PROGRESSIVE PARTICIPATION

By
Dirk Bergemann and Philipp Strack

August 2019
Revised July 2020

COWLES FOUNDATION DISCUSSION PAPER NO. 2189R2

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

http://cowles.yale.edu/
Progressive Participation

Dirk Bergemann† Philipp Strack‡

July 28, 2020

Abstract

A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation.

We derive the optimal stationary mechanism in closed form and characterize its qualitative structure. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time.

Keywords: Dynamic Mechanism Design, Observable Arrival, Unobservable Arrival, Repeated Sales, Interim Incentive Constraints, Interim Participation Constraints, Stopping Problem, Option Value, Progressive Participation.

JEL Classification: D44, D82, D83.

∗The first author acknowledges financial support through NSF Grant SES 1459899. We thank seminar audiences at Columbia University, Harvard University, MIT, Stanford University, the ACM-EC Phoenix 2019, Econometric Society North America Winter Meetings and University of Chile Dynamic Mechanism Design Workshop for many productive comments. We thank Simon Board, Rahul Deb, Daniel Garrett, Yash Kanoria, Al Klevorick, Ilan Lobel, and Maher Said for many helpful conversations.
†Department of Economics, Yale University, dirk.bergemann@yale.edu;
‡Department of Economics, Yale University, philipp.strack@yale.edu
1 Introduction

1.1 Motivation

We consider a classic mechanism design problem in a dynamic and stationary environment. The seller wants to repeatedly sell a good (or service) to buyers with randomly evolving valuation. The willingness to pay of each buyer is private information of the buyer and evolves randomly over time. We assume a stationary environment in which each buyer is replaced at random, and with a constant rate, by a new buyer whose initial willingness-to-pay is randomly drawn from a given distribution. The objective of the seller is to find a stationary revenue maximizing policy in this dynamic environment. The choice of policy or mechanism is unrestricted and may consist of leasing contracts, sale contracts, or any other form of dynamic contract.

We depart from the earlier analysis of dynamic mechanisms in our treatment of the participation decision of the buyer. We allow the buyer (he), once he has arrived in the economy, to choose the time at which he enters into a contract with the seller (she). While he can sign a contract with the seller immediately upon arrival, he has the option to postpone the participation decision until a future date. The buyer therefore has the option to wait and sign any contract only after he has received additional information about his willingness to pay. In particular, he can time the acceptance of a contract until he has a sufficiently high willingness to pay. Thus, both the incentive constraints that are in place after the buyer has signed the contract and the participation constraints that are in place before the buyer has signed the contract are fully responsive to the arrival of new information, and are consequently represented as sequential constraints. In particular, the buyer can enter the contract upon arrival or at any later time. His participation is therefore determined progressively as he receives additional information. For brevity, we sometimes refer to the current setting with interim participation and interim incentive constraints as progressive mechanism design.

We can contrast this with the received perspective in dynamic mechanism design. With some notable exceptions, such as Garrett (2016) that discuss shortly, the seller is assumed to know the arrival time of the buyer and the seller can commit herself to make a single and once-and-for-all offer to the buyer at the moment of arrival. In particular, the seller can commit herself to never make another offer to the buyer in any future period. These two features: (i) the ability of the seller to time the offer to the arrival time of the buyer and (ii) the ability to refrain from any future offers seem likely to be violated in many economic
environments of interest. For example, the consumer clearly has a choice when to sign up for a mobile phone contract, a gym membership, or a service contract for a kitchen appliance. Importantly, as the consumer waits, he may receive more information about his willingness to pay for the product. Thus, relative to the specific assumption in the earlier literature, we allow the arrival time and the identity of the buyer to be private information to the buyer. Consequently, the contract or the menu of contracts cannot be timed to the arrival of the buyer and the contract (or lack of contract) offer cannot be tied to the identity of the buyer. In a stationary environment in which buyers arrive and depart at a balanced rate, we restrict attention to the optimal stationary mechanism.

We view the relaxation of the two above mentioned restrictions as necessary steps to bring the design of dynamic revenue maximizing mechanism closer to many interesting economic applications. To the extent that these restrictions impose additional constraints on the seller, they directly weaken the power of dynamic mechanism design. We therefore investigate the impact of these additional constraints on the ability of the seller to raise revenues from the buyers using dynamic contracts. The additional constraints for the seller are reflected in a larger set of reporting strategies for the buyers. A buyer can misreport both his willingness to pay as well as his arrival time. This creates an option value for the buyer as instead of choosing a contract immediately he can wait and enter into a contract with the seller when it is most favorable for him to do so. Given the menu of contracts offered by the seller, the buyer thus solves an optimal stopping problem to determine when to enter into a contractual relationship with the seller. From the point of view of the buyer, the choice of an optimal contract from the menu therefore has an option element. Subject to the (random) evolution of his type and his willingness to pay, he can choose when to enter into an agreement with the seller. This suggests that the buyer will receive a larger information rent than in the standard dynamic mechanism design framework where the buyer has to sign a contract with the seller immediately.

We develop our analysis in a continuous time setting where the buyer’s willingness to pay follows a geometric Brownian motion. The prior distribution of the willingness to pay upon arrival is given exogenously, and paired with the renewal rate in the population, generates an ergodic distribution which forms the stationary environment. The revenue maximizing static mechanism, i.e. the contract which does not condition on a buyer’s history, is a leasing contract which offers the good in every period for the posted price that is optimal given the ergodic distribution of the valuations of the buyers.
In the absence of the sequential participation constraint, the revenue maximizing dynamic mechanism would sell the object with probability one and forever at fixed price (see Bergemann and Strack, 2015). Thus, the object would be sold rather than leased to all buyers who have an initial willingness to pay above a certain threshold. Conversely, all buyers whose initial value is below this threshold would not buy the object, neither at the beginning of time, nor anytime thereafter. In a first pass, we then restrict attention to a sales price policy, which is optimal in the absence of sequential participation constraints, and determine the optimal sales price with the presence of sequential participation constraints. Here, the comparison of thresholds and prices between dynamic and progressive mechanism design are instructive. We find that the threshold for the willingness to pay at which a buyer purchases the object is strictly higher in the progressive model than in the dynamic model without progressive participation constraint. By contrast, the price at which the buyer can acquire the object can be either below or above the price charged in the dynamic setting.

We can gain some initial insight by considering how a buyer would react to the option to buy at a fixed price. In the dynamic setting, there would be a threshold type for the buyer who would receive zero expected net surplus at the offered price. In the progressive setting, this threshold type could and clearly should delay the purchase until his willingness to pay is sufficiently above the threshold level to guarantee himself a positive net surplus. Thus, at any threshold level, the seller will be able to extract less surplus from the buyer than he could in the presence of a static participation constraint. In response to the weakened ability to extract surplus, the seller has to adjust her policy along the price and the quantity margin at the same time. We show that the seller will generally choose to implement a higher threshold for the willingness to pay. Thus, there will be fewer initial sales relative to the static participation constraint. But the seller also adjusts along the dimension of the price and will ask for a price below the price at which the threshold type would have received zero expected net surplus. Interestingly, the price with sequential participation constraints may either be below or above the price charged under the static participation constraint. Most importantly, a gap now arises between the price paid to receive the object and the expected value assigned to the object by the threshold type.

