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LOCAL IDENTIFICATION OF NONPARAMETRIC AND
SEMIPARAMETRIC MODELS

BY XIAOHONG CHEN, VICTOR CHERNOZHUKOV,
SOKBAE LEE, AND WHITNEY K. NEWEY1

In parametric, nonlinear structural models, a classical sufficient condition for local
identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment
conditions is differentiable at the true parameter with full rank derivative matrix. We
derive an analogous result for the nonparametric, nonlinear structural models, estab-
lishing conditions under which an infinite dimensional analog of the full rank condition
is sufficient for local identification. Importantly, we show that additional conditions are
often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelm-
ing linear effects. We give restrictions on a neighborhood of the true value that are
sufficient for local identification. We apply these results to obtain new, primitive iden-
tification conditions in several important models, including nonseparable quantile in-
strumental variable (IV) models and semiparametric consumption-based asset pricing
models.

KEYWORDS: Identification, local identification, nonparametric models, asset pricing.

1. INTRODUCTION

THERE ARE MANY IMPORTANT MODELS IN ECONOMETRICS that give rise to
conditional moment restrictions. These restrictions often take the form

E
[
ρ(Y�X�α0)|W

] = 0�

where ρ(Y�X�α) has a known functional form but α0 is unknown. Parametric
models (i.e., models when α0 is finite dimensional) of this form are well known
from the work of Hansen (1982), Chamberlain (1987), and others. Nonpara-
metric versions (i.e., models when α0 is infinite dimensional) are motivated by
the desire to relax functional form restrictions. Identification and estimation of
linear nonparametric conditional moment models have been studied by Newey
and Powell (2003), Hall and Horowitz (2005), Blundell, Chen, and Kristensen
(2007), Darolles, Fan, Florens, and Renault (2011), and others.

The purpose of this paper is to derive identification conditions for α0

when ρ may be nonlinear in α and for other nonlinear nonparametric mod-
els. Nonlinear models are important. They include models with conditional
quantile restrictions, as discussed in Chernozhukov and Hansen (2005) and
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Chernozhukov, Imbens, and Newey (2007), and various economic structural
and semiparametric models, as further discussed below. In this paper, we fo-
cus on conditions for local identification of these models. It may be possible to
extend these results to provide global identification conditions.

In parametric models, there are easily interpretable rank conditions for lo-
cal identification, as shown in Fisher (1966) and Rothenberg (1971). We give
a pair of conditions that are sufficient for parametric local identification from
solving a set of equations. They are (a) pointwise differentiability at the true
value, and (b) the rank of the derivative matrix is equal to the dimension of the
parameter α0. We find that the nonparametric case is different. Differentiabil-
ity and the nonparametric version of the rank condition may not be sufficient
for local identification. We suggest a restriction on the neighborhood that does
give local identification, via a link between curvature and an identification set.
We also give more primitive conditions for Hilbert spaces, that include inter-
esting econometric examples. In addition, we consider semiparametric mod-
els, providing conditions for identification of a finite dimensional Euclidean
parameter. These conditions are based on “partialling out” the nonparametric
part and allow for identification of the parametric part even when the nonpara-
metric part is not identified.

The usefulness of these conditions is illustrated by three examples. One ex-
ample gives primitive conditions for local identification of the nonparamet-
ric endogenous quantile models, where primitive identification conditions had
only been given previously for discrete regressors. Another example gives suf-
ficient conditions for local identification of a semiparametric consumption
capital asset pricing model. The third example, given in the Supplemental Ma-
terial (Chen, Chernozhukov, Lee, and Newey (2014)), gives conditions for lo-
cal identification of a semiparametric index model with endogeneity, including
conditions for identification of parametric components when nonparametric
components need not be identified.

In relation to previous literature, in some cases the nonparametric rank con-
dition is a local version of identification conditions for linear conditional mo-
ment restriction models that were considered in Newey and Powell (2003).
Chernozhukov, Imbens, and Newey (2007) also suggested differentiability and
a rank condition for local identification but did not recognize the need for ad-
ditional restrictions on the neighborhood. Florens and Sbai (2010) gave local
identification conditions for games, but their conditions do not apply to the
kind of conditional moment restrictions that arise in instrumental variable set-
tings and are a primary subject of this paper.

Section 2 presents general nonparametric local identification results and re-
lates them to sufficient conditions for identification in parametric models. Sec-
tion 3 gives more primitive conditions for Hilbert spaces and applies them to
the nonparametric endogenous quantile model. Section 4 provides conditions
for identification in semiparametric models, and Section 5 discusses the semi-
parametric asset pricing example. Section 6 briefly concludes. Appendices A
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and B give proofs for Sections 2 and 3. The proofs for Sections 4 and 5 and
some additional identification results are given in the Supplemental Material
(Chen et al. (2014)).

2. NONPARAMETRIC MODELS

2.1. The Setting and Definition of Local Identification

To help explain the nonparametric results and give them context, we give a
brief description of sufficient conditions for local identification in parametric
models. Let α be a p× 1 vector of parameters and m(α) a J× 1 vector of func-
tions with m(α0) = 0 for the true value α0. Also let | · | denote the Euclidean
norm in either R

p or R
J depending on the context. We say that α0 is locally

identified if there is a neighborhood of α0 such that m(α) �= 0 for all α �= α0 in
the neighborhood. Let m′ denote the derivative of m(α) at α0 when it exists.
Sufficient conditions for local identification can be stated as follows:

If m(α) is differentiable at α0 and rank(m′)= p, then α0 is locally identified.

This statement is proved in Appendix A. Here, the sufficient conditions for
parametric local identification are pointwise differentiability at the true value
α0 and the rank of the derivative equal to the number of parameters.

In order to extend these conditions to the nonparametric case, we need to
modify the notation and introduce structure for infinite dimensional spaces.
Let α denote a function with true value α0 and m(α) a function of α with
m(α0) = 0. Conditional moment restrictions are an important example where
ρ(Y�X�α) is a finite dimensional residual vector depending on an unknown
function α and m(α) = E[ρ(Y�X�α)|W ]. We impose some mathematical
structure by assuming that α ∈ A, a Banach space with norm ‖ · ‖A, and
m(α) ∈ B, a Banach space with a norm ‖ · ‖B , that is, m : A �→ B. The restric-
tion of the model is that ‖m(α0)‖B = 0. The notion of local identification we
consider is the following:

DEFINITION: α0 is locally identified on N ⊆ A if ‖m(α)‖B > 0 for all α ∈ N ,
with α �= α0.

This local identification concept is more general than the one introduced
by Chernozhukov, Imbens, and Newey (2007). Note that local identification is
defined on a set N in A. Often there exists an ε > 0 such that N is a subset of
an open ball

Nε ≡ {
α ∈ A :‖α− α0‖A < ε

}
�

It turns out that it may be necessary for N to be strictly smaller than an open
ball Nε in A, as discussed below.
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2.2. Local Identification via Full Rank Conditions

The nonparametric version of the derivative will be a bounded (i.e., continu-
ous) linear map m′ : A �→ B. Under the conditions we give, m′ will be a Gâteaux
derivative at α0, that can be calculated as

m′h= ∂

∂t
m(α0 + th)

∣∣∣∣
t=0

(2.1)

for h ∈ A and t a scalar. Sometimes we also require that, for any δ > 0, there
is ε > 0 with

‖m(α)−m(α0)−m′(α− α0)‖B

‖α− α0‖A
< δ

for all α ∈ Nε. This is Fréchet differentiability of m(α) at α0 (which implies
that the linear map m′ : A �→ B is continuous). Fréchet differentiability of es-
timators that are functionals of the empirical distribution is known to be too
strong, but is typically satisfied in local identification analysis, as shown by our
examples.

In parametric models, the rank condition is equivalent to the null space of
the derivative matrix being zero. The analogous nonparametric condition is
that the null space of the linear map m′ is zero, as follows:

ASSUMPTION 1—Rank Condition: There is a set N ′ such that ‖m′(α −
α0)‖B > 0 for all α ∈ N ′ with α �= α0.

This condition is familiar from identification of a linear conditional mo-
ment model where Y = α0(X) + U and E[U |W ] = 0. Here ρ(Y�X�α) =
Y − α(X), so that m(α) = E[Y − α(X)|W ] and m′h = −E[h(X)|W ]. In this
case, Assumption 1 requires that E[α(X) − α0(X)|W ] �= 0 for any α ∈ N ′

with α− α0 �= 0. For N ′ = A, this is the completeness condition discussed in
Newey and Powell (2003). Andrews (2011) has recently shown that if X and
W are continuously distributed, there are at least as many instruments in W
as regressors in X , and the conditional distribution of X given W is unre-
stricted (except for a mild regularity condition), then the completeness condi-
tion holds generically, in a sense defined in that paper. In Section 3, we also
give a genericity result for a different range of models. For this reason, we
think of Assumption 1 with N ′ = A as a weak condition when there are as
many continuous instruments W as the endogenous regressors X , just as it is
in a parametric linear instrumental variables model with unrestricted reduced
form. It is also an even weaker condition if some conditions are imposed on
the deviations, so in the statement of Assumption 1 we allow it to hold only on
N ′ ⊂ A. For example, if we restrict α−α0 to be a bounded function of X , then,
in linear conditional moment restriction models, Assumption 1 only requires
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that the conditional distribution of X given W be bounded complete, which
is known to hold for even more distributions than does completeness. This
makes Assumption 1 even more plausible in models where α0 is restricted to be
bounded, such as in Blundell, Chen, and Kristensen (2007). See, for example,
Mattner (1993), Chernozhukov and Hansen (2005), D’Haultfoeuille (2011),
and Andrews (2011) for discussions of completeness and bounded complete-
ness.

Fréchet differentiability and the rank condition are not sufficient for local
identification in an open ball Nε around α0, as we further explain below. One
condition that can be added to obtain local identification is that m′ : A �→ B is
onto.

THEOREM 1: If m(α) is Fréchet differentiable at α0, the rank condition is sat-
isfied on N ′ = Nε for some ε > 0, and m′ : A �→ B is onto, then α0 is locally
identified on Nε̃ for some ε̃ with 0 < ε̃ ≤ ε.

This result extends previous nonparametric local identification results by
only requiring pointwise Fréchet differentiability at α0, rather than continu-
ous Fréchet differentiability in a neighborhood of α0. This extension may be
helpful for showing local identification in nonparametric models, because con-
ditions for pointwise Fréchet differentiability are simpler than for continuous
differentiability in nonparametric models.

Unfortunately, the assumption that m′ is onto is too strong for many econo-
metric models, including many nonparametric conditional moment restric-
tions. An onto m′ implies that m′ has a continuous inverse, by the Banach
Inverse Theorem (Luenberger (1969, p. 149)). The inverse of m′ may not be
continuous for nonparametric conditional moment restrictions, as discussed in
Newey and Powell (2003). Indeed, the discontinuity of the inverse of m′ is a
now well known ill-posed inverse problem that has received much attention in
the econometrics literature; for example, see the survey of Carrasco, Florens,
and Renault (2007). Thus, in many important econometric models, Theorem 1
cannot be applied to obtain local identification.

It turns out that α0 may not be locally identified on any open ball in ill-posed
inverse problems, as we show in an example below. The problem is that, for
infinite dimensional spaces, m′(α − α0) may be small when α − α0 is large.
Consequently, the effect of nonlinearity, which is related to the size of α− α0,
may overwhelm the identifying effect of nonzero m′(α−α0), resulting in m(α)
being zero for α close to α0.

We approach this problem by restricting the deviations α − α0 to be small
when m′(α − α0) is small. The restrictions on the deviations will be related to
the nonlinearity of m(α) via the following condition:

ASSUMPTION 2: There are L≥ 0� r ≥ 1, and a set N ′′ such that, for all α ∈ N ′′,∥∥m(α)−m(α0)−m′(α− α0)
∥∥

B ≤ L‖α− α0‖r
A�
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This condition is general. It includes the linear case where N ′′ = A and
L = 0. It also includes Fréchet differentiability, where r = 1, L is any posi-
tive number, and N ′′ = Nε for any sufficiently small ε > 0. Cases with r > 1 are
analogous to Hölder continuity of the derivative in finite dimensional spaces,
with r = 2 corresponding to twice continuous Fréchet differentiability. We
would only have r > 2 when the second derivative is zero. This condition ap-
plies to many interesting examples, as we will show in the rest of the paper.
The term L‖α − α0‖r

A represents a magnitude of nonlinearity that is allowed
for α ∈ N ′′. The following result uses Assumption 2 to specify restrictions on α
that are sufficient for local identification.

THEOREM 2: If Assumption 2 is satisfied, then α0 is locally identified on N =
N ′′ ∩ N ′′′ with N ′′′ = {α :‖m′(α− α0)‖B >L‖α− α0‖r

A}.

The strict inequality in N ′′′ is important for the result. It does exclude α0

from N , but that works because local identification specifies what happens
when α �= α0. This result includes the linear case, where L = 0, N ′′ = A, and
N = N ′′′ = N ′. It also includes nonlinear cases where only Fréchet differentia-
bility is imposed, with r = 1 and L equal to any positive constant. In that case,
N ′′ = Nε for some ε small enough and α ∈ N ′′′ restricts α − α0 to a set where
the inverse of m′ is continuous by requiring that ‖m′(α−α0)‖B >L‖α−α0‖A.
In general, by L‖α−α0‖r

A ≥ 0, we have N ′′′ ⊆ N ′ for N ′ from Assumption 1, so
the rank condition is imposed by restricting attention to the N of Theorem 2.
Here, the rank condition is still important, since if it is not satisfied on some
interesting set N ′, Theorem 2 cannot give local identification on an interesting
set N .

Theorem 2 forges a link between the curvature of m(α) as in Assumption 2
and the identification set N . An example is a scalar α and twice continuously
differentiable m(α) with bounded second derivative. Here, Assumption 2 will
be satisfied with r = 2, L = supα |d2m(α)/dα2|/2, and N ′′ equal to the real
line, where | · | denotes the absolute value. Assumption 1 will be satisfied with
N ′ equal to the real line as long as m′ = dm(α0)/dα is nonzero. Then N ′′′ =
{α : |α−α0| <L−1|m′|}. Here, L−1|m′| is the minimum distance α must go from
α0 before m(α) can “bend back” to zero. In nonparametric models, N ′′′ will be
an analogous set.

When r = 1, the set N ′′′ will be a linear cone with vertex at α0, which means
that if α ∈ N ′′′, then so is λα+(1−λ)α0 for λ > 0. In general, N ′′′ is not convex,
so it is not a convex cone. For r > 1, the set N ′′′ is not a cone, although it is star
shaped around α0, meaning that for any α ∈ N ′′′, we have λα+ (1−λ)α0 ∈ N ′′′

for 0 < λ≤ 1.
Also, if r > 1, then for any L> 0 and 1 ≤ r ′ < r, there is δ > 0 such that

Nδ ∩ {
α :

∥∥m′(α− α0)
∥∥

B >L‖α− α0‖r′
A

} ⊆ Nδ ∩ N ′′′�
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In this sense, α ∈ N ′′′ as assumed in Theorem 2 is less restrictive the larger is
r, that is, the local identification neighborhoods of Theorem 2 are “richer” the
larger is r.

2.3. Discussion of Assumptions 1 and 2

Restricting the set of α to be smaller than an open ball can be necessary
for local identification in nonparametric models, as we now show in an exam-
ple. Suppose α = (α1�α2� � � �) is a sequence of real numbers. Let (p1�p2� � � �)
be probabilities, pj > 0,

∑∞
j=1 pj = 1. Let f (x) be a twice continuously differ-

entiable function of a scalar x that is bounded with bounded second deriva-
tive. Suppose f (x) = 0 if and only if x ∈ {0�1} and df(0)/dx = 1. Let m(α) =
(f (α1)� f (α2)� � � �) also be a sequence with ‖m(α)‖B = (

∑∞
j=1 pjf (αj)

2)1/2.
Then for ‖α‖A = (

∑∞
j=1 pjα

4
j )

1/4, the function m(α) will be Fréchet differen-
tiable at α0 = 0, with m′h = h. A fourth moment norm for α, rather than a
second moment norm, is needed to make m(α) Fréchet differentiable under
the second moment norm for m(α). Here, the map m′ is not onto, even though
it is the identity, because the norm on A is stronger than the norm on B.

In this example, the value α0 = 0 is not locally identified by the equation
m(α) = 0 on any open ball in the norm ‖α−α0‖A. To show this result, consider
αk which has zeros in the first k positions and a 1 everywhere else, that is, αk =
(0� � � � �0�1�1� � � �). Then m(αk) = 0, and for Δk = ∑∞

j=k+1 pj −→ 0, we have
‖αk − α0‖A = (

∑∞
j=1 pj[αk

j ]4)1/4 = (Δk)1/4 −→ 0. Thus, we have constructed a
sequence of αk not equal to α0 such that m(αk)= 0 and ‖αk − α0‖A −→ 0.

We can easily describe the set N of Theorem 2 in this example, on which
α0 = 0 will be locally identified. By the second derivative of f being bounded,
Assumption 2 is satisfied with N ′′ = A, r = 2, and L = supa |∂2f (a)/∂a2|/2,
where L≥ 1 by the fact that f ′(0)= 1 and f (0)= f (1)= 0 (an expansion gives
0 = f (1)= 1 + 2−1 ∂2f (ā)/∂a2 for 0 ≤ ā≤ 1). Then,

N =
{
α= (α1�α2� � � �) :

( ∞∑
j=1

pjα
2
j

)1/2

>L

( ∞∑
j=1

pjα
4
j

)1/2}
�

The sequence (αk)∞
k=1 given above will not be included in this set because

L ≥ 1. A simple subset of N (on which α0 is locally identified) is {α =
(α1�α2� � � �) : |αj|<L−1(j = 1�2� � � �)}.

It is important to note that Theorems 1 and 2 provide sufficient, and not nec-
essary, conditions for local identification. In fact, the conditions of Theorems 1
and 2 are sufficient for∥∥m(α)−m′(α− α0)

∥∥
B �= ∥∥m′(α− α0)

∥∥
B�(2.2)

which implies m(α) �= 0, to hold on N . The set where equation (2.2) holds may
be larger than the set N of Theorems 1 or 2. We have focused on the set N
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of Theorems 1 or 2 because those conditions and the associated locally iden-
tified set N are relatively easy to interpret. Additional identification results
related to equation (2.2) are discussed in the Supplemental Material (Chen et
al. (2014)), under the heading of tangential cone conditions.

Assumption 1 may not be needed for identification in nonlinear models, al-
though local identification is complicated in the absence of Assumption 1. Con-
ditions may involve nonzero higher order derivatives. Such results for paramet-
ric models were discussed by, for example, Sargan (1983). Here, we focus on
models where Assumption 1 is satisfied.

3. LOCAL IDENTIFICATION IN HILBERT SPACES

3.1. Full Rank Condition in Hilbert Spaces

The restrictions imposed on α in Theorem 2 are not very transparent. In
Hilbert spaces, it is possible to give more interpretable conditions based on a
lower bound for ‖m′(α−α0)‖2

B . Let 〈·� ·〉 denote the inner product for a Hilbert
space.

ASSUMPTION 3: (A�‖ · ‖A) and (B�‖ · ‖B) are separable Hilbert spaces and ei-
ther (a) there is a set N ′, an orthonormal basis {φ1�φ2� � � �} ⊆ A, and a bounded,
positive sequence (μ1�μ2� � � �) such that, for all α ∈ N ′,

∥∥m′(α− α0)
∥∥2

B ≥
∞∑
j=1

μ2
j 〈α− α0�φj〉2;

or (b) m′ is a compact linear operator with positive singular values (μ1�μ2� � � �).

The hypothesis in (b) that m′ is a compact operator is a mild one when m′

is a conditional expectation. Recall that an operator m : A �→ B is compact if
and only if it is continuous and maps bounded sets in A into relatively compact
sets in B. Under very mild conditions, m(α) = E[α(X)|W ] is compact; see
Zimmer (1990, Chapter 3), Kress (1999, Section 2.4), and Carrasco, Florens,
and Renault (2007) for a variety of sufficient conditions. When m′ in (b) is
compact, there is an orthonormal basis {φj : j = 1� � � �} for A with

∥∥m′(α− α0)
∥∥2

B =
∞∑
j=1

μ2
j 〈α− α0�φj〉2�

where μ2
j are the eigenvalues and φj the eigenfunctions of the operator m′∗m′,

so that condition (a) is satisfied, where m′∗ denotes the adjoint of m′. The as-
sumption that the singular values are all positive implies the rank condition
holds for N ′ = A. Part (a) differs from part (b) by imposing a lower bound on
‖m′(α− α0)‖2

B only over a subset N ′ of A and by allowing the basis {φj} to be
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different from the eigenfunction basis of the operator m′∗m′. In principle, this
allows us to impose restrictions on α − α0, like boundedness and smoothness,
which could help Assumption 3(a) to hold. For similar assumptions in estima-
tion context, see, for example, Chen and Reiß (2011) and Chen and Pouzo
(2012).

It turns out that there is a precise sense in which the rank condition is satis-
fied for most data generating processes, if it is satisfied for one, in the Hilbert
space environment here. The following result is related to but different than
Andrews (2011). In this sense, the rank condition turns out to be generic. Let

A and B be separable Hilbert spaces, and N ′ ⊆ A. Suppose that there exists at
least one compact linear operator: K : A �→ B which is injective, that is, Kδ= 0
for δ ∈ A if and only if δ= 0. This is an infinite dimensional analog of the order
condition, that, for example, rules out B having smaller finite dimension than
A (e.g., having fewer instruments than right-hand side endogenous variables
in a linear regression model). The operator m′ : N ′ �→ B is generated by the
nature as follows:

1. The nature selects a countable orthonormal basis {φj} of cardinality N ≤
∞ in A and an orthonormal set {ϕj} of equal cardinality in B.

2. The nature samples a bounded sequence of real numbers {λj} according
to a probability measure η whose each marginal is dominated by the Lebesgue
measure on R, namely, Leb(A) = 0 implies η({λj ∈ A}) = 0 for any measur-
able A ⊂ R for each j.

Then the nature sets, for some scalar number κ > 0, and every δ ∈ N ′,

m′δ= κ

(
N∑
j=0

λj〈φj�δ〉ϕj

)
�(3.1)

This operator is properly defined on N ′ := {δ ∈ A :m′δ ∈ B}.

LEMMA 3: (1) In the absence of further restrictions on m′, the algorithms obey-
ing conditions 1 and 2 exist. (2) If m′ is generated by any algorithm that obeys
conditions 1 and 2, then the probability that m′ is not injective over N ′ is zero,
namely, Prη{∃δ ∈ N ′ :δ �= 0 and m′δ = 0} = 0. Moreover, Assumption 3 holds
with μj = |κλj| with probability 1 under η.

Genericity of the rank condition is further discussed in the Supplemental
Material (Chen et al. (2014)).

3.2. Local Identification in Hilbert Spaces

In what follows, let bj = 〈α− α0�φj〉, j = 1�2� � � � denote the Fourier coeffi-
cients for α− α0, so that α = α0 + ∑∞

j=1 bjφj . Under Assumptions 2 and 3, we
can characterize an identified set in terms of the Fourier coefficients.
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THEOREM 4: If Assumptions 2 and 3 are satisfied, then α0 is locally identified
on N = N ′′ ∩ N ′′′, where

N ′′′ =
{
α= α0 +

∞∑
j=1

bjφj :
∞∑
j=1

μ2
j b

2
j > L2

( ∞∑
j=1

b2
j

)r}
�

When r = 1, it is necessary for α ∈ N ′′′ that the Fourier coefficients bj where
μ2

j is small not be too large relative to the Fourier coefficients where μ2
j is large.

In particular, when r = 1, any α �= α0 with bj = 0 for all j with μj > L will not
be an element of N ′′′. When r > 1, we can use the Hölder inequality to obtain
a sufficient condition for α ∈ N ′′′ that is easier to interpret.

COROLLARY 5: If Assumptions 2 and 3 are satisfied, with L > 0� r > 1, then
α0 is locally identified on N = N ′′ ∩ N ′′′ where N ′′′ = {α = α0 + ∑∞

j=1 bjφj :∑∞
j=1 μ

−2/(r−1)
j b2

j < L−2/(r−1)}.

For α to be in the N ′′′ of Corollary 5, the Fourier coefficients bj must vanish
faster than μ1/(r−1)

j as j grows. In particular, a sufficient condition for α ∈ N ′′′ is
that |bj| < (μj/L)

1/(r−1)cj for any positive sequence cj with
∑∞

j=1 c
2
j = 1. These

bounds on bj correspond to a hyperrectangle, while the N ′′′ in Corollary 5 cor-
responds to an ellipsoid. The bounds on bj shrink as L increases, correspond-
ing to a smaller local identification set when more nonlinearity is allowed. Also,
it is well known that, at least in certain environments, imposing bounds on
Fourier coefficients corresponds to imposing smoothness conditions, like exis-
tence of derivatives; see, for example, Kress (1999, Chapter 8). In that sense,
the identification set in Corollary 5 imposes smoothness conditions on the de-
viations of α from the truth α0.

The bound imposed in N ′′′ of Corollary 5 is a “source condition” under As-
sumption 3(b) and is similar to conditions used by Florens, Johannes, and Van
Bellegem (2011) and others. Under Assumption 3(a), it is similar to norms in
generalized Hilbert scales; for example, see Engl, Hanke, and Neubauer (1996)
and Chen and Reiß (2011). Our Assumption 3(a) or 3(b) is imposed on devia-
tions α−α0, while the above references all impose on true function α0 itself as
well as on the parameter space, hence on the deviations.

3.3. A Quantile IV Example

To illustrate the results of this section, we consider an endogenous quantile
example where 0 < τ < 1 is a scalar,

ρ(Y�X�α)= 1
(
Y ≤ α(X)

) − τ�
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A = {α(·) : E[α(X)2] < ∞}, and B = {a(·) : E[a(W )2] < ∞}, with the usual
Hilbert spaces of mean squared integrable random variables. Here, we have

m(α)= E
[
1
(
Y ≤ α(X)

)|W ] − τ�

Let fY (y|X�W ) denote the conditional probability density function (p.d.f.) of
Y given X and W , fX(x|W ) the conditional p.d.f. of X given W , and f (x) the
marginal p.d.f. of X .

THEOREM 6: If fY (y|X�W ) is continuously differentiable in y with |dfY(y|
X�W )/dy| ≤ L1, fX(x|W ) ≤ L2f (x), and m′h = E[fY (α0(X)|X�W )h(X)|W ]
satisfies Assumption 3, then α0 is locally identified on

N =
{
α= α0 +

∞∑
j=1

bjφj ∈ A :
∞∑
j=1

b2
j /μ

2
j < (L1L2)

−2

}
�

This result gives a precise link between a neighborhood on which α0 is locally
identified and the bounds L1 and L2. Assumption 3(b) will hold under prim-
itive conditions for m′ to be complete, that are given by Chernozhukov, Im-
bens, and Newey (2007). Theorem 6 corrects Theorem 3.2 of Chernozhukov,
Imbens, and Newey (2007) by adding the bound on

∑∞
j=1 b

2
j /μ

2
j . It also gives

primitive conditions for local identification for general X , while Chernozhukov
and Hansen (2005) only gave primitive conditions for identification when X is
discrete. Horowitz and Lee (2007) imposed analogous conditions in their pa-
per on convergence rates of nonparametric endogenous quantile estimators,
but assumed identification.

4. SEMIPARAMETRIC MODELS

In this section, we consider local identification in possibly nonlinear semi-
parametric models, where α can be decomposed into a p× 1 dimensional pa-
rameter vector β and nonparametric component g, so that α = (β�g). Let | · |
denote the Euclidean norm for β and assume g ∈ G , where G is a Banach space
with norm ‖ · ‖G , such as a Hilbert space. We focus here on a conditional mo-
ment restriction model

E
[
ρ(Y�X�β0� g0)|W

] = 0�

where ρ(y�x�β�g) is a J×1 vector of residuals. Here, m(α)=E[ρ(Y�X�β�g)|
W ] will be considered as an element of the Hilbert space B of J × 1 random
vectors with inner product

〈a�b〉 = E
[
a(W )Tb(W )

]
�
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The differential m′(α− α0) can be expressed as

m′(α− α0)=m′
β(β−β0)+m′

g(g − g0)�

where m′
β is the derivative of m(β�g0) = E[ρ(Y�X�β�g0)|W ] with respect to

β at β0 and m′
g is the Gâteaux derivative of m(β0� g) with respect to g at g0.

To give conditions for local identification of β0 in the presence of the nonpara-
metric component g, it is helpful to partial out g. Let M be the closure of the
linear span M of m′

g(g − g0) for g ∈ N ′
g, where N ′

g will be specified below. In
general, M �= M because the linear operator m′

g need not have closed range
(like m′ onto, a closed range would also imply a continuous inverse, by the
Banach inverse theorem). For the kth unit vector ek (k= 1� � � � �p), let

ζ∗
k = arg min

ζ∈M
E

[{
m′

β(W )ek − ζ(W )
}T{

m′
β(W )ek − ζ(W )

}]
�

which exists and is unique by standard Hilbert space results; for example, see
Luenberger (1969). Define Π to be the p×p matrix with

Πjk := E
[{
m′

β(W )ej − ζ∗
j (W )

}T{
m′

β(W )ek − ζ∗
k(W )

}]
(j�k= 1� � � � �p)�

The following condition is important for local identification of β0.

ASSUMPTION 4: m′ : Rp × N ′
g −→ B is linear and bounded, and Π is nonsin-

gular.

This assumption is similar to those first used by Chamberlain (1992) to es-
tablish the possibility of estimating parametric components at root-n rate in
semiparametric moment condition problems; see also Ai and Chen (2003) and
Chen and Pouzo (2009). In the local identification analysis considered here,
it leads to local identification of β0 without identification of g when m(β0� g)
is linear in g. It allows us to separate conditions for identification of β0 from
conditions for identification of g. Note that the parameter β may be identified
even when Π is singular, but that case is more complicated, as discussed at the
end of Section 2, and we do not analyze this case.

The following condition controls the behavior of the derivative with respect
to β:

ASSUMPTION 5: For every ε > 0, there is a neighborhood B of β0 and a set N β
g

such that, for all g ∈ N β
g with probability 1, E[ρ(Y�X�β�g)|W ] is continuously
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differentiable in β on B and

sup
g∈N β

g

(
E

[
sup
β∈B

∣∣∂E
[
ρ(Y�X�β�g)|W ]

/∂β

− ∂E
[
ρ(Y�X�β0� g0)|W

]
/∂β

∣∣2
])1/2

< ε�

It turns out that Assumptions 4 and 5 will be sufficient for local identification
of β0 when m(β0� g) is linear in g, that is, for m(β�g) = 0 to imply β = β0 when
(β�g) is in some neighborhood of (β0� g0). This works because Assumption 4
partials out the effect of unknown g on local identification of β0.

THEOREM 7: If Assumptions 4 and 5 are satisfied and m(β0� g) is linear in g,
then there is an ε > 0 such that, for B and N β

g from Assumption 5 and N ′
g from

Assumption 4, β0 is locally identified for N = B × (N ′
g ∩ N β

g ). If, in addition,
Assumption 1 is satisfied for m′

g and N ′
g ∩ N β

g replacing m′ and N ′, then α0 =
(β0� g0) is locally identified for N .

This result is more general than Florens, Johannes, and Van Bellegem (2012)
and Santos (2011) since it allows for nonlinearities in β, and dependence on
g of the partial derivatives ∂E[ρ(Y�X�β�g)|W ]/∂β. When the partial deriva-
tives ∂E[ρ(Y�X�β�g)|W ]/∂β do not depend on g, then Assumption 5 could
be satisfied with N ′

g = G , and Theorem 7 could then imply local identification
of β0 in some neighborhood of β0 only.

For semiparametric models that are nonlinear in g, we can give local identi-
fication results based on Theorem 2 or the more specific conditions of Theo-
rem 4 and Corollary 5. For brevity, we give just a result based on Theorem 2.

THEOREM 8: If Assumptions 4 and 5 are satisfied and m(β0� g) satisfies As-
sumption 2 with N ′′ = N ′′

g , then there is an ε > 0 such that, for B and N β
g from

Assumption 5, N ′
g from Assumption 4, and

N ′′′
g = {

g :
∥∥m′

g(g − g0)
∥∥

B > ε−1L‖g − g0‖r
A

}
�

it is the case that α0 = (β0� g0) is locally identified for N = B× (N β
g ∩ N ′

g ∩ N ′′
g ∩

N ′′′
g ).

One example that highlights the role of semiparametric models in reduc-
ing the need for numbers of instruments is a single index example where
Y = g0(X1 + XT

2 β0)+ U with E[U |W ] = 0. This example is considered in the
Supplemental Material (Chen et al. (2014)). There we find that two instru-
ments can suffice for local identification of β0 and g0 even when there are
more than two endogenous variables.
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5. SEMIPARAMETRIC CCAPM

Consumption capital asset pricing models (CCAPM) provide interesting ex-
amples of nonparametric and semiparametric moment restrictions; see Gallant
and Tauchen (1989), Newey and Powell (1988), Hansen, Heaton, Lee, and
Roussanov (2007), Chen and Ludvigson (2009), and others. In this section, we
apply our general theorems to develop new results on identification of a par-
ticular semiparametric specification of marginal utility of consumption. Our
results could easily be extended to other specifications, and so are of indepen-
dent interest.

To describe the model, let Ct denote consumption level at time t and
ct ≡ Ct/Ct−1 be consumption growth. Suppose that the marginal utility of con-
sumption at time t is given by

MUt = C
−γ0
t g0(Ct/Ct−1)= C

−γ0
t g0(ct)�

where g0(c) is an unknown positive function. For this model, the intertemporal
marginal rate of substitution is

δ0MUt+1/MUt = δ0c
−γ0
t+1 g0(ct+1)/g0(ct)�

where 0 < δ0 ≤ 1 is the rate of time preference. Let Rt+1 = (Rt+1�1� � � � �Rt+1�J)
T

be a J × 1 vector of gross asset returns. A semiparametric CCAPM equation is
then given by

E
[
Rt+1δ0c

−γ0
t+1

{
g0(ct+1)/g0(ct)

}|Wt

] = e�(5.1)

where e is a J× 1 vector of ones, and Wt ≡ (ZT
t � ct)

T is a vector of random vari-
ables observed by the agent at time t, with Zt not a measurable function of ct .
This corresponds to an external habit formation model with only one lag, a spe-
cial case of Chen and Ludvigson (2009). As emphasized in Cochrane (2005),
habit formation models can help explain the high risk premia embedded in as-
set prices. We focus here on consumption growth ct = Ct/Ct−1 to circumvent
the potential nonstationarity of the level of consumption (see Hall (1978)),
as has long been done in this literature, for example, Hansen and Singleton
(1982).

From economic theory it is known that, under complete markets, there is a
unique intertemporal marginal rate of substitution that solves equation (5.1),
when Rt is allowed to vary over all possible vectors of asset returns. Of course,
that does not guarantee a unique solution for a fixed vector of returns Rt .
Note, though, that the semiparametric model does impose restrictions on the
marginal rate of substitution that should be helpful for identification. We show
how these restrictions lead to local identification of this model via the results
of Section 4.
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This model can be formulated as a semiparametric conditional moment re-
striction by letting Y = (RT

t+1� ct+1� ct)
T , β= (δ�γ)T , W =Wt = (ZT

t � ct)
T , and

ρ(Y�β�g) =Rt+1δc
−γ
t+1g(ct+1)− g(ct)e�(5.2)

Then, multiplying equation (5.1) through by g0(ct) gives the conditional mo-
ment restriction E[ρ(Y�β0� g0)|W ] = 0. Let At =Rt+1δ0c

−γ0
t+1 . The nonparamet-

ric rank condition (Assumption 1 for g) will be uniqueness, up to scale, of the
solution g0 of

E
[
Atg(ct+1)|Wt

] = g(ct)e�(5.3)

This equation differs from the linear nonparametric IV restriction where
the function g0(X) would solve E[Y |W ] = E[g(X)|W ]. That equation is
an integral equation of the first kind, while equation (5.3) is a homoge-
neous integral equation of the second kind. The rank condition for this sec-
ond kind equation is that the null space of the operator E[Atg(ct+1)|Wt] −
g(ct)e is one-dimensional, which is different than the completeness condi-
tion for first kind equations. This example illustrates that the rank condi-
tion of Assumption 1 need not be equivalent to completeness of a condi-
tional expectation. Escanciano and Hoderlein (2010) and Lewbel, Linton, and
Srisuma (2012) have previously shown how homogeneous integral equations
of the second kind arise in CCAPM models, though their models and iden-
tification results are different than those given here, as further discussed be-
low.

Let Xt = (1/δ0�− ln(ct+1))
T . Then, differentiating inside the integral, as

allowed under regularity conditions given below, and applying the Gateaux
derivative calculation gives

m′
β(W ) = E

[
Atg0(ct+1)X

T
t |Wt

]
� m′

gg = E
[
Atg(ct+1)|Wt

] − g(ct)e�

When E[Atg(ct+1)|Wt] is a compact operator, as holds under conditions de-
scribed below, it follows from the theory of integral equations of the second
kind (e.g., Kress (1999, Theorem 3.2)) that the set of nonparametric directions
M will be closed, that is,

M = M = {
E

[
Atg(ct+1)|Wt

] − g(ct)e :‖g‖G <∞}
�

where we will specify ‖g‖G below. Let Π be the two-dimensional second mo-
ment matrix Π of the residuals from the projection of each column of m′

β on
M, as described in Section 4. Then nonsingularity of Π leads to local identifi-
cation of β0 via Theorem 7.
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To give a precise result, let Δ be any finite positive number,

Dt = 1 + (
1 + |Rt+1|

)[
2 + ∣∣ln(ct+1)

∣∣2]
sup

γ∈[γ0−Δ�γ0+Δ]
c−γ
t+1�

G =
{
g :‖g‖G ≡

√
E

[
E

[
D2

t |Wt

]
g(ct+1)2

]
<∞

}
�

The following assumption imposes some regularity conditions.

ASSUMPTION 6: (RT
t � ct�Z

T
t ) is strictly stationary, E[D2

t ] < ∞; 0 < δ0 ≤ 1,
‖g0‖G < ∞.

The following result applies Theorem 7 to this CCAPM.

THEOREM 9: Consider equation (5.3). Suppose that Assumption 6 is satisfied.
Then the linear mapping m′ : R2 × G −→ B is bounded, and if Π is nonsingular,
there is a neighborhood B of β0 and ε > 0 such that, for N β

g = {g :‖g−g0‖G < ε},
β0 is locally identified for N = B × N β

g . If, in addition, m′
g(g − g0) �= 0 for all

g �= g0 and g ∈ N β
g , then (β0� g0) is locally identified for N = B × N β

g .

Primitive conditions for nonsingularity of Π and for m′
g(g−g0) �= 0 when g �=

g0 are needed to make this result interesting. It turns out that some complete-
ness conditions suffice, as shown by the following result. Let W̃t = (w(Zt)� ct)
for some measurable function w(Zt) of Zt , and fc�W̃ (c� w̃) denote the joint
p.d.f. of (ct+1� W̃t), fc(c) and fW̃ (w̃) the marginal p.d.f.s of ct+1 and W̃t , respec-
tively.

THEOREM 10: Consider equation (5.3). Suppose that Assumption 6 is satisfied,
Pr(g0(ct) = 0) = 0, for some w(Zt) and W̃t = (w(Zt)� ct), (ct+1� W̃t) is continu-
ously distributed and there is some j with Atj = δ0Rt+1�jc

−γ0
t+1 satisfying

E
[
A2

tjfc(ct+1)
−1fW̃ (W̃t)

−1fc�W̃ (ct+1� W̃t)
]
<∞�(5.4)

Then (a) if E[Atjh̃(ct+1� ct)|W̃t] = 0 implies h̃(ct+1� ct) = 0 a.s. and a(ct+1) +
b(ct) = 0 for ct ∈ C with Pr(C) > 0 implies a(ct+1) is constant, then Π is nonsin-
gular; (b) if g0 ∈ Gc̄ ≡ {g ∈ G :g(c̄) �= 0} for some c̄ and E[Atjh(ct+1)|w(Zt)� ct =
c̄] = 0 with h ∈ Gc̄ implies h(ct+1) = 0 a.s., then g0 is the unique solution to
E[Atg(ct+1)|Wt] = g(ct) up to scale.

Equation (5.4) implies E[Atjg(ct+1)|W̃t] is a Hilbert–Schmidt integral op-
erator and hence compact. Analogous conditions could be imposed to en-
sure that M is closed. The sufficient conditions for nonsingularity of Π in-
volve completeness of the conditional expectation E[Atjh(ct+1� ct)|W̃t] and a
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stronger version of a measurably separable condition from Florens, Mouchart,
and Rolin (1990). As previously noted, sufficient conditions for completeness
can be found in Newey and Powell (2003) and Andrews (2011) and complete-
ness is generic in the sense of Andrews (2011) and Lemma 3. A simple suffi-
cient condition for the measurably separable hypothesis is that the support of
(ct+1� ct) is �2

+, where �+ = [0�∞).
Condition (b) is weaker than condition (a). Condition (b) turns out to im-

ply global identification of β0 and g0 (up to scale) if g0(c) is bounded, and
bounded away from zero. Because we focus on applying the results of Section 4,
we reserve this result to Theorem S5 in the Supplemental Material (Chen et
al. (2014)). Even with global identification, the result of Theorem 10(a) is of
interest, because nonsingularity of Π will be necessary for γ0 to be estimable
at a root-n rate. The identification result for γ0 in Theorem S5 involves large
and small values of consumption growth, and so amounts to identification at
infinity, which may not lead to root-n consistent estimation; for example, see
Chamberlain (1986).

A different approach to the nonparametric rank condition, that does not
require any instrument w(Zt) in addition to ct , can be based on positivity of
g0(c). The linear operator E[Atjg(ct+1)|ct] and g(c) will be infinite dimensional
(functional) analogs of a positive matrix and a positive eigenvector, respec-
tively, by equation (5.3). The Perron–Frobenius theorem says that there is a
unique positive eigenvalue and eigenvector (up to scale) pair for a positive
matrix. A functional analog, based on Krein and Rutman (1950), gives unique-
ness of g0(c), as well as of the discount factor δ0. To describe this result, let
r(c� s) = E[Rt+1�j|ct+1 = s� ct = c], f (s� c) be the joint p.d.f. of (ct+1� ct), f (c)
the marginal p.d.f. of ct at c, and K(c� s) = r(c� s)s−γ0f (s� c)/[f (s)f (c)]. Then
the equation E[Atjg(ct+1)|ct] = g(ct) can be written as

δ

∫
K(c� s)g(s)f (s)ds = g(c)�(5.5)

for δ = δ0 ∈ (0�1]. Here, the matrix analogy is clear, with K(c� s)f (s) being
like a positive matrix, g(c) an eigenvector, and δ−1 an eigenvalue.

THEOREM 11: Suppose that (Rt�j� ct) is strictly stationary, f (s� c) > 0 and
r(c� s) > 0 almost everywhere, and

∫ ∫
K(c� s)2f (c)f (s)dc ds < ∞. Then equa-

tion (5.5) has a unique positive solution (δ0� g0) in the sense that δ0 > 0, g0 > 0
almost everywhere and E[g0(ct)

2] = 1.

The conditions of this result include r(c� s) > 0, which will hold if Rt+1�j is a
positive risk free rate. Under square-integrability of K, we obtain global iden-
tification of the pair (δ0� g0). The uniqueness of g0(c) in the conclusion of this
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result implies the nonparametric rank condition. Note that by iterated expec-
tation and inclusion of Rt+1�j in Rt+1, any solution to equation (5.3) must also
satisfy equation (5.5). Thus Theorem 11 implies that g0 is the unique solution
to (5.3). Theorem 11 actually gives more, identification of the discount factor
given identification of γ0.

Previously, Escanciano and Hoderlein (2010) and Lewbel, Linton, and
Srisuma (2012) considered nonparametric identification of marginal utility in
consumption level, MU(Ct), by solving the homogeneous integral equation of
the second kind:

E
[
Rt+1�jδ0 MU(Ct+1)|Ct

] = MU(Ct)�

In particular, Escanciano and Hoderlein (2010) gave an insightful identifica-
tion result for the discount factor δ and the marginal utility MU based on the
positivity of marginal utility, but assuming that MU(c) is bounded and continu-
ous, including at zero and infinity if the support of Ct is [0�∞). Lewbel, Linton,
and Srisuma (2012) used a genericity argument for identification of MU(Ct).
While we also use the positivity of the function g, we identify the “correction
term” g in the habit-formation model, rather than the marginal utility MU.
Furthermore, we base our result on a Krein and Rutman (1950) theorem, a
particular functional analog of Perron–Frobenius, that allows us to avoid re-
stricting g(c) to be bounded or continuous. Functional Perron–Frobenius the-
ory has been extensively used by Hansen and Scheinkman (2009, 2012) and
Hansen (2012) in their research on the long-run risk and dynamic valuations in
a general Markov environment in which their valuation operators may not be
compact. Recently, a revised version of Escanciano and Hoderlein (2010) was
made available, that uses Krein–Rutman (1950) type results to consider cases
without MU(c) being continuous and bounded.2 Independently, Christensen
(2013) applied a version of Krein and Rutman (1950) result for identification
of the first principal eigenfunction of a class of operators closely related to
those in Hansen (2012).

The models considered here will generally be highly overidentified. We have
analyzed identification using only a single asset return Rt+1�j . The presence
of more asset returns in equation (5.1) provides overidentifying restrictions.
Also, in Theorem 10 we only use a function w(Zt) of the available instrumental
variables Zt in addition to ct . The additional information in Zt may provide
overidentifying restrictions. These sources of overidentification are familiar in
CCAPM models. See, for example, Hansen and Singleton (1982) and Chen
and Ludvigson (2009).

2A revised version of Escanciano and Hoderlein (2010) became available to us and online in
June, 2013. A first revised version of our paper including Theorem 11 was submitted in Septem-
ber, 2012.



LOCAL IDENTIFICATION OF NONPARAMETRIC MODELS 803

6. CONCLUSION

We provide sufficient conditions for local identification for a general class
of semiparametric and nonparametric conditional moment restriction models.
We give new identification conditions for several important models that illus-
trate the usefulness of our general results. In particular, we provide primitive
conditions for local identification in nonseparable quantile IV models, single-
index IV models, and semiparametric consumption-based asset pricing models.

APPENDIX A: PROOFS FOR SECTION 2

A.1. Proof of Parametric Result

By rank(m′) = p, the nonnegative square root η of the smallest eigenvalue
η2 of (m′)Tm′ is positive and |m′h| ≥ η|h| for h ∈ R

p. Also, by the definition of
the derivative, there is ε > 0 such that |m(α)−m(α0)−m′(α−α0)|/|α−α0|<
η for all |α− α0|< ε with α �= α0. Then

|m(α)−m′(α− α0)|
|m′(α− α0)|(A.1)

= |m(α)−m(α0)−m′(α− α0)|
|α− α0|

|α− α0|
|m′(α− α0)|

<
η

η
= 1�

This inequality implies m(α) �= 0, so α0 is locally identified on {α : |α − α0| <
ε}. Q.E.D.

A.2. Proof of Theorem 1

If m′h = m′h̃ for h �= h̃, then, for any λ > 0, we have m′h̄ = 0 for h̄ =
λ(h − h̃) �= 0. For λ small enough, h̄ would be in any open ball around zero.
Therefore, Assumption 1 holding on an open ball containing α0 implies that
m′ is invertible. By m′ onto and the Banach Inverse Theorem (Luenberger
(1969, p. 149)), it follows that (m′)−1 is continuous. Since any continuous lin-
ear map is bounded, it follows that there exists η> 0 such that ‖m′(α−α0)‖B ≥
η‖α− α0‖A for all α ∈ A.

Next, by Fréchet differentiability at α0, there exists an open ball Nε centered
at α0 such that, for all α ∈ Nε, α �= α0,

‖m(α)−m(α0)−m′(α− α0)‖B

‖α− α0‖A
<η�(A.2)
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Therefore, at all such α �= α0,

‖m(α)−m′(α− α0)‖B

‖m′(α− α0)‖B

= ‖m(α)−m(α0)−m′(α− α0)‖B

‖α− α0‖A

‖α− α0‖A

‖m′(α− α0)‖B

<η/η = 1�

Therefore, as in the proof of the parametric result above, m(α) �= 0 for all
α ∈ Nε with α �= α0. Q.E.D.

A.3. Proof of Theorem 2

Consider α ∈ N with α �= α0. Then

‖m(α)−m′(α− α0)‖B

‖m′(α− α0)‖B
= ‖m(α)−m(α0)−m′(α− α0)‖B

‖m′(α− α0)‖B

≤ L‖α− α0‖r
A

‖m′(α− α0)‖B
< 1�

The conclusion follows as in the proof of Theorem 1. Q.E.D.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Lemma 3

By assumptions, there exists a compact, injective operator K : A �→ B. By
Theorem 15.16 in Kress (1999), K admits a singular value decomposition:

Kδ=
N∑
j=0

μj〈φj�δ〉ϕj�

where {φj} is an orthonormal subset of A, either finite or countably infinite,
with cardinality N ≤ ∞, {ϕj} is an orthonormal subset of B of equal cardi-
nality, and (μj)

∞
j=1 is bounded. Since ‖Kδ‖2

B = ∑N

j=0 μ
2
j 〈φj�δ〉2, injectivity of

K requires that {φj} must be an orthonormal basis in A and μj �= 0 for all j.
Therefore, step 1 is always feasible by using these {φj} and {ϕj} in the con-
struction. The order of eigenvectors in these sets need not be preserved and
could be arbitrary. Step 2 is also feasible by using a product of Lebesgue-
dominated measures on a bounded subset of R to define a measure over R

N ,
or, more generally, using any construction of measure on R

N from finite dimen-
sional measures obeying Kolmogorov’s consistency conditions (e.g., Dudley
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(1989)) and the additional condition that η{λj1 ∈ A�λj2 ∈ R� � � � � λjk ∈ R} = 0 if
Leb(A) = 0, for any finite subset {j1� � � � � jk} ⊂ {0� � � � �N}. This verifies claim 1.

To verify claim 2, by Bessel’s inequality we have that

∥∥m′δ
∥∥

B ≥
N∑
j=0

λ2
j κ

2〈φj�δ〉2�

m′ is not injective iff λ2
j κ

2 = 0 for some j. By countable additivity and by
Leb({0})= 0 ⇒ η({λj = 0})= 0 holding by assumption,

Prη
(∃j ∈ {0�1� � � � �N} :λj = 0

) ≤
N∑
j=0

η
({λj = 0}) = 0�

The final claim follows from the penultimate display. Q.E.D.

B.2. Proof of Theorem 4

By Assumption 3, for any α �= α0 and α ∈ N ′′′ with Fourier coefficients bj , we
have

∥∥m′(α− α0)
∥∥

B ≥
(∑

j

μ2
j b

2
j

)1/2

>L

(∑
j

b2
j

)r/2

=L‖α− α0‖r
A�

so the conclusion follows from Theorem 2. Q.E.D.

B.3. Proof of Corollary 5

Consider α ∈ N ′′′. Then∑
j

μ−2/(r−1)
j b2

j < L−2/(r−1)�(B.1)

For bj = 〈α− α0�φj〉, note that ‖α− α0‖A = (
∑

j b
2
j )

1/2 by φ1�φ2� � � � being an
orthonormal basis. Then(∑

j

b2
j

)1/2

=
(∑

j

μ−2/r
j μ2/r

j b2
j

)1/2

≤
(∑

j

μ−2/(r−1)
j b2

j

)(r−1)/2r(∑
j

μ2
j b

2
j

)1/2r

< L−1/r

(∑
j

μ2
j b

2
j

)1/2r

≤L−1/r
(∥∥m′(α− α0)

∥∥
B

)1/r
�
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where the first inequality holds by the Hölder inequality, the second by equa-
tion (B.1), and the third by Assumption 3. Raising both sides to the rth power
and multiplying through by L gives

L‖α− α0‖r
A <

∥∥m′(α− α0)
∥∥

B�(B.2)

The conclusion then follows from Theorem 4. Q.E.D.

B.4. Proof of Theorem 6

Let F(y|X�W ) = Pr(Y ≤ y|X�W ), m(α)= E[1(Y ≤ α(X))|W ] − τ, and

m′h= E
[
fY

(
α0(X)|X�W

)
h(X)|W ]

�

so that by iterated expectations,

m(α)= E
[
F

(
α(X)|X�W

)|W ] − τ�

Then, by a pathwise mean value expansion, and by fY (y|X�W ) continuously
differentiable,

∣∣F(
α(X)|X�W

) − F
(
α0(X)|X�W

)
− fY

(
α0(X)|X�W

)(
α(X)− α0(X)

)∣∣
= ∣∣[fY (

ᾱ(X)|X�W
) − fY

(
α0(X)|X�W

)][
α(X)− α0(X)

]∣∣
≤L1

[
α(X)− α0(X)

]2
�

where ᾱ(X) is the mean value of a pathwise Taylor expansion that lies between
α(X) and α0(X). Then, for L1L2 =L,

∣∣m(α)(W )−m(α0)(W )−m′(α− α0)(W )
∣∣

≤L1E
[{
α(X)− α0(X)

}2|W ]
≤LE

[{
α(X)− α0(X)

}2] = L‖α− α0‖2
A�

Therefore,
∥∥m(α)−m(α0)−m′(α− α0)

∥∥
B ≤ L‖α− α0‖2

A�

so that Assumption 2 is satisfied with r = 2 and N ′′ = A. The conclusion then
follows from Corollary 5. Q.E.D.
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