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Abstract

This paper studies equilibrium and welfare in a class of regulated health insurance markets known

as exchanges. We use detailed health plan choice and utilization data to model individual-level (i)

projected health risk and (ii) risk preferences. We combine the estimated distributions of risk and

risk preferences with a model of competitive insurance markets to predict allocations and prices

under different counterfactual regulations and several equilibrium solution concepts. We investigate

the welfare implications of different pricing regulations, with a focus on (i) adverse selection and

(ii) premium re-classification risk.

We find that market unravelling from adverse selection is substantial under the proposed pricing

rules in the Affordable Care Act (ACA), implying limited coverage for individuals beyond the

lowest tier (Bronze) health plan. Though adverse selection can be attenuated by allowing (partial)

pricing of health status, the welfare loss from re-classification risk is substantially higher than the

gains of increasing coverage. We compute the subsidies / tax penalties required to induce different

levels of participation in the exchanges.
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1 Introduction

Health insurance markets almost everywhere are subject to a variety of regulations. In the United

States, the recently passed Patient Protection and Affordable Care Act (PPACA) defines a class of

regulated markets, exchanges, in which insurers must offer annual policies that comply with several

pricing rules.1 Subject to these restrictions, each of the 50 U.S. states will have flexibility in the way

they set up their state-specific exchanges, which are required to begin operation by 2014. While there

has certainly been a great deal of public discussion concerning the desirability of this reform, there

has been surprisingly little formal analysis of the likely outcomes in these exchanges and the welfare

impacts of alternative designs.

This paper sets up and empirically investigates a model of insurer competition in a regulated

marketplace, motivated by these exchanges. The primary issue that we address is how changes to the

rules governing premiums would impact consumer welfare. One of the notable features of the PPACA is

its prohibition on pricing nearly all pre-existing conditions. This rule can directly impact two distinct

determinants of consumer welfare: adverse selection and re-classification risk.2 Adverse selection is

present when there is individual-specific information that can’t be priced, and sicker individuals tend

to select greater coverage.3 Reclassification risk, on the other hand, arises when insurance contracts

are of limited duration and changes in health status lead to changes in premiums. In our setting,

reductions in the extent to which premiums can be based on pre-existing conditions are likely to

increase the extent of adverse selection, but reduce the reclassification risk that insured individuals

face. For example, when pricing based on pre-existing conditions is completely prohibited (which is

close to the case in the current regulation), reclassification risk is eliminated but adverse selection is

likely to be present. At the other extreme, were unrestricted pricing based on health status allowed,

adverse selection would be completely eliminated. We would then expect all individuals to obtain full

insurance, although at a very high price once they get sick. Thus, in determining the degree to which

pricing of pre-existing conditions should be allowed, a regulator needs to consider the potential trade-off

between adverse selection and re-classification risk.

To study the impact of counterfactual regulation, we develop a stylized model of an insurance

exchange that builds on work by Rothschild and Stiglitz (1976), Wilson (1977), Miyazaki (1977),

Riley (1985) and Engers and Fernandez (1987) who modeled competitive markets with asymmetric

information. In the model, the population is characterized by a joint distribution of risk preferences

and health risk and there is free entry of insurers. Throughout the analysis, we fix two classes of

insurance contracts that each insurer can offer: a more comprehensive contract that has 90% actuarial

1For example, they must offer the same premium to different indivduals of the same age, and premiums to individuals

of different ages cannot differ by more than a 3:1 ratio. As we discuss below, the PPACA also bans pricing based on

nearly all pre-existing conditions.
2Each of these phenomena is often cited as a key reason why market regulation is so prevalent in this sector in the

first place.
3See Akerlof (1970) and Rothschild and Stiglitz (1976) for seminal theoretical work.
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value, and a less comprehensive contract that has 60% actuarial value.4 These contracts are required

to be annual, as in the current legislation. Finally, in our base specification, insurers are in one case

prohibited from pricing pre-existing conditions, and in the other are allowed to partially price based

on an individual’s health status.

The challenges in conducting this analysis are both theoretical and empirical. From the theoretical

perspective, the analysis of competitive markets under asymmetric information, specifically insurance

markets, is delicate. Equilibria are diffi cult to characterize, can be sensitive to the contracting assump-

tions, and are often fraught with non-existence. On the empirical side, any prediction of exchange

outcomes must naturally depend on the extent of information asymmetries, that is, on the distribution

of risks and the information in the hands of insurees. Thus, a key empirical challenge is identifying

these distributions.

To deal with the equilibrium existence problems highlighted by Rothschild and Stiglitz (1976) we

focus on two other concepts developed in the theoretical literature: Riley equilibria [Riley (1979)] and

Wilson equilibria [Wilson (1977)]. Under the Riley notion, firms consider competitors’reactions, thus,

deviations rendered unprofitable by subsequent reactions are not undertaken. In contrast, in the Wilson

equilibrium concept, firms avoid moves that become unprofitable once rivals withdraw policies that are

rendered unprofitable. In our model both Riley and Wilson equilibrium exist. The main role of the

theoretical analysis is to provides an algorithm to find Nash equilibria, should they exist, as well as

Riley and Wilson equilibria.

We develop a long-run welfare model that integrates premium risk, conditional on the pricing regu-

lation and underlying risk transitions. This model evaluates welfare from the perspective of an ex-ante

unborn individual, and follows an individual through many consecutive one-year markets characterized

by the static model.

To empirically study the impact of price regulation on adverse selection and re-classification risk we

need a population of potential insureds for whom we observe both health status and risk preferences.

We obtain this information using individual-level health plan choice and health claims data for the

employees of a large firm and their dependents. We leverage several unique features of the data to cleanly

identify risk preferences including (i) a year where all employees made active, non-default choices, due

to a menu change and (ii) the fact that the plans available differ financially, but not in terms of provider

availability. To estimate risk preferences and health risk, we develop a structural choice model [closely

following Handel (2011)] that jointly quantifies risk preferences and ex ante health risk. In the model,

consumers make choices that maximize their expected utilities over all plan options conditional on their

risk tastes and health risk distributions. We allow for heterogeneity in risk preferences so that we have

the richest possible understanding of how consumers select plans.

To model health risk perceived by employees at the time of plan choice, we use the methodology

4Actuarial value reflects the proportion of total expenses that an insurance contract would cover if the entire population

were enrolled. The two values selected reflect the most and least comprehensive insurance contrats that are allowed under

the exchange legislation (in that legislation 70% and 80% actuarial value contracts can also be offered).
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developed in Handel (2011), which characterizes both total cost health risk and plan-specific out-of-

pocket expenditure risk. The model incorporates past diagnostic and cost information into individual-

level and plan-specific expense projections using both (i) sophisticated predictive software developed

at Johns Hopkins Medical School and (ii) a detailed model of how different types of medical claims

translate into out-of-pocket expenditures in each plan. The cost model outputs an individual-plan-

time specific distribution of predicted out-of-pocket expenditures that we incorporate into an expected

utility model under the assumption that consumer beliefs about future health expenditures conform to

our cost model estimates.

We use the estimates from the model to study market equilibria and long-run welfare in counter-

factual market environments with the same stylized features as the theoretical model discussed above.

While we realize that our sample, coming from one large firm, is not an externally valid sample on

which to base a policy conclusion, the depth and scale of the data present an excellent opportunity to

illustrate our methodology. We re-weight our sample to match a more representative population.

We study market simulations where we vary the pricing regulation that we study as well as the notion

of static equilibrium that we employ. Our preliminary results reveal that Riley equilibria completely

unravel in the case where pricing pre-existing conditions is prohibited (i.e., the less comprehensive 60%

plan has 100% market share in equilibrium). When some pricing of pre-existing conditions is allowed

(based on health status quartiles), there is less adverse selection in the sense that both the 60% and

90% plans have positive market share for the two healthiest quartiles (for the sicker two quartiles,

equilibrium still unravels to everyone enrolling in the 60% plan). Wilson equilibria, which allow for

some cross-subsidzation across the 90% and 60% policies, generally lead to interior allocations, but

still involve substantial unraveling. But again, unraveling is reduced when pricing can be based on

pre-existing conditions. Nash equilibria coincide with the Riley outcomes if firms offer only one policy

[as in Rothschild and Stiglitz (1976)], but fail to exist with multi-policy firms.

Of course, in the longer run, pricing pre-existing conditions subjects consumers to re-classification

risk as they transition across health categories over time. Our initial findings for long-run welfare

reveal that the prohibition on pricing pre-existing conditions increases welfare, as the losses from

reclassification risk outweigh any losses due to adverse selection. In addition, we find that the losses

due to reclassification risk, even for our fairly limited pricing of health status based on quartiles, are

quantitatively large.

We use our estimates, and the simulated equilibria to compute the subsidies necessary to guarantee

different levels of participation in the exchange. Absent subsidies, around 20% of the population would

opt out of the exchange when pricing pre-existing conditions is prohibited. A $2,700 subsidy per

person/year would increase coverage to 90%, while $3,555 is needed to for 95% participation.

This paper builds on related work that studies the welfare consequences of adverse selection in

insurance markets by adding in a long-term dimension, whereby price regulation induces a potential

trade-off with re-classification risk. Relevant work that focuses primarily on adverse selection includes
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Cutler and Reber (1998), Cardon and Hendel (2001), Carlin and Town (2009), Lustig (2010), Einav

et al. (2011), and Bundorf at al. (2010). Handel (2011) and Einav et al. (2011) study the welfare

consequences of adverse selection with switching costs and moral hazard respectively. These papers all

focus on welfare in the context of a short-run marketplace. There is limited work studying long run

welfare in insurance markets. Cochrane (2005) studies dynamic insurance from a purely theoretical

perspective in an environment where fully contingent long-run contracts are possible. Herring and Pauly

(2006) studies guaranteed renewable premiums and the extent to which they effectively provide long-run

premium insurance. Hendel and Lizzeri (2003) and Finkelstein at al. (2005) study dynamic insurance

contracts with one-sided commitment, while Koch (2010) studies pricing regulations based on age from

an effi ciency perspective. Finally, Bundorf et al. (2010), while focusing on a static marketplace, also

contains some analysis of re-classification risk in an employer setting using a two-year time horizon

and different subsidy and pricing regulations. To our knowledge, there is no similar work explicitly

studying the long-run welfare impact of re-classification risk and adverse selection as a function of price

regulation in an empirical setting.

The rest of the paper proceeds as follows: In Section 2 we present our model of insurance exchanges

and characterize Riley, Wilson, and Nash equilibria in the context of our model. Section 3 describes

our data, and Section 4 discusses estimation of individual risk preferences. In Section 5 we analyze

equilibria in these exchanges both when pre-existing conditions can be (partially) priced, and when

they cannot. Section 6 analyzes the welfare properties of these equilibria. Section 7 discusses some

extensions of our main analysis, and Section 8 concludes.

2 Model of Health Exchanges

Throughout the paper, we focus on a model of health exchanges where two prescribed policies are

traded. In our basic specification, these policies will cover roughly 90% and 60% respectively of an

insured individual’s costs. As such, we will refer to these as the “90 policy”and the “60 policy.”Within

each exchange, the policies offered by different companies are regarded as perfectly homogeneous by

consumers; only their premiums may differ. There is a set of consumers, who differ in their likelihood

of needing medical procedures and in their preferences (e.g., their risk aversion). We denote by θ ∈
[θ, θ] ⊆ R+ a consumer’s “type,”which we take to be the price difference at which he is indifferent

between a 90 policy and a 60 policy. That is, if P90 and P60 are the premiums (prices) of the two

policies, then a consumer whose θ is below P90 − P60 prefers the 60 policy, a consumer with θ above

P90 − P60 prefers the 90 policy, and one with θ = P90 − P60 is indifferent.

Note that consumers with a given θ may have different underlying medical risks and/or preferences,

but will make identical choices between policies for any prices. Hence, there is no reason to distinguish

among them in the model. Keep in mind, as we define below the costs on insuring type θ buyers,

that those costs represent the expected costs of insuring all the —possibly heterogeneous—individuals
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characterized by a specific θ.

Throughout our main specification, we assume that there is an individual mandate that requires

that individuals purchase one of the two policies.

We specify the costs of insuring an individual of type θ under policy k to be Ck(θ) for k = 90, 60.

Recall that if the price difference is ∆P = P90 − P60, those consumers with θ < ∆P prefer policy 60,

while those with θ > ∆P prefer policy 90. Given this fact, we can define the average costs of serving

the populations who choose each policy for a given ∆P :

AC90(∆P ) ≡ E[C90(θ)|θ ≥ ∆P ]

and

AC60(∆P ) ≡ E[C60(θ)|θ ≤ ∆P ].

Assumption 1: C90(θ) and C60(θ) are continuous increasing functions, with C90(θ) > C60(θ) for

all θ.

The assumption that C90(θ) > C60(θ) for all θ simply says that the 90 policy covers more of a

consumer’s expenses (in expectation) than does the 60 policy.5 The first part of Assumption 1, on

the other hand, is an adverse selection assumption: since the consumers who choose the 90 policy are

those in the set {θ : θ ≥ ∆P}, the assumption implies that the consumers who choose the 90 policy
are higher cost under any given policy than those that choose the 60 policy. Moreover,

AC90(∆P ) > C90(∆P ) > C60(∆P ) > AC60(∆P )

at any ∆P at which both policies are chosen; i.e., at any ∆P ∈ (θ, θ), and ACk(∆P ) is increasing in

∆P for k = 60, 90. It will also be convenient to define for each policy k = 60, 90 the largest and smallest

possible individual and average costs: Ck ≡ Ck(θ), ACk ≡ ACk(θ), Ck ≡ Ck(θ) and ACk ≡ ACk(θ).

To ensure that ACk(∆P ) is continuous in ∆P for k = 90, 60, we also assume the following:

Assumption 2: θ has a continuous distribution function F .

We next define the profits earned by the firms offering the lowest price for a given policy. For any

such lowest price pair (P90, P60) define

Π90(P90, P60) ≡ [P90 −AC90(∆P )][1− F (∆P )]

and

Π60(P90, P60) ≡ [P60 −AC60(∆P )]F (∆P )

as the aggregate profit from consumers who choose each of the two policies. Let

Π(P90, P60) ≡ Π90(P90, P60) + Π60(P90, P60)

5 In our empirical work, the 90 policy will in fact dominate the 60 policy in its coverage levels.
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be aggregate profit from the entire population.

Finally, we make a risk-aversion assumption: if the two policies are priced at fair odds for a given

individual, then that individual strictly prefers the 90 policy:6

Assumption 3: θ > C90(θ)− C60(θ) at any θ ∈ [θ, θ]

Assumption 3 also means that if the 90 price is set to make a consumer indifferent between the two

policies, then the 90 policy is more profitable than the 60 policy.

2.1 Equilibrium Notions and Characterizations

The literature on equilibria in markets with adverse selection started with Rothschild and Stiglitz

(1976). Motivated by the possibility of non-existence of equilibrium in their model, follow-on work by

Riley (1979) [see also Engers and Fernandez (1987)] and Wilson (1977) proposed alternative notions

of equilibrium in which existence was assured in the Rothschild-Stiglitz model. These alternative

equilibrium notions each incorporated some kind of dynamic reaction to deviations [introduction of

additional profitable policies in Riley (1979), and dropping of unprofitable policies in Wilson (1977)],

in contrast to the Nash assumption made by Rothschild and Stiglitz. In addition, follow-on work also

allowed for multi-policy firms [Miyazaki (1977)], in contrast to Rothschild and Stiglitz’s assumption

that each firm offers at most one policy.

Our model differs from the Rothschild-Stiglitz setting in three basic ways. First, the prescription

of health exchanges limits the set of allowed policies. Figure 1, for example, shows the set of feasible

policies in the Rothschild-Stiglitz model (in which each consumer faces just two health states: “healthy”

and “sick”) with two exchanges, one for a 90% policy and the other for a 60% policy. These lie on

lines with slope equal to 1 since a decrease of $1 in a policy’s premium increases consumption by $1

in each state. Second, in our model consumers face many possible health states. Third, while the

Rothschild-Stiglitz model contemplated just two consumer types, we assume there is a continuum of

types of consumers.

In our main analysis we focus on the Riley and Wilson equilibrium notions (“RE” and “WE”

respectively).7 In this section, we characterize these equilibria, which we show always exist in our

model. (The Riley equilibrium outcome is also unique.) We also discuss how these compare to Nash

equilibria (“NE”), which need not exist.

2.1.1 Riley Equilibria

We use the definition provided in Engers and Fernandez (1987):

6The assumption is actually somewhat weaker than this, since it says that this holds for the set of consumers of type

θ when pricing is at fair odds for this set.
7The Riley notion is also known as a “reactive equilibrium.”
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Figure 1: The solid lines with slope equal to 1 indicate the possible consumptions arising with 90% and

60% policies in a two-state (Rothschild-Stiglitz) model of insurance

Definition 1. A Riley equilibrium (RE) is a profitable market offering S, such that for any nonempty

set S′ (the deviation), where S∪S′ is closed and S∩S′ = ∅, there exists a set S′′ (the reaction), disjoint
from S ∪ S′ with S ∪ S′ ∪ S′′ closed, such that:

(i) S′ incurs losses when S ∪ S′ ∪ S′′ is tendered;

(ii) S′′ does not incur losses when any market offering Ŝ containing S ∪ S′ ∪ S′′ is tendered (we then
say S′′ is “safe”or a “safe reaction”).

A deviation S′ that is strictly profitable when S∪S′ is offered, and for which there is no safe reaction
S′′ that makes S′ incur losses (with market offering S ∪ S′ ∪ S′′), is a profitable Riley deviation.

In our setting, a market offering is simply a collection of prices offered for the two policies. Definition

1 says that a set of offered prices is a Riley equilibrium if no firm, including potential entrants, has an

incentive to change their offered prices, even if other firms introduce additional price offers, provided

that those additional price offers are profitable given the initial deviation and “safe”in the sense that

they would remain profitable regardless of any further price offers being introduced.8

Our result for Riley equilibria, which we establish in the Appendix, is the following:

8 In fact, it suffi ces to restrict attention to deviations by potential entrants.
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Proposition 1. A Riley equilibrium always exists and involves a unique allocation of consumers to the

two policies, and unique prices (P90, P60) for any policies that are purchased. Moreover:

(i) If Π60(AC90, P60) ≤ 0 for all P60 (i.e. if there is no profitable entry into the 60 policy given that the

90 policy is priced to break even), it involves everyone buying the 90 policy at prices P90 = AC90

and P60 ≥ AC90 − θ;

(ii) Otherwise, it involves positive sales of the 60 policy at the lowest price difference ∆P > θ at which

∆P = AC90(∆P )−AC60(∆P ) if such a ∆P exists, with prices (P90, P60) that cause both policies

to break even, and if such a ∆P does not exist it involves all consumers buying the 60 policy at

prices P60 = AC60 and P90 ≥ AC60 + θ .

2.1.2 Wilson Equilibria

A Wilson Equilibrium (WE) is a pair of prices (P90, P60) and resulting allocation such that there is no

(potentially multi-policy) deviation that is profitable and remains so once any policy offers by firms that

become unprofitable after the deviation are withdrawn from the market.9 (With two policy types, there

is at most one such unprofitable policy offer after any profitable deviation, so there is no ambiguity

about which policies to withdraw.)

We have the following characterization of WE in our model (proof in the Appendix):

Proposition 2. Suppose that AC60 6= AC90 − θ . Then (Pw90, P
w
60) with ∆Pw = Pw90 − Pw60 ∈ [θ, θ] is a

Wilson equilibrium iff it is a solution to10

min(P90,P60) P60

s.t. (i) Π90(P90, P60) ≤ 0

(ii) Π(P90, P60) = 0

(iii) ∆P ∈ [θ, θ]

(1)

Thus, the WE is the price pair (P90, P60) that has the lowest price for the 60 policy among all price

pairs that yield zero aggregate profit and non-positive profit for the 90 policy. This characterization

can be understood intuitively as follows: First, any WE must have Π90(P90, P60) ≤ 0 since otherwise

there would be a profitable deviation in only the 90 policy, slightly undercutting P90 (note that any

dropping of a 60 policy in response would only increase the profits from this deviation). Next, given

that Π90(P90, P60) ≤ 0, the deviation that must be prevented is a deviation that attracts the best risks

currently in the 90 policy to a new lower-priced 60 policy. This deviation will make the insurer offering

the current 90 policy lose money, causing it to drop its 90 policy. Once the 90 policy is dropped,

though, if the deviator hasn’t offered a 90 policy, everyone will go to the new 60 policy, causing it

9Wilson (1977) assumed firms offered a single policy; the multi-policy extension is due to Miyazaki (1977).
10 If a WE (Pw90, P

w
60) has ∆Pw < θ, so that the 60 policy is not purchased, then there is an equivalent WE with

P̃60 = Pw90 − θ [the price pair (Pw90, P̃60) results in the same measures of sales, the same expected utilities for each type,

and the same profits, and is also a WE]. Similarly if ∆Pw > θ.
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to lose money. So the deviator must offer a pair of policies: the new 60 policy that attracts some

individuals currently buying the 90 policy, and a new 90 policy to keep everyone from going to the 60

policy. At the solution to (1) no such profitable deviation exists. Note in particular that a WE may

involve cross-subsidization of the 90 policy by the 60 policy (the 90 policy may lose money on its own),

something that cannot happen in either a RE or (as well will see) a NE.

We also note the following result, indicating that if a Riley equilibrium has a positive share of the

60 policy, then any Wilson equilibrium has (weakly) greater coverage than the Riley equilibrium:11

Corollary 1. Any Wilson equilibrium must have a ∆P no greater than the lowest ∆P > θ at which

∆P = AC90(∆P )−AC60(∆P ), if such a ∆P exists.

Proof. Let ∆̂P be the lowest ∆P > θ at which ∆P = AC90(∆P )− AC60(∆P ) and suppose there is a

Wilson equilibrium at which ∆Pw > ∆̂P . Since both policies break even at ∆̂P , and the share of the

90 policy is greater at ∆̂P than at ∆Pw [where Π60(Pw90, P
w
60) ≥ 0], it must be that P̂60 = AC60(∆̂P ) <

AC60(∆Pw) ≤ Pw60 —a contradiction.

Finally, note that we have not established that WE is unique [in contrast to Wilson (1977)], although

in practice we have always found it to be so in our data.

2.1.3 Nash Equilibria

The original Rothschild-Stiglitz model instead examined Nash equilibria with single-policy firms. The

following result characterizes NE in our model for both single- and multi-policy firms:

Proposition 3. With either single- or multi-policy firms, any NE must have firms break even on all

policies that are sold in equilibrium. The unique equilibrium has all consumers buying the 90 policy if

Π60(AC90, P60) ≤ 0 for all P60. If this condition does not hold, a NE must have positive sales of the

60 policy, must involve the lowest ∆P such that ∆P = AC90(∆P ) − AC60(∆P ) if such a ∆P exists,

and must have all consumers buying the 60 policy if such a ∆P does not exist. Such a price pair is a

NE for:

(i) single-policy firms if there is no profitable entry opportunity in the 90 policy; i.e., if Π90(P̂90, P60) ≤
0 for all P̂90 ≤ P90.

(ii) multi-policy firms if there is no profitable entry opportunity that slightly undercuts P60 and under-

cuts P90: i.e., if supP̂90≤P90 Π(P̂90, P60) = 0. This is impossible if all consumers buy the 60 policy

at (P90, P60).

Propositions 1, 2, and 4 imply that all consumers buying the 90 policy is an equilibrium (and

the unique one for RE and NE) under the exact same circumstances with all three concepts: when

11 In the next subsection we will see that if the RE is all-in-90, the RE is also a WE.
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Π60(AC90, P60) ≤ 0 for all P60. Where they differ is in what happens when this is not true. Comparing

RE and NE, we see that when there are prices that break even and have both policies purchased, with

either concept only the one with the lowest ∆P can be an equilibrium. However, such a ∆P can be a

RE when it fails to be a NE because under the RE concept a profitable Nash deviation can be rendered

unprofitable by additional profitable (and “safe”) entry once the initial deviation occurs.

Observe in Proposition 4 that with multi-policy firms there must be positive sales of the 90 policy

in any NE. This stems from the fact that, otherwise, with risk-aversion (Assumption 2) it is always

worthwhile to enter offering the worst consumers more insurance (in the present case, the 90 policy).

However, under RE this need not be the case, because this deviation may be rendered unprofitable by

additional profitable (safe) entry once this deviation occurs. Observe, though, that if a multi-policy

NE does exist, then it is also a RE and WE:

Corollary 2. If a multiproduct Nash equilibrium exists, it is an RE, a WE, and a single-policy NE.

Proof. Any multi-policy NE is a single-policy NE because fewer deviations are possible. It is both an

RE and a WE because there are no profitable deviations, even before considering any reactions.

3 Estimation

To simulate equilibria in health exchanges we need a population of insurees, their preferences and

health status. The distributions used in the simulations are estimated following three procedures.

First, we compute the risk type of each individual k in the population, λkt. The procedure is based

on a commercial software that inputs patient histories (diagnostics, expenses and demographics) to

generate an Adjusted Clinical Group (ACG) index, basically, an expected expense. The second step,

denoted the cost model, entails estimating the distribution of expenses faced by individuals in each

health state, G(expenses|λkt). Notice the ACG index (or λkt) represents mean expenses, while we need
the distribution of expenses to compute expected utility (under each policy). We group individuals

with similar initial health, and use the -health expense- realizations to estimate the uncertainty they

faced. Finally, risk preferences are estimated fitting an insurance choice model. Each individual, given

her health status, faces uncertain out of pocket expenses. Risk preferences affect their willingness to

pay for coverage. A discrete choice model that explains plan choice in our sample is fitted to recover

preferences.

In terms of the model, risk preferences and the distribution of health expenses (given health status)

are used to compute θ of each person in the sample, i.e., their willingness to pay for extra coverage.

F (θ) is represented by the distribution of θ over the sample population. Recall F (θ) determines market

shares, while costs of each policy, Ck(θ), are determined by G(|λ) and the link between H and θ.

To obtain these ingredients we use detailed data on health insurance choices and medical utilization

of employees (and their dependents) at a large U.S. based firm over the time period from 2004 to 2009.

These proprietary panel data include the health insurance options available in each year, employee
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plan choices, and detailed, claim-level employee (and dependent) medical expenditure and utilization

information. The next three section briefly explain how the estimation works, as well as the data used,

for further details see Handel (2012).

3.1 Health status and its distribution

We use detailed medical information together with medical risk prediction software developed at Johns

Hopkins Medical School to create individual-level measures of predicted future medical utilization at

each point in time. These measures are generated using past diagnostic, expense, and demographic

information12 and allow us to precisely gauge medical expenditure risk prior to the plan choice. The

program, known as the Johns Hopkins ACG (Adjusted Clinical Groups) Case-Mix System, is one of

the most widely used and respected risk adjustment and predictive modeling packages in the health

care sector. It was specifically designed to use diagnostic claims data, such as the individual-level

ICD-9 codes we observe, to predict future medical expenditures in a sophisticated manner. In addition,

the program takes into account the NDC pharmaceutical drug utilization codes we observe as well as

individual age and gender.

By plugging the diagnostic codes and medical expenses of prior health utilization, as well as demo-

graphic information, the software generates an AGC index that summarizes expected expenses for the

coming year for every individual in the sample. Denote an individual’s past year of medical diagnoses

and payments by ξit and the demographics age and sex by ζit. We use the ACG software mapping,

denoted A, to map these characteristics into a predicted mean level of health expenditures (including

pharmaceuticals) for the upcoming year, denoted λ:

A : ξ × ζ → λ

3.2 The Cost Model

The ACG index proxies expected health expenses. However, to evaluate the expected utility from

different coverage options we need the distribution of expenses, not just its mean. We utilize the cost

model developed in Handel (2012) to estimate the distribution of health expenditure for different values

of the ACG index, λ.

The cost model makes several advances relative to the recent literature that uses micro-level claims

data to quantify individual health risk. It offers a parsimonious method to non-parametrically link

health risk to expected future expenditures by combining the predictive ACG health risk output with

observed cost data.13

12We observe this detailed medical data for all employees and dependents enrolled in one of several PPO options, which

is the set of available plans our analysis focuses on. For a further discussion see the sample composition section. These

data include detailed claim-level diagnostic information, such as ICD-9 codes and NDC drug codes, as well as provider

information and a detailed payment breakdown (e.g. deductible paid, coinsurance paid, plan paid).
13The cost model assumes that there is no moral hazard and that there is no private information. While both of these
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In order to predict expenses, medical claims are categorized into mutually exclusive categories (e.g.,

hospital, pharmacy, physician offi ce visit). We use the prediction λ, of each individual (described above)

to categorize them into expenditure cells. Then for each group of individuals in each claims category,

the actual ex-post realized claims for that group is used to estimate the ex-ante distribution for each

individual under the assumption that this distribution is identical for all individuals within the cell.

The minimum number of individuals in any cell is 73 while almost all cells have over 500 members.

Since there are four categories of claims, each individual can belong to one of approximately 104 or

10,000 combination of cells.

Denote an arbitrary cell within a given category d by z. Denote the population in a given category-

cell combination (d, z) by Idz. Denote the empirical distribution of ex-post claims in this category for

this population ˆGIdz (·). Then we assume that each individual in this cell has a distribution equal to a
continuous fit of ˆGIdz (·), which we denote Gdz:

$ : ˆGIdz (·)→ Gdz

The above process generates a distribution of claims for each d and z but does not model correlation

over -expense categories- D. It is important to model correlation over claim categories because it is

likely that someone with a bad expenditure shock in one category (e.g. hospital) will have high expenses

in another area (e.g. pharmacy). We model correlation at the individual level by combining marginal

distributions Gidt ∀ d with empirical data on the rank correlations between pairs (d, d′). Here, Gidt is

the distribution Gdz where i ∈ Idz at time t. Since correlations are modeled across d we pick the metric
λ to group people into cells for the basis of determining correlations (we use the same cells that we use

to determine group people for hospital and physician offi ce visit claims). Denote these cells based on λ

by zλ. Then for each cell zλ denote the empirical rank correlation between claims of type d and type

d′ by ρzλ(d, d′). Then, for a given individual i we determine the joint distribution of claims across D

for year t, denoted Hit(·), by combining i’s marginal distributions for all d at t using ρzλ(d, d′):

Ψ : GiDt × ρzλit (D,D
′)→ Hit

Here, GiDt refers to the set of marginal distributions Gidt∀d ∈ D and ρzλit (D,D
′) is the set of all

pairwise correlations ρzλit (d, d
′)∀(d, d′). In estimation we perform Ψ by using a Gaussian copula to

combine the marginal distribution with the rank correlations.

phenomena have the potential to be important in health care markets, and are studied extensively in other research,

we believe that these assumptions do not materially impact our results. One primary reason is that both effects are

likely to be quite small relative to the magnitude of the overall money at stake, which is what the risk preference

estimates are sensitive to. For private information, we should be less concerned than prior work because our cost model

combines detailed individual-level prior medical utilization data with sophisticated medical diagnostic software. This

makes additional selection based on private information much more unlikely than it would be in a model that uses coarse

demographics or aggregate health information to measure health risk.
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3.3 Risk Preferences: Choice Model

Risk preference have been estimated using choice data. Each household k in the sample faces a choice

set, and a distribution of health expenses Hkjt(·) conditional on state λ and coverage j (described
above). We assume (CARA) preferences:

uk(x) = − 1

γk(XA
k )
e−γk(XAk )x

The distribution of γk is estimated fitting predicted expected utility maximizing choices to observed

one. Where the expected utility is given by:

Ukjt =

∫ ∞
0

hkjt(OOP )uk(Wk, OOP, Pkjt,1kj,t−1)dOOP

OOP is a realization of medical expenses from Hkjt(·). Wk denotes wealth and Pkjt is premium

contribution for plan j, which as described earlier depends both on how many dependents are covered

and on employee income. γk is a individual-specific risk preference parameter unobserved by the

econometrician. The random coeffi cients γk is assumed normally distributed.

Consumption x conditional on a draw OOP from Hkjt(·) is:

x = Wk − Pkjt −OOP + εkjt(Yk)

3.4 Data

The data is from a firm that employs approximately 9,000 people per year. The first column of Table 1

describes the demographic profile of the 11,253 employees who work at the firm for some stretch within

2004-2009. These employees cover 9,710 dependents, implying a total of 20,963 covered lives. 46.7% of

the employees are male and the mean employee age is 40.1 (median of 37). The age distribution of the

firm is very uniform:

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Age 26 29 33 38 43 47 50 54 58 64 68

Returning to Table 1, we observe income grouped into five tiers, the first four of which are approxim-

ately $40,000 increments, increasing from 0, with the fifth for employees that earn more than $176,000.

Almost 40% of employees have income in tier 2, between $41,000 and $72,000, with 34% less than

$41,000 and the remaining 26% in the three income tiers greater than $72,000. 58% of employees cover

only themselves with health insurance, with the other 42% covering a spouse and/or dependent(s).

23% of the employees are managers, 48% are white-collar employees who are not managers, and the

remaining 29% are blue-collar employees. 13% of the employees are categorized as ‘quantitatively soph-

isticated’managers. Finally, the table presents information on the mean and median characteristics of

the zip codes the employees live in.
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Sample Demographics

All Employees PPO Ever Final Sample

N - Employee Only 11,253 5,667 2,023

N - All Family Members 20,963 10,713 4,544

Mean Employee Age (Median) 40.1 40.0 42.3
(37) (37) (44)

Gender (Male %) 46.7% 46.3% 46.7%

Income

Tier 1 ( < $41K) 33.9% 31.9% 19.0%

Tier 2 ($41K-$72K) 39.5% 39.7% 40.5%

Tier 3 ($72K-$124K) 17.9% 18.6% 25.0%

Tier 4 ($124K-$176K) 5.2% 5.4% 7.8%

Tier 5 ( > $176K) 3.5% 4.4% 7.7%

Family Size

1 58.0 % 56.1 % 41.3 %

2 16.9 % 18.8 % 22.3 %

3 11.0 % 11.0 % 14.1 %

4+ 14.1 % 14.1 % 22.3 %

Staff Grouping

Manager (%) 23.2% 25.1% 37.5%

White-Collar (%) 47.9% 47.5% 41.3%

Blue-Collar (%) 28.9% 27.3% 21.1%

Additional Demographics

Quantitative Manager 12.8% 13.3% 20.7%

Job Tenure Mean Years (Median) 7.2 7.1 10.1
(4) (3) (6)

Zip Code Population Mean (Median) 42,925 43,319 41,040
(42,005) (42,005) (40,175)

Zip Code Income Mean (Median) $56,070 $56,322 $60,948
($55,659) ($55,659) ($57,393)

Zip Code House Value Mean (Median) $226,886 $230,083 $245,380
($204,500) ($209,400) ($213,300)

Table 1: This table presents summary demographic statistics for the population we study. The first column

describes demographics for the entire sample whether or not they ever enroll in insurance with the firm. The

second column summarizes these variables for the sample of individuals who ever enroll in a PPO option, the

choices we focus on in the empirical analysis. The third column describes our final estimation sample, which

includes those employees who (i) are enrolled in PPO−1 at t−1 and (ii) remain enrolled in any plan at the firm

through at least t1. Comparing the columns shows little selection on demographics into PPO options and some

selection based on family size into the final estimation sample.
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A key feature of the data for our study is that, in the middle of our observational period, the firm

substantially changed the menu of health plans that it offered to employees, in a year that we denote

t0.14 At the time of this change, the firm forced all employees to leave their prior plan and actively

re-enroll in one of five options from the new menu, with no default option. This is important to be

able to recover preference in a period with active choice (clean of switching costs or inertia).

Health Risk Descriptives.

Table 3.4 describes health status transitions in the population over one and two year time horizons.