Following the analysis of the optimal price policy under sequential participation constraint, we then show that a single sale price policy is indeed an optimal progressive mechanism in the class of all possible stationary mechanisms. In other words, a single sale price as a specific and simple indirect implementation of a direct mechanism achieves the revenue maximizing optimum. The main challenge for establishing this result is that it is unclear
how to handle the progressive participation constraint. As our example with the threshold type illustrates, this constraint will always bind for some type and thus cannot be ignored. This constraint is non-standard as it states that the value function of the buyer must be the solution to an optimal stopping problem which itself involves the value function. We relax this problem by restricting the buyer to a small set of deviations, namely cut-off strategies which are indexed by the cut-off. This relaxation has the advantage that the buyer’s participation strategies can be mapped into \mathbb{R} which allows us to reduce the problem into a static mechanism design problem. This static problem is a variant of the classical setup by Mussa and Rosen (1978) with the non-standard feature that each buyer can (deterministically) increase his type at the cost of multiplicatively decreasing his interim utility. This additional constraint leads to a failure of the first-order approach. We show that the resulting mathematical program can be expressed as a Pontryagin control problem with contact constraints and we develop a verification result for such problems which might be of independent interest. We illustrate the implications that the option to wait has for the effectiveness of dynamic mechanism in a concluding example.

1.2 Related Literature

The analysis of revenue-maximizing mechanism in an environment where the buyer’s private information changes over time started with Baron and Besanko (1984) and Besanko (1985). Since these early contributions, the literature has developed considerably in recent years with notable contributions by Courty and Li (2000), Battaglini (2005), Esős and Szentes (2007) and Pavan et al. (2014). These papers derive in increasing generality the dynamic revenue maximizing mechanism. The analysis in these contributions have in common the same set of constraints on the choice of mechanism. The seller has to satisfy all of the sequential incentive constraints, but only a single ex-ante participation constraint. In earlier work, Bergemann and Strack (2015), we considered the same set of constraints in a continuous-time setting where the stochastic process that describes the evolution of the flow utility was governed by a Brownian motion. The continuous-time setting allowed us to obtain additional and explicit results regarding the nature of the optimal allocation policy, which are unavailable in the discrete-time setting. In the present paper, we will use the continuous-time setting again for very similar reasons.

The literature on dynamic mechanism design largely assumes that the arrival time of the

\^1Bergemann and Välimäki (2019) provide a survey into the recent developments of dynamic mechanism design.
buyer is known to the seller and that the seller can make a single, take-it-or-leave-it offer at
the moment of the buyer’s arrival. In contrast, there is a separate literature that analyzes the
optimal sales of a durable good with the recurrent entry of new consumers, and it is directly
concerned with the timing of the purchase decision by the buyers. The seminal contribution
by Conlisk et al. (1984) considers a durable good model with the entry of a new group of
consumers in every period, constant in size and composition. Each buyer has either a low or
high value that is persistent. They consider the subgame perfect equilibrium of the game;
thus the seller has no commitment. The equilibrium displays a cyclic property. Sobel (1991)
considers a durable good model with the entry of new consumers. He extends the equilibrium
analysis of Conlisk et al. (1984) to allow for non-stationary equilibria and this enlarges the set
of attainable equilibria and payoffs. The model remains restricted to binary and persistent
types. The main part of his analysis is concerned with subgame perfect pricing policies by the
firm, thus he analyzes the pricing problem for the firm without commitment. In addition,
Sobel (1991) describes the optimal sales policy under commitment and establishes that a
stationary price is the optimal policy (Theorem 4). Board (2008) considers the optimal
commitment solution for seller when incoming demand for a durable good varies over time.
He characterizes the optimal sequence of prices and allocations in an optimal, possibly time-
dependent policy. While he considers a continuum of valuations, he maintains the restriction
that the value of each buyer is perfectly persistent and does not change after arrival.2 Thus,
the literature on newly arriving consumer restricts attention to: (i) a sequence of prices
rather than general allocation mechanisms, and (ii) perfectly persistent values.

Garrett (2016) offers a notable exception in that he is concerned with unobservable arrival
and allows for stochastic values. He considers a stationary environment in continuous time
in which each buyer arrives and departs at random times. The private value of each buyer
is governed by a Markov process with binary values, low and high. The seller can commit to
any deterministic time-dependent sales price policy. The seller maximizes the revenue from a
representative buyer. Garrett (2016) provides conditions under which a time-invariant price
path is optimal within the class of deterministic price paths, and he obtains conditions on
the binary values under which a deterministic price cycle prevails in the optimal contract.
Garrett (2016) observes that an optimal policy in the class of all dynamic direct mechanisms,

2Besbes and Lobel (2015) consider a related question in a very different environment. They study the
revenue-maximizing pricing policy under commitment in a steady state where the consumers have private
information across two dimension: the valuation and their willingness to wait. The valuation of the consumer
however is constant and the willingness to wait is in terms of a deadline until the value expires. Thus each
consumer faces a finite horizon problem without discounting, and the seller maximizes her long-run average
revenue.
one that does not restrict attention to deterministic sale price path (and implied restrictions on reporting types), may lead to very different results and implications.

By contrast, we consider an environment with a continuum of values whose evolution is governed by a geometric Brownian motion. We allow for a general mechanism that can depend in arbitrary ways on the reported values once the buyer has entered the mechanism. We restrict attention to a stationary mechanism. Thus, the seller commits to renew the mechanism in every future period either for newly arriving buyers, or late deciding buyers. In this environment, we establish that a deterministic and time-invariant sale price constitutes a revenue maximizing mechanism in the class of all stationary mechanisms.

The importance of a privately observed arrival time is also investigated in Deb (2014) and Garrett (2017). In contrast to the present work, these papers do not investigate a stationary environment. Instead, while the mechanism starts at time $t = 0$, the buyer may arrive at a later time. The main concern therefore is how to encourage the early arrivals to contract early. In a setting with either a durable good or a non-durable good, respectively, these authors find that the optimal mechanism treats early arriving participants more favorably than late arriving participants. The late arriving participants face less favorable prices and purchase lower quantities than the early arrivals. In a recent contribution, Correa et al. (2020) assess the value of observable against unobservable arrival time. Their setting differs as they allow for different discount factors for buyer and seller but restrict attention to constant valuations. They approximate the value of the optimal contract under unobservable arrival and then establish a revenue bound on the value of observable arrival time by considering a ratio between the revenue under observable vs. unobservable arrival. In Gershkov et al. (2015, 2018), the value of each buyer is also constant while the arrival time is unobservable. In their setting, the seller seeks to incentivize truthful reporting of the arrival time as it is informative about the aggregate demand.

There are related concerns with the emphasis on the ex-ante participation constraints in the literature on dynamic mechanism design that pursue different directions from the one presented here. Lobel and Paes Leme (2019) question the unlimited ability of the seller to commit to make only a single offer to the buyer. They suggest that while the seller may have “positive commitment” power, she may lack in “negative commitment” power. That is, he can commit to any contractual promise, but may not be able to commit never to make any further offer in the future. They show that in a finite horizon model with a sequence of perishable goods, the equilibrium is long-term efficient and that the seller’s revenue is a function of the buyer’s ex ante utility under a no commitment model. Skreta (2006, 2015)
and Deb and Said (2015) also investigate the sequential screening under limited commitment by the seller.

A more radical departure from the ex-ante or interim participation constraint to ex-post participation constraints is suggested in recent work by Krähmer and Strausz (2015) and Bergemann et al. (2020). These papers re-consider the sequential screening model of Courty and Li (2000). In this two-period setting, where information arrives over time and the allocation of a single object can be made in the second period, they impose an ex-post participation rather than an ex-ante participation constraint. In consequence the power of sequential screening is diminished and sometimes the optimal mechanism reduces to the solution of the static mechanism. Ashlagi et al. (2016) investigate the performance guarantees that can be given with ex-post participation constraints in a setting where a monopolist sells k items over k periods.

The remainder of the paper proceeds as follows. Section 2 introduces the model and the design problem. Section 3 shows how the progressive mechanism design problem can be related to an auxiliary static problem. Section 4 reviews the optimal mechanism in the environment with observable environment, and shows that the optimal fails to be incentive compatible in the environment with unobservable arrivals. Section 5 derives the optimal progressive mechanism. Section 6 offers a detailed discussion of how the arguments developed generalize beyond geometric Brownian motion and unit demand and Section 7 concludes. The proofs are collected in the Appendix.

2 Model

2.1 Payoffs and Allocation

We consider a stationary model with a single seller (she) and a single representative buyer (he). Time is continuous and indexed by $t \in [0, \infty)$. The buyer departs and gets replaced with a newly arriving buyer at rate $\gamma > 0$. We denote by i the buyer who arrived i-th to the market.\footnote{An equivalent formulation would consist of a continuum of buyers where each buyer arrives and departs with rate γ. The average behavior of such a continuum of buyers will match the expected behavior of a single representative buyer. The main advantage of the representative buyer model is that it avoids technical issues due to integration over a continuum of independent random variables, which is formally not well defined in standard probability theory, see e.g. Judd (1985).} We denote the random arrival time of buyer i by $\alpha_i \in \mathbb{R}_+$ and the random departure time of buyer i equals the random arrival time $\alpha_{i+1} \in \mathbb{R}_+$ of buyer $i + 1$.
The seller and the buyer discount the future at the same rate \(r > 0 \). At each point in time \(t \), the buyer demands one unit of the good. The flow valuation of buyer \(i \) at time \(t \in [\alpha_i, \alpha_{i+1}] \) is denoted by \(\theta_i^t \in \mathbb{R}_+ \), the quantity allocated to buyer \(i \) at time \(t \) is \(x_i^t \in [0, 1] \), and \(p_i^t \) is the flow payment from the buyer to the seller. His flow preferences are represented by a (quasi-)linear utility function

\[
\begin{align*}
 u_i^t &= \theta_i^t x_i^t - p_i^t, \\
\end{align*}
\]

(1)

The arrival and departure time of each buyer are assumed to be independent of his valuation process. The valuation of buyer \(i \), \(\theta_i^t \in \mathbb{R}_+ \), at the time of his arrival \(t = \alpha_i \) is distributed according to a cumulative distribution function:

\[
 F : [0, \bar{\theta}] \rightarrow \mathbb{R},
\]

with strictly positive, bounded density \(f(\theta) = F'(\theta) > 0 \) on the support. The prior distribution \(F \) is the same for every buyer \(i \) and every arrival time \(\alpha_i \).

The valuation of each buyer evolves randomly over time, independent of the valuation of other buyers. We assume that each buyer’s valuation \((\theta_i^t)_{t \in [\alpha_i, \infty)}\) follows a geometric Brownian motion:

\[
 d\theta_i^t = \sigma \theta_i^t dW_t,
\]

(2)

where \((W_t)_{t \in \mathbb{R}_+}\) is a Brownian motion and \(\sigma \in \mathbb{R}_+ \) is the volatility which measures the speed of information arrival. The geometric Brownian motion forms a martingale and consequently the buyer’s best estimate of his valuation at any future point in time is his current valuation, i.e. for all \(s \geq t \):

\[
 \mathbb{E}_t [\theta_i^s] = \theta_i^t.
\]

Furthermore, \(\theta_i^t \) takes only positive values, and so the buyer’s valuation for the good is always positive.

Each buyer \(i \) seeks to maximize his discounted expected net utility given his valuation \(\theta_{\alpha_i}^i \) at his arrival time \(\alpha_i \):

\[
 \mathbb{E} \left[\int_{\alpha_i}^{\alpha_{i+1}} e^{-r(t-\alpha_i)} (\theta_i^t x_i^t - p_i^t) \, dt \mid \theta_{\alpha_i}^i, \alpha_i \right].
\]
The seller seeks to maximize the expected discounted net revenue collected from her interaction with the sequence of all buyers:

\[E \left[\sum_{i=0}^{\infty} \int_{\alpha_i}^{\alpha_{i+1}} e^{-rt} p^i_t \, dt \right]. \tag{3} \]

2.2 Stationary Mechanism

A mechanism specifies, after each history, a set of messages for each buyer and the allocation as a function of the complete history of messages sent by this buyer. Throughout, we impose that the allocation–quantity and monetary transfer–are independent of the identity of buyer \(i \). The quantity process \((x_t) \) specifies whether or not the buyer consumes the good at any point in time. We assume that the assignment of the object is reversible, i.e. the seller can give the buyer an object for some time and then take it away later.

Definition 1 (Mechanism).

A mechanism \((x, p)\) specifies at every point in time \(t \in \mathbb{R}_+ \), where some buyer \(i \) is active \(t \in [\alpha_i, \alpha_{i+1}) \), the allocation \(x_t ((m^i_s)_{\alpha_i \leq s \leq t}) \) as well as the transfer \(p_t ((m^i_s)_{\alpha_i \leq s \leq t}) \) as a function of the messages \((m^i_s)_{\alpha_i \leq s \leq t}\) sent by this buyer prior to time \(t \).

A direct mechanism is a mechanism where the buyer reports his arrival and his valuations to the mechanism.

Definition 2 (Direct Mechanism).

A direct mechanism \((x, p)\) specifies at every point in time \(t \in \mathbb{R}_+ \), where some buyer \(i \) is active \(t \in [\alpha_i, \alpha_{i+1}) \), the allocation \(x_t (\alpha_i, (\theta^i_s)_{\alpha_i \leq s \leq t}) \) as well as the transfer \(p_t (\alpha_i, (\theta^i_s)_{\alpha_i \leq s \leq t}) \) as a function of the arrival time \(\alpha_i \) and the valuations \((\theta^i_s)_{\alpha_i \leq s \leq t}\) reported by this buyer prior to time \(t \).

As the payoff environment is stationary, we restrict attention to stationary mechanisms where the allocations are independent of the arrival time of the buyer. More formally, we require that a buyer who arrives at time \(\alpha \) and whose valuations follows the path \((\theta_s)\), receives the same allocation as a buyer who arrives at time \(\alpha' \) and his valuations follows the same path of valuations shifted by the difference in arrival times, i.e. \(\theta'_s = \theta_{s+(\alpha-\alpha')} \). Thus, the seller cannot discriminate the buyer based on his arrival time.
Definition 3 (Stationary Direct Mechanism).
A direct mechanism \((x, p)\) is stationary if for all arrival times \(\alpha, \alpha'\) and valuation paths \(\theta\):
\[
\begin{align*}
 x_t \left(\alpha, (\theta_s)_{\alpha \leq s \leq t} \right) &= x_{t+(\alpha' - \alpha)} \left(\alpha', (\theta_s)_{\alpha' \leq s \leq t+(\alpha' - \alpha)} \right), \\
p_t \left(\alpha, (\theta_s)_{\alpha \leq s \leq t} \right) &= p_{t+(\alpha' - \alpha)} \left(\alpha', (\theta_s)_{\alpha' \leq s \leq t+(\alpha' - \alpha)} \right),
\end{align*}
\]

2.3 Progressive Mechanism

By the revelation principle we can, without loss of generality, restrict attention to direct mechanisms where it is optimal for the buyer to report his arrival time \(\alpha\) and his valuation \(\theta\) truthfully at every point in time \(t\). Define the indirect utility \(V_{\alpha}(\theta) : \mathbb{R}_+ \rightarrow \mathbb{R}\) of a buyer who arrives at time \(\alpha\) with a value of \(\theta_{\alpha}\) and reports his arrival and valuations \((\theta_t)_t\) truthfully by:
\[
V_{\alpha}(\theta) = \mathbb{E} \left[\int_{\alpha_i}^{\alpha_{i+1}} e^{-r(t-\alpha_i)} \left\{ \theta^i x_i^i - p_i^i \right\} dt \mid \alpha_i = \alpha, \theta^i_{\alpha_i} = \theta \right],
\]
\[
= \mathbb{E} \left[\int_{\alpha_i}^{\alpha_{\infty}} e^{-(r+\gamma)(t-\alpha_i)} \left\{ \theta^i x_i^i - p_i^i \right\} dt \mid \alpha_i = \alpha, \theta^i_{\alpha_i} = \theta \right].
\]

The second equality follows immediately from the law of iterated expectations and the fact that the departure time \(\alpha_{i+1}\) of the buyer is independent of the arrival time \(\alpha_i\) and the valuation process \(\theta^i\) and hence of \(x_i^i, p_i^i\).

It is optimal for the buyer to report truthfully if
\[
V_{\alpha}(\theta_{\alpha}) \geq \sup_{\hat{\alpha} \geq \alpha_i, (\hat{\theta}_{\alpha})} \mathbb{E} \left[\int_{\hat{\alpha}}^{\alpha_{\infty}} e^{-(r+\gamma)(t-\hat{\alpha})} \left\{ \theta^i_{\hat{\alpha}} \hat{x}^i_{\hat{\alpha}} - \hat{p}^i_{\hat{\alpha}} \right\} dt \mid \alpha_i = \alpha, \theta^i_{\alpha_i} = \theta \right],
\]
where the allocation \(\hat{x}^i_{\hat{\alpha}} = x_t(\hat{\alpha}, (\hat{\theta}_s)_{\hat{\alpha} \leq s \leq t})\) as well as the payment \(\hat{p}^i_{\hat{\alpha}} = p_t(\hat{\alpha}, (\hat{\theta}_s)_{\hat{\alpha} \leq s \leq t})\) is a function of the reported arrival time \(\hat{\alpha}\) as well as all previously reported valuations \((\hat{\theta}_s)_{\hat{\alpha} \leq s \leq t}\).

We note here that the supremum in (IC) is taken over stopping times \(\hat{\alpha}\) as the buyer can condition his reported arrival on his current (and past) valuation \(\theta_t\).

We restriction attention to mechanisms where the buyer participates voluntarily, i.e. for all arrival times \(\alpha\) and all initial values \(\theta_{\alpha}\), the buyer’s expected utility from participating in the mechanism is non-negative:
\[
V_{\alpha}(\theta_{\alpha}) \geq 0. \quad \text{(PC)}
\]

While imposing incentive compatibility constraints (IC) as well as participation con-

4 See Lemma 4 in the Appendix.
straints (PC) is standard in the literature on (dynamic) mechanism design, we note that the incentive compatibility constraint (IC) imposed here is stronger than the one usually imposed in the literature. As the arrival time \(\alpha \) is not observable, the seller has to provide incentives for the buyer to report his arrival truthfully. In fact the incentive constraint (IC) directly implies the participation constraint (PC) as the buyer can always decide to never report his arrival \(\hat{\alpha} = \infty \). We denote by \(\mathcal{M} \) the set of all incentive compatible stationary mechanisms where every buyer participates voluntarily.

The seller seeks to maximize her revenue subject to the incentive and participation constraints, and we refer to it as the \textit{progressive mechanism} design problem.

3 Aggregation and Revenue Equivalence

As a first and significant step in the analysis, we establish that the progressive mechanism design problem can be related to an auxiliary static problem. The static formulation aggregates the progressive problem over time with suitable weights into static problem. In the new static problem, the buyer reports only his initial valuation and the seller chooses an expected and discounted aggregate quantity \(q \in \mathbb{R}_+ \) to allocate to the buyer. We establish that in any incentive compatible progressive mechanism, both the value of the buyer as well as the revenue of the seller are only a function of this aggregate quantity.

Towards this end, we first rewrite the revenue of the seller from the sequence of buyers, given by (3) in terms of the revenue collected from the interaction with a \textit{single} buyer \(i \) only. After all, in a stationary direct mechanism, the allocation and transfer depend only on the time which elapsed since the arrival time of buyer \(i \).

Lemma 1 (Expected Revenue).

\[
\frac{r + \gamma}{r} \max_{(x,p) \in \mathcal{M}} \mathbb{E} \left[\int_{\alpha_i}^{\alpha_{i+1}} e^{-r(t-\alpha_i)} p_i(t) \, dt \right],
\]

where \(i \) is an arbitrary buyer.

This follows directly from the independence of the values across the buyers. The formal proofs are all relegated to the Appendix. We can therefore, without loss of generality, assume that the representative buyer arrives at time zero \(\alpha_i = 0 \) to determine the revenue the seller derives from her interaction with all the buyer. With the focus on a single instance of buyer \(i \),
we can therefore drop the index i indicating his identity i and his arrival time α_i and denote by $V(\theta_0)$ the indirect utility of the buyer who arrived at time $t = 0$ with initial valuation θ_0.

We now define the “aggregate quantity” $q : \Theta \to \mathbb{R}_+$ which is allocated to a buyer with initial valuation θ_0 by

$$q(\theta_0) \equiv \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right) dt \mid \theta_0 \right]. \quad (5)$$

The aggregate quantity is the expected discounted integral over the flow quantities (x_t). The flow quantity x_t is weighted by a term that represents the information rent in period t due the initial private information θ_0 as we explain next. The first term inside the integral is simply the discounted quantity in period t:

$$e^{-(r+\gamma)t} x_t.$$

The second term is the derivative of the valuation θ_t in period t with respect to the initial value θ_0. Here, we use the fact that the geometric Brownian motion can be explicitly represented as:

$$\theta_t = \theta_0 \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right),$$

and thus the derivative is given by:

$$\frac{d\theta_t}{d\theta_0} = \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right).$$

The above derivative represents the influence that the initial value θ_0 has on the future state θ_t. In Bergemann and Strack (2015), we referred to it as stochastic flow, and it is the analogue of the impulse response function in discrete time dynamic mechanism (see Pavan et al. (2014), Definition 3). As in the discrete time setting, the stochastic flow enters the dynamic version of the virtual utility as established in Theorem 1 of Bergemann and Strack (2015):

$$J_t(\theta_t) \equiv \theta_t - \frac{1 - F(\theta_0)}{f(\theta_0)} \frac{d\theta_t}{d\theta_0}. \quad (6)$$

The expected “aggregate quantity” $q(\theta_0)$ thus weighs the discounted quantity with the corresponding stochastic flow, or information rent that emanates from the initial value θ_0. As the quantity x_t is bounded between 0 and 1 and the exponential term is a martingale, it
follows that the aggregate quantity is bounded as well, i.e. for all \(\theta_0 \in [0, \bar{\theta}] \):

\[
0 \leq q(\theta_0) \leq \frac{1}{r + \gamma}.
\]

We can complete the description of the static auxiliary problem with the virtual value at time \(t = 0 \):

\[
J(\theta_0) \triangleq \theta_0 - \frac{1 - F(\theta_0)}{f(\theta_0)},
\]

the “virtual flow value” of the buyer upon arrival to the mechanism. We denote by

\[
\theta^o \triangleq \inf\{\theta_0 : J(\theta_0) \geq 0\},
\]

the lowest type with a non-negative virtual value. We assume that the distribution of initial valuations is such that \(\theta \mapsto \min\{0, f(\theta)J(\theta)\} \) is non-decreasing.\(^5\)

The expected quantity \(q \) and the virtual utility \(J \) are useful as they completely summarize the expected discounted revenue of the seller and the value of the buyer:

Proposition 1 (Aggregation and Revenue Equivalence).

In any incentive compatible mechanism, the value of the buyer with initial valuation \(\theta \) is:

\[
V(\theta) = \int_0^\theta q(z)dz + V(0),
\]

and the expected discounted revenue of the seller is:

\[
E\left[\int_0^\infty e^{-(r+\gamma)t}p_t \, dt\right] = \int_0^{\bar{\theta}} J(\theta)q(\theta)dF(\theta) - V(0).
\]

Proposition 1 allows us to express the objective functions of buyer and seller in terms of the discounted quantities \(q \) only. In earlier work, we obtained a revenue equivalence result for dynamic allocation problems, see Theorem 1 in Bergemann and Strack (2015). The new and important insight of Proposition 1 is that we can aggregate the intertemporal allocation \((x_t) \) into a single static quantity \(q(\theta_0) \) that serves as a sufficient statistic for the determination

\(^5\)This is a weak technical assumption which is satisfied for most standard distributions like the uniform distribution, the exponential distribution, or the log-normal distribution. For example for the uniform distribution \(U([0, \bar{\theta}] \) we have that \(f(\theta)J(\theta) = \frac{2\theta - \mu}{\bar{\theta}} \) which is increasing in \(\theta \). For the exponential distribution with mean \(\mu > 0 \) we have that \(\min\{0, f(\theta)J(\theta)\} = \min\{0, (\frac{2}{\mu} - 1) \exp \left(-\frac{1}{\mu}\theta\right)\} \) which is also increasing in \(\theta \).
of the indirect utility and the discounted revenue at the same time. In the presence of
the geometric Brownian motion and the unit demand, Proposition 1 asserts that there is a
particularly transparent reduction given by (5). We should emphasize that the reduction
to an auxiliary static program can be extended to a wide class of stochastic process and
allocation problems. We discuss these generalizations in detail in Section 6. The next result
establishes that the function \(q \) must be increasing in the initial valuation \(\theta_0 \) in any incentive
compatible mechanism.

Proposition 2 (Monotonicity of Discounted Quantity).

In any incentive compatible mechanism the aggregate quantity \(q(\theta_0) \) increases in \(\theta_0 \).

Proposition 1 and 2 follow from the the truth-telling constraint at time zero. We empha-
size that the conditions of Proposition 1 and 2 provide only necessary conditions for incentive
compatibility and optimality of the mechanisms as they omit:

(i) the possibility to misreport the arrival time, and

(ii) the buyer’s truth-telling constraints after time zero.

Indeed we will show in the Section 4.2 that the monotonicity of \(q \) is not a sufficient condi-
tion for incentive compatibility under unobservable arrival. We find that there are further
restrictions on the shape of the aggregate quantity \(q(\theta_0) \) beyond monotonicity that are due
to the above intertemporal incentive constraints (i) and (ii). These additional restrictions
will impose upper bounds on the derivative of aggregate quantity \(q(\theta_0) \). In consequence, the
revenue problem given by (11) is transformed from what looks like a standard unit demand
problem with extremal solutions to an optimal control problem.

We will derive the revenue maximizing mechanism for the seller when she does not observe
the arrival time of the buyer in Section 5. As a point of reference, it will be instructive for
us to first understand what the seller would do if the (individual) arrival time of each buyer
would be observable by the seller.

4 Sales Contract

With observable arrival, the optimal direct mechanism can be implemented by a simple sales
contract. We first review these results in Section 4.1 and then investigate in Section 4.2 how
this specific sales contract performs in the environment with unobservable arrival. In Section
4.3 we determine the sales contract that is the optimal sales contract with unobservable
arrival.
4.1 Optimal Contract with Observable Arrival

With observable arrival time by the buyer, we are in the canonical dynamic mechanism design environment. In Bergemann and Strack (2015), we derived the revenue maximizing mechanism for the current problem of interest, unit demand with values governed by a geometric Brownian motion. The optimal mechanism can be implemented by an indirect mechanism that offers the product for sale at an optimally determined price P, see Proposition 8 of Bergemann and Strack (2015).

We described the revenue of the seller in Proposition 1. It follows the optimal mechanism awards the object to the buyer if and only if his virtual value is positive upon arrival:

$$J(\theta_0) \geq 0.$$

Hence, it is optimal to maximize $q(\theta_0)$ if $J(\theta_0) \geq 0$ and minimize it otherwise. The optimal allocation then awards the object to the buyer at all times $s \geq 0$ if and only if his initial valuation θ_0 at arrival time $t = 0$ is sufficiently high:

$$x_s = \begin{cases}
1, & \text{if } \theta_0 \geq \theta^\circ; \\
0, & \text{otherwise};
\end{cases}$$

where the critical value threshold θ° is determined by

$$J(\theta^\circ) = 0.$$

The buyer thus receives the object forever whenever his initial valuation θ_0 is above the threshold value θ°. With observable arrivals this allocation can be implemented in a sales contract where the seller charges a sales price of $\theta^\circ / (r + \gamma)$, which entitles the buyer to ownership and continued consumption at all future times. An revenue-equivalent implementation would be to sell the good at time $t = 0$ and then charge the buyer a constant flow price of

$$p^\circ = \theta^\circ,$$

in all future periods, independent of his future value θ_s, for all $s \geq 0$. Thus, the indirect utility of the buyer when his arrival is observable equals

$$V(\theta_0) = \max \left\{ 0, \frac{\theta_0 - \theta^\circ}{r + \gamma} \right\}.$$
4.2 Unobservable Arrival and Failure of Incentive Compatibility

We now abandon the restrictive informational assumption of observable arrival and let the arrival time be private information to each buyer. We ask what would happen if the seller were to maintain the above sales policy at the optimal observable price p^o, as a stationary contract. Now, any newly arriving buyers with value close to p^o would conclude that rather than buy immediately, he should wait until he learns more about his value, and purchase the object if and only if he learned that he has a sufficiently high valuation for the object. Thus, the sale would occur (i) later and (ii) to fewer buyers. Thus the sale price contract fails to remain incentive compatible in the environment with unobservable arrival times.

Still, we can ask how the buyer would behave when faced with stationary mechanism that offers him to object for sale at flow price p. In the presence of unobservable arrival, the buyer can determine the optimal purchase time by an optimal stopping problem. We denote by T the random time at which the buyer leaves the market. If the buyer acquires the good at time t with valuation θ_t at any given price $p > 0$, whether it is $p = p^o$ or not, then his expected continuation utility is:

$$\mathbb{E}_t\left[\int_t^T e^{-r(s-t)} (\theta_s - p) \, ds \right] = (\theta_t - p) \mathbb{E}_t\left[\int_t^T e^{-r(s-t)} \, ds \right] = \frac{\theta_t - p}{r + \gamma}.$$

The first equality in the above equation follows from the fact that θ is a martingale (independent of T). The buyer’s value at time t is his best estimate of his value at later points in time. The second equality follows as the time T at which the buyer leaves the market and thus stops consuming the good is (from a time t perspective) exponentially distributed with mean $t + 1/\gamma$. The time τ at which the buyer optimally purchases the good thus solves the stopping problem:

$$\sup_{\tau} \frac{1}{r + \gamma} \mathbb{E} \left[e^{-r\tau} 1_{\{\tau < T\}} (\theta_{\tau} - p) \right].$$

As the buyer leaves the market with rate γ this problem is equivalent to the problem where the discount rate is given by $(r + \gamma)$, i.e. the buyer solves the stopping problem

$$\sup_{\tau} \frac{1}{r + \gamma} \mathbb{E} \left[e^{-(r+\gamma)\tau} (\theta_{\tau} - p) \right]. \quad (12)$$

The stopping problem given in (12) is the classic irreversible investment problem analyzed in Dixit and Pindyck (1994, Chapter 5, p.135 ff.). For a given sales price p, it leads to a determination of a threshold $w(p)$ that the buyer’s valuation θ_{τ} needs to reach at the
stopping time τ.\footnote{\cite{Dixit and Pindyck (1994)} consider an investment problem with a real asset. There, the geometric Brownian motion may have a positive drift, $\alpha > 0$. The positive quadratic root in their equation (16) becomes (13) after setting the growth rate α, the drift of the geometric Brownian, to zero, or $\alpha = 0$. Their discount rate ρ becomes in our setting the sum of discount rate and renewal rate, thus $\rho = r + \gamma$, and the difference between discount rate and growth, $\delta = \rho - \alpha$, is then simply the discount rate, or $\delta = \rho$.}

To simplify notation, we define a constant β that summarizes the discount rate r, the renewal rate γ and the variance σ^2 in a manner relevant for the stopping problem:

$$
\beta \triangleq \frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{8r + \gamma}{\sigma^2}} > 1.
$$

(13)

Proposition 3 (Sales Contract).

In a sales contract with flow price p, the buyer acquires the object once his valuation θ reaches a time independent threshold $w(p)$ given by

$$
w(p) \triangleq \frac{\beta}{\beta - 1} p.
$$

(14)

The buyer’s value in this sales contract is given by

$$
V(\theta) = \begin{cases}
\frac{1}{1+\gamma} \left(\frac{\theta}{w(p)} \right)^{\beta} (w(p) - p), & \text{if } \theta \leq w(p); \\
\frac{1}{1+\gamma} (w(p) - p), & \text{if } \theta \geq w(p).
\end{cases}
$$

We can now illustrate the payoff consequences due to the private information regarding the arrival time by comparing the value functions of the buyer across these two informational environments. The blue line depicts the value function for the buyer in the setting with observable arrival time. The value is zero for all values below the threshold θ^o and then a linear function of the initial value. Notably, the value function has a kink at the threshold level θ^o. The red curve depicts the value function when the sales contract is offered at the above terms as a stationary contract. As shown in Proposition 3 the buyer reacts to this contract by reporting his arrival only once his value exceeds

$$
w(\rho) = w(\theta^o) = \frac{\beta}{\beta - 1} \theta^o > \theta^o.
$$

Now, the value function is smooth everywhere, and coincides with blue curve whenever the initial value weakly exceeds the critical type $w(\rho)$. Importantly, for all values θ_0 below $w(\rho)$, the red curve is above the blue curve, which depicts the option value as expressed
by (16). Notably, the value is strictly positive for all initial values which expresses the fact that the option value guarantees every value θ_0 an information rent, quite distinct from the environment with observable arrival. Hence all buyers with low valuations would deviate by not reporting their arrival immediately, and the optimal contract with observable arrivals can not be implemented with unobservable arrivals.

4.3 Optimal Sales Contract under Unobservable Arrival

Thus, the optimal sales contract under observable arrival fails to remain incentive compatible in an environment with unobservable arrival. Still, we could ask what is the best sales contract, thus the best sales price p in the environment with unobservable arrival. Towards this end, we denote by $\tau_{w(p)}$ the (random) time at which the buyer purchases the good:

$$\tau_{w(p)} \triangleq \inf\{t: \theta_t \geq w(p)\}.$$

As $w(p) > p$, the buyer only purchases the good once his valuation is sufficiently above the price p charged for the object. Thus, a buyer who starts with an initial value of θ_0 below the threshold $w(p)$ expects to wait some random time until he hits any given threshold $w(p)$. With the geometric Brownian motion, we can explicitly compute the expected discounted time for a buyer with initial value θ_0 to hit any arbitrary valuation threshold x.

![Figure 1: This figure displays the value of the buyer as a function of her initial valuation in a sales contract with flow price $p = 1$ when she has to participate immediately (blue) and when she can delay her arrival (red) when $\beta = 1.7$.](image)
Lemma 2 (Expected Discounted Time).

The expected discounted time $\tau_x = \inf\{t: \theta_t \geq x\}$ until a buyer’s valuation exceed a threshold x conditional on the initial valuation θ_0 is given by

$$E\left[e^{-(r+\gamma)\tau_x} \mid \theta_0\right] = \min\left\{\left(\frac{\theta_0}{x}\right)^{\beta}, 1\right\}.$$ \hspace{1cm} (15)

Thus if the initial value θ_0 exceeds the threshold x, then the expected discounted time is simply 1, in other words there is no waiting at all. By contrast, if the initial value θ_0 is below the threshold x, then the expected discounted time is smaller when the gap between the initial value θ_0 and target threshold x is larger. The magnitude of the discounting is again determined entirely by the constant β which summarizes the primitives of the dynamic environment, namely r, γ and σ^2, as defined earlier in (13).

Intuitively, the buyer has an option value of waiting and learning more about his valuation of the good and only purchases once the forgone utility of not purchasing the good is sufficiently high. This is in sharp contrast to the dynamic mechanism design approach where the arrival time of the buyer is observable. When the arrival time is observable the seller can commit herself to not sell to the buyer in the future if the buyer does not purchase the good immediately. Thus, the buyer can not delay his purchasing decision and buys the good immediately if his valuation exceeds the price p. The information rent that the buyer gains from his ability to delay his purchasing decision is his “option value”:

$$E\left[e^{-(r+\gamma)\tau_{w(p)}} (w(p) - p)\right] - \max\{(w(p) - p), 0\}.$$ \hspace{1cm} (16)

From a dynamic mechanism design perspective the option value given in (16) corresponds to an additional information rent the buyer receives due to his ability to delay entering a contractual relation with the seller. As the option value is always positive, the buyer is, for any fixed mechanism, unambiguously better off if he can delay his purchasing decision.

In contrast the effect of the buyer’s ability to delay the purchase on the seller’s revenue is ambiguous in a sales contract. When the buyer delays his purchase the revenue of the seller decreases. But to the extent, that some types of the buyer who would not have bought the object upon arrival will do now later on, and after a sufficiently large positive shock on their valuation, there are now additional revenues accruing to the seller.

Using the characterization of the purchase behavior of the buyer in Proposition 3 and standard stochastic calculus arguments, we can completely describe the seller’s average revenue for a given sales contract.
Proposition 4 (Revenue of Sales Contract).

The flow revenue per time in a sales contract with flow price p is given by

$$R_{sales}(p) = \frac{p}{r} \int_0^\infty \min \left\{ \left(\frac{\beta - 1}{\beta} \frac{\theta}{p} \right)^\beta, 1 \right\} f(\theta) d\theta.$$ \hspace{1cm} (17)

Equation (17) reduces the problem of finding an optimal sales contract to a simple single dimensional maximization problem over the price. It is worth noting that the revenue up to a linear scaling depends on r, γ, σ only through β which implies that the optimal sales price is only a function of β and the distribution of initial valuations F.

The expression inside the integral of (17) represent the expected quantity to be sold to a buyer with initial value θ. In contrast to a standard revenue function under unit demand, the realized quantities are not merely 0 or 1. Rather, the seller offers a positive quantity to all buyers, namely

$$\min \left\{ \left(\frac{\beta - 1}{\beta} \frac{\theta}{p} \right)^\beta, 1 \right\}.$$ \hspace{1cm} (18)

This expression reflects the expected discounted time the object is consumed by those buyers who have an initial value below the optimal purchase threshold $w(p) = \frac{\beta}{\beta - 1}p$ derived in Proposition 3. The complete expression (18) then follow from Lemma 2 as the expected discounted probability of a sale to a buyer with initial value θ. Thus, an increase in the sales price p uniform lowers the probability of a sale for every value θ. The problem for the seller with unobservable arrivals is therefore how to respond to slower and more selective sales.

Perhaps surprisingly then, using a sequence of relaxation arguments we prove in Section 5, that the optimal mechanism in the space of all incentive compatible mechanisms when the buyer’s arrival to the mechanism is unobservable remains a sales contract. Thus, (17) can be used to identify the optimal mechanism. But importantly, as the current analysis suggests, there is going to be a large gap between the optimal flow price p and the optimal threshold $w(p)$ with $p < w(p)$.

5 The Optimal Progressive Mechanism

The discussion in the previous section illustrates that the first order approach will in general fail once the buyer can misreport his arrival time. To solve this problem we will employ the following strategy: First, we will identify particularly tractable necessary conditions for the truthful reporting of arrivals, by considering a specific class of deviations in the arrival time
dimension. We then find the optimal mechanisms for the relaxed problem where we impose only these necessary conditions using a novel result on optimization theory we develop. Finally, we will verify that in this mechanism it is indeed optimal to report the arrival time truthfully.

5.1 Truthful Reporting of Arrivals

In the first step we find a necessary condition such that the buyer wants to report his arrival immediately. Observe that if it were optimal for the buyer to reveal his presence to the mechanism immediately, then the value from revealing his presence at any stopping time \(\hat{\alpha} \) must be smaller than revealing his presence at time zero. As the buyer can condition the time at which he reports his arrival to the mechanism on his past valuations, the following constraint must hold for all stopping times \(\hat{\alpha} \) which may depend on the buyers valuation path \((\theta_t)_{t}\):

\[
V(\theta_0) \geq \sup_{\hat{\alpha}} \mathbb{E} \left[e^{-(r+\gamma)\hat{\alpha}} V(\theta_{\hat{\alpha}}) \mid \theta_0 \right]. \tag{IC-A}
\]

We first show that the buyer’s value function \(V \) in any incentive compatible mechanism must be continuously differentiable and convex.

Proposition 5 (Convexity of Value Function).

The value function in any incentive compatible mechanism is continuously differentiable and convex.

The discussion in Subsection 4.2 illustrated that the indirect utility need not to be continuously differentiable in the optimal mechanism if the buyers arrival time is observable. Intuitively, the constraint that the buyer must find it optimally to report his arrival immediately, (IC-A) implies that there cannot be kinks in the value function as this would imply a first order gain for the buyer from the information he would get by waiting to report his arrival. As the cost of waiting due to discounting are second order this implies that a mechanism with a kinked indirect utility can not be incentive compatible. Thus, Proposition (5) strengthens Proposition (2) by guaranteeing differentiability of the value function.

In the next step, we will relax the problem by restricting the buyer to a small class of deviations in reporting his arrival. The class of deviations we are going to consider is to have

7This is a version of the revelation principle as the seller can replicate every outcome where the buyer does not report his arrival immediately in a contract where the buyer reveals his arrival immediately, but never gets the object before he would have revealed his arrival in the original contract.
the buyer report his arrival the first time his valuation crosses a time independent cut-off \(x > \theta_0 \):

\[
\tau_x = \inf \{ t \geq 0 : \theta_t \geq x \}.
\]

Note, that the optimal deviation of the buyer will not (necessarily) be of this form for every direct mechanism. By restricting to deviations of this form we hope that in the optimal mechanism the optimal deviation will be of this form and the restriction is non-binding.

5.2 Information Rents Associated with Unobservable Arrival

We established in Lemma 2 that the payoff from deviating to \(\tau_x \) when reporting the arrival time, while maintaining to report values truthfully, is given by:

\[
\mathbb{E} \left[e^{-(r+\gamma)\tau_x} V(v_{\tau_x}) \mid \theta_0 \right] = V(x) \left(\frac{\theta_0}{x} \right)^\beta
\]

where \(\beta > 1 \) was defined in (13). The term

\[
\left(\frac{\theta_0}{x} \right)^\beta
\]

captures the discount factor caused by the time the buyer has to wait to reach a value of \(x \) before participating in the mechanism. When the buyer then participates in the mechanism he receives the indirect utility \(V(x) \) of a buyer whose initial value equals \(x \). Now, in any mechanism where (IC-A) is satisfied the buyer does not want to deviate to the strategy \(\tau_x \) we must have

\[
V(\theta_0) \geq V(x) \left(\frac{\theta_0}{x} \right)^\beta \iff V(x)x^{-\beta} \leq V(\theta_0)\theta_0^{-\beta}.
\]

As (19) holds for all \(\theta_0 \) and \(x > \theta_0 \), we have that the buyer does not want to deviate to any reporting strategy \((\tau_x)_{x>\theta_0} \) if and only if \(V(x)x^{-\beta} \) is decreasing. Taking derivatives yields that this is the case whenever

\[
V'(x) \leq \beta \frac{V(x)}{x}.
\]

By the earlier revenue equivalence result, see Proposition 1, the derivative of the value function \(V(\theta) \) is equal to the aggregate quantity \(q(\theta) \). We therefore have the following proposition that derives a necessary condition on the aggregate quantity \(q \) for it to be optimal for the buyer to report his arrival truthfully.

\[
0 \geq V'(x)x^{-\beta} - \beta x^{-\beta-1}V(x) \Rightarrow V'(x) \leq \beta \frac{V(x)}{x}.
\]
Proposition 6 (Upper Bound on Discounted Quantities).

The aggregate quantity is bounded from above by

\[q(\theta_0) = V'(\theta_0) \leq \beta \frac{V(\theta_0)}{\theta_0} \] \tag{21}

in any mechanism where it is optimal to report arrivals truthfully, i.e. that satisfies (IC-A).

Intuitively, (21) bounds the discounted quantity a buyer of initial type \(\theta_0 \) can receive. Note, that (21) is always satisfied if the value function of all initial values \(\theta_0 \) of the buyer from participating in the mechanism is sufficiently high. Intuitively, due to discounting the buyer does not want to delay reporting his arrival when the value from participating is high. As we can always increase the value to all types of the buyer, by possibly offering a subsidy to the lowest type, we can reformulate (21) as a lower bound on the value \(V(0) \) of the lowest type \(\theta_0 = 0 \).

Proposition 7 (Lower Bound on Information Rent).

In any mechanism which satisfies (IC-A) we have that

\[V(0) \geq \sup_{\theta \in \Theta} \left(\frac{\theta q(\theta)}{\beta} - \int_0^\theta q(z)dz \right). \]

The above result establishes a lower bound on the cost of providing the buyer with incentives to report his arrival time truthfully. This lower bound depends only on the allocation \(q \). Intuitively, the seller may need to pay subsidies independent of the buyer’s type to provide incentives for the buyer to report his arrival time truthfully if the quantity \(q \) is too convex and the option value of waiting is thus too high.\(^9\) The subsidy would correspond to a payment made to the buyer upon arrival and independent of his reported value \(\theta_0 \). Such a scheme makes delaying the arrival costly to the buyer due to discounting and it is potentially very costly as it requires the seller to pay the buyer just for “showing up”. We will show that in the optimal mechanism this issue will not be relevant as the optimal mechanism does not reward the buyer merely for arriving.\(^10\)

\(^9\)An immediate corollary from this formula is that it is infinitely costly to implement a policy which leads to a value function \(V \) that admits a convex kink and thus has an infinite derivative \(V' = q \) at some point as argued in Proposition 5.

\(^10\)Such subsidy schemes were discussed in Gershkov et al. (2015, 2018) in a context where the buyer’s value does not evolve over time. In Gershkov et al. (2015) such subsidies are sometimes necessary in order to incentivize the buyer to report his arrival time truthfully.
As a consequence of Proposition 7 we get an upper bound on the revenue in any incentive compatible mechanism.

Corollary 1 (Revenue Bound).

An upper bound on the revenue in any incentive compatible mechanism is given by

\[
\int_0^{\theta} q(z)J(z)dF(z) - \max_{\theta \in [0,\theta]} \left(\frac{\theta q(\theta)}{\beta} - \int_0^{\theta} q(z)dz\right). \tag{22}
\]

The upper bound on revenue in (22) is obtained by considering only a small class of deviations. In particular, the buyer is only allowed to misreport his arrival via simple threshold strategies, where he enters the mechanism once his valuation is sufficiently high. Economically,

\[
V(0) = \max_{\theta \in [0,\theta]} \left(\frac{\theta q(\theta)}{\beta} - \int_0^{\theta} q(z)dz\right)
\]

is a lower bound on the information rent the buyer must receive to ensure that he reports his arrival truthfully in a mechanism which implements the allocation \(q \). As discussed before, this information rent is payed to the buyer in the form of a transfer that is independent of his consumption and thus even those types receive who never consume the object. We note that due to the maximum this information rent can not be rewritten as an expectation and thus is fundamentally different from the classical information rent term. As a consequence, pointwise maximization can not be used to find the optimal contract even in the relaxed problem. We next develop the mathematical tools to deal with this type of non-standard maximization problem.

5.3 The Optimal Progressive Mechanism

We now characterize the optimal mechanism. To do so we proceed by first finding the allocation \(q \) that maximizes the upper bound on revenue (22). Second, we are going to construct an incentive compatible mechanism that implements this allocation. As (22) is an upper bound on the revenue, in any incentive compatible mechanism, we then found a revenue maximizing mechanism.

A mathematical challenge is that, due to the information rent from arrivals, the relaxed problem (22) is non-local and non-linear in the quantity \(q \). A change of the quantity for one type can affect the surplus extracted from all higher and lower types. Consider the relaxed problem of finding the revenue maximizing mechanism such that the buyer never wants to
misreport his arrival using a cut-off stopping time. By Proposition 6, the indirect utility \(V \) of the buyer in this mechanism solves the optimization problem:

\[
\max_V \int_{\theta}^{\bar{\theta}} V'(z) J(z) f(z) \, dz - V(0),
\]

subject to

\[
V'(\theta) \in \left[0, \frac{1}{r + \gamma} \right] \text{ for all } \theta, \tag{24}
\]

\(V \) is convex, \(V' \) \(\beta \) for all \(\theta \in (0, 1) \).

\[
V'(\theta) \leq \beta \frac{V(\theta)}{\theta} \text{ for all } \theta \in (0, 1). \tag{26}
\]

We will further relax the problem by initially ignoring the convexity constraint (25) and later verifying that the relaxed solution indeed satisfies the convexity condition. By the revenue equivalence result, Proposition 1, we can restate the allocation problem in terms the indirect utility of the buyer. The novel and important restriction is given by the inequality (26) that states that the information rent of the buyer cannot grow too fast. The inequality thus present an upper bound on the allocated quantity \(q(\theta) = V'(\theta) \).

We could approach the above problem as an optimal control problem where \(V(\theta) \) is the state variable and \(V'(\theta) \) is the control variable. The presence of the derivative constraint (26) which combines, in an inequality, the state and the control variable renders this problem intractable. In particular, to the best of our knowledge the current problem is not directly covered by any standard result in optimization theory.\(^{12}\) In particular, while a non-standard version of the Pontryagin maximum principle with state dependent control constraints could in principle be used to deal with the derivative constraint (26),\(^{13}\) this approach would lead to a description of the optimal policy in terms of a multi-dimensional ordinary differential equation (ODE). There seems to be no obvious way to infer the optimal policy from the resulting ODE, and we could make this approach work only in special cases.

To avoid these issues, we adopt a proof technique that has proved useful in stochastic optimal control as established by Peng (1992), see also Karoui et al. (1997) for a wide

\(^{11}\)At this point we skip a complete formulation of the orginal problem as we later directly verify that the solution to the relaxed problem is implementable. We could state the original problem as a calculus of variation problem where the condition (26) would have to be replaced by \(V''(\theta) \frac{\theta^2}{2} \leq (r + \gamma) V(\theta) \) under a suitable generalized notion of the second derivative.

\(^{12}\)This constraint is fundamentally different from the Border constraint appearing in multi-buyer mechanism design problems which is a (weak) majorization constraint.

\(^{13}\)See for example Evans (1983) for a detailed introduction into the Pontryagin maximum principle.
range of applications of this technique. A comparison principle asserts a specific property of a differential inequality if an auxiliary inequality has a certain property. An important comparison result is Gronwall’s inequality that allows us to bound a function that is known to satisfy a certain differential inequality by the solution of the corresponding differential equation. Following standard arguments in the literature on comparison principles, we use Gronwall’s inequality to establish the following lemma.

Lemma 3 (Comparison Principle).

Let \(g, h : [0, \overline{\theta}] \to \mathbb{R} \) be absolutely continuous and satisfy \(g'(\theta) \leq \Phi(g(\theta), \theta) \) and \(h'(\theta) \geq \Phi(h(\theta), \theta) \) where \(\Phi : \mathbb{R} \times [0, \overline{\theta}] \to \mathbb{R} \) is uniformly Lipschitz continuous in the first variable. If \(g(0) \leq h(0) \) we have that \(g(\theta) \leq h(\theta) \) for all \(\theta \in [0, \overline{\theta}] \).

We can then use the comparison principle to apply it the differential inequality constraint (26) and give a characterization of the optimal solution.

Proposition 8 (An Optimization Problem with State Dependent Control Constraints).

Let \(\Phi : \mathbb{R} \times [0, \overline{\theta}] \to \mathbb{R}_+ \) be increasing and uniformly Lipschitz continuous in the first variable as well as continuous in the second on every interval \([a, \overline{\theta}]\) for \(a > 0 \). Let \(J : [0, \overline{\theta}] \to \mathbb{R} \) be continuous, satisfy \(J(0) = -1 \) and \(z \mapsto \min\{J(z), 0\} \) be non-decreasing. Consider the maximization problem:

\[
\max_w \int_0^{\overline{\theta}} J(\theta) w'(\theta) d\theta - w(0).
\] (27)

over all differentiable functions \(w : [0, \overline{\theta}] \to \mathbb{R} \) that satisfy \(w'(\theta) \leq \Phi(w(\theta), \theta) \). There exists an optimal policy \(w \) to this problem such that for all \(\theta \in (0, \overline{\theta}] \)

\[
w'(\theta) = \Phi(w(\theta), \theta).
\]

To apply Proposition 8 to the optimization problem given by (23), (24) and (26) we define

\[
J(\theta) \triangleq f(\theta) J(\theta),
\]

and

\[
\Psi(v, \theta) \triangleq \min \left\{ \beta \frac{v}{\theta}, \frac{1}{r + \gamma} \right\}.
\]

An immediate observation is that \(J(0) = -1 \). Applying Proposition 8 to the optimization

\[\text{footnote}^{14}: \text{This means that for every } a > 0, \text{ there exists a constant } L_a < \infty \text{ such that } |\Phi(v, \theta) - \Phi(w, \theta)| \leq L_a |v - w| \text{ for all } \theta \in [a, \overline{\theta}].\]
problem (23)-(26) by ex-post verifying that the solution is non-negative and convex, and hence feasible, yields the following characterization of the relaxed optimal mechanism.

Theorem 1 (Optimal Control).

There exists a $\theta^* \in [0, \bar{\theta}]$ such that a solution to the control problem (23)-(26) is given

$$V(\theta) = \begin{cases} \left(\frac{\theta^*/\beta}{r+\gamma} \right)^{\beta} \frac{\theta^*/\beta}{r+\gamma}, & \text{for } \theta \leq \theta^*, \\ \frac{\theta^*/\beta + \theta-\theta^*}{r+\gamma}, & \text{for } \theta^* \leq \theta. \end{cases} \quad (28)$$

We arrived at the optimization problem (23)-(26) by relaxing the original mechanism design problem in two ways. First, we allowed the buyer to misreport his arrival only using cut-off stopping times. Second, we ignored the monotonicity constraint associated with truthful reporting of the initial value.

The indirect utility given in (28) is implemented by a sales contract with a flow price of

$$p^* = \frac{\beta - 1}{\beta} \theta^*.$$

As the revenue with relaxed incentive constraints is an upper bound on the revenue in the original problem and this upper bound is achieved by some sales contract it follows that a sales contract is a revenue maximizing mechanism.

Theorem 2 (Sales Contracts are Revenue Maximizing).

The flow price p^* and the associated sales contract is a revenue maximizing mechanism with unobservable arrivals.

We observe that the optimal allocation gives the object to the buyer forever. Hence, any irreversibility constraint on the allocation is non-binding and thus the problem of irreversibly selling the buyer an object yields the same solution.\(^{15}\) Thus, our optimal mechanism is also revenue maximizing in a problem where the buyer consumes the object once and immediately, the buyer is privately informed about his arrival, and the buyer’s valuation evolