11.17) gives

E|Ac1,2| ≤ (b−1/2
n )O(h/bn)(nh)−1/2

T2∑
t=T1

2 max{(E(Y 0
t−1)2)1/2, (E(Y c

t−1)2)1/2}

×2 max


E

t−1−T1∑
j=0

(ct−1,jσt−j−1 − ρj0,nσnτ )Ut−j−1

2


1/2

,

E
 T2−T1∑
j=t−T1

ρj0,nσnτUt−j−1

2


1/2
 (B.11.18)

using the triangle and CS inequalities.
We have (E(Y c

t−1)2)1/2 = O(b1/2
n ) uniformly over t ∈ [T1, T2] by the discussion following

(B.11.15). In addition,

E(Y 0
t−1)2 = E

t−1−T1∑
j=0

ct−1,jσt−j−1Ut−j−1

2

=
t−1−T1∑
j=0

c2
t−1,jσ

2
t−1−j

≤ C3,U

∞∑
j=0

ρ2
n = C3,U(1 − ρ2

n)−1 = O(bn) (B.11.19)

uniformly over t ∈ [T1, T2], where the inequality uses (7.13) and the bound C3,U on σ2(·) in
part (i) of Λn and the last equality uses (7.16). So, (E(Y 0

t−1)2)1/2 = O(b1/2
n ).
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Next, we have

|ct−1,jσt−j−1 −ρj0,nσnτ | ≤ σt−j−1|ct−1,j −ρj0,n|+ |ρ0,n|j|σt−j−1 −σnτ | ≤ jρj−1
n O(h/bn)+ρjnO(h),

(B.11.20)
where the second inequality uses (7.14), a uniform bound on σt−j−1 across t, j, and
maxt∈[T1,T2] |σt−j−1−σnτ | = O(h) by Lemma 7.1(b) and σt−j−1−σnτ = (σ2

t−j−1−σ2
nτ )/(σt−j−1+

σnτ ). In consequence, we obtain

E

t−1−T1∑
j=0

(ct−1,jσt−j−1 − ρj0,nσnτ )Ut−j−1

2

=
t−1−T1∑
j=0

(ct−1,jσt−j−1 − ρj0,nσnτ )2EU2
t−j−1

= O

 ∞∑
j=0

j2ρ2j−2
n h2/b2

n

+O

 ∞∑
j=0

ρ2j
n h

2

 = O(b3
nh

2/b2
n) +O(bnh2) = O(bnh2),

(B.11.21)

where the second equality uses (B.11.20) and EU2
t = 1 for all t, and the third equality uses

(7.16) and (7.18).
In addition,

E

 T2−T1∑
j=t−T1

ρj0,nσnτUt−j−1

2

=
T2−T1∑
j=t−T1

ρ2j
0,nσ

2
nτEU

2
t−j−1 ≤ σ2

nτρ
2(t−T1)
0,n

∞∑
j=0

ρ2j
0,n

= σ2
nτρ

2(t−T1)
0,n (1 − ρ2

0,n)−1 = ρ
2(t−T1)
0,n O(bn). (B.11.22)

And so,

T2∑
t=T1

E
 T2−T1∑
j=t−T1

ρj0,nσnτUt−j−1

2


1/2

≤
T2∑
t=T1

|ρ0,n|t−T1O(b1/2
n )

≤ O(b1/2
n )

∞∑
t=0

|ρ0,n|t = O(b1/2
n )(1 − ρn)−1 = O(b1/2

n )O(bn) = O(b3/2
n ). (B.11.23)

Combining (B.11.18), (B.11.19), (B.11.21), and (B.11.23), gives

E|Ac1,2| ≤ O(b−1/2
n )O(h/bn)(nh)−1/2nhO(b1/2

n )O(b1/2
n h)

+O(b−1/2
n )O(h/bn)(nh)−1/2O(b1/2

n )O(b3/2
n ) (B.11.24)

= O(n1/2h5/2b−1/2
n ) +O(n−1/2h1/2b1/2

n ) = O((nh5)1/2) +O((bn/nh)1/2h) = o(1),

where the last equality uses nh5 → 0 by Assumption 2, h → 0 by Assumption 1, and
bn/nh → 0 in the “stationary” case. By Markov’s inequality, this gives Ac1,2 = op(1).
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Now, we consider Ac1,3. Below we reuse calculations in (B.9.10)–(B.9.22), which bound
the term

ES2
n := E

(1 − ρ2
0,n)(nh)−1

T2∑
t=T1

(Y 0
t−1)2

2

= (1 − ρ2
0,n)2(nh)−2E

 T2∑
t=T1

(Y 0
t−1)2

2

, whereas

EA2
c1,3 = (1 − ρ2

0,n)(nh)−1E

 T2∑
t=T1

(ρt − ρ0,n)
(
(Y c

t−1)2 − E(Y c
t−1)2

)2

. (B.11.25)

The terms ES2
n and EA2

c1,3 are similar, but differ as follows. The quantities (1 − ρ2
0,n)2 =

O(b−2
n ) and (nh)−2 appear in ES2

n, whereas (1−ρ2
0,n) = O(b−1

n ) and (nh)−1 appear in EA2
c1,3.

The quantity maxt∈[T1,T2] |ρt−ρ0,n|2 = O(h2/b2
n) (by Lemma 7.1(a)) appears in the bound we

obtain on EA2
c1,3, but does not appear in the bound on ES2

n. The difference between Y 0
t−1,

which appears in Sn, and Y c
t−1, which appears in EA2

c1,3, is not important because the same
bounds can be employed with either one. The term Sn is based on summands (Y 0

t−1)2, which
do not have mean 0, whereas Ac1,3 is based on mean zero summands (Y c

t−1)2 − E(Y c
t−1)2,

which is an important difference.
Analogously to (B.9.10), we can write

E

 T2∑
t=T1

(Y c
t−1)2 − E(Y c

t−1)2

2

= E
T2−1∑

t1,t2=T1−1


t1−T1∑

i=0
ρi0,nσnτUt1−i

2

− E(Y c
t1)2



t2−T1∑

j=0
ρj0,nσnτUt2−j

2

− E(Y c
t2)2


= σ4

nτE
T2−1∑

t1,t2=T1−1

 t1−T1∑
i1,i2=0

ρi10,nρ
i2
0,n(Ut1−i1Ut1−i2 − EUt1−i1Ut1−i2)


×

 t2−T1∑
j1,j2=0

ρj10,nρ
j2
0,n(Ut2−j1Ut2−j2 − EUt2−j1Ut2−j2)


= σ4

nτ

T2−1∑
t1,t2=T1−1

t1−T1∑
i1,i2=0

t2−T1∑
j1,j2=0

ρi10,nρ
i2
0,nρ

j1
0,nρ

j2
0,n

×E(Ut1−i1Ut1−i2 − EUt1−i1Ut1−i2)(Ut2−j1Ut2−j2 − EUt2−j1Ut2−j2)

= σ4
nτ

T2−1∑
t1,t2=T1−1

t1−T1∑
i1,i2=0

t2−T1∑
j1,j2=0

ρi10,nρ
i2
0,nρ

j1
0,nρ

j2
0,n

×(EUt1−i1Ut1−i2Ut2−j1Ut2−j2 − EUt1−i1Ut1−i2 · EUt2−j1Ut2−j2). (B.11.26)

The term EA2
c1,3 equals the rhs of (B.11.26) multiplied by (1 −ρ2

0,n)(nh)−1 and with (ρt1+1 −
ρ0,n)(ρt2+1 − ρ0,n) inserted after the three summation signs.
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As discussed following (B.9.10), the expectations EUt1−i1Ut1−i2Ut2−j1Ut2−j2 in the last
line of (B.9.10) are all zero except when the indices fall in cases (i), (ii), or (iii), which
are defined there. Furthermore, case (ii) is subdivided into cases (ii1), (ii2), and (ii3) just
above (B.9.13). The difference between the expectations on the rhs of (B.11.26) and that
of (B.9.10) is that the former has ηt1t2i1i2j1j2 := EUt1−i1Ut1−i2 · EUt2−j1Ut2−j2 subtracted
off, whereas the latter does not. The quantity ηt1t2i1i2j1j2 is non-zero iff i1 = i2 and j1 =
j2. The case i1 = i2 and j1 = j2 with t1 − i1 = t2 − j1 is case (i). The case i1 = i2

and j1 = j2 with t1 − i1 ̸= t2 − j1 is case (ii1). Hence, the expectations on the rhs of
(B.11.26) are all zero except when the indices fall in cases (i), (ii), and (iii), just as in
(B.9.10). In addition, in case (ii1), the expectations on the rhs of (B.11.26) are zero, because
EUt1−i1Ut1−i2Ut2−j1Ut2−j2 = EU2

t1−i1U
2
t2−j1 = EU2

t1−i1EU
2
t2−j1 = ηt1t2i1i2j1j2 , where the second

equality holds because t1 − i1 ̸= t2 − j1 in case (ii1). We conclude that the expectations on
the rhs of (B.11.26) are non-zero only in cases (i), (ii2), (ii3), and (iii).

Now, we use the calculations in (B.9.11)–(B.9.22) to bound the terms in (B.11.26) when
the indices fall in cases (i), (ii2), (ii3), and (iii).

For case (i), using (B.9.11) and (B.9.12), we have: the sum over the indices in case (i)
on the rhs of (B.11.26) is

O(1)
T2−1∑

t1=T1−1

t1−T1∑
ℓ=1

ρ2ℓ
n

∞∑
k=0

ρ4k
n +O(1)

T2−1∑
t1=T1

∞∑
i=0

ρ4i
n = O(nhb2

n), (B.11.27)

where the last equality uses (7.16) and ∑∞
k=0 ρ

4k
n = O(bn). As noted above, EA2

c1,3 equals the
rhs of (B.11.26) multiplied by (1−ρ2

0,n)(nh)−1 = O(b−1
n )(nh)−1 and with (ρt1+1 −ρ0,n)(ρt2+1 −

ρ0,n) inserted after the three summands, where maxt∈[T1,T2] |ρt−ρ0,n|2 = O(h2/b2
n) by Lemma

7.1(a). In consequence, a bound on the sum of the terms in EA2
c1,3 that correspond to indices

in case (i) is
O(b−1

n )(nh)−1O(h2/b2
n)O(nhb2

n) = O(b−1
n h2) = o(1). (B.11.28)

For case (ii2), using (B.9.19) and (B.9.20), we have: the sum over the indices in case (ii2)
on the rhs of (B.11.26) is

O(1)
T2−1∑

t1>t2=T1

ρ2(t1−t2)
n (1 − ρ2)−2 +O(1)

T2−1∑
t=T1

∞∑
i1,i2=0

ρ2(i1−i2)
n = O(nhb3

n) +O(nhb2
n) = O(nhb3

n),

(B.11.29)
where the first equality uses (7.16). Since the bound in (B.11.29) is larger than that in
(B.11.27) by the factor bn, (B.11.28) implies that the sum of the terms in EA2

c1,3 that corre-
spond to indices in case (ii2) is O(h2) = o(1). Cases (ii2) and (ii3) are symmetric. So, the
same result holds for case (ii3).

48



For case (iii), using (B.9.21) and (B.9.22), we have: the sum over the indices in case (iii)
on the rhs of (B.11.26) is

T2−1∑
t1>t2=T1

ρ2(t1−t2)
n O(b2

n) +O(nhb2
n) = O(nhb3

n) +O(nhb2
n) = O(nhb3

n). (B.11.30)

Since the bounds in (B.11.29) and (B.11.30) are the same, the sum of the terms in EA2
c1,3

that correspond to indices in case (iii) is O(h2) = o(1).
To conclude, we have EA2

c1,3 = o(1). Hence, by Markov’s inequality, Ac1,3 = op(1). This
concludes the proof that

Ac1 = op(1). (B.11.31)

For Ac2, we have

EA2
c2 = E

(1 − ρ2
0,n

)1/2
(nh)−1/2

T2∑
t=T1

(µt − µnh)Y 0
t−1

2

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t,s=T1

(µt − µnh) (µs − µnh)E
(
Y 0
t−1Y

0
s−1

)

= O
(
b−1
n

)
(nh)−1

T2∑
t,s=T1

(µt − µnh) (µs − µnh)
t−T1∑
i=0

s−T1∑
j=0

ct−1,ics−1,jσt−1−iσs−1−j

× E (Ut−1−iUs−1−j)

≤ O
(
b−1
n

)
(nh)−1

(
max

t,s∈[T1,T2]
|µt − µs|

)2
2

T2∑
t>s=T1

t−T1∑
i=t−s

ρ2i−(t−s)
n +

T2∑
t=T1

t−T1∑
i=0

ρ2i
n


= O

(
b−1
n

)
(nh)−1 O

(
h2/b2

n

) (
O
(
nhb2

n

)
+O (nhbn)

)
= O

(
h2/bn

)
= o (1) , (B.11.32)

where the inequality holds by dividing the case into t = s and t ̸= s and (7.13) and the
fourth equality uses the change of coordinates l = i − (t− s) and k = t − s, (7.16), (7.19),
Lemma 7.1(d) and the triangle inequality. Then, we have Ac2 →p 0 by Markov’s inequality.

The proof of Ac3 →p 0 is the same as that of Ac2 →p 0 and is omitted.
For Ac4, we have

EA2
c4 = E

(1 − ρ2
0,n

)1/2
(nh)−1/2

T2∑
t=T1

(ρt − ρ0,n) ct−1,t−1−T0Y
0
t−1Y

∗
T0

2

= O
(
b−1
n

)
(nh)−1

T2∑
t,s=T1

(ρt − ρ0,n) (ρs − ρ0,n) ct−1,t−1−T0cs−1,s−1−T0EY
0
t−1Y

0
s−1Y

∗2
T0
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≤ O
(
b−1
n

)
(nh)−1

T2∑
t,s=T1+1

 (ρt − ρ0,n) (ρs − ρ0,n) ct−1,t−1−T0cs−1,s−1−T0

×∑t−1−T1
i=0

∑s−1−T1
j=0 ct−1,ics−1,jEUt−1−iUs−1−jY

∗2
T0

C3,U

= O
(
b−1
n

)
(nh)−1 2

T2∑
t>s=T1+1

 (ρt − ρ0,n) (ρs − ρ0,n) ct−1,t−1−T0cs−1,s−1−T0

×∑t−1−T1
i=t−s ct−1,ics−1,i−(t−s)EU

2
t−1−iY

∗2
T0


+O

(
b−1
n

)
(nh)−1

T2∑
t=T1+1

(ρt − ρ0,n)2 c2
t−1,t−1−T0

t−1−T1∑
i=0

c2
t−1,iEU

2
t−1−iY

∗2
T0


≤ O

(
b−1
n

)
(nh)−1 O

(
h2/b2

n

) T2∑
t>s=T1+1

ρt−1−T0+s−1−T0
n

t−1−T1∑
i=t−s

ρ2i−(t−s)
n

O (n)

+O
(
b−1
n

)
(nh)−1 O

(
h2/b2

n

) T2∑
t=T1+1

ρ2(t−1−T0)
n

t−1−T1∑
i=0

ρ2i
n

O (n)

= O
(
b−1
n

)
(nh)−1 O

(
h2/b2

n

)
O
(
b3
n

)
O (n) +O

(
b−1
n

)
(nh)−1 O

(
h2/b2

n

)
O
(
b2
n

)
O (n)

= O (h) = o (1) , (B.11.33)

where the first inequality holds by maxt∈[T1,T2] σ
2
t ≤ C3,U , the second inequality holds by

Lemma 7.1(a), (B.4.2), (7.13), and E [U2
t | Gt−1] = 1 a.s., the third equality uses the law of

iterated expectations (LIE) and part (iv) of Λn, and the fourth equality holds by the change
of variables l = 2i− (t− s) and (7.16). Then, by Markov’s inequality, we have Ac4 →p 0.

For Ac5, we have

EA2
c5 = E

(1 − ρ2
0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
µt−1 − µnh,−1

)
σtUt

2

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
µt−1 − µnh,−1

)2
σ2
tEU

2
t

≤ O
(
b−1
n

)
(nh)−1 nhO

(
h2/b2

n

)
C3,U = o (1) , (B.11.34)

where the inequality holds by

max
t∈[T1,T2]

(
µt−1 − µnh,−1

)2
≤ max

t,s∈[T0,T2]
(µt − µs)2 = O

(
h2/b2

n

)
(B.11.35)

using Lemma 7.1(d) and the triangle inequality. By Markov’s inequality, we obtain Ac5 →p 0.
The proof of

Ac6 :=
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
µt−1 − µnh,−1

)
(ρt − ρ0,n)Y 0

t−1 →p 0 (B.11.36)

is quite similar to that of Ac2 → 0 given in (B.11.32), and hence, is omitted.
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The proofs of

|Ac7| :=

∣∣∣∣∣∣
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
µt−1 − µnh,−1

)
(µt − µnh)

∣∣∣∣∣∣ → 0 (B.11.37)

and

|Ac8| :=

∣∣∣∣∣∣
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

ρ0,n
(
µt−1 − µnh,−1

)2
∣∣∣∣∣∣ → 0 (B.11.38)

are identical, thus we only prove the result for Ac8. An application of the triangle inequality
gives

|Ac8| ≤
(
1 − ρ2

0,n

)1/2
(nh)−1/2 O (nh) max

t,s∈[T0,T2]
(µt − µs)2 = O

((
nh5/b5

n

)1/2
)

= o (1) ,
(B.11.39)

where the second last equality holds by Lemma 7.1(d) and the triangle inequality and the
last equality holds by Assumption 2.

For Ac9, we have

|Ac9| =

∣∣∣∣∣∣
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
µt−1 − µnh,−1

)
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

∣∣∣∣∣∣
≤ O

(
b−1/2
n

)
(nh)−1/2 max

t,s∈[T0,T2]
|µt − µs| max

t∈[T1,T2]
|ρt − ρ0,n|

T2∑
t=T1

ρt−1−T0
n

∣∣∣Y ∗
T0

∣∣∣
= O

(
b−1/2
n

)
(nh)−1/2 O (h)O (h/bn)O (bn)Op

(
n1/2

)
= Op

(
h3/2b−1/2

n

)
, (B.11.40)

where the second last equality holds by Lemma 7.1(a) and (d), (B.4.3), and (7.15).
For Ac10, we have

EA2
c10 = E

(1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

ct−1,t−1−T0Y
∗
T0σtUt

2

= (1 − ρ2
0,n)(nh)−1

T2∑
t=T1

c2
t−1,t−1−T0σ

2
tEU

2
t Y

∗2
T0

≤ (1 − ρ2
0,n)(nh)−1

T2∑
t=T1

ρ2(t−1−T0)
n σ2

tEY
∗2
T0

≤ O(b−1
n )(nh)−1O(bn)O(bn) = O(bn/nh) = o(1), (B.11.41)

where the second equality uses the martingale difference properties of {Ut}t≤n, the first
inequality uses (7.13) and E(U2

t |Y ∗2
T0 ) = 1 a.s. by part (iv) of Λn, the second inequality uses

Lemma 7.2(c), which applies because nh/bn → r0 = ∞ is an assumption of the lemma, and
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(7.15), and the last equality holds because bn/nh → 0. Equation (B.11.41) and Markov’s
inequality give Ac10 = op(1).

For Ac11, we have: Ac11 = Ac4 = op(1) by (B.11.33).
For Ac12, we have

|Ac12| =

∣∣∣∣∣∣(1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

ct−1,t−1−T0(µt−1 − µnh,−1)Y ∗
T0

∣∣∣∣∣∣
≤ (1 − ρ2

0,n)1/2(nh)−1/2
T2∑
t=T1

ρt−1−T0
n max

t∈[T1,T2]
|µt−1 − µnh,−1| · |Y ∗

T0 |

= O(b−1/2
n )(nh)−1/2O(bn)O(h/bn)Op(b1/2

n ) = Op((nh)−1/2h) = op(1),

(B.11.42)

where the inequality uses (7.13), the second equality uses (7.15), Lemma 7.1(d), and Lemma
7.2(c).

We have |Ac13| = |ρ0,nAc12| = op(1) (since Ac12 = op(1) and |ρ0,n| ≤ 1).
For Ac14, we have

|Ac14| =

∣∣∣∣∣∣(1 − ρ2
0,n)1/2(nh)−1/2

T2∑
t=T1

c2
t−1,t−1−T0(ρt − ρ0,n)Y ∗2

T0

∣∣∣∣∣∣
≤ (1 − ρ2

0,n)1/2(nh)−1/2
T2∑
t=T1

ρ2(t−1−T0)
n max

t∈[T1,T2]
|ρt − ρ0,n|Y ∗2

T0

= O(b−1/2
n )(nh)−1/2O(bn)O(h/bn)Op(bn)

= Op((bn/nh)1/2h) = op(1), (B.11.43)

where the inequality uses (7.13), the second equality uses (7.15), Lemma 7.1(a), and Lemma
7.2(c).

By (B.11.31)–(B.11.43), we obtain

14∑
i=1

Aci →p 0. (B.11.44)

Combining (B.11.3), (B.11.6), and (B.11.44), we have

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Yt−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

) ]
→d N (0, 1) ,

(B.11.45)

as desired.
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Proof of Lemma 7.8(b). To prove part (b), by Lemma 7.7(b), we have

(
1 − ρ2

0,n

)1/2 (
Y nh,−1 − µnh,−1

)
= op (1) . (B.11.46)

Thus, we only need to show

(nh)−1/2
T2∑
t=T1

[
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]
= Op (1) . (B.11.47)

This is done by examining each component of (B.11.47) and showing it is Op (1). Specifically,
by (B.11.2), we expand

(nh)−1/2
T2∑
t=T1

[
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]

= (nh)−1/2
T2∑
t=T1

 σtUt + (ρt − ρ0,n)Y 0
t−1 + (µt − µnh)

−ρ0,n
(
µt−1 − µnh,−1

)
+ (ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

 =:
5∑
i=1

Adi. (B.11.48)

We observe thatAd1 = Op (1) by the central limit theorem for martingale difference sequences.
The proof of Ad2 = op (1) is almost the same as that of Ac2 except that (i) Ad2 does not
have the

(
1 − ρ2

0,n

)1/2
multiplicand, which is O

(
b−1/2
n

)
and (ii) Ad2 has ρt − ρ0,n in place

of µt − µnh, both of which have the same order of O (h/bn) of maximum intertemporal
difference on [T1, T2] by Lemma 7.1(a) and (d). Thus, following an argument identical to
that in (B.11.32), we have

Ad2 = O
(
b1/2
n

)
Op

(
hb−1/2

n

)
= Op (h) = op (1) . (B.11.49)

By the definitions of Ad3 and Ad4, we get Ad3 = Ad4 = 0. Finally, we derive Ad5 = op (1) by
observing

|Ad5| ≤ max
t∈[T1,T2]

|ρt − ρ0,n| (nh)−1/2
T2∑
t=T1

ρt−T1
n

∣∣∣Y ∗
T0

∣∣∣
= O (h/bn) (nh)−1/2 O (bn)Op

(
n1/2

)
= Op

(
h1/2

)
= op (1) , (B.11.50)

where the first equality holds by Lemma 7.1(a), (B.4.3), and (7.15).
Thus, ∑5

i=1 Adi = op (1), (B.11.47) holds, and the proof is complete.

B.12 Proof of Theorem 7.3

In this section, for notational simplicity in the proof, we assume that σ2
0 (τ) = 1.
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Proof of Theorem 7.3. Recall from (7.20) that

(
1 − ρ2

0,n

)−1/2
(nh)1/2 (ρ̂nτ − ρ0,n)

=

(
1 − ρ2

0,n

)1/2
(nh)−1/2∑T2

t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1)(

1 − ρ2
0,n

)
(nh)−1∑T2

t=T1

(
Yt−1 − Y nh,−1

)2 . (B.12.1)

We analyze the denominator and numerator of (B.12.1) separately.
First, for the denominator of (B.12.1), we have

(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Yt−1 − Y nh,−1

)2

=
(
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Yt−1 − µnh,−1

)2
−
(
1 − ρ2

0,n

) (
Y nh,−1 − µnh,−1

)2

=: Af1 + Af2. (B.12.2)

By Lemma 7.7(a) and (b), we have Af1 →p 1 and Af2 →p 0, respectively. Therefore, we
have (

1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
→p 1. (B.12.3)

Next, for the numerator of (B.12.1), we have

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1)

=
(
1 − ρ2

0,n

)1/2
(nh)−1/2

×
T2∑
t=T1

[
Yt−1 − µnh,−1 −

(
Y nh,−1 − µnh,−1

) ] [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

) ]

=
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Yt−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]

+
(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Y nh,−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]
=:Af3 + Af4. (B.12.4)

By Lemma 7.8(a) and (b), we have Af3 →d N (0, 1) and Af4 →p 0, respectively. Therefore,
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we obtain

(
1 − ρ2

0,n

)1/2
(nh)−1/2

T2∑
t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1) →d N (0, 1) . (B.12.5)

Combining (B.12.3) and (B.12.5), we have

(
1 − ρ2

0,n

)−1/2
(nh)1/2 (ρ̂nτ − ρ0,n) →d N (0, 1) . (B.12.6)

For the t-statistic Tn (ρ0,n), by (3.4), (3.5), (B.12.6), and the CMT, we only need to show

(
1 − ρ2

0,n

)−1
ŝ2
nτ =

(nh)−1∑T2
t=T1

[
Yt − Y nh − ρ̂nτ

(
Yt−1 − Y nh,−1

)]2
(
1 − ρ2

0,n

)
(nh)−1∑T2

t=T1

(
Yt−1 − Y nh,−1

)2 →p 1. (B.12.7)

Equation (B.12.3) shows that the denominator converges in probability to one. For the
numerator of (B.12.7), we have

(nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ̂nτ

(
Yt−1 − Y nh,−1

)]2

= (nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)]2

+ (nh)−1
T2∑
t=T1

[
(ρ̂nτ − ρ0,n)

(
Yt−1 − Y nh,−1

)]2

+ 2 (nh)−1
T2∑
t=T1

 (ρ̂nτ − ρ0,n)
(
Yt−1 − Y nh,−1

)
×
[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)]


=:Af5 + Af6 + Af7. (B.12.8)

We show Af5 →p 1 and Af6 →p 0, which imply Af7 →p 0 by the CS inequality.
For Af5, we have

(nh)−1
T2∑
t=T1

[
Yt − Y nh − ρ0,n

(
Yt−1 − Y nh,−1

)]2

= (nh)−1
T2∑
t=T1

[
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]2
+
[
Y nh − µnh − ρ0,n

(
Y nh,−1 − µnh,−1

)]2
+ 2 (nh)−1

T2∑
t=T1


[
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]
×
[
Y nh − µnh − ρ0,n

(
Yt−1 − µnh,−1

)]

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=:Af51 + Af52 + Af53. (B.12.9)

We show Af51 →p 1 and Af52 →p 0, which imply Af53 →p 0. Recall that by (B.11.2), we
have

Af51 = (nh)−1
T2∑
t=T1

 σtUt + (ρt − ρ0,n)Y 0
t−1 + (µt − µnh)

−ρ0,n
(
µt−1 − µnh,−1

)
+ (ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

2

= (nh)−1
T2∑
t=T1

(σtUt)2

+ (nh)−1
T2∑
t=T1

 (ρt − ρ0,n)Y 0
t−1 + (µt − µnh)

−ρ0,n
(
µt−1 − µnh,−1

)
+ (ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

2

+ 2 (nh)−1
T2∑
t=T1

σtUt

 (ρt − ρ0,n)Y 0
t−1 + (µt − µnh)

−ρ0,n
(
µt−1 − µnh,−1

)
+ (ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0


=:Af511 + Af512 + Af513. (B.12.10)

By (B.8.18), we have Af511 →p 1. For Af512, we have

(nh)−1
T2∑
t=T1

[
(ρt − ρ0,n)Y 0

t−1

]2

≤ max
t∈[T1,T2]

(ρt − ρ0,n)2
(
1 − ρ2

0,n

)−1 (
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2

= O
(
(h/bn)2

)
O (bn)Op (1) = op (1) , (B.12.11)

where the first equality holds by Lemmas 7.1(a) and 7.6(b), and the fact that
(
1 − ρ2

0,n

)−1
=

O (bn). Additionally, by Lemmas 7.1(a), 7.1(d), and 7.2(a), and (7.16), we have

(nh)−1
T2∑
t=T1

(µt − µnh)
2 →p 0, (B.12.12)

and

(nh)−1
T2∑
t=T1

[
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

]2

≤ (nh)−1 max
t∈[T1,T2]

(ρt − ρ0,n)2
T2∑
t=T1

ρ2(t−T1)
n Op (n) = Op

(
(nh)−1 (h/bn)2 nbn

)
= op (1) .

(B.12.13)
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Similarly to (B.12.12), we have

(nh)−1
T2∑
t=T1

[
ρ0,n

(
µt−1 − µnh,−1

)]2
→p 0 (B.12.14)

since |ρ0,n| ≤ 1. By (B.12.11)–(B.12.14) and the CS inequality, we have Af512 →p 0. Then,
by Af511 →p 1, Af512 →p 0, and the CS inequality, we have Af513 →p 0. Thus, Af51 →p 1.

Next, for Af52 we have

Y nh − µnh − ρ0,n
(
Y nh,−1 − µnh,−1

)
= (nh)−1

T2∑
t=T1

[
σtUt + (ρt − ρ0,n)Y 0

t−1 + (ρt − ρ0,n) ct−1,t−1−T0Y
∗
T0

]
=:Af521 + Af522 + Af523. (B.12.15)

By the weak law of large numbers, Af521 →p 0. For Af522, we have

A2
f522 =

(nh)−1
T2∑
t=T1

[
(ρt − ρ0,n)Y 0

t−1

]
2

≤ max
t∈[T1,T2]

(ρt − ρ0,n)2
(
1 − ρ2

0,n

)−1 (
1 − ρ2

0,n

)
(nh)−1

T2∑
t=T1

(
Y 0
t−1

)2

= O
(
h2/b2

n

)
O (bn)Op (1) = op (1) , (B.12.16)

where the inequality holds by the CS inequality and the second last equality holds by Lemmas
7.1(a) and 7.6(b).

For Af523, we have

|Af523| =

∣∣∣∣∣∣(nh)−1
T2∑
t=T1

[
(ρt − ρ0,n) ct−1,t−1−T0Y

∗
T0

]∣∣∣∣∣∣
≤ (nh)−1 O (h/bn)O (bn)Op

(
n1/2

)
= op (1) , (B.12.17)

where the inequality holds by Lemmas 7.1(a) and 7.2(a), (7.13), and (7.15). Combining the
results, we have Af5 →p 1.

For Af6, we use (B.12.6) and obtain

(nh)−1
T2∑
t=T1

[
(ρ̂nτ − ρ0,n)

(
Yt−1 − Y nh,−1

)]2
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=
[(

1 − ρ2
0,n

)−1
nh (ρ̂nτ − ρ0,n)2

] (1 − ρ2
0,n

)
(nh)−1

T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
 / (nh)

= Op (1)Op (1) / (nh) = op (1) , (B.12.18)

where the second equality holds by (B.12.3) and (B.12.6).
Therefore, we have shown that the quantity in (B.12.8) equals 1 + op (1). This and

(B.12.3) establish (B.12.7) and the proof of the result for the t-statistic is complete.
The subsequence versions of Lemmas 7.6–7.8 and Theorem 7.3, see Remark 7.3, which

have {pn}n≥1 in place of {n}n≥1, are proved by replacing n by pn and h = hn by hpn

throughout the proofs above.

B.13 Proof of Lemma 7.9

Proof of Lemma 7.9. By the definition of ĥopt, Ln(ĥopt)/Ln(ĥ) ≤ 1 ∀n ≥ 1. So, the result
of the lemma follows from Ln(ĥopt)/Ln(ĥ) ≥ 1 + op(1). We have

Ln(ĥopt)
Ln(ĥ)

= Ln(ĥopt) − 2Cn(ĥopt)
Ln(ĥ)

+ 2Cn(ĥopt)
Ln(ĥ)

≥ Ln(ĥ) − 2Cn(ĥ)
Ln(ĥ)

+ 2Cn(ĥopt)
Ln(ĥ)

= 1 − 2Cn(ĥ)
Ln(ĥ)

+ 2Cn(ĥopt)
Ln(ĥ)

= 1 + op(1), (B.13.1)

where the inequality holds because ĥ minimizes Ln(h)−2Cn(h) over Hn and the last equality
holds using Assumption 5 and |Cn (̂hopt)

Ln (̂h)
| ≤ |Cn (̂hopt)

Ln (̂hopt)
| = op(1) since ĥopt minimizes Ln(h) and

using Assumption 5 again.

B.14 Proof of Lemma 7.10

Proof of Lemma 7.10. We have: EC2n(h) = 0 because (i) E(Ut|Gt−1) = 0 a.s. by the
definition of Λn which applies by Assumption 6(a) and (ii) Yt−1 and ρ̂t−1(h) are functions of
(Ut−1, ..., U1, Y

∗
0 ) provided t > nh and these variables are in Gt−1 by the definition of Λn. Let

n∗ := n− nh. Next, we have

V ar (C2n(h)) = E

n−1
∗

n∑
t=nhmax+1

σtUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))
2
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= n−2
∗

n∑
t=nhmax+1

σ2
tEU

2
t (µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2

= n−2
∗

n∑
t=nhmax+1

σ2
tE(µ̂t−1(h) − µt + Y 2

t−1(ρ̂t−1(h) − ρt))2

≤ C3U · n−1
∗ EL2n(h), (B.14.1)

where the first equality holds because EC2n(h) = 0, the second equality holds because,
if t > s (and t > nhmax), EUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))Us(µ̂s−1(h) − µs +
Ys−1(ρ̂s−1(h) − ρs)) = 0 by (i) since (µ̂t−1(h), Yt−1, ρ̂t−1(h), Us, µ̂s−1(h), Ys−1, ρ̂s−1(h)) are
functions of (Ut−1, ..., U1, Y

∗
0 ) and these variables are in Gt−1, and analogously if t < s, the

third equality holds because E(U2
i |Gt−1) = 1 a.s. by the definition of Λn, and the inequality

holds by the bound C3U on the variance function σ2(·) by the definition of Λn, which implies
that σ2

t ≤ C3U and the definition of L2n(h).2

For any positive constant K,

P

(
sup
h∈Hn

∣∣∣∣∣ C2n(h)
ξ

1/2
n V ar1/2(C2n(h))

∣∣∣∣∣ > K

)
≤

∑
h∈Hn

P

(∣∣∣∣∣ C2n(h)
ξ

1/2
n V ar1/2(C2n(h))

∣∣∣∣∣ > K

)

≤
∑
h∈Hn

EC2n(h)2

ξnV ar(C2n(h))K2 = 1
K2 (B.14.2)

for all n ≥ 1, where the second inequality holds by Markov’s inequality. In consequence,

Op(1) = sup
h∈Hn

∣∣∣∣∣ C2n(h)
ξ

1/2
n V ar1/2(C2n(h))

∣∣∣∣∣ ≥ sup
h∈Hn

∣∣∣∣∣∣ n
1/2
∗ C2n(h)

C
1/2
3U ξ

1/2
n (EL2n(h))1/2

∣∣∣∣∣∣ , (B.14.3)

where the equality holds by (B.14.2) and the inequality holds by (B.14.3).We have

sup
h∈Hn

∣∣∣∣∣C2n(h)
L2n(h)

∣∣∣∣∣ = sup
h∈Hn

∣∣∣∣∣∣ n
1/2
∗ C2n(h)

C
1/2
3U ξ

1/2
n (EL2n(h))1/2

C
1/2
3U ξ

1/2
n (EL2n(h))1/2

n
1/2
∗ L2n(h)

∣∣∣∣∣∣
= Op(1) · sup

h∈Hn

ξ1/2
n (EL2n(h))1/2

n
1/2
∗ L2n(h)

. (B.14.4)

2One could consider EC2n (h)m for some even number m > 2, rather than the variance of C2n(h). With
i.i.d. observations {Yi}i≤n, this would yield a bound that decreases to zero faster as a function of n∗ than
n−1

∗ , which appears in (B.14.1) for the case of m = 2. However, in the present model, a faster rate is not
obtained for m > 2 because the summands in the m-fold sum are zero only when the largest index of
UaUb · · · Ut is unique, not when any index is unique, as occurs with i.i.d. summands.
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The right-hand side expression is op(1) iff

inf
h∈Hn

n
1/2
∗ L2n(h)

ξ
1/2
n (R2n(h))1/2

→p ∞ iff inf
h∈Hn

n
1/2
∗ (R2n(h))1/2

ξ
1/2
n

→ ∞ iff n infh∈Hn R2n(h)
ξn

→ ∞,

(B.14.5)
where the first “iff” uses R2n(h) = EL2n(h), the second “iff” uses Assumption 6(c), the third
“iff” uses Assumption 6(d), and the last condition holds by Assumption 6(e). In consequence,
suph∈Hn

∣∣∣C2n(h)
L2n(h)

∣∣∣ = op(1). This, combined with Assumption 6(b) and L2n(h) ≥ 0 ∀h, verifies
Assumption 5.

B.15 Proof of Theorem B.1

To show that Theorem 7.3 holds with Assumption 2 replaced by Assumption 2*, the
proof of Theorem B.1 uses the following extension of Lemma 7.1 that improves its bounds
in the case where ℓn → 0 as n → ∞.

Lemma B.3. Under Assumptions 1 and 3,

(a) maxt∈[T1,T2] |ρt − ρnτ | = O(ℓnh/bn),

(b) maxt∈[T1,T2] |σ2
t − σ2

nτ | = O(ℓnh),

(c) maxt∈[T1,T2] |ct,j − ρjnτ | = O(ℓnnh2/bn), and

(d) maxt∈[T1,T2] |µt − µnτ | = O(ℓnh/bn).

Proof of Lemma B.3. Part (a) holds by the proof of Lemma 7.1(a) by replacing the
Lipschitz bound L4 in (B.3.1) by ℓn, which implies that the rhs bound in (B.3.1) becomes
O(ℓnh). In turn, the rhs bound in (B.3.2) becomes O(ℓnh/bn). Parts (b)-(d) then hold by
the same argument as in the proof of Lemma 7.1 with the additional term ℓn appearing in
each of the error bounds.

Proof of Theorem B.1. First, we show that Theorem 7.2 holds with Assumption 2 re-
placed by Assumption 2*. Assumption 2 enters the proof of Theorem 7.2 only through its
application of Lemma 7.2(b), which relies on Assumption 2. In turn, Assumption 2 enters
the proof of Lemma 7.2(b) only through its use in (B.4.10) to show that h1/2 ln(n) = o(1).
Since the latter holds under Assumption 2*(ii), this completes the proof for Theorem 7.2
under Assumption 2*.

Next, we show that Theorem 7.3 holds with Assumption 2 replaced by Assumption 2*.
Assumption 2 enters the proof of Theorem 7.3 only through its application of Lemmas
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7.7 and 7.8(a), which both use Assumption 2. Assumption 2 enters the proof of Lemma
7.7 only through its application of Lemma 7.2(c), which relies on Assumption 2. In turn,
Assumption 2 enters the proof of Lemma 7.2(c) only through its use in (B.4.12) to show that
h ln(n) = o(1). The latter holds under Assumption 2*(ii).

Assumption 2 is used in the proof of Lemma 7.8(a) in equations (B.11.15), (B.11.24), and
(B.11.39) and because the proof applies Lemma 7.2(c) (which we have just shown to hold
under Assumption 2*(ii)). To verify (B.11.15) using Assumption 2* in place of Assumption
2, we bound |κ′′

0,n(τ̃n,t)| by ℓn in the fourth last line of (B.11.15) (which is why ℓn is defined
to bound the absolute value of second derivative of κn(·) = κ0,n(·) over the interval Iτ,ε2).
This leads to ℓn

∑T2
t=T1(t/n− τ)2 appearing in place of ∑T2

t=T1(t/n− τ)2 in the third last line
of (B.11.15), which in turn leads to ℓnnh · h2 appearing in place of nh · h2 in the second last
line of (B.11.15). The latter leads to (nℓ2

nh
5)1/2 appearing in place of (nh5)1/2 in two places

in the last line of (B.11.15). Since (nℓ2
nh

5)1/2 = o(1) by Assumption 2*(i), (B.11.15) holds
under Assumption 2*.

To verify (B.11.24) under Assumption 2*, we employ Lemma B.3(b) and (c) to yield the
rhs of (B.11.20) to be jρj−1

n O(ℓnh/bn)+ρjnO(ℓnh) rather than jρj−1
n O(h/bn)+ρjnO(h) (which

is why ℓn is defined to bound the Lipschitz constants for κn(·) and σ2
n(·) over the interval

Iτ,ε2). In consequence, each of the terms on the last line of (B.11.21) gets multiplied by ℓ2
n,

and so, the rhs of (B.11.21) becomes O(ℓ2
nbnh

2). In turn, this causes O(ℓnb1/2
n h) to appear in

place of O(b1/2
n h) at the end of the first line of (B.11.24). And this causes O(n1/2ℓnh

5/2b−1/2
n )

and O((nℓ2
nh

5)1/2) to appear in place of O(n1/2h5/2b−1/2
n ) and O((nh5)1/2), respectively, in

the last line of (B.11.24). Since O((nℓ2
nh

5)1/2) = o(1) under Assumption 2*(i), (B.11.24)
holds under Assumption 2*.

To verify (B.11.39) under Assumption 2*, we employ Lemma B.3(d) to yield the
bound O((nℓ2

nh
5/b5

n)1/2) rather than the bound O((nh5/b5
n)1/2) in (B.11.39). Since

O((nℓ2
nh

5/b5
n)1/2) = o(1) under Assumption 2*(i) (which is why ℓn is defined to bound the

Lipschitz constant for ηn(·) over the interval Iτ,ε2), (B.11.39) holds under Assumption 2*.
This completes the proof.

C Additional Simulation Results

For a discussion of the results given in Figures SM.1–SM.4 below, see Section 5 of the
paper.

61



(a) sin 1.00-0.90-1.00, time-varying µ and σ
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(b) sin 0.90-1.00-1.00, time-varying µ and σ
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(c) sin 1.00-0.80-1.00, time-varying µ and σ
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(d) sin 0.80-1.00-0.80, time-varying µ and σ
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(e) sin 1.00-0.60-1.00, time-varying µ and σ
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(f) sin 0.60-1.00-0.60, time-varying µ and σ
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Figure SM.1: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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(a) linear 0.90-1.00, time-varying µ and σ
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(b) linear 1.00-0.90, time-varying µ and σ
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(c) linear 0.60-0.90, time-varying µ and σ
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(d) linear 0.90-0.60, time-varying µ and σ
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(e) flat-lin 0.99-0.90, constant µ and σ
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(f) flat-lin 0.99-0.90, time-varying µ and σ
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Figure SM.2: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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(a) flat-lin 0.99-0.80, constant µ and σ
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(b) flat-lin 0.99-0.80, time-varying µ and σ
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(c) flat 0.75, constant µ and σ
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(d) flat 0.75, time-varying µ and σ
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(e) kinked 1.00-0.80-1.00, constant µ and σ
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(f) kinked 1.00-0.80-1.00, time-varying µ and σ
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Figure SM.3: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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(a) kinked 0.80-1.00-0.80, constant µ and σ
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(b) kinked 0.80-1.00-0.80, time-varying µ and σ
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(c) kinked 1.00-0.60-1.00, constant µ and σ
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(d) kinked 1.00-0.60-1.00, time-varying µ and σ
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(e) kinked 0.60-1.00-0.60, constant µ and σ
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(f) kinked 0.60-1.00-0.60, time-varying µ and σ
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Figure SM.4: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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D Extension to TVP-AR(p) Models

Here we discuss how the methods introduced in the paper for a TVP-AR(1) model can
be extended to a TVP-AR(p) model. We combine the approach discussed above with a
method for constant parameter AR(p) models that is similar to, but somewhat different
from, methods that have been considered in the literature to date. It is similar to Hansen’s
(1999) grid bootstrap, also see Mikusheva (2007, Sec. 7), but uses asymptotic critical values,
rather than bootstrap critical values, which eases computation considerably in the time-
varying case because the tabulated quantiles for the AR(1) case can be utilized (with an
adjustment of the ψnh value that is employed). Asymptotic results for p > 1 are beyond the
scope of this paper and are not provided here.

Consider the following TVP-AR(p) model written in augmented Dickey-Fuller (ADF)
form:

Yt = µt + Y ∗
t and

Y ∗
t = ρtY

∗
t−1 +

p−1∑
j=1

βjt∆Y ∗
t−j + σtUt, for t = 1, ..., n, (D.1)

where ∆Y ∗
t−j = Y ∗

t−j − Y ∗
t−j−1 for j = 1, ..., p− 1. Here, µt, ρt, σt, and Ut are as in Section 2.

The coefficients βjt are possibly time varying and satisfy analogous properties to those of µt.
The parameter ρt is the sum of the p AR coefficients. It is the parameter of interest because
it is a suitable measure of the persistence of the time series, see Andrews and Chen (1994,
Sec. 2.2) for a discussion. As in Section 2, ρt := ρ (t/n) and, for τ ∈ (0, 1) , we consider
estimation and inference concerning ρ (τ) .

To construct a CI for ρ (τ) in the AR(p) model, we proceed as follows. First, consider
the regression of Yt on a constant, Yt−1, ∆Yt−1, ...,∆Yt−p+1 for t = T1, ..., T2, where ∆Ys :=
Ys − Ys−1. For arbitrary ρ0 ∈ (−1, 1], let Tn (ρ0, p) be the t-statistic for testing the null
hypothesis that the coefficient on the regressor Yt−1 in this regression equals ρ0. Second,
compute β̂(ρ0) ∈ Rp−1 from the regression of Yt − ρ0Yt−1 on a constant, ∆Yt−1, ...,∆Yt−p+1

for t = T1, ..., T2. Third, one computes

ψpnh,ρ0 := −nh ln(ρ0)
λ̂(ρ0)

for ρ0 > 0 and ψpnh,ρ0 := ∞ for ρ0 ≤0, where λ̂(ρ0) := 1 −
p−1∑
j=1

β̂j(ρ0).

(D.2)
A nominal 1 − α equal-tailed two-sided CI for ρ(τ) is given by the formula in (3.10) with
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Tn (ρ0, p) in place of Tn (ρ0) and with ψpnh,ρ0 in place of ψnh,ρ0 in the critical values. A median-
unbiased interval estimator ρ̃nτ of ρ (τ) is defined as in Section 3.3 with the same changes.
For the motivation behind the definition of ψpnh above, see Hansen (1995, 1999).

Note that the only computational difference between the above CI’s for ρ in the TVP-
AR(1) and TVP-AR(p) models is that the latter requires the computation of β̂(ρ0) for a fine
grid of ρ0 values and each value τ of interest. In contrast, if one replaces the critical values
cψp

nh
(α/2) and cψp

nh
(1 − α/2) by the α/2 and 1 − α/2 quantiles of a bootstrap test statistic,

e.g., as in Hansen’s (1999) grid bootstrap, then one needs to simulate these quantiles for
a fine grid of ρ0 values for each τ of interest, which is computationally quite expensive for
reasonable choices of the number of simulation repetitions.

Some empirical applications with p = 6 and 12 are reported in Section E below.

E Additional Empirical Results

In this section, we present results for some additional time series in the IFS dataset and
some in the FRED dataset. Some of these series require a TVP-AR(p) model for p > 1.

As noted in the Introduction, and described in Section D of the Supplemental Material,
the methods introduced above for the TVP-AR(1) model can be extended to TVP-AR(p)
models with p > 1. In the TVP-AR(p) model, the parameter ρt is the sum of the autore-
gressive coefficients at time t, or equivalently, the coefficient at time t on the lagged Yt value
in the augmented Dickey-Fuller representation of the model. This coefficient is a suitable
measure of the persistence of the time series at time t, e.g., see Andrews and Chen (1994,
Sec. 2.2).

For each time series, we estimate a TVP-AR(p) model with p = 1, 6, 12 and examine the
degree of autocorrelation of the corresponding residuals by computing Ljung-Box tests with
six lags of the residuals. For each time series, we present the results from the TVP-AR(p)
model with the smallest value of p for which the null hypothesis of no autocorrelation is not
rejected at the 5% level. When p ∈ {6, 12}, the MUE’s and CI’s are for the time-varying
autoregressive parameter corresponding to the lagged dependent variable in ADF form. We
group the results based on the selected p in the figures.

First, we consider additional time series from the IFS dataset, which include real exchange
rate series for Norway, Canada, and Japan, interest rate series for Australia, Canada, and the
US, and inflation series for Switzerland. The definition of real exchange rates and inflation
are the same as described in Section 6.1 and 6.2, respectively. For the interest rate series,
we use the monthly interbank interest rate, which is a key monetary tool for central banks
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to achieve their policy goals. More details about the length, time period, and frequency of
the additional IFS series can be found in Tables SM.2–SM.4.

Figure SM.5 presents the MUE’s and 90% CI’s of ρ (t) for the additional real exchange
rate series. We fit a TVP-AR(1) model for Norway and TVP-AR(6) model for Canada
and Japan based on the Ljung-Box tests results. Across all three countries, the MUE’s
are close to one with reasonably tight 90% CI’s. The selected nĥus values are quite large,
consistent with the parameter estimates that show little time variation. The results echo the
empirical findings of high real exchange rate persistence for the developed countries presented
in Section 6.2.

Figure SM.6 shows that the MUE’s of ρ (t) for the interest rate series from a TVP-AR(6)
model are close to one with a moderate degree of variation over time. Most notable are the
estimates of ρ (t) for Canada and the US during the period around 2012 when the MUE’s
drop to as low as .7. The 90% CI’s are fairly tight. In comparison, the constant parameter
MUE’s from an AR(6) model are uniformly one for the three series.

Figure SM.9(a)–(b) summarizes the results for estimating a TVP-AR(12) model for the
Switzerland inflation series. The MUE’s of ρ (t) are quite volatile over time, ranging between
-.6 and 1 in Figure SM.9(a). This is different from the constant parameter estimate which
is close to .9, highlighting the importance of allowing for possible time variation in the
autoregressive parameters in these models.

Second, we consider the FRED series. We have a total of eight time series for the US,
including the 10 year bond yield, average wages for the manufacturing sector, industrial
production, real GDP per capita, real GNP, real GNP per capita, S&P 500 index, and the
unemployment rate. We provide details about the length, time period, and frequency of the
FRED series in Tables SM.3–SM.4.

Figures SM.7–SM.8 show the results from estimating a TVP-AR(6) model for the US
FRED series for which the null hypothesis of no autocorrelation is not rejected at the 5%
level. In Figure SM.7(e) and (f), there are some variation in the MUE’s of ρ (t) for the US
unemployment rate series, however the magnitude is small. For all other series in Figures
SM.7–SM.8, the MUE’s of ρ (t) are uniformly one or very close to one over time and almost
the same as constant parameter estimates. All of the 90% CI’s are tight with a length smaller
than .02. The selected nĥus values are large, in line with the parameter estimates that show
little time variation. Hence, the methods proposed in the paper deliver a constant parameter
unit root, or near unit root, model in circumstances in which such a model is appropriate.

Figure SM.9(c)–(f) provides the results for fitting a TVP-AR(12) model to the time series
on the S&P 500 index and the US industrial production. For the S&P 500 index series, the
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MUE’s of ρ (t) are one and similar to the constant parameter estimates. The results are
consistent with predictions from a random walk hypothesis for the US stock markets. For
the US industrial production series, the MUE’s of ρ (t) in Figure SM.9(e) are close to 1 for
most of the time except before 1925 and after 2010. It may be caused by a boundary effect.

Table SM.2: Autocorrelation Test Results for Residuals from Estimating TVP-AR(1) Model

From To Frequency n nĥus
Ljung-Box Test

p-Value

US Inflation 1/2/1955 1/10/2022 monthly 813 125 .27
US Inflation 1/2/1955 1/10/2022 monthly 813 188 .28
Canada Inflation 1/2/1955 1/10/2022 monthly 813 125 .38
Canada Inflation 1/2/1955 1/10/2022 monthly 813 188 .22
Germany Inflation 1/2/1955 1/10/2022 monthly 813 125 .76
Germany Inflation 1/2/1955 1/10/2022 monthly 813 188 .81
UK Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 823 .52
UK Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 1,234 .51
Sweden Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 823 .28
Sweden Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 1,234 .28
Switzerland Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 393 .56
Switzerland Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 590 .54
Norway Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 823 .37
Norway Real Exchange Rate 1/1/1957 1/8/2022 monthly 788 1,234 .38
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Table SM.3: Autocorrelation Test Results for Residuals from Estimating TVP-AR(6) Model

From To Frequency n nĥus
Ljung-Box Test

p-Value

Canada Real Exchange Rate 1/1/1957 1/8/2022 Monthly 788 823 1.00
Canada Real Exchange Rate 1/1/1957 1/8/2022 Monthly 788 1,234 1.00
Japan Real Exchange Rate 1/1/1957 1/8/2022 Monthly 788 823 .81
Japan Real Exchange Rate 1/1/1957 1/8/2022 Monthly 788 1,234 .84
Australia Interest Rate 1/5/1976 1/4/2017 Monthly 492 160 .97
Australia Interest Rate 1/5/1976 1/4/2017 Monthly 492 240 .98
Canada Interest Rate 1/5/1976 1/4/2017 Monthly 492 95 .95
Canada Interest Rate 1/5/1976 1/4/2017 Monthly 492 143 .97
US Interest Rate 1/5/1976 1/4/2017 Monthly 492 103 .98
US Interest Rate 1/5/1976 1/4/2017 Monthly 492 155 .97
US 10yr Bond Yield 2/1/1962 20/1/2023 Daily 15248 16,006 1.00
US 10yr Bond Yield 2/1/1962 20/1/2023 Daily 15248 24,009 1.00
US Average Wages Manufacturing 1/1/1939 1/12/2022 Monthly 1008 152 .12
US Average Wages Manufacturing 1/1/1939 1/12/2022 Monthly 1008 228 .27
US Unemployment Rate 1/1/1948 1/12/2022 Monthly 900 900 .98
US Unemployment Rate 1/1/1948 1/12/2022 Monthly 900 1,350 .99
US Real GDP Per Capita 1/1/1947 1/7/2022 Quarterly 303 317 .97
US Real GDP Per Capita 1/1/1947 1/7/2022 Quarterly 303 476 .98
US Real GNP 1/1/1947 1/7/2022 Quarterly 303 317 1.00
US Real GNP 1/1/1947 1/7/2022 Quarterly 303 476 .48
US Real GNP Per Capita 1/1/1947 1/7/2022 Quarterly 303 317 .96
US Real GNP Per Capita 1/1/1947 1/7/2022 Quarterly 303 476 .99

Table SM.4: Autocorrelation Test Results for Residuals from Estimating TVP-AR(12) Model

From To Frequency n nh
Ljung-Box Test

p-Value

Switzerland Inflation 1/2/1955 1/10/2022 Monthly 813 125 .96
Switzerland Inflation 1/2/1955 1/10/2022 Monthly 813 188 .63

S&P 500 Index 24/1/2013 23/1/2023 Daily 2517 2,518 1.00
S&P 500 Index 24/1/2013 23/1/2023 Daily 2517 3,777 1.00

US Industrial Production 1/1/1919 1/12/2022 Monthly 1248 368 1.00
US Industrial Production 1/1/1919 1/12/2022 Monthly 1248 551 .97
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(a) Norway Real Exchange Rate, nĥus = 823

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1960 1980 2000 2020
Year

E
st

im
at

es
 a

nd
 9

0%
 C

I's
 fo

r 
th

e 
A

R
(1

) 
C

oe
ffi

ci
en

t

(b) Norway Real Exchange Rate, 1.5nĥus = 1,234
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(c) Canada Real Exchange Rate, nĥus = 823
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(d) Canada Real Exchange Rate, 1.5nĥus = 1,234
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(e) Japan Real Exchange Rate, nĥus = 823
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(f) Japan Real Exchange Rate, 1.5nĥus = 1,234
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Figure SM.5: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR Models:
Norway Real Exchange Rate (TVP-AR(1)), Canada and Japan Real Exchange Rate (TVP-
AR(6)) 71



(a) Australia Interest Rate, nĥus = 160

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1980 1990 2000 2010
Year

E
st

im
at

es
 a

nd
 9

0%
 C

I's
 fo

r 
th

e 
S

um
 o

f t
he

 A
R

 C
oe

ffi
ci

en
ts

(b) Australia Interest Rate, 1.5nĥus = 240
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(c) Canada Interest Rate, nĥus = 95
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(d) Canada Interest Rate, 1.5nĥus = 143
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(e) US Interest Rate, nĥus = 103
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(f) US Interest Rate, 1.5nĥus = 155
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Figure SM.6: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: Australia, Canada, and the US Interest Rate
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(a) US 10yr Bond Yield, nĥus = 16,006
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(b) US 10yr Bond Yield, 1.5nĥus = 24,009
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(c) US Avg Wages Manufacturing, nĥus = 152
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(d) US Avg Wages Manufacturing, 1.5nĥus = 228
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(e) US Unemployment Rate, nĥus = 900
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(f) US Unemployment Rate, 1.5nĥus = 1,350
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Figure SM.7: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: US 10yr Bond Yield, US Average Wages Manufacturing, and US Unemployment
Rate 73



(a) US Real GDP Per Capita, nĥus = 317
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(b) US Real GDP Per Capita, 1.5nĥus = 476
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(c) US Real GNP, nĥus = 317
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(d) US Real GNP, 1.5nĥus = 476
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(e) US Real GNP Per Capita, nĥus = 317
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(f) US Real GNP Per Capita, 1.5nĥus = 476
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Figure SM.8: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(6)
Models: US Real GDP Per Capita, US Real GNP, and US Real GNP Per Capita

74



(a) Switzerland Inflation, nĥus = 125
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(b) Switzerland Inflation, 1.5nĥus = 188
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(c) S&P 500 Index, nĥus = 2,518
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(d) S&P 500 Index, 1.5nĥus = 3,777
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(e) US Industrial Production, nĥus = 368
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(f) US Industrial Production, 1.5nĥus = 551
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Figure SM.9: Estimates and 90% CI’s for the Sum of the AR Coefficients in TVP-AR(12)
Models: Switzerland Inflation, S&P 500 Index, and US Industrial Production
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