For the table, we group employees into ex-ante health quartiles using the Johns Hopkins ACG program

referenced earlier and described in more detail in the cost model section. These quartiles represent

employees grouped by mean expected expenditure in each year, where the expectation is determined

using prior cost and diagnostic information. The table reveals that there are real transition risks even

for the fairly short one and two year time horizons: for example 32% of the individuals in the healthiest

quartile in year t − 1 transition to one of the other three quartiles at year t. The table also presents

average and median ex post cost by quartile grouping, indicating an increase in expected expenditures

from $1, 812 for quartile 1 to $15, 199 for quartile 4.

Preference Estimates

Since the CARA coeffi cients are diffi cult to interpret, table 7 shows the implication of the estimates.

The table presents the value X that would make an individual with our estimated risk preferences

indifferent between inaction and accepting a gamble with a 50% chance of gaining $100 and a 50%

chance of losing $X.15 Thus, a risk neutral individual will have X = $100 while an infinitely risk

averse individual will have X close to zero. The top section of the table presents the results for the

primary specification. X is $94.6 for the mean / median individual, implying a moderate amount of

risk aversion relative to other results in the literature, which we present at the bottom of the table.

X is $92.2 for the 95th percentile of γ and $91.8 for the 99th, so preferences don’t exhibit substantial

heterogeneity in the context of the literature.

4 Equilibria

We assume that the 60 policy has a 20% co-pay, a $3000 deductible, and a $1500 out-of-pocket max-

imum, while the 90 policy has the same 20% co-pay, a $3000 deductible, and a $5950 out-of-pocket

maximum. Over the whole population these policies cover roughly 60% and 90% of expenses.

How do we go from the estimates back into the model? For each individual in the “population”

we calculated risk type, λ. For each risk type we estimated H(OOP |λ). Finally, we estimated the

14This change had the two stated goals of (i) encouraging employees to choose new, higher out-of-pocket spending plans

in order to help control total medical spending and (ii) providing employees with a broader choice of different health

insurance options (e.g. a consumer driven health plan with a linked health savings account (HSA)).
15These figures are computed for an individual with mean age and mean income.
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1 Year Transtion

t-1 / t ACG Quartile 1 ACG Q2 ACG Q3 ACG Q4

ACG Quartile 1 0.68 0.18 0.08 0.06

ACG Quartile 2 0.12 0.46 0.25 0.17

ACG Quartile 3 0.05 0.15 0.39 0.41

ACG Quartile 4 0.03 0.05 0.17 0.75

2 Year Transtion

t-1 / t ACG Quartile 1 ACG Q2 ACG Q3 ACG Q4

ACG Quartile 1 0.58 0.22 0.09 0.11

ACG Q2 0.10 0.35 0.29 0.26

ACG Q3 0.03 0.14 0.28 0.56

ACG Q4 0.03 0.05 0.10 0.82

Cost Profile ($)

Quartile Avg. Cost Med. Cost

ACG Q1 1812 302

ACG Q2 3544 1107

ACG Q3 5543 2542

ACG Q4 15199 6831

Table 2: This table describes health status transitions in the population over one and two year time

horizons. For the table, we group employees into ex ante health quartiles using the Johns Hopkins

ACG program referenced earlier and described in more detail in the cost model section. The top two

sections describe these transitions, while the final sections profiles costs as a function of quartile.
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Risk Preference Analysis

Absolute Risk Aversion Interpretation

Normal Heterogeneity

Mean / Median Individual 4.22 ∗ 10−4 94.6

25th percentile 2.95 ∗ 10−4 96.1

75th percentile 5.49 ∗ 10−4 93.8

95th percentile 7.31 ∗ 10−4 92.2

99th percentile 8.59 ∗ 10−4 91.8

Log normal Heterogeneity

Mean 9.82 ∗ 10−4 91.0

25th percentile 1.53 ∗ 10−4 97.2

Median 3.85 ∗ 10−4 95.0

75th percentile 9.72 ∗ 10−4 91.1

95th percentile 3.70 ∗ 10−3 72.8

99th percentile 9.30 ∗ 10−3 51.1

Comparable Estimates

[?] Benchmark Mean 3.1 ∗ 10−3 76.5

[?] Benchmark Median 3.4 ∗ 10−5 99.7

[?] 3.1 ∗ 10−4 97.0

[?] 3.2 ∗ 10−2 21.0

[?] 2.0 ∗ 10−3 83.3

Table 3: This table examines the risk preference estimates from the empirical results presented in table ??. The

first section of the table is for the normally distributed risk preference estimates in the Primary specification,

where the age and income coeffi cients are evaluated at the median values of those variables. The second section

is for the model with log-normally distributed preferences studied in column 4 of table ??. The interpretation

column is the value X that would make someone indifferent about accepting a 50-50 gamble where you win $100

and lose X versus a status quo where nothing happens. Our estimates are similar under both specifications

with the exception that the log normal model predicts a fatter tail with higher risk aversion. These estimates

are in the middle of the (wide) range found in the literature and show moderate risk aversion except at the

tails in the log-normal model where consumers are quite risk averse.
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distribution of γ. For a draw of γ, and each plan (just described) we compute expected utility across

expenditure realizations taken from H, to find CE90 and CE60 (gross of premiums), which we use to

define θ = CE90 − CE60. Thus, each individual in the population with her own λ and a draw γ map

into a value of θ. Thus, the sample population and distribution of γ determine F (θ). Costs C90(θ) and

C60(θ) (in turn, AC90(θ) and AC60(θ)) are determined by H(OOP |λ), adding over all λs associated

with each θ.

4.1 No pricing of preexisting conditions

The main results of section 2.1 guide the way we find equilibria. We start with the whole population,

namely, in an exchange where premiums are independent of pre-existing conditions and demographics.

The first step towards finding equilibria involves checking whether pooling at 90, the highest level

of coverage, is an equilibrium. If all consumers are in 90, for such a policy to break even it must

be the case that P90 = AC90. For that policy to be an equilibrium it is necessary and suffi cient that

Π60(AC90, P60) ≤ 0 for all P60. If the condition holds, propositions 1, 2, and 4 guarantee that all-in-90

is an equilibrium under all concepts, Nash, Wilson and Reactive, and the equilibrium is unique.

Figure 2 displays Π60(AC90, P60), more precisely, it shows Π60(AC90, AC90 −∆P ) as a function of

∆P . For ∆P = 0 all consumers prefer the 90 policy, thus the market share of the 60 policy as well

as its profits are 0. As ∆P increases the best types opt out of 90 and start buying 60. The graph

shows a whole range of P60 for which Π60(AC90, AC90 −∆P ) > 0, making it profitable for 60 policies

to poach the best risks out of the 90 policy. Thus, in our population all-in-90 is not an equilibrium.

The equilibrium must involve purchases of the 60 policy.

The second step towards finding either Riley or Nash equilibria involves finding price pairs (P90, P60)

at which both policies break even. This can be found by identifying the∆P at which∆P = AC90(∆P )−
AC60(∆P ). Among them (if any exist), according to Proposition 1 the one with the lowest ∆P , namely,

with the highest 90 share, is the unique Riley equilibrium. Moreover, it is the only candidate for Nash

equilibrium, should a Nash equilibrium exist.

Figure 3 plots ∆AC = AC90(∆P ) − AC60(∆P ), against ∆P. The figure shows that there is no

interior equilibrium candidate, namely, no pair of premiums at which both policies have positive shares

and both break even. Thus, the only break-even candidate is a ∆P high enough to have all consumers

in the 60 policy. Proposition 1 guarantees existence of a Riley equilibrium, so having ruled out all

other candidates, we know all-in-60 must be the Riley equilibrium. However, the existence of a Nash

equilibrium is not guaranteed, and depends on the profitability of 90 deviations. Notice that by

Proposition 4 we know that all-in-60 does not survive a double deviation with multi-policy firms:

there is always a profitable way to offer coverage to the worst risks and catch the improved risks left

in the 60 pool via P60 = AC60 − ε.
The third, and final, step involves checking whether all-in-60 is a single-policy Nash equilibrium.

Figure 4 shows profits from a single and a double deviation, namely, Π90(P90, AC60) and Π(P90, AC60−
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Figure 1: profits policy 60 vs pooling P90
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Figure 2: Break even dp
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Figure 3: Deviations from Nash: lowering P90
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ε). For high P90 all consumers purchase 60, so profits for the 90 policy (and total profits, since 60 breaks

even) are 0. As the blue line shows, Π90(P90, AC60) is always negative. Attracting the worst risks into

90 coverage with a single-policy deviation is not profitable at any price that would manage to attract

them. Thus, pooling at 60 is a single-policy Nash equilibrium as well as a Riley equilibrium.

The pink (higher) line confirms that a double deviation from all-in-60 is profitable. As found in

Proposition 4, while the 90 customers are not profitable by themselves, the pool left in 60, which can

be attracted with P60 = AC60 − ε, more than compensates for the losses in 90.
Wilson equilibria, as in the Rothschild-Stiglitz framework, may but need not coincide with the Riley

and Nash equilibria. We actually know that since the Riley/single-policy Nash equilibrium premiums

we found do not survive a double deviation, they are not a Wilson equilibrium (since double deviations

are unaffected by existing policies being dropped).

Wilson policies break even in total, but they do so allowing the 60 policy to cross-subsidize the

90 policy. Following Proposition 2 we need to find the lowest P60 that paired with a P90 delivers

non-negative total profits and as well as non-positive 90 profits.

Table 5.1 shows the premiums that solve (1). They indeed involve a cross subsidy from 60 to 90

customers, and zero total profits. The subsidy to 90 leads to 36% of the market getting high coverage,

in contrast to Nash where all of the population is in 60. Table 5.1 summarizes the predictions for the

case with a prohibition on pricing pre-existing conditions.
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Table 5.1: Equilibria Without Pre-existing Conditions

P60 Sh60 AC60 P90 Sh90 AC90

Riley 3974 100 3974 — 0 —

Wilson 3852 64 1347 6627 36 11125

Single Nash 3974 100 3974 — 0 —

Double Nash Does not exist

4.2 ACG Pricing

We now turn consider equilibria when insurers can price observables. In this section we assume insurers

can separate the population into quartiles based on ACGs, and price each segment of the market

separately. We follow the same steps as in the previous subsection to find equilibria, but now for each

market segment separately.

The most interesting subpopulation is quartile 1 (the healthiest quartile). In this subsample there

is an interior Nash equilibrium that survives double deviations. Thus, it coincides with Riley, but also

with Wilson (as it survives the double deviation).

The first step, as above, is to check whether all-in-90 is an equilibrium. There is, as in all cases

below, a whole range of P60 for which Π60(AC90, AC90−∆P ) > 0. Thus, all-in-90 is not an equilibrium.

Figure 5 shows that there are two interior break-even ∆P , which are the RE/NE equilibrium

candidates. Propositions 1 and 4 guarantee that only the one with the highest share of customers in

90 (lowest ∆P ) can be either a Riley or Nash equilibrium. Figure 6 displays profitability of single and

double deviations, starting at the lower of these ∆P . As neither profit is positive at any such ∆P , this

∆P is an equilibrium under all of our equilibrium notions. Table 5.2 summarizes the findings.

Table 5.2: Equilibria with ACG based Pricing (quartile 1)

P60 Sh60 AC60 P90 Sh90 AC90

Riley 229 61 229 1601 39 1601

Wilson 229 61 229 1601 39 1601

Single Nash 229 61 229 1601 39 1601

Double Nash 229 61 229 1601 39 1601

Table 5.3 summarizes the equilibria for quartile 2, which is similar to the whole population. The

only distinction is that the single policy Nash is interior, but a double deviation Nash equilibrium

does not exist. The latter explains why it differs from Wilson, which involves more customers in 90

(consistent with Corollary1).
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Figure 5: Break even dp
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Figure 6: Deviations from Nash: lowering P90
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Figure 9: Deviations from Nash: lowering P90
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Table 5.3: Equilibria with ACG based Pricing (quartile 2)

P60 Sh60 AC60 P90 Sh90 AC90

Riley 1176 82 1175 3850 18 3856

Wilson 1065 52 886 3140 48 3336

Single Nash 1176 82 1175 3850 18 3856

Double Nash Does not exist

Figure 9 confirms, the candidate survives single deviation but not double.

Equilibria in quartiles 3 and 4 are summarized in Tables 5.4 and 5.5. The equilibria are qualitatively

identical to the one for the whole population. The single policy Nash equilibrium is all-in-60 and

coincides with Riley, while Wilson involves positive 90 sales, and cross-subsidization. A multiple policy

Nash equilibrium does not exist. We omit the graphs, which look exactly as for the population as a

whole.

Table 5.4: Equilibria with ACG based Pricing (quartile 3)

P60 Sh60 AC60 P90 Sh90 AC90

Riley 4408 100 4408 — 0 —

Wilson 4147 51 2389 6872 49 8732

Single Nash 4408 100 4408 — 0 —

Double Nash Does not exist
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Table 5.5: Equilibria with ACG based Pricing (quartile 4)

P60 Sh60 AC60 P90 Sh90 AC90

Riley 9670 100 9670 — 0 —

Wilson 9553 50 4987 12803 50 17314

Single Nash 9670 100 9670 — 0 —

Double Nash Does not exist

5 Welfare

Our aim is to evaluate the expected utility of an individual starting at age 25 from an ex-ante (“unborn”)

perspective; that is, before he knows his health status. The unborn individual faces uncertainty about

how his health status will transition from one year to the next, and thus what policies he will purchase

and what premiums he will pay. Since individuals differ in their risk aversion, we will calculate this

expected utility separately for different risk aversion levels.

To be more specific, suppose we have pricing rule x (e.g., no pre-existing conditions) and equilib-

rium concept e (e.g., Riley equilibrium). The analysis in the previous section tells us what policy each

individual will choose as a function of their health status (acg) and risk aversion (γ), and what premium

they will pay. We compute the certainty equivalent mapping CEx,e(acg, γ) giving the certainty equi-

valent of the uncertain consumption that an individual of type (acg, γ) will face in a year because of

uncertainty over his health realization in that year. We can also derive a benchmark certainty equi-

valent level CE90(acg, γ) which corresponds to the case in which the individual gets the 90 policy at

premium P90 = AC90 (this is the closest to first-best given the restriction to 90 and 60 policies).

We want to compute expected utility starting at age 25 from an ex-ante perspective. We assume

that our sample represents a steady state population in which the distribution of health types at each

age corresponds to the ex-ante distribution that any (unborn) individual faces.16 For each risk aversion

level γ, we define the fixed yearly payment starting at age 25 that makes the individual have the same

expected utility starting at age 25 under regime x (with equilibrium concept e) as when assured of

always getting the 90 policy at the fixed premium P90 = AC90:

∞∑
t=25

δtE[−e−γ{CEx,e(acgt,γ)+yx,e(γ)}] =

∞∑
t=25

δtE[−e−γ{CE90(acgt,γ)}],

or

yx,e(γ) = − 1

γ
ln

(∑∞
t=25 δ

tE[−e−γ{CE90(acgt,γ)}]∑∞
t=25 δ

tE[−e−γ{CEx,e(acgt,γ)}]

)
. (2)

For a given discount factor δ ≤ 1, we calculate
∑
t δ
tE[−e−γ{CEx,e(acgt,γ)}] as follows: We first

generate the value of δte−γ{CEx,e(acgt,γ)} for each individual of age t in our randomly-generated pseudo-

population whose risk-aversion is in a band around γ. We then derive δtExt [−e−γ{CEx,e(acgt,γ)}] by

16Recall that the age distribution in our sample is close to uniform, as it should be in a steady state population.
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calculating the sample mean of those values for age t individuals.17 We then add these values over t to

get
∑
t δ
tExt [−e−γ{CEx,e(xt)}]. We follow a similar procedure to calculate

∑
t δ
tE[−e−γ{CE90(acgt,γ)}]

and we then form the ratio in (2) to calculate yx,e(γ). This gives us the amount of yearly income

(starting at age 25) the individual would need to compensate for facing the extra risk in pricing regime

x (under equilibrium concept e) compared to the risk if the individual was assured of getting the 90

policy at the fixed premium P90 = AC90. This is our measure of welfare loss in regime x (under

equilibrium concept e).

Our main result compares the welfare loss when premiums cannot be priced based on pre-existing

conditions —which eliminates reclassification risk but exacerbates adverse selection, to the welfare loss

when health risk can be partially priced based (for now) on acg-quartiles. This latter scenario reduces

the presence of adverse selection but at the cost of introducing reclassification risk. We also will see

what the absolute magnitude of these losses are, which is of independent interest.

Table 6.1 shows the values of yx,e(γ) under the Riley equilibrium notion for the cases of no pre-

existing conditions (x = “no−pre”) and pricing based on acg-quartiles (x = “acg4”). We take δ = 0.975.

The table shows that the welfare gains from eliminating reclassification when pricing on pre-existing

conditions is prohibited far exceed any losses this rule introduces due to adverse selection. Moreover, the

losses from reclassification with acg-quartile pricing are large, amounting to (at a minimum) between

$800 and $4600 per year, depending on an individual’s level of risk aversion. Recall that the median

risk aversion parameter we estimate is 0.0004. The annual loss with acg-quartile pricing at that risk

aversion level is $3044 is about 60% of the size of the average total expenses in the population, which

equals $5582 (see Table 7.2 in the Section 7). Table 6.2 shows similar results for Wilson equilibrium.

Here the welfare gains from prohibiting pricing based on pre-existing conditions are even larger, as the

additional adverse selection losses from prohibiting pricing based on health status are smaller under

the Wilson concept than under the Riley concept.

17 In practice we actually do this for groups of individuals in 5-year age bands and adjust the discount factor accordingly.

We also do this only for ages t ∈ [25, 65].
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Table 6.1: Welfare Loss in Riley Equilibrium Relative to First-Best

γ yno−pre,Riley(γ) yacg4,Riley(γ)

0.0002 248 1089

0.0003 445 2166

0.0004 621 3044

0.0005 820 3782

0.0006 998 4345

0.0007 1158 4843

0.0008 1309 5215

0.0009 1448 5553

0.001 1572 5829

0.0011 1681 6061

0.0012 1783 6279

0.0013 1863 6440

0.0014 1939 6607

Table 6.2: Welfare Loss in Wilson Equilibrium Relative to First-Best

γ yno−pre,Wilson(γ) yacg4,Wison(γ)

0.0002 223 893

0.0003 264 1953

0.0004 308 2823

0.0005 364 3541

0.0006 426 4084

0.0007 483 4563

0.0008 549 4903

0.0009 614 5212

0.001 682 5455

0.0011 745 5661

0.0012 813 5827

0.0013 871 5968

0.0014 932 6099

6 Extensions

6.1 Age-based Pricing

The Affordable Care Act legislation stipulates that insurers offering plans in any state based exchange

can vary prices on the basis of age by up to a 3:1 ratio: that is, older cohorts cannot be charged more

than three times the premiums of younger buyers. States may further restrict this ratio to be lower,
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but cannot raise it. This is one of the few exceptions to the case of pure community rating, studied

in sections four and five allowed in the current regulations. In this section we use our framework to

study market equilibrium and consumer welfare when insurers are allowed to vary prices with age and

comment on (i) whether age-based pricing reduces adverse selection and (ii) whether we can expect the

3:1 ratio to be binding in price-setting. We note that age-based pricing inherently does not impact the

extent of re-classification risk since the evolution of age is a deterministic process.

Table 7.1 describes the results for our age-based pricing analysis. In order to have a sizable number

of observations per group, we group consumers into five year age bins and use that categorization as

the basis for differential pricing. The first column shows mean total medical expenses by age cohort:

those age 30-34 have a mean of $3,357 while those age 60-64 have a mean of $9,413. Thus, if there were

only one available plan, the 3:1 age ratio would be non-binding, given P = AC conditional on age. If

we include those age 25-29, with mean expenses $2,756 the age restriction is binding: however, in both

the Affordable Care Act and Massachusetts legislation individuals up to age 30 can buy into a special

catastrophic insurance pool for just that age group. As many of the most healthy individuals sign up

for the catastrophic plan in Massachusetts, this suggests still that the age restriction of 3:1 might not

be binding in practice.18 Column 2 shows mean expected expenses as a function of the ACG predicted

resource indicator. This reveals, similarly a lightly less than 3:1 ratio in projected costs for those 60-64

relative to those 30-34.19

The final columns present equilibrium with age-based pricing. Interestingly, allowing for age-based

pricing does not change the unraveling of equilibrium that occurs in the case of pure community rating,

though allowing for pricing based on ACG quartiles did reduce adverse selection to some extent. For

each age group, the RE/sp-NE has 100% of market share in the 60% AV plan, while the market share

of that plan is decreasing with age in WE. Age-based pricing undoes some of the transfers from the

younger, healthier age groups to the older, sicker groups that occur in pure community rating. However,

the distributions of health risk still have substantial enough tails in the younger age group that full

unraveling occurs in equilibrium for that group (in quartile based pricing, the distributional tails are

substantially reduced for healthier quartiles).

18 In Massachusetts, the age rating restriction is more restrictive than the ACA, and doesn’t allow age-based pricing at

higher than a 2:1 ratio.
19This restriction may be binding or not depending on the specific population studied, e.g. the specific state considering

setting up an exchange.
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Table 7.1: Population Risks by Age Cohort

Expenses ACG Sh60

Ages Mean S.D. Mean S.D. WE RE/sp-NE

All 5582 6495 1.08 1.42 63 100

25-29 2756 4657 0.56 0.79 73 100

30-34 3357 5189 0.71 1.23 75 100

35-39 3762 5029 0.78 1.05 66 100

40-44 4560 5642 0.87 1.04 62 100

45-59 5778 6575 1.06 1.32 60 100

50-54 6722 6831 1.32 1.82 55 100

55-59 8394 7134 1.53 1.58 54 100

60-64 9413 7268 1.77 1.73 53 100

6.2 Preference Heterogeneity

The simulation results reported thus far were based on the assumption that consumers evaluate plans

exclusively on the basis of their health risk and risk aversion. In this section we introduce a shock to

preferences, to explore the role of preference heterogeneity on market equilibrium. We implement the

shock as an additive factor, on top of premiums, that increases or decreases utility for one plan relative

to the other. The added shock, taken literally, reflects noisy preferences towards coverage, but it can

also be interpreted as capturing partial information about the choice set, infrequent optimization or

mistakes. We simulate the functioning of the exchange for different standard deviations of this shock:

note that in our baseline estimates, we estimate probit shocks that have standard deviations of 204 and

502 for two of the three plans, relative to the baseline plan.

The exercise serves a dual purpose. First, it helps us evaluate the robustness of our simulation

should consumers’behavior depart from our model. Increasing the variance of the shock, interpreted

as noise, amounts to allowing larger and larger departures from our prescribed behavior. Second, the

shock can be construed as an additional source of willingness to pay orthogonal to risk, thus, potentially

reducing adverse selection in the spirit of [10].20

Table 7.2 shows market share for the population as a whole as a function of the shock’s standard

deviation. We also investigate age-based pricing in the presence of the shock.

20Consider RE/sp-NE when preference shocks are introduced. Profits in 60 (90) become negative (positive) as the

original pool gets mixed with health risks from the other policy, reducing ∆AC at each ∆P . Since each policy breaks

even in an RE/NE, one would expect an increase in P60 and a decline in P90; and higher coverage associated with the

decline in ∆P .
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Table 7.2: Equilibria with Preference Shocks

No Shock sd=1000 sd=1500 sd=2500

Sh60 Sh60 Sh60 Sh60

Ages WE RE/sp-NE WE RE/sp-NE WE RE/sp-NE WE RE/sp-NE

All 63 100 72 100 72 98 62 62

25-29 73 100 72 100 74 79 56 56

30-34 75 100 73 100 74 90 58 58

35-39 66 100 70 100 71 78 55 55

40-44 62 100 70 100 71 84 58 58

45-59 60 100 69 100 71 93 60 60

50-54 55 100 68 100 71 87 57 57

55-59 54 100 69 100 72 87 59 59

60-64 53 100 69 100 72 86 60 60

The RE/sp-NE is fully unraveling, all-in-the 60% AV plan, for both the no shock and the lower shock

($1000 standard deviation) cases. This is true for both the age-based pricing and no age-based pricing.

The low shock is already quite substantial relative to total expenses by group, shown in the first

column of Table 7.1. The medium shock ($1500 standard deviation) generates some, limited, coverage

in the 90% AV plan. We take both, the low and medium shock predictions, which are similar to

the no shock case, as a sign of the robustness of the main results. After introducing some additional

trade motives equilibrium predictions remain qualitatively similar. The largest shock ($2500 standard

deviation), leads to approximately 40% market share in comprehensive insurance for the different

population groupings, suggesting that very large preference heterogeneity orthogonal to health risk can

help reduce adverse selection and increase coverage. Though not listed, for this large shock there exists

a multi-policy NE that is equivalent to the WE, RE, and sp-NE.

Under WE, Market share for the 90% AV plan is non-monotonic as the standard deviation of the

preference shock increases. For some age bins these market shares actually decrease when moving from

no preference shock to the small and medium preference shocks, while for some they increase. These

market shares for all groups are still higher for the largest shock, with $2500 standard deviation. This

generally reflects the fact that the equilibrium difference in plan pries in WE, ∆Pw, is not equal to

∆AC (and is weakly less than ∆AC), as discussed in Corollary 1.21 Note that the WE for the largest

21Wilson equilibrium premiums always involve a weakly lower ∆P than the lowest break-even ∆P with a positive 60

share. In fact, if (P ∗90, P
∗
60) are the prices at this lowest break-even ∆P , it can be seen that the WE ∆Pw is exactly

arg max∆P≤∆Pw Π(P ∗60 + ∆P, P ∗60). In general, it appears that an increase in the shock could change ∆Pw in either

direction as it can either lower or raise the profit effect of a small change in P90. (The marginal profit effect has two

components —the reduced revenue from individuals choosing the 90 policy, and the marginal difference between policies

for the marginal individual; both components can change in either direction with an increase in the shock.) This is

consistent with what can be seen in Table 7.2, where introduction of the smallest shock increases coverage for some age

cohorts and reduces it for other in the WE.
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preference shock does not involve cross-subsidization, as is the same as the other equilibria. At that size

shock, a multi-policy deviation to a lower ∆P is not profitable because marginal cross-subsidization is

weaker given that the preference shocks already imply a large extent of cross-subsidization.

6.3 Health-Status Based Pricing

Our analysis in sections 4 and 5 studied the cases of pricing based on no pre-existing conditions, and

pricing based on ACG quartiles (to represent pricing based on pre-existing conditions in a stylized

setting). As an extension, we investigate how the welfare trade-off between adverse selection and re-

classification risk manifests when we allow different levels of coarseness or fineness based on health

status. We perform the analysis of sections 4 and 5 for a range of cases, from the case of no pricing

based on pre-existing conditions to the case where insurers can price discriminate at the individual

level, i.e. they can price based on all available information and price each individual at expected cost.

Table 7.3 summarizes aggregate equilibrium market share and corresponding welfare for counterfac-

tual pricing regimes that vary with the health status information that insurers can price based on. The

table reveals that, as pricing becomes finer and finer, the market share of comprehensive coverage (90%

AV) increases: for RE/sp-NE with quartile based pricing 15% of consumers enroll in this plan, with 20

distinct categories 53% of people enroll, and with individual-level pricing 100% enroll (by construction).

The welfare columns illustrate the impact of finer pricing on the trade-off between adverse selection and

re-classification risk. Finer pricing increases the market share of the 90% AV plan, reducing adverse

selection, but leaves insurees subject to repricing as their health status evolves. The welfare loss from

increased reclassification risk swamps the welfare gain from less adverse selection: the welfare loss from

pricing on 20 categories is almost three times that from pricing on four categories.

Table 7.3: Health-Status Based Pricing

# ACG Riley/sp-NE Riley/sp-NE Wilson Wilson

groups Sh90 Median Welfare Sh90 Median Welfare

Loss ($/year) Loss ($/year)

0 0 621 0 203

2 3 1926 43 1635

4 15 3044 46 2823

6 22 3900 53 3716

8 22 4346 52 4158

10 23 4992 55 4849

20 53 8450 55 8349

∞ 100 16580 100 16580
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6.4 Participation and Subsidies

While the individual mandate will be a component of all exchanges to be implemented under the

Affordable Care Act, in reality the mandate is a tax that is paid to the IRS when someone who

can afford insurance does not posses it. It is plausible that certain individuals, especially healthy

ones, will decide to pay the mandate penalty rather than pay a more expensive insurance premium.

In Massachusetts, where an individual mandate has been in place since 2006, the penalty has been

50% of the cost of the least generous (Bronze) plan available through the exchange (Commonwealth

Connector).22 This is on average slightly large than the initial penalty under the Affordable Care Act,

which is the maximum of $695 per household member (up to three) and 2.5% of household income. In

Massachusetts, only 3% of the population did not comply with the individual mandate in 2008, with

many of those people receiving exemptions from the mandate penalty due to low income.[15]

We use our framework to compute the subsidy (or equivalently tax) that would be required to get a

certain proportion of the population to comply with the mandate and join the exchange market. To do

this we compare (i) the expected utility of a consumer from joining their favorite insurance plan in the

market to (ii) their expected utility from being uninsured. In our analysis, uninsured means that the

consumer pays zero premium and is at full risk for total cost of their health expenditures. Note that

this computation is quite stylized: we do not plan options with less than 70% actuarial equivalence

value in our data: we extrapolate preferences from our observed setting and continue to assume zero

moral hazard, which are assumptions that can both be questioned.

Conditional on the pricing regulation environment and equilibrium concept, we calculate the propor-

tion of individuals that would opt out of the market for a given subsidy. Figure 4 shows the proportion

of people who opt out of the exchange for the case of pricing based on no pre-existing conditions,

similar to the legislation in the Affordable Care Act. Approximately 20% of individuals opt out with

no penalty / subsidy under both equilibrium concepts. The required subsidy to lower the proportion

of people opting out to 15% is $1576 per year under RE/sp-NE, for 10% $2706 is required and for 5%

$3556 is required. For 0%, the premium of the lowest cost plan has to, essentially, be fully funded. The

numbers for Wilson equilibrium are similar, but slightly lower. The $2706 required to have only 5%

opting out is similar in magnitude to what we see in the Massachusetts exchange, though this may be

a coincidence since our environment is quite stylized.

Figure 5 replicates Figure 4 for the case of health status pricing based on ACG predicted utilization

quartiles. The number of people who opt out of the market with 0 subsidy is similar to the case of

pure community rating. The subsidy required to have 85% of people opt in is only $965, lower than

the $1576 required under pure community rating. This is because now the healthiest people have lower

premiums once they enter the market, implying they need a lower payment to enter. However, to get

everyone to opt in is more diffi cult now, since some in the population have very high premiums: for

22 In 2010, in the 02138 zip code in Cambridge, MA, this penalty would have been $5,500 for a family with two 40 year

old parents, $3,300 for a couple with two 35 year olds, and $1,434 for a single 31 year old.[15]
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Figure 2: Figure 4 shows the number of individuals that would opt out of the exchange market with no

pricing based on pre-existing conditions. The blue line represents the subsidy required under Wilson

equilibrium, the red line under Riley / single-policy Nash equilibrium.

example, now to get only 5% opting out requires a subsidy of $6,205, much larger than the $3,556

necessary under pure community rating. This illustrates how pricing restrictions impact the extent of

those in the market, as well as adverse selection conditional on being in the market.

We can also interpret the subsidy required for a certain % of consumers to opt in as the extra

subsidy paid per person already in the market. For the case of pure community rating, in order to move

from 80% to 90% opting into the market, the cost is $174 per person already in the market (i.e. the

first 80%) for RE/sp-NE. To move to 95% opting in would be equivalent to $365 per person from the

first 80% in the market. These numbers give a sense of the redistribution inherent to the subsidies that

move incrementally more people into the market.

6.5 Rebalancing of the Population

The analysis to this point relied on health choice and utilization data from a large firm with approxim-

ately 10,000 employees and 20,000 covered lives. While these data have a lot of depth on dimensions

that are essential to model health risk and risk preferences, they represent a specific population working

for a specific large employer. Our results thus represent the case of exchange design as if our population

were the population of interest. While some large employers may strive to set up insurance choice en-

vironments with a high degree of insurer competition and specific pricing restrictions (using the leeway

given by ERISA), the market structure and regulator decisions we study are meant to mimic those

that national policymakers and state regulators have faced and will face when setting up the health

exchanges tied to the Affordable Care Act. In this section we extend the analysis by applying our
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framework to a more externally relevant sample from the Medical Expenditures Panel Survey (MEPS),

a survey that was specifically created to study medical care decisions for a nationally representative

population. This analysis servers two purposes: (i) to study whether our broad conclusions are robust

to changes in the population composition and (ii) to apply our analysis to a nationally representative

sample.

We study individuals in the MEPS data from 2004 to 2008. The data are structured as overlapping

two-year panels where each individual is in the panel for two consecutive years, and a new panel of

individuals enters in each year. Table 8 describes the number of individuals in the data over the sample

period. Note that because of the panel structure, an individuals ’counts’twice, once in each year they

appear.

Year Number of Individuals

2004 34,403

2005 33,961

2006 34,145

2007 30,964

2008 33,066

We base our analysis on two distinct samples that may be of interest to an exchange regulator, described

in Table 9, along with statistics for the full MEPS sample. Column 1 contains the summary statistics

for the entire sample, with no sample cuts. Column 2 contains summary statistics for the sample of

individuals between ages 25-65. In this table and in the analysis we split individuals within the same

family into distinct individuals and run our simulations as if the entire market is an individual market.23

Column 3 describes the sample of individuals between 25-65 who are uninsured, unemployed, or are

employed for an employer that does not offer coverage (implying that if the individual has coverage,

it is from the individual market). We run our exchange market analysis for the samples in Column

2 and Column 3. Column 2 is of interest if all individuals 25-65 participate in an exchange (e.g. the

exchange insurers everybody). This sample is about half of the overall MEPS sample. Column 3 is of

interest because it covers the population that will enter exchanges immediately when they are set up

(uninsured and insured on individual market). This sample is about 15% of the overall MEPS sample,

similar in age, lower in income, and more likely to come from the South. We note that Table 9 describes

the unweighted samples: MEPS also provides sample weights, which we use in our final analysis, as

described shortly.

Table 10 describes the insurance coverage for each of the three samples described in Table 9. For

individuals in Column 2 (age 25-65), 64% have some form of private insurance, 12% are on Medicaid,

and 22% are uninsured. 76% of families have employer insurance offered at some point, while 62%

23Once the structure of family based premium setting is clear, we could run an additional analysis taking that into

account, to the extent that it differs from aggregating up individual premiums into family premiums, which our current

approach is essentially equivalent to.
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

N - Individual-Year Obs. 166,539 81,733 21,856

N - Individuals in Panel 105,353 51,922 13,804

N - Family-Year Obs. 58,647 - -

N - Families in Panel 36,317 - -

Avg. Family Members 2.90 - -

Age-Individual

Mean 33.82 43.15 42.6

10th Qtile 5 28 27

25th Qtile 14 34 32

Median 32 43 42

75th Qtile 51 52 52

90th Qtile 66 59 60

Gender-Individual

Male % 47.7% 46.6% 50.2%

Total Income-Family-Year* **

Mean 53613 64058 42746

10th Qtile 9240 12733 8000

25th Qtile 19000 26000 17068

Median 39080 50000 31114

75th Qtile 72375 85584 54995

90th Qtile 115086 131080 89600

Wage Income-Family-Year**

Mean 44583 59945 38882

10th Qtile 0 7348 300

25th Qtile 8000 24000 14280

Median 32000 48300 30000

75th Qtile 65000 83753 52000

90th Qtile 104438 124996 82680

Region-Individual

Northeast 14.5% 15.0% 10.1%

Midwest 19.2% 19.6% 15.0%

South 38.3% 38.7% 46.3%

West 26.9% 26.8% 28.7%

Table 4: This table describes demographic data for key samples of interest in the MEPS data for the pooled

data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

Missing for 60% of family observations, not sure why.

*In individual samples can count same family income twice since two individuals can be from same family.
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always have an offer of employer insurance. Column 3, by design, has 83% of people uninsured and

17% of people insured on the individual market (with no employer insurance offer).

Our analysis matches individuals in the employer data used throughout our analysis to the two

MEPS populations of interest (Columns 2 and 3) and creates two new samples with demographic

weights similar to the MEPS samples. We match individuals in our data to those in the MEPS data

based on three demographics: age, income, and gender. To do this, we probabilistically model cells of

age, gender, and income in the MEPS samples, and then draw randomly from individuals in those bins

in our data with weights proportional to the MEPS cell weights. We note that before we construct the

MEPS cell weights, we incorporate the sample weights in the MEPS data, which are intended to correct

for sampling and response issues. Table 11 describes the age, income, and gender cell multivariate cell

weights for each of the two MEPS samples. We model the multivariate distribution of age and income

fully non-parametrically, and assume that the probability of gender conditional on income is the same

for all ages. Note that, unsurprisingly, the uninsured / individual market population has lower income,

is younger, and is more likely to be male than that the full 25-65 sample. We note that we use matching

from the MEPS data to our data, and then use the expenses and risk preferences from our data to

simulate equilibrium as opposed to explicitly using the MEPS data in our framework. This is because

(i) our data provide a clean way to identify risk preferences (which the MEPS data does not) and (ii)

we have richer health status and expense distribution information for our population.

We note that in this analysis, at this point, we do not match our sample to MEPS using health

expenditure data, though we have expenditure data for MEPS as well. In this version of the analysis

we match only on the three demographics under the assumption that health status in the nationally

representative sample will be similar to health status on our sample conditional on those demographics.

We are currently exploring additional matching algorithms that do incorporate expenses. Table 12

present a profile of health expenses for both MEPS samples.24

Given this population weighting procedure, we study market equilibrium for each weighted sample

for each equilibrium concept and for the pricing regimes of (i) pure community rating and (ii) ACG

quartile based pricing. Table 13.1 presents the equilibrium simulation results for both matched samples

(All 25-65 and those who are uninsured / individual market insured). This is analogous to Table 4.1

presented earlier for our own data. We find that our results our robust to re-weighting by the MEPS

demographic weights: for both samples the Riley equilibrium and single-policy Nash have full unraveling

while the Wilson equilibrium has some market share in the 60% and 90% due to cross-subsidization.

These results are quite similar to those in table 4.1, suggesting that full unraveling, everyone in the

60% AV plan, is a robust result in the context of our model.

24Future work can at least compare expenditure distributions for the weighted sample from our data with those from

the MEPS data.
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Entire MEPS All Ind. 25-65 25-65 Unins/Ind
(1) (2) (3)

Family-Year: Coverage Type*

Private (Employer or Ind.) 66.3% 73.3% 41.0%

Medicaid (someone) 30.7% 33.4% 45.4%

Medicare (someone) 29.01% 14.0% 16.4%

Uninsured** (someone) 26.7% 35.0% 84.7%

Only Public in Fam 22.5 % 15.1% 0%

Always Offered Employer (someone) 48.8 % 62.1% —

Offered Employer Sometimes (someone) 62.0% 76.1% —

Family Member Emp. Always 69.7% 84.7% 76.2%

Family Member Emp. Once 77.5% 92.3% 87.4%

Individual-Year: Coverage Type*

Private (Employer or Ind.) 54.5% 64.0% 16.8%

Medicaid 25.4% 12.4% 0.72%

Medicare 13.4% 3.9% 1 .25%

Uninsured** 16.6% 22.3% 83.2%

Only Public 27.6% 12.7% 0%

Always Offered Employer 21.3 % 38.9% —

Offered Employer Sometimes 32.5% 55.0% —

Individual Emp. Always 37% 65.4% 37.5%

Individual Emp. Once 48% 78.3% 48.0%

Table 5: This table describes insurance coverage, expenditures, and other stats in the MEPS data for the

pooled data from 2004-2008. A more detailed description of each column’s sample is contained in the text.

*Coverage type is family ever have this kind of coverage (for any member) throughout the year, so should add

to more than 100%.

**Uninsured variable occurs when none of other coverage types are held, so is uninsured for whole year, while

others show if you ever hold that coverage.
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MEPS Weights Incorporated

All 25-65 Sample

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 4.1% 4.5 2.7 1.9 13.1%

30-34 3.3% 4.4 2.6 1.9 12.3%

35-39 3.5% 4.2 2.8 2.3 12.9%

40-44 3.6% 4.5 3.0 2.8 13.9%

45-49 3.5% 4.2 3.0 3.1 13.9%

50-54 3.5% 3.8 2.8 2.9 13.1%

55-59 3.8% 3.2 2.3 2.3 11.7%

60-64 4.4% 2.3 1.3 1.2 9.2%

Total 29.7% 31.1% 20.5% 18.4% 100%

% Male by Income* 45.6% 49.9% 50.3% 51.4%

25-65 Unins./ Private

Age Bucket / Fam. Wages 0-$35,000 $35,000-$70,000 $70,000-$105,000 ≥ 105,000 Total

25-29 7.4% 5.0 1.9 1.6 15.9%

30-34 6.0% 4.4 1.3 0.7 12.4%

35-39 6.4% 3.5 1.1 0.6 11.6%

40-44 6.1% 4.0 1.4 0.8 12.2%

45-49 6.2% 3.1 1.6 0.9 10.8%

50-54 5.9% 2.9 1.1 0.9 10.8%

55-59 7.0% 2.5 1.1 0.8 11.4%

60-64 10.1% 2.3 0.8 0.8 14.0%

Total 55.1% 27.7% 10.3% 7.1% 100%

% Male by Income* 51.4% 56.2% 55.4% 56.8%

Table 6: This table describes the discrete age probabiliities for different age / gender / income categories in

the sample of all individuals in MEPS 25-65 in age and in the sample of individuals who are uninsured or have

individual market private coverage. This is the version of the chart that incorporates MEPS weights, so is the

one we should use in our final analysis.

*Percentages of gender across age are essentially constant conditional on income, which is why those figures are

not presented here.
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M EP S We ig h t s In c o rp o ra ted A ll 2 5 -6 5 S am p le

A g e B u ck e t / Q u a n t i l e 1 0 t h 2 5 t h 5 0 t h 7 5 t h 9 0 t h 9 5 t h M ean

2 5 - 2 9 0 ( 0 ) 0 ( 2 0 3 ) 1 2 5 ( 8 4 3 ) 6 2 0 ( 2 8 3 3 ) 2 1 0 9 ( 7 6 3 8 ) 4 1 5 5 ( 1 2 0 0 7 ) 9 9 7 (2 8 2 0 )

3 0 - 3 4 0 ( 0 ) 0 ( 2 4 1 ) 2 2 4 ( 9 4 0 ) 9 2 2 ( 3 1 7 9 ) 2 8 1 5 ( 9 0 4 0 ) 5 5 8 2 ( 1 3 1 2 2 ) 1 3 7 6 (3 1 4 6 )

3 5 - 3 9 0 ( 0 ) 0 ( 2 3 9 ) 3 3 1 ( 9 2 5 ) 1 3 1 4 ( 2 9 2 8 ) 3 4 9 9 ( 8 1 5 8 ) 6 3 3 3 ( 1 3 5 9 5 ) 1 6 9 6 (3 1 2 6 )

4 0 - 4 4 0 ( 0 ) 2 5 ( 2 5 8 ) 4 5 0 ( 9 6 7 ) 1 6 6 9 ( 2 9 5 5 ) 4 5 1 3 ( 7 8 4 4 ) 9 0 9 9 ( 1 3 8 4 3 ) 2 2 3 5 (3 5 4 4 )

4 5 - 4 9 0 ( 0 ) 1 1 5 ( 3 6 5 ) 7 0 3 ( 1 3 4 2 ) 2 4 2 5 ( 3 8 2 7 ) 6 4 2 3 ( 9 1 4 3 ) 1 2 1 2 5 ( 1 5 5 0 5 ) 3 0 1 6 (3 8 3 8 )

5 0 - 5 4 0 ( 9 0 ) 2 2 1 ( 5 6 3 ) 1 1 1 4 ( 1 8 6 0 ) 3 3 8 5 ( 4 7 4 4 ) 8 5 6 2 ( 1 0 6 8 3 ) 1 6 2 7 1 ( 1 7 1 3 5 ) 4 1 8 7 (4 5 5 1 )

5 5 - 5 9 0 ( 1 0 2 ) 4 1 0 ( 7 8 1 ) 1 8 3 7 ( 2 4 3 7 ) 4 9 5 3 ( 5 8 2 0 ) 1 1 9 2 9 ( 1 3 6 1 5 ) 2 1 0 6 9 ( 2 2 7 4 1 ) 5 3 1 5 (6 1 2 9 )

6 0 - 6 4 7 1 ( 2 5 5 ) 7 0 7 ( 1 1 0 9 ) 2 3 3 7 ( 2 9 0 6 ) 5 9 1 6 ( 6 7 7 1 ) 1 5 2 6 1 ( 1 4 4 9 3 ) 2 7 0 3 3 ( 2 4 9 9 7 ) 6 7 9 0 (6 6 6 6 )

2 5 -6 5 U n in s ./ P r iva te

A g e B u ck e t / Q u a n t i l e 1 0 t h 2 5 t h 5 0 t h 7 5 t h 9 0 t h 9 5 t h M ean

2 5 - 2 9 0 ( 0 ) 0 ( 0 ) 0 ( 1 6 6 ) 1 7 3 ( 7 5 8 ) 8 1 9 ( 2 9 5 9 ) 1 8 2 4 ( 5 5 0 2 ) 3 9 1 (9 5 2 )

3 0 - 3 4 0 ( 0 ) 0 ( 0 ) 0 ( 1 8 0 ) 2 5 4 ( 8 5 2 ) 1 0 6 2 ( 3 2 3 4 ) 2 0 2 4 ( 6 0 9 5 ) 6 0 8 (1 3 2 2 )

3 5 - 3 9 0 ( 0 ) 0 ( 0 ) 0 ( 1 7 4 ) 3 2 8 ( 1 0 2 4 ) 1 6 5 0 ( 3 1 8 7 ) 3 1 6 4 ( 5 7 4 8 ) 7 4 4 (1 2 2 3 )

4 0 - 4 4 0 ( 0 ) 0 ( 0 ) 5 0 ( 3 0 8 ) 7 5 0 ( 1 4 5 9 ) 2 9 2 9 ( 3 9 6 6 ) 4 5 0 0 ( 6 9 0 8 ) 1 3 8 1 (2 4 4 9 )

4 5 - 4 9 0 ( 0 ) 0 ( 0 ) 1 2 0 ( 4 2 5 ) 8 5 7 ( 1 8 4 6 ) 3 1 0 8 ( 4 5 6 6 ) 6 7 1 9 ( 9 6 5 8 ) 2 0 8 9 (1 9 6 7 )

5 0 - 5 4 0 ( 0 ) 0 ( 1 4 4 ) 3 4 0 ( 7 9 8 ) 1 5 7 6 ( 2 8 6 6 ) 5 5 9 0 ( 7 4 6 2 ) 1 1 8 5 1 ( 1 2 9 5 2 ) 2 4 7 4 (3 0 8 5 )

5 5 - 5 9 0 ( 0 ) 2 4 ( 1 7 6 ) 1 0 7 6 ( 1 3 1 2 ) 3 5 6 5 ( 3 9 9 6 ) 9 2 9 0 ( 9 9 9 0 ) 1 6 4 1 9 ( 1 9 4 5 9 ) 3 8 9 8 (4 9 4 1 )

6 0 - 6 4 0 ( 6 0 ) 4 4 9 ( 7 3 2 ) 1 9 6 6 ( 2 3 9 8 ) 5 1 6 6 ( 5 7 3 0 ) 1 3 7 4 9 ( 1 2 0 1 7 ) 2 4 1 5 7 ( 2 1 8 3 9 ) 6 0 0 3 (6 0 4 3 )

Table 7: This table describes the expenditure quantiles for all individuals in MEPS 25-65 in age and in the

sample of individuals who are uninsured or have individual market private coverage. Female numbers presented

in parantheses.

Table 13.1: Equilibria Without Pre-existing Conditions

Sample: All 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 3920 100 - 0 -

Wilson 3803 64 1328 6553 36 11007

Double Nash Does note exist

Sample: Uninsured / Ind. Market 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 4203 100 4203 - 0 -

Wilson 4106 66 1587 6906 34 11819

Double Nash Does not exist

Table 13.2 presents the results when we allow for health status based pricing, using ACG quartiles.

Table 13.2 specifically shows the results for those in the healthiest quartile. The results are again similar

to those based solely on our employer data presented in Table 4.2. The All 25-65 weighted sample has

42% market share in the 90% AV plan in the RE/sp-NE, indicating that there is less adverse selection

under health status based pricing. For the uninsured / individual market sample 36% enroll in the

90% AV plan. This table again shows the robustness of our initial results with respect to weighting on

demographics form a more representative sample. Further, it reveals that the equilibrium for the All
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25-65 population is not particularly different from the uninsured / private market sample. These results

are subject to the assumption of equal health status conditional on age, gender and income across these

two groups. In the even that uninsured people are likely to be healthier, as Table 12 suggests, these

results would change. In future specifications with matching based on health status, we will control for

this.

Table 13.2: Equilibria: ACG Quartile 1 (Healthy)

Sample: All 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 215 58 215 1515 42 1515

Wilson 215 58 215 1515 42 1515

Double Nash 215 58 215 1515 42 1515

Sample: Uninsured / Ind. Market 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 231 64 231 1581 36 1590

Wilson 231 64 231 1581 36 1590

Double Nash 231 64 231 1581 36 1590

Table 13.3 presents the results for both samples for ACG quartile two, which is the second healthiest

quartile. Again, the results are similar across the two different weighted samples and the original data,

results shown in table 4.3.

Table 13.3: Equilibria ACG Quartile 2 (2nd Healthiest)

Sample: All 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 1167 79 1167 3780 21 3780

Wilson 1079 54 924 3179 46 3368

Double Nash Does not exist

Sample: Uninsured / Ind. Market 25-65

P60 Sh60 AC60 P90 Sh90 AC90

Riley / sp-NE 1236 84 1236 3886 16 3886

Wilson 1131 55 965 3181 45 3384

Double Nash Does not exist

Overall, the analysis of MEPS data in this section suggests that, at a first pass, our main results

are robust to different weighting of demographics to reflect a more nationally representative sample.

Extending the analysis in the section to allow matching based on health status (into the All 25-65 and
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uninsured/individual market groups) will provide further checks that the results are robust. Further,

the analysis here illustrates that close to full unraveling is likely to occur under pure community rating

if there is ineffective risk adjustment and there are no additional preference considerations.

6.6 Analysis with Moral Hazard

6.7 Longer-term Contracts

7 Conclusion

TBA
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8 Appendix I

8.0.1 Proof of Proposition 1

We begin by considering which price offers are “safe”in the sense that they remain profitable regardless

of any additional offers being introduced.

Lemma 1. If (P90, P60) are the lowest prices offered for the 90 policy and the 60 policy, respectively,

then any P ′′60 < P60 such that Π60(P90, P
′′
60) ≥ 0 is safe.

Proof. Any prices P̂ = (P̂90, P̂60) with a P̂60 lower than P ′′60 gives the firm offering P ′′60 a profit of zero.

Any prices P̂ with P̂90 ≥ P90 and P̂60 ≥ P ′′60 cannot make the firm offering P ′′60 incur losses. Finally,

any prices P̂ with P̂90 < P90 and P̂60 ≥ P ′′60 weakly lowers the sales of the firm offering P ′′60. If that
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Figure 3: Graphical Description of Riley Equilibrium

firm makes no sales at (P̂90, P
′′
60), then its profit is zero. If it has positive sales at (P̂90, P

′′
60), then it

must have Π60(P̂90, P
′′
60) ≥ 0 since AC60(P̂90, P

′′
60) ≤ AC60(P90, P

′′
60) ≤ P ′′60.

Definition 2. The lowest safe 60 price given P90 is P 60(P90) ≡ min{P ′′60 : Π60(P90, P
′′
60) ≥ 0}.

Remark 1. Define the price P̃60(P90) ≡ { P̃60 : P̃60 = AC60(P90 − P̃60)}. Note that this equality
has a unique solution, which is continuous and weakly increasing in P90 and strictly increasing at

any P90 at which P90 − P̃60(P90) ∈ (θ, θ) (so that there are sales of both policies), which occurs when

P90 ∈ (AC60 + θ,AC60 + θ). This can be seen in Figure 1. Also, P̃60(AC60 + θ) = AC60 and

P̃60(AC60 + θ) = AC60. Moreover, one can see in the figure that AC60(P90 − P̃60(P90)) is strictly

increasing for this range of P90, which also means that P90 − P̃60(P90) is strictly increasing, and these

are weakly increasing at all P90. Moreover, observe that

P 60(P90) =


P90 − θ if P90 ≤ AC60 + θ

P̃60(P90) if P90 ∈ (AC60 + θ,AC60 + θ)

AC60 if P90 ≥ AC60 + θ

 .

When P90 ≤ AC60 + θ, all consumers buy the 90 policy at prices (P90, P 60(P90)); when P90 ∈ (AC60 +

θ,AC60 +θ) there are positive sales of both policies at prices (P90, P 60(P90)); and when P90 ≥ AC60 +θ

all consumers buy the 60 policy at prices (P90, P 60(P90)). Finally, observe that Π60(P90, P 60(P90)) is

continuous in P90.
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Remark 2. The lowest safe 60 price given P90 is the lowest single policy reaction in P60 that is safe.

However, observe that if a two-policy reaction (P ′′90, P
′′
60) is safe and makes a deviating firm offering P ′90

earn strictly negative profits, then the single-policy reaction P ′′60 is also safe and makes the deviating

firm earn strictly negative profits. (This follows because the only case in which the two differ in their

outcome is if P ′′90 = P ′90 and the two firms split the 90 consumers, each making losses on them, while

Π60(P ′90, P
′′
60) > 0, which by Lemma 1 means that the single-policy reaction P ′′60 is safe.) Hence, in

looking at safe reactions to single-policy deviations in P90, we can restrict attention to single-policy safe

reactions in P60.

Lemma 2. If at (P90, P 60(P90)) we have positive sales of the 90 policy and Π90(P90, P 60(P90)) ≥ 0,

then Π90(P90, P60) > 0 at all P60 > P 60(P90).

Proof. Since there are positive sales of the 90 policy at (P90, P 60(P90)), for any P60 > P 60(P90) we

have Π90(P90, P60) > 0 since increases in P60 increase sales of the 90 policy and lower AC90.

Remark 3. Lemma 2 implies that a single-policy deviation to P ′90 can be rendered unprofitable by a

safe reaction only if it is rendered unprofitable by a single-policy reaction to P 60(P ′90).

8.1 Characterization of Equilibria

Lemma 3. If (P ∗90, P
∗
60) is a Riley equilibrium, then there can be no P ′60 < P ∗60 such that Π60(P ∗90, P

′
60) >

0.

Proof. Suppose by contradiction that (P ∗90, P
∗
60) is a Riley equilibrium and there is a P ′60 < P ∗60 such

that Π60(P ∗90, P
′
60) > 0. Then by Lemma 1 a single-policy deviation that offers P ′60 is safe, and hence

there is no reaction that can render it unprofitable.

Corollary 3. If (P ∗90, P
∗
60) is a Riley equilibrium, then Π60(P ∗90, P

∗
60) ≤ 0.

Proof. If Π60(P ∗90, P
∗
60) > 0, then for small ε > 0 we have Π60(P ∗90, P

∗
60 − ε) > 0, in contradiction to

Lemma 3.

Lemma 4. If (P ∗90, P
∗
60) is a Riley equilibrium, then Π90(P ∗90, P

∗
60) ≤ 0.

Proof. The result is immediate if∆P ∗ ≥ θ so that the 90 policy makes no sales. So suppose that∆P ∗ <

θ (the 90 policy has positive sales) and that contrary to the claim (P ∗90, P
∗
60) is a Riley equilibrium with

Π90(P ∗90, P
∗
60) > 0. Consider a single-policy deviation to P ′90 = P ∗90 − ε for small ε > 0 such that

Π90(P ∗90 − ε, P ∗60) > 0. Now, no reaction that has P ′′90 < P ′90 can make the deviator incur a loss.

As noted in Remarks 2 and 3, P ∗90 − ε can be rendered unprofitable by a safe reaction only if it can
be rendered unprofitable by a single-policy reaction to P 60(P ∗90 − ε). By Corollary 3, we know that
Π60(P ∗90, P

∗
60) ≤ 0. If Π60(P ∗90, P

∗
60) < 0, then P ∗60 < P 60(P ∗90). Since P 60(P90) is continuous in P90, for

small enough ε there is no safe reaction that is below P ∗60, so P
∗
90 − ε cannot be rendered unprofitable

by a safe reaction. If instead Π60(P ∗90, P
∗
60) = 0, then P ∗60 = P 60(P ∗90), which implies that as ε → 0

44



we have P 60(P ∗90 − ε) → P ∗60. Since this implies Π90(P ∗90 − ε, P 60(P ∗90 − ε)) → Π90(P ∗90, P
∗
60) > 0, for

small enough ε the deviation cannot be rendered unprofitable by a safe reaction. This contradicts that

(P ∗90, P
∗
60) is a Riley equilibrium.

Corollary 4. If (P ∗90, P
∗
60) is a Riley equilibrium, then Π90(P ∗90, P

∗
60) = Π60(P ∗90, P

∗
60) = 0.

Proof. By Lemma 3 and Lemma 4 we have Π60(P ∗90, P
∗
60) ≤ 0 and Π90(P ∗90, P

∗
60) ≤ 0. But if either

is strictly negative, then some firm must be earning strictly negative profits, and would do better by

dropping all of its policies.

Corollary 5. There is a Riley equilibrium in which all consumers buy the 90 policy if and only if there

is no P ′60 such that Π60(AC90, P
′
60) > 0.

Proof. By Corollary 4, P ∗90 = AC90. Necessity follows then by Lemma 3. For suffi ciency, suppose that

there is no P ′60 such that Π60(AC90, P
′
60) > 0 but that P ′ = (P ′90, P

′
60) is a profitable Riley deviation.

If the deviator makes no sales of the 90 policy, then its sales would be the same with a single policy

deviation to P ′60, so we would have Π60(AC90, P
′
60) > 0 —a contradiction. Suppose, instead, that

the deviator does make positive sales of the 90 policy (which requires that P ′90 ≤ AC90). Since it is a

profitable deviation it must also make positive sales of the 60 policy (since P ′90 ≤ AC90, it can’t make

a positive profit selling only the 90 policy). But, in this case P ′90 ≤ AC90 < AC90(∆P ′), so we must

have Π60(P ′90, P
′
60) > 0 since it is a profitable deviation. In turn, letting P̂60 ≡ AC90 − ∆P ′ ≥ P ′60,

this implies that Π60(AC90, P̂60) ≥ Π60(P ′90, P
′
60) > 0 —a contradiction.

Remark 4. This Corollary shows that a Riley equilibrium in which all consumers buy the 90 policy

exists if and only if such a Nash equilibrium (with either single or multi-policy deviations) exists.

We also have the following result:

Lemma 5. Suppose P ∗ = (P ∗90, P
∗
60) with positive sales of the 60 policy (so ∆P ∗ ∈ (θ, θ̄]) and both

policies break even. Then P ∗ is a Riley equilibrium iff there are no single-policy Riley profitable devi-

ations in P90.

Proof. Since both policies are breaking even and there are positive sales of the 60 policy at P ∗ a

single-policy deviation in only P60 is unprofitable, because

0 = Π60(P ∗90, P
∗
60) ≥ Π60(P ∗90, P

′
60), for any P ′60 ≤ P60.

Thus, any profitable deviation involves a deviation in P90 (and maybe also P60) to a P ′90 < P ∗90 and

has positive sales of the 90 policy.25

Consider a multi-policy deviation P ′ = (P ′90, P
′
60) that is profitable and does not incur losses when

any safe reaction is added. We will show that we necessarily have Π90(P ′90, P
∗
60) > 0 and Π90(P ′90, P̃60) ≥

0 for all P̃60 ∈ [P 60(P ′90), P ∗60]. Thus, a single-policy deviation to P ′90 would be profitable and no safe

25Note that if P ′90 = P ∗90 and P
′
60 < P ∗60, then the deviation is unprofitable.
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single-policy reaction in P60 could make it unprofitable. This will imply (see Remark 2) that in

looking for Riley profitable deviations when the 60 policy has positive sales, we can restrict attention

to single-policy deviations in P90.

Observe that it must be the case that Π90(P ′90, P̃60) ≥ 0 for all P̃60 ∈ [P 60(P ′90), P ∗60]: First, if there

are no sales of the 90 policy at prices (P ′90, P 60(P ′90)), then (see Remark 1) P 60(P ′90) = AC90 ≥ P ∗60 so

the claim is trivially true. Suppose instead that there are sales of the 90 policy at prices (P ′90, P 60(P ′90)).

We show that Π90(P ′90, P 60(P ′90)) ≥ 0, from which the claim follows by Lemma 2. If, contrary to the

claim we have Π90(P ′90, P 60(P ′90)) < 0, then the safe single-policy reaction to P 60(P ′90) makes the

deviator incur losses if P 60(P ′90) < P ′60, while if P 60(P ′90) ≥ P ′60 then the deviation is unprofitable

(either the 60 policy has no sales at P ′ or it makes no profit).

The rest of the proof shows that Π90(P ′90, P
∗
60) > 0. First, if there are positive sales of only the 90

policy at prices P ′, then this is also true at prices (P ′90, P
∗
60) and we have Π90(P ′90, P

∗
60) > 0 since it is

a profitable deviation. So, we shall henceforth assume that there are positive sales of both policies at

P ′.

Next, observe that if P ′60 ≤ P 60(P ′90), then Π60(P ′90, P
′
60) ≤ 0, so since the deviation is profitable we

would have Π90(P ′90, P
′
60) > 0, which implies Π90(P ′90, P

∗
60) > 0. So, henceforth we shall assume that

P ′60 > P 60(P ′90). This implies that there are positive sales of the 60 policy at prices (P ′90, P 60(P ′90))

since there are positive sales of the 60 policy at P ′.

Now, if there are no sales of the 90 policy at prices (P ′90, P 60(P ′90)) then P ′60 > P 60(P ′90) = AC60 ≥
P ∗60 (the equality follows by Remark 1 and the weak inequality by the fact that the 60 policy has

positive sales and breaks even at prices P ∗), implying that Π90(P ′90, P
∗
60) > 0 since the deviation is

profitable. So, henceforth we assume that there are positive sales of both policies at (P ′90, P 60(P ′90)).

Since Π90(P ′90, P 60(P ′90)) ≥ 0, there are positive sales of both policies at (P ′90, P 60(P ′90)), and (by

Remark 1) we have P 60(P ′90) < P 60(P ∗90) = P ∗60, we have Π90(P ′90, P
∗
60) > 0.

Lemma 6. Among all price pairs (P90, P60) at which both policies break even and there are positive

sales levels of the 60 policy, only the one(s) with the lowest sales of the 60 policy (and highest sales of

the 90 policy) can be a Riley Equilibrium.

Proof. Suppose there are two price pairs that are Riley Equilibria P ′ = (P ′90, P
′
60) and P ′′ = (P ′′90, P

′′
60)

with both having positive and differing 60 shares. We can assume that ∆P ′ < ∆P ′′. Thus, there are

positive sales of the 90 policy at P ′. Also, P ′90 < P ′′90 and P
′
60 < P ′′60. Consider the single-policy

deviation to P ′90 from the equilibrium (P ′′90, P
′′
60). Since Π90(P ′90, P

′
60) = 0 (by Corollary 4) and there

are positive sales of 90 at P ′, we have Π90(P ′90, P
′′
60) > 0. Now, observe that the lowest safe 60 price

given P ′90 is P
′
60; i.e., P 60(P ′90) = P ′60, so Π90(P ′90, P 60(P ′90)) = 0. By Lemma 2, there are no safe

reactions that make the deviator incur a loss. This implies that (P ′′90, P
′′
60) is not a Riley equilibrium,

which is a contradiction.

Lemma 7. A Riley equilibrium exists.
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Proof. Suppose otherwise. It is immediate that if at prices (P90, P60) = (AC90, AC60) all consumers

buy policy 60, then by Lemma 5 this is a Riley equilibrium as there is no single-policy deviation in

P90 that can earn a strictly positive profit, yielding a contradiction. Thus, we henceforth assume that

there are positive sales of the 90 policy at (P90, P60) = (AC90, AC60).

Given Lemma 6, we need to show that it cannot be that both the everyone-in-90 break-even con-

figuration and the break-even price pair with the lowest ∆P among those with a positive 60 share

both fail to be Riley Equilibrium. Let P ∗∗ = (P ∗∗90 , P
∗∗
60 ) be the break-even price pair with the lowest

∆P > θ. Let P ∗90 = AC90 be the break-even 90 price in the everyone-in-90 outcome. Note also that

P ∗∗60 = P 60(P ∗∗90 ). We will suppose that neither is a Riley equilibrium.

If P ∗∗ is not a Riley Equilibrium, by Lemma 5 there is a profitable single-policy deviation P ′90 < P ∗∗90

with Π90(P ′90, P
∗∗
60 ) > 0 that does not incur losses when facing the reaction of the lowest safe price

P 60(P ′90) ≤ P ∗∗60 . If Π90(P ′90, P 60(P ′90)) = 0, then we have found a price pair (P ′90, P 60(P ′90)) with

P 60(P ′90) < P ∗∗60 and a positive share of 60 (since the change from P ∗∗60 to P 60(P ′90) lowered Π90) that

breaks even on both policies. Note also that there must then be positive sales of the 90 policy at

prices (P ′90, P 60(P ′90)) since otherwise (by Remark 1) we have P 60(P ′90) = AC90 ≥ P ∗∗60 . This in turn

(by Remark 1) implies that ∆P ′ = P ′90 − P 60(P ′90) < ∆P ∗∗, contradicting P ∗∗ being the break-even

price pair with the lowest ∆P among those with positive sales of the 60 policy. So if P ∗∗ is not a Riley

Equilibrium, it must be the case that Π90(P ′90, P 60(P ′90)) > 0.

Now, suppose that everyone-in-90 is not a Riley Equilibrium. Then by Corollary 5 there is a P̂60

such that Π60(AC90, P̂60) > 0. But this means that P 60(AC90) < P̂60 and at prices (AC90, P 60(AC90))

there are positive sales of the 60 policy. Moreover, there must also be positive sales of the 90 policy at

prices (AC90, P 60(AC90)): if not, by Remark 1 we would have P 60(AC90) = AC60, but then there must

be (recall the first paragraph of the proof) positive sales of the 90 policy at (P90, P60) = (AC90, AC60).

Because there are positive sales of both policies at prices (P90, P60) = (AC90, P 60(AC90)), we have

Π90(AC90, P 60(AC90)) < 0. Continuity of the function Π90(P90, P 60(P90)) in P90 implies that there is

a P̃90 ∈ (AC90, P
′
90) at which Π90(P̃90, P 60(P̃90)) = 0. Hence, both policies break even at price pair

(P̃90, P 60(P̃90)). Moreover, ∆P̃ < ∆P ′ ≤ ∆P ∗∗ (by Remark 1), contradicting P ∗∗ being the break-even

price pair with the lowest ∆P among those with positive sales of the 60 policy.

Definition 3. A Riley equilibrium (P ∗90, P
∗
60) at which there are only sales of the 90 policy is a strict

Riley equilibrium if P60 < AC60(AC90, P60) for all P60 ≤ AC90 − θ.

Remark 5. Generically, any Riley equilibrium at which there are only sales of the 90 policy is a strict

Riley equilibrium.

Lemma 8. If there is a strict Riley Equilibrium at which all consumers buy the 90 policy, then there

is no Riley Equilibrium with positive sales of the 60 policy.

Proof. Let P ∗ = (P ∗90, P
∗
60) be a strict Riley Equilibrium in which all consumers buy the 90 policy.

Then P ∗60 ≥ AC90 − θ and by Corollary 4 we must have P ∗90 = AC90. Suppose there is another Riley
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equilibrium P ∗∗ = (P ∗∗90 , P
∗∗
60 ) in which ∆P ∗∗ > θ (so there are positive sales of the 60 policy). If so,

then we know that P ∗∗60 = AC60(P ∗∗90 , P
∗∗
60 ) by Corollary 4.

We first argue that it cannot be that everyone buys the 60 policy at both prices P ∗∗ and prices

(AC90, P
∗∗
60 ). If they did, then we must have P ∗∗60 = AC90 = AC60(AC90, P

∗∗
60 ). But then for small

ε > 0 we would have positive sales of the 60 policy at prices (AC90, P
∗∗
60 +ε) and Π60(AC90, P

∗∗
60 +ε) > 0,

which contradicts P ∗ being a Riley equilibrium by Lemma 3.

Next, we argue that we must have P ∗∗90 > AC90 and P
∗∗
60 > AC60(AC90, P

∗∗
60 ). Suppose, first, that

there are sales of the 90 policy at P ∗∗. Then from Corollary 4 we must have P ∗∗90 = AC90(P ∗∗90 , P
∗∗
60 ) >

AC90, which in turn implies that P
∗∗
60 > AC60(AC90, P

∗∗
60 ). If, instead, all consumers buy policy 60

at prices P ∗∗ but some consumers buy the 90 policy at prices (AC90, P
∗∗
60 ), then it must be that

P ∗∗90 > AC90 and P
∗∗
60 > AC60(AC90, P

∗∗
60 ).

Finally, we argue that if P ∗ is a strict Riley equilibrium, and if P ∗∗90 > AC90 and P
∗∗
60 > AC60(AC90, P

∗∗
60 ),

then P ∗∗ cannot be a Riley equilibrium. Since P ∗∗60 > AC60(AC90, P
∗∗
60 ) and P ∗ is a Riley equi-

librium, Lemma 3 implies that there must be that there are no sales of the 60 policy at prices

(AC90, P
∗∗
60 ). But, if so, then for small ε > 0 the single-policy deviation to P ′90 = AC90 + ε from

P ∗∗ has Π90(AC90 + ε, P ∗∗60 ) > 0. Moreover, if P ∗ is a strict Riley equilibrium, there is no single-policy

safe reaction in P60 to P ′90 that earns nonnegative profit. Hence, by Remark 2 there is no safe reaction

that renders the deviation to P ′90 = AC90 + ε unprofitable.

Remark 6. Strictness is used is to insure that there are no safe reactions to P ′90 at the end of the

proof, the need for which arises because of the difference between all-in-90 being a Riley equilibrium (no

strictly profitable single-policy deviation in P60) and the zero profits that are allowed for safe single-

policy reactions in P60.

8.1.1 Proof of Proposition

First, observe that any WE (Pw90, P
w
60) must satisfy constraints (i) and (ii). Constraint (ii) is obvious.

If (i) was not satisfied, a single policy deviation of Pw90− ε for small ε > 0 would be profitable if the 60

policy still remained, and would be even more profitable if it did not. We next consider some properties

of the solution of problem (1). Note first that in any solution constraint (ii) must bind —otherwise

we could do better lowering both prices by the same small amount ε > 0. This also implies that if

(P ∗90, P
∗
60) is a solution, then Π60(P ∗90, P

∗
60) ≥ 0. Second, in any solution to problem (1), policy 90 must

be purchased. Suppose otherwise, and let (P ∗90, P
∗
60) be a solution to problem (1), where P ∗60 = AC60

and P ∗90 ≥ P ∗60 + θ. Clearly, it must then be that AC60 < AC90 − θ, for otherwise the (feasible) price
pair (AC90, AC90 − θ) in which everyone buys policy 90 would achieve a lower value in problem (1)

(recall that we have assumed that AC60 6= AC90 − θ). Next, observe that, from the same argument

as in Proposition 4(i), there would be a P̂90 = P ∗90 − ε for small ε > 0 such that P̂90 − P ∗60 ∈ (θ, θ)

(both policies are purchased), Π(P̂90, P
∗
60) > 0, and Π60(P̂90, P

∗
60) > 0. In this case, we can then find
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a P ′90 < P̂90 such that Π(P ′90, P
∗
60) = 0 and Π60(P ′90, P

∗
60) > 0, and hence, Π90(P ′90, P

∗
60) < 0,26 which

implies that there exists a P̂60 < P ∗60 and a P̂90 such that Π(P̂90, P̂60) = 0 and Π90(P̂90, P̂60) < 0.

Thus, we then have a contradiction to (P ∗90, P
∗
60) being a solution to problem (1). Third, observe that

any solution has P ∗60 < AC60. To see this, observe that (P90, P60) = (AC60 + θ,AC60) is feasible.

But then the argument of the previous paragraph implies that we can find a feasible (P̂90, P̂60) with

P̂60 < AC60. We next argue that any (P90, P60) that satisfies the constraints but is not a solution to

this problem cannot be a WE. Let (P ∗90, P
∗
60) be a solution (a solution clearly exists). By definition,

P ∗60 < P60. If (P ∗90, P
∗
60) << (P90, P60) then a deviation to (P ∗90 + ε, P ∗60 + ε) for small ε > 0 is strictly

profitable regardless of whether prices P90 and P60 are withdrawn. So suppose that P ∗90 ≥ P90. Then,

if the original P90 were still offered, a deviation to (P ∗90 + ε, P ∗60 + ε) for small ε > 0 attracts any

former purchasers of policy 60 and also the best purchasers of policy 90. So Π90(P ∗90, P̂60 + ε) < 0 and

therefore P90 will be dropped and the deviation will be strictly profitable; i.e., the deviation “Wilson-

breaks” (P90, P60). Finally, we argue that any solution (P ∗90, P
∗
60) to problem (1) is a WE. First, it is

not possible to enter in just the 60 policy with P̂60 < P ∗60 and make a strictly positive profit: This is

clearly true if everyone buys the 60 policy after the deviation since (as noted above) P ∗60 < AC60. If

some consumers still buy the 90 policy, then doing so results in the 90 policy being dropped because

it earned nonpositive profit to start with (and had positive sales) and the deviation takes its best

consumers, resulting in Π90(P ∗90, P̂60) < 0. But once the 90 policy is dropped, the deviation policy

with price P̂60 < P ∗60 loses money, since P
∗
60 < AC60. Second, it is not possible to enter in just

the 90 policy and make a strictly positive profit: This is clearly true if all consumers buy policy 90 at

(P ∗90, P
∗
60). On the other hand, if some buy policy 60 at (P ∗90, P

∗
60), then it must be that AC90−θ ≥ P ∗60,

or equivalently, AC90 ≥ P ∗60 + θ, for otherwise (AC90, AC90 − θ) would be feasible and better than
(P ∗90, P

∗
60) in problem (1). Now, the deviation never gets rid of P ∗60 since it takes the worst consumers

from policy 60. Given this fact, if there were a P̂90 < P ∗90 such that Π90(P̂90, P
∗
60) > 0, we would have

Π60(P̂90, P
∗
60) ≥ 0, so Π(P̂90, P

∗
60) > 0. But then P ∗60 cannot be the value of the solution to problem

(1) : by the same logic as above, there is a P ′90 < P̂90 such that Π(P ′90, P
∗
60) = 0 and Π90(P ′90, P

∗
60) < 0,

which leads to a contradiction.27 Thus, any deviation that Wilson-breaks (P ∗90, P
∗
60) must be a two-

policy deviation (P̂90, P̂60) that attracts all consumers, so it must have P̂90 < P ∗90, P̂60 < P ∗60 , and

Π(P̂90, P̂60) > 0. The best such deviation must either have P̂90 = P ∗90 − ε or P̂60 = P ∗60 − ε and result
in profits of max{Π(P ∗90, P̂60),Π(P̂90, P

∗
60)}. We first argue that Π(P ∗90, P̂60) ≤ 0. Since P̂60 < P ∗60, we

have Π90(P ∗90, P̂60) ≤ 0 which implies that Π(P ∗90, P̂60) ≤ Π60(P ∗90, P̂60) —i.e., a single policy deviation

is at least as profitable. But we have already seen that it cannot be profitable, so Π(P ∗90, P̂60) ≤ 0.

We next argue that Π(P̂90, P
∗
60) ≤ 0. If all buy policy 90 at (P̂90, P

∗
60), then it is equivalent to a single

26A P ′90 such that Π(P ′90, P
∗
60) = 0 exists, since the fact that P ∗60+θ = AC60+θ < AC90 implies that Π(P ∗60+θ, P ∗60) < 0,

and Π(·, ·) is continuous. Moreover, this implies that there are some purchases of policy 60 at (P ′90, P
∗
60) since P ′90 > P ∗60+θ,

hence Π60(P ′90, P
∗
60) > 0.

27Once again, note that Π(P ∗60 + θ, P ∗60) < 0, so such a P ′90 exists and it has P
′
90 > P ∗60 + θ, so some consumers still

buy the 60 policy.
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policy deviation, which we have seen cannot be profitable. If some buy policy 60 at (P̂90, P
∗
60), then

Π60(P̂90, P
∗
60) > 0,Π(P̂90, P

∗
60) > 0, and Π90(P̂90, P

∗
60) ≤ 0. Once again, we can then find a P ′90 < P̂90

such that Π(P ′90, P
∗
60) = 0 and Π90(P ′90, P

∗
60) < 0, which leads to a contradiction.

8.1.2 Nash Equilibria

Note that, in general, if an active firm’s best deviation from a set of price offers is strictly profitable,

then there exists a strictly profitable deviation for an entrant: The entrant can offer the same deviating

prices less ε, and make a post-deviation profit that is arbitrarily close to that of the active firm. (Note

that a firm’s best deviation can without loss of generality be taken to capture either all consumers or

no consumers who purchase each policy.) Since the entrant’s pre-deviation profit is zero, it must find

the deviation at least as attractive as did the active firm. Hence, we can restrict attention to deviations

by entrants.

8.1.3 Single-policy firms

A Nash equilibrium with single-policy firms is a pair of prices (P90, P60), and resulting allocation

of consumers to the two contracts, such that no firm (including potential entrants) has a profitable

deviation. We assume that each equilibrium price is offered by at least 2 firms; any NE price pair can

be sustained in this way since this reduces the number of possible deviations (which must then involve

price reductions).

Lemma 9. Suppose that (P ∗90, P
∗
60) is a NE. Then both policies must break even: i.e., Π90(P ∗90, P

∗
60) =

Π60(P ∗90, P
∗
60) = 0.

Proof. Suppose policy k is profitable. A new firm could enter and offer price Pk − ε for that contract
and make a positive profit: This deviation attracts all consumers who are purchasing policy k, and

earns a positive profit on them, and for small ε, attracts very few others. Taking ε → 0 yields the

result.

Lemma 10. Among all price pairs (P90, P60) at which both policies break even and ∆P > θ (there are

positive sales of the 60 policy), only the ones with the lowest sales of the 60 policy can be NE.28

Proof. Let (P
′

90, P
′
60) and (P ′′90, P

′′
60) lead both policies to break even, have min{∆P ′,∆P ′′} > θ, and

have differing purchase patterns (note that the 90 policy might not be purchased at the price pair with

the larger ∆P ). Without loss of generality, let ∆P ′ < ∆P ′′ (note that these must be different in the

two equilibria if the purchasing is different). Also, note that there must be positive sales of the 90

policy with price difference ∆P ′. Then, since ACk(∆P ) is increasing in ∆P for k = 90, 60, we must

have P ′60 < P ′′60. So, at price pair (P ′′60 + ∆P ′, P ′′60) we get the same sales levels as at prices (P ′90, P
′
60),

28The statement is intended to allow for the fact that we can have multiple price pairs that have all consumers buying

the 60 policy and both policies breaking even.
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and the 90 policy makes a strictly positive profit since P ′′60 + ∆P ′ > P ′90. Hence, (P ′′90, P
′′
60) cannot be

a NE: an entrant would profit by offering the 90 policy at price P̂90 ≡ P ′′60 + ∆P ′ < P
′′

90.

The above result tells us that we can narrow down the possible equilibria to two: (i) everyone in the

90 policy, (ii) the lowest ∆P ∈ (θ, θ) at which AC90(∆P )−AC60(∆P ) = ∆P , or if no such interior ∆P

exists, everyone in the 60 policy. The former is an equilibrium only if there is no profitable deviation

to a P60 < AC90 − θ. Moreover, observe the following:

Lemma 11. If there is a NE at which all consumers buy the 90 policy, then this is the unique NE.

Proof. Let P ∗90 = AC90 be the equilibrium price in this Nash equilibrium and note that we must have

P ∗60 ≥ P ∗90− θ. Suppose as well that there is another NE (P ∗∗90 , P
∗∗
60 ) in which policy 60 is purchased by

a positive measure of consumers. Note that we then must have P ∗∗90 > P ∗∗60 +θ and P ∗∗60 = AC60(∆P ∗∗) ,

where ∆P ∗∗ ≡ P ∗∗90 − P ∗∗60 ≥ θ. Thus, P ∗∗60 > MC60. We first argue that we must have P
∗∗
60 > P ∗90 − θ:

if not, then at prices (P ∗90, P
∗
60), an entrant could attract a positive measure of consumers close to

type θ by offering P̂60 ≡ P ∗90 − θ − ε for small ε > 0 and would make a strictly positive profit since

P̂60 > MC60, contradicting (P ∗90, P
∗
60) being a NE. But if P ∗∗60 > P ∗90 − θ, then (P ∗∗90 , P

∗∗
60 ) cannot be

a NE, as an entrant could attract all consumers by offering P̂90 ≡ P ∗∗60 + θ > P ∗90 = AC90 (note that

P̂90 < P ∗∗90 ).

These results suggest the following procedure: First, see if all buying the 90 policy is a NE by seeing

if there is profitable policy 60 deviation. If it is, then that is the unique NE. If it is not an equilibrium,

identify all break-even price pairs in which the 60 policy is purchased and then see if the one with

the lowest ∆P is a NE. In doing this, the following result tells us that we can restrict attention to

deviations in P90:

Lemma 12. Suppose (P90, P60) have Π90(P90, P60) = Π60(P90, P60) = 0 and ∆P ∈ (θ, θ]. Then no

single-policy deviation by an entrant in P60 is profitable.

Proof. The deviation P̂60 must be below P60 to attract any consumers (when at least one other firm

offers P60). But any such deviation loses $ on the consumers who were choosing policy 60, and by

Assumption 1 loses $ on any consumers it attracts away from policy 90.

8.1.4 Multi-policy firms (with multi-policy deviations)29

A Nash equilibrium with multi-policy firms and multi-policy deviations is a pair of prices (P90, P60), and

resulting allocation of consumers to the two contracts, such that no firm (including potential entrants)

has a profitable multi-contract deviation. Clearly, lemmas 1-3 still hold and our conclusions above still

hold (all previous deviations are still feasible). The new result is as follows:

29Note that when firms can offer multiple policies but can deviate in only one policy at a time there is no change from

the analysis of the previous subsection since we only need to consider entrant’s deviations and the profitability of these

is unaffected by whether firm’s offer more than one policy.
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Proposition 4. If (P ∗90, P
∗
60) is a NE with multi-policy firms and mutli-policy deviations, then

(i) some consumers must be buying the 90 policy;

(ii) if all consumers are buying the 90 policy, it is a NE if there is no profitable single policy deviation

by an entrant in P60;

(iii) if some consumers are buying the 60 policy, it is a NE iff Π(P ∗90, P
∗
60) = 0 = supP̂90<P∗90

Π(P̂90, P
∗
60),

that is, if there is no profitable multi-policy deviation by an entrant that reduces P90 and lowers

P60 by ε to capture all consumers.

Proof. For part (i), suppose all consumers were purchasing the 60 policy. Then P60 = AC60 and

P90 ≥ P60 + θ. Now consider a deviation to (P̂90(ε), P60) where

P̂90(ε) = P60 + θ − ε.

We will show that for small ε > 0, aggregate profits are strictly positive, which implies that there

is a δ such that (P̂90(ε), P60 − δ) is a profitable deviation. Specifically,

ψ(ε) ≡ Π(P̂90(ε), P60) =

∫ θ

θ−ε
[P̂90(ε)− C90(θ)]f(θ)dθ +

∫ θ−ε

θ

[P60 − C60(θ)]f(θ)dθ.

Now

ψ′(ε) = [P̂90(ε)− C90(θ − ε)]f(θ − ε)− [P60 − C60(θ − ε)]f(θ − ε)− [F (θ)− F (θ − ε)],

so

ψ′(0) = [P̂90(ε)− C90(θ)]f(θ)− [P60 − C60(θ)]f(θ)

= f(θ){θ − [C90(θ)− C60(θ)]} > 0,

where the inequality follows by Assumption 3. For part (ii), let (P ∗90, P
∗
60) be the candidate

equilibrium in which only the 90 policy is purchased. Consider any entrant multi-policy deviation

(P̂90, P̂60) ≤ (P ∗90, P
∗
60). To be profitable, some consumers must buy policy 60 in the deviation,

so P̂60 < P ∗60 and ∆P̂ < ∆P . But then the most profitable such deviation must have P̂90 equal

to or arbitrarily close to P ∗90. (Otherwise, both P̂90 and P̂60 could be raised by a small and equal

amount (since ∆P̂ < ∆P ). But, since the reduction in P60 makes the 90 policy at price P ∗90

unprofitable, this deviation is less profitable than the profitability of an entrant’s single-policy

deviation to P̂60. For part (iii), we already know that an entrant’s single-policy deviation in P60 is

unprofitable. A single-policy deviation by an entrant in P90 to P̂90, since it raises the profitability

of the 60 policy, is less profitable than a multi-policy by the entrant to P̂90 which also lowers P60

by ε to capture the entire market. This deviation has profits equal to supP̂90<P∗90
Π(P̂90, P

∗
60).
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Appendix A: Cost Model Setup and Estimation

This appendix describes the details of the cost model, which is summarized at a high-level in section

4. The output of this model, Fkjt, is a family-plan-time specific distribution of predicted out-of-pocket

expenditures for the upcoming year. This distribution is an important input into the choice model,

where it enters as a family’s predictions of its out-of-pocket expenses at the time of plan choice, for

each plan option. We predict this distribution in a sophisticated manner that incorporates (i) past

diagnostic information (ICD-9 codes) (ii) the Johns Hopkins ACG predictive medical software package

(iii) a novel non-parametric model linking modeled health risk to total medical expenditures using

observed cost data and (iv) a detailed division of medical claims and health plan characteristics to

precisely map total medical expenditures to out-of-pocket expenses.30 The unique level of precision we

gain from the cost model leads to more credible estimates of the choice parameters of primary interest

(e.g. switching costs).

In order to most precisely predict expenses, we categorize the universe of total medical claims into

four mutually exclusive and exhaustive subdivisions of claims using the claims data. These categories

are (i) hospital and physician (ii) pharmacy (iii) mental health and (iv) physician offi ce visit. We

divide claims into these four specific categories so that we can accurately characterize the plan-specific

mappings from total claims to out-of-pocket expenditures since each of these categories maps to out-

of-pocket expenditures in a different manner. We denote this four dimensional vector of claims Cit and

any given element of that vector Cd,it where d ∈ D represents one of the four categories and i denotes

an individual (employee or dependent). After describing how we predict this vector of claims for a

given individual, we return to the question of how we determine out-of-pocket expenditures in plan j

given Cit.

Denote an individual’s past year of medical diagnoses and payments by ξit and the demographics

age and sex by ζit. We use the ACG software mapping, denoted A, to map these characteristics into a

predicted mean level of health expenditures for the upcoming year, denoted θ:

A : ξ × ζ → θ

In addition to forecasting a mean level of total expenditures, the software has an application that

predicts future mean pharmacy expenditures. This mapping is analogous to A and outputs a prediction

λ for future pharmacy expenses.

We use the predictions θ and λ to categorize similar groups of individuals across each of four claims

categories in vector in Cit. Then for each group of individuals in each claims category, we use the

actual ex post realized claims for that group to estimate the ex ante distribution for each individual

under the assumption that this distribution is identical for all individuals within the cell. Individuals

30Features (iii) and (iv) are methodological advances. We are aware of only one previous study that incorporates

diagnostic information in cost prediction for the purposes of studying plan choice ([?]) in a structural setup. [?] use this

type of framework in ongoing work.
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are categorized into cells based on different metrics for each of the four elements of C:

Pharmacy: λit

Hospital / Physician (Non-OV): θit

Physician Offi ce Visit: θit

Mental Health: CMH,i,t−1

For pharmacy claims, individuals are grouped into cells based on the predicted future mean pharmacy

claims measure output by the ACG software, λit. For the categories of hospital / physician (non offi ce

visit) and physician offi ce visit claims individuals are grouped based on their mean predicted total

future health expenses, θit. Finally, for mental health claims, individuals are grouped into categories

based on their mental health claims from the previous year, CMH,i,t−1 since (i) mental health claims

are very persistent over time in the data and (ii) mental health claims are uncorrelated with other

health expenditures in the data. For each category we group individuals into a number of cells between

8 and 10, taking into account the tradeoff between cell size and precision. The minimum number of

individuals in any cell is 73 while almost all cells have over 500 members. Thus since there are four

categories of claims, each individual can belong to one of approximately 104 or 10,000 combination of

cells.

Denote an arbitrary cell within a given category d by z. Denote the population in a given category-

cell combination (d, z) by Idz. Denote the empirical distribution of ex-post claims in this category for

this population ˆGIdz (·). Then we assume that each individual in this cell has a distribution equal to a
continuous fit of ˆGIdz (·), which we denote Gdz:

$ : ˆGIdz (·)→ Gdz

We model this distribution continuously in order to easily incorporate correlations across d. Otherwise,

it would be appropriate to use GIdz as the distribution for each cell.

The above process generates a distribution of claims for each d and z but does not model correlation

over D. It is important to model correlation over claim categories because it is likely that someone with

a bad expenditure shock in one category (e.g. hospital) will have high expenses in another area (e.g.

pharmacy). We model correlation at the individual level by combining marginal distributions Gidt ∀ d
with empirical data on the rank correlations between pairs (d, d′).31 Here, Gidt is the distribution Gdz

where i ∈ Idz at time t. Since correlations are modeled across d we pick the metric θ to group people
into cells for the basis of determining correlations (we use the same cells that we use to determine group

people for hospital and physician offi ce visit claims). Denote these cells based on θ by zθ. Then for

each cell zθ denote the empirical rank correlation between claims of type d and type d′ by ρzθ (d, d
′).

31 It is important to use rank correlations here to properly combine these marginal distribution into a joint distribution.

Linear correlation would not translate empirical correlations to this joint distribution appropriately.
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Then, for a given individual i we determine the joint distribution of claims across D for year t, denoted

Hit(·), by combining i’s marginal distributions for all d at t using ρzθ (d, d
′):

Ψ : GiDt × ρzθit (D,D
′)→ Hit

Here, GiDt refers to the set of marginal distributions Gidt∀d ∈ D and ρzθit (D,D
′) is the set of all

pairwise correlations ρzθit (d, d
′)∀(d, d′2. In estimation we perform Ψ by using a Gaussian copula to

combine the marginal distribution with the rank correlations, a process which we describe momentarily.

The final part of the cost model maps the joint distribution Hit of the vector of total claims C over

the four categories into a distribution of out of pocket expenditures for each plan. For each of the three

plan options we construct a mapping from the vector of claims C to out of pocket expenditures OOPj :

Ωj : C → OOPj

This mapping takes a given draw of claims from Hit and converts it into the out of pocket expenditures

an individual would have for those claims in plan j. This mapping accounts for plan-specific features

such as the deductible, co-insurance, co-payments, and out of pocket maximums listed in table 2. I

test the mapping Ωj on the actual realizations of the claims vector C to verify that our mapping

comes close to reconstructing the true mapping. Our mapping is necessarily simpler and omits things

like emergency room co-payments and out of network claims. We constructed our mapping with and

without these omitted categories to insure they did not lead to an incremental increase in precision.

We find that our categorization of claims into the four categories in C passed through our mapping Ωj

closely approximates the true mapping from claims to out-of-pocket expenses. Further, we find that

it is important to model all four categories described above: removing any of the four makes Ωj less

accurate. Figure 6 shows the results of one validation exercise for PPO250. The top panel reveals that

actual employee out-of-pocket spending amounts are quite close to those predicted by Ωj , indicating

the precision of this mapping. The bottom panel repeats this mapping when we add out of network

expenses as a fifth category. The output in this case is similar to that in the top panel without this

category, implying that including this category would not markedly change the cost model results.

Once we have a draw of OOPijt for each i (claim draw from Hit passed through Ωj) we map

individual out of pocket expenditures into family out of pocket expenditures. For families with less

than two members this involves adding up all the within family OOPijt. For families with more than

three members there are family level restrictions on deductible paid and out-of-pocket maximums that

we adjust for. Define a family k as a collection of individuals ik and the set of families as K. Then for

a given family out-of-pocket expenditures are generated:

Γj : OOPik,jt → OOPkjt

To create the final object of interest, the family-plan-time specific distribution of out of pocket ex-

penditures Fkjt(·), we pass the claims distributions Hit through Ωj and combine families through Γj .
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Fkjt(·) is then used as an input into the choice model that represents each family’s information set
over future medical expenses at the time of plan choice. Eventually, we also use Hit to calculate total

plan cost when we analyze counterfactual plan pricing based on the average cost of enrollees. Figure 7

outlines the primary components of the cost model pictorially to provide a high-level overview and to

ease exposition.

We note that the decision to do the cost model by grouping individuals into cells, rather then by

specifying a more continuous form, has costs and benefits. The cost is that all individuals within a

given cell for a given type of claims are treated identically. The benefit is that our method produces

local cost estimates for each individual that are not impacted by the combination of functional form

and the health risk of medically different individuals. Also, the method we use allows for flexible mod-

eling across claims categories. Finally, we note that we map the empirical distribution of claims to a

continuous representation because this is convenient for building in correlations in the next step. The

continuous distributions we generate very closely fit the actual empirical distribution of claims across

these four categories.

Cost Model Identification and Estimation. The cost model is identified based on the two as-

sumptions of (i) no moral hazard / selection based on private information and (ii) that individuals

within the same cells for claims d have the same ex ante distribution of total claims in that category.

Once these assumptions are made, the model uses the detailed medical data, the Johns Hopkins pre-

dictive algorithm, and the plan-specific mappings for out of pocket expenditures to generate the the

final output Fkjt(·). These assumptions, and corresponding robustness analyses, are discussed at more
length in the main text.

Once we group individuals into cells for each of the four claims categories, there are two statistical

components to estimation. First, we need to generate the continuous marginal distribution of claims

for each cell z in claim category d, Gdz. To do this, we fit the empirical distribution of claims GIdz
to a Weibull distribution with a mass of values at 0. We use the Weibull distribution instead of the

lognormal distribution, which is traditionally used to model medical expenditures, because we find

that the lognormal distribution overpredicts large claims in the data while the Weibull does not. For

each d and z the claims greater than zero are estimated with a maximum likelihood fit to the Weibull

distribution:

max
(αdz,βdz)

Πi∈Idz
βdz
αdz

(
cid
αdz

)βdz−1e
−(

cid
αdz

)βdz

Here, α̂dz and ˆβdz are the shape and scale parameters that characterize the Weibull distribution.

Denoting this distributionW (α̂dz, ˆβdz) the estimated distribution Ĝdz is formed by combining this with

the estimated mass at zero claims, which is the empirical likelihood:
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ˆGdz(c) =

 GIdz (0) if c = 0

GIdz (0) + W ( ˆαdz, ˆβdz)(c)
1−GIdz (0) if c > 0

Again, we use the notation ˆGiDt to represent the set of marginal distributions for i over the categories

d: the distribution for each d depends on the cell z an individual i is in at t. We combine the distributions
ˆGiDt for a given i and t into the joint distribution Hit using a Gaussian copula method for the mapping

Ψ. Intuitively, this amounts to assuming a parametric form for correlation across ˆGiDt equivalent

to that from a standard normal distribution with correlations equal to empirical rank correlations

ρzθit
(D,D′) described in the previous section. Let Φi1|2|3|4 denote the standard multivariate normal

distribution with pairwise correlations ρzθit (D,D
′) for all pairings of the four claims categories D. Then

an individual’s joint distribution of non-zero claims is:

ˆHi,t(·) = Φ1|2|3|4(Φ−1
1 ( ˆGid1t),Φ

−1
2 ( ˆGid2t),Φ

−1
3 ( ˆGid3t),Φ

−1
4 ( ˆGid4t))))

Above, Φd is the standard marginal normal distribution for each d. Ĥi,t is the joint distribution of

claims across the four claims categories for each individual in each time period. After this is estimated,

we determine our final object of interest Fkjt(·) by simulating K multivariate draws from Ĥi,t for each

i and t, and passing these values through the plan-specific total claims to out of pocket mapping Ωj

and the individual to family out of pocket mapping Γj . The simulated Fkjt(·) for each k, j, and t is
then used as an input into estimation of the choice model.

Table 8 presents summary results from the cost model estimation for the final choice model sample,

including population statistics on the ACG index θ, the Weibull distribution parameters α̂dz and ˆβdz

for each category d, as well as the across category rank correlations ρzθit (D,D
′). These are the funda-

mentals inputs used to generate Fkjt, as described above, and lead to very accurate characterizations of

the overall total cost and out-of-pocket cost distributions (validation exercises which are not presented

here).
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Final Sample

Cost Model Output

Overall PPO250 PPO500 PPO1200

Individual Mean (Median)

Unscaled ACG Predictor

Mean 1.42 0.74 0.72

Median 0.83 0.37 0.37

Pharmacy: Model Output

Zero Claim Pr. 0.35 (0.37) 0.31 (0.18) 0.40 (0.37) 0.42 (0.37)

Weibull α 1182 (307) 1490 (462) 718 (307) 596 (307)

Weibull β 0.77 (0.77) 0.77 (0.77) 0.77 (0.77) 0.77 (0.77)

Mental Health

Zero Claim Pr. 0.88 (0.96) 0.87 (0.96) 0.90 (0.96) 0.90 (0.96)

Weibull α 1422 (1295) 1447 (1295) 1374 (1295) 1398 (1295)

Weibull β 0.98 (0.97) 0.99 (0.97) 0.98 (0.97) 0.98 (0.97)

Hospital / Physician

Zero Claim Pr. 0.23 (0.23) 0.21 (0.23) 0.26 (0.23) 0.26 (0.23)

Weibull α 2214 (1599) 2523 (1599) 1717 (1599) 1652 (1599)

Weibull β 0.58 (0.55) 0.59 (0.55) 0.55 (0.55) 0.55 (0.55)

(> $40, 000) Claim Pr. 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Physician OV

Zero Claim Pr. 0.29 (0.20) 0.26 (0.20) 0.33 (0.46) 0.34 (0.46)

Weibull α 605 (553) 653 (553) 517 (410) 529 (410)

Weibull β 1.15 (1.14) 1.15 (1.14) 1.15 (1.14) 1.14 (1.14)

Correlations

Rank Correlation Hospital-Pharm. 0.28 (0.34) 0.26 (0.32) 0.31 (0.34) 0.32 (0.34)

Rank Correlation Hospital-OV 0.73 (0.74) 0.72 (0.74) 0.74 (0.74) 0.74 (0.74)

Rank Correlation Pharm.-OV 0.35 (0.41) 0.33 (0.37) 0.38 (0.41) 0.39 (0.41)

Table 8: This table describes the output of the cost model in terms of the means and medians of individual

level parameters, classified by the plan actually chosen. These parameters are aggregated for these groups but

have more micro-level groupings, which are the primary inputs into our cost projections in the choice model.

Weibull α, Weibull β, and Zero Claim Probability correspond to the cell-specific predicted total individual-level

health expenses as described in more detail in Appendix A.
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Appendix B: Choice Model Estimation Algorithm Details

This appendix describes the details of the choice model estimation algorithm. The corresponding section

in the text provided a high-level overview of this algorithm and outlined the estimation assumptions

we make regarding choice model fundamentals and their links to observable data.

We estimate the choice model using a random coeffi cients probit simulated maximum likelihood

approach similar to that summarized in [?]. The simulated maximum likelihood estimation approach

has the minimum variance for a consistent and asymptotically normal estimator, while not being too

computationally burdensome in our framework. Since we use panel data, the likelihood function at the

family level is computed for a sequence of choices from t0 to t2, since switching costs imply that the

likelihood of a choice made in the current period depends on the choice made in the previous period.

The maximum likelihood estimator selects the parameter values that maximize the similarity between

actual choices and choices simulated with the parameters.

First, the estimator simulates Q draws from the distribution of health expenditures output from

the cost model, Fkjt, for each family, plan, and time period. These draws are used to compute plan

expected utility conditional on all other preference parameters. It then simulates S draws for each

family from the distributions of the random coeffi cients γk and δk, as well as from the distribution

of the preference shocks εj(Yk). We define the set of parameters θ as the full set of ex ante model

parameters (before the S draws are taken):

θ ≡ (µ, β, σ2
γ , µδ(Yk), σδ(Yk), α, µεJ (Yk), σεJ (Yk), η0, η1, η2).

We denote θsk one draw derived from these parameters for each family, including the parameters

constant across draws:

θsk ≡ (γk, δk, α, εJT , η0, η1, η2)

Denote θSk the set of all S simulated draws for family k. For each θsk the estimator then uses all Q

health draws to compute family-plan-time-specific expected utilities Uskjt following the choice model

outlined in earlier in section 4. Given these expected utilities for each θsk, we simulate the probability

of choosing plan j in each period using a smoothed accept-reject function with the form:

Prskt(j = j∗) =

(
1

−Uskj∗t
(·)

ΣJ
1

−Uskjt
(·) )τ

Σĵ(
1

−U
skĵt

(·)

ΣJ
1

−Uskjt
(·) )τ

This smoothed accept-reject methodology follows that outlined in [?] with some slight modifications

to account for the expected utility specification. In theory, conditional on θsk, we would want to pick

the j that maximizes Ukjt for each family, and then average over S to get final choice probabilities.

However, doing this leads to a likelihood function with flat regions, because for small changes in the
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estimated parameters θ, the discrete choice made does not change. The smoothing function above

mimics this process for CARA utility functions: as the smoothing parameter τ becomes large the

smoothed Accept-Reject simulator becomes almost identical to the true Accept-Reject simulator just

described, where the actual utility-maximizing option is chosen with probability one. By choosing τ to

be large, an individual will always choose j∗ when 1
−Ukj∗t >

1
−Ukjt ∀j 6= j∗. The smoothing function is

modified from the logit smoothing function in [?] for two reasons (i) CARA utilities are negative, so the

choice should correspond to the utility with the lowest absolute value and (ii) the logit form requires

exponentiating the expected utility, which in our case is already the sum of exponential functions (from

CARA). This double exponentiating leads to computational issues that our specification overcomes,

without any true content change since both models approach the true Accept-Reject function.

Denote any sequence of three choices made as j3 and the set of such sequences as J3. In the limit

as τ grows large the probability of a given j3 will either approach 1 or 0 for a given simulated draw

s and family k. This is because for a given draw the sequence (j1, j2, j3) will either be the sequential

utility maximizing sequence or not. This implicitly includes the appropriate level of switching costs

by conditioning on previous choices within the sequential utility calculation. For example, under θsk a

choice in period two will be made by a family k only if it is optimal conditional on θsk, other preference

factors, and the switching costs implies by the period one choice. For all S simulation draws we compute

the optimal sequence of choices for k with the smoothed Accept-Reject simulator, denoted j3
sk. For any

set of parameter values θSk the probability that the model predicts j3 will be chosen by k is:

ˆ
P j

3

k (θ, Fkjt, X
A
k , X

B
k , Hk, Yk) = Σs∈S1[j3 = j3

sk]

Let ˆ
P j

3

k (θ) be shorthand notation for ˆ
P j

3

k (θ, Fkjt, X
A
k , X

B
k , Hk, Yk). Conditional on these probabil-

ities for each k, the simulated log-likelihood value for parameters θ is:

SLL(θ) = Σk∈KΣj3∈J3dkj3 ln
ˆ
P j

3

k

Here dkj3 is an indicator function equal to one if the actual sequence of decisions made by family k

was j3. Then the maximum simulated likelihood estimator (MSLE) is the value of θ in the parameter

space Θ that maximizes SLL(θ). In the results presented in the text, we choose Q = 100, S = 50, and

τ = 4, all values large enough such that the estimated parameters vary little in response to changes.

Appendix C: Moral Hazard Robustness analysis

In the text we discuss a robustness specification that investigates the cost model assumption of no moral

hazard. To do this we necessarily make some substantial simplifying assumptions: for a full structural

treatment of moral hazard in health insurance utilization see, e.g., [?], [?] or [?]. We implement

the moral hazard robustness check by adjusting the output of the cost model to reflect lower total

utilization in the less comprehensive plans (and vice-versa). The intent is to show that even when
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including price elasticities that are quite large relative to those found in the literature, the model

output for switching costs and risk preferences does not change substantially. While the specification

addresses moral hazard, it also sheds light on whether our estimates are sensitive to consumers having

a reasonable level of private information above and beyond the detailed medical data we observe.

We operationalize this test in the following steps. First, we find the implied total spending changes

across plans in the population for a price elasticity of -1.3, well higher than the range of -0.1 to -0.4

that represents most of the literature (for further discussion, see [?]). To do this we perform a back of

the envelope calculation for the arc-elasticity of demand with respect to price, following the prior work

of [?] and [?]. For this calculation, we use the average share of out-of-pocket spending for each plan as

the price, and total medical expenditures as the quantity. For the three plans we study, the empirical

shares of out-of-pocket spending are 15.5%, 20.9%, and 23.4% going from most to least comprehensive.

We use these prices together with the average total spending of $13,331 in PPO−1 at t−1 as the basis

for this calculation. The formula for the arc-elasticity is:

Elasticity =
(q2 − q1)/(q2 + q1)

(p2 − p1)/(p2 + p1)

We use the conservative elasticity of -1.3 and solve for the corresponding total cost changes this price

response implies (here, pj are the empirical shares of out-of-pocket spending for each plan and qj is

implied total spending in plan j). Solving for q2 as a percentage of q1 implies an, approximately, 25%

reduction in total spending moving from PPO250 to PPO500, a 33% reduction in total spending moving

from PPO250 to PP01200, and a 10% reduction in total spending moving from PPO500 to PPO1200.

We then apply these reductions (or increases when moving into more comprehensive plans) and adjust

the output of the cost model Fkjt according to the potential plan being chosen and the previous plan

the family actually enrolled and incurred costs in. These new ’moral hazard adjusted’Fkjt then are

input into the choice model, which is otherwise specified and estimated as in the text. The results from

the analysis are presented in column 3 of table 7 and suggest that the initial assumption of no moral

hazard does not markedly change our estimates of switching costs or risk preferences.32

It is important to point out that this exercise does not explicitly model the value of additional

health spending, which the literature does through a non-linear budget constraint model where the

family trades off the value of extra spending with the price of medical care (see [?], [?] or [?]). Moral

hazard here is captured purely by differences in spending. For a family that chooses PPO500 or PPO1200

in the data and is considering switching to PPO250, our moral hazard cost wedge serves as an upper

bound for the expected utility difference between these two plans and the more comprehensive plan,

since their actual choice implies they value the increase in medical services less than the corresponding

overall utility gain from a different financial lottery. The reverse is not true: for consumers considering

switching to a less comprehensive plan our out-of-pocket cost wedge may not be an upper bound value
32 In prior work, [?] presented evidence that the combined effect of moral hazard and selection on private information is

not large in our setting. This suggests that the elasticity choice here of -1.3 represents more moral hazard than actually

exists in our environment, implying this is a conservative approach.
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of utility differences between two plans. However, we view this as a conservative approach in this

case, since the high elasticity we’ve chosen together with the differences in the marginal prices of care

between the plans (and the resulting implications for value of medical care foregone) make it unlikely

that the value wedge between prospective plans is larger in reality than in this specification.
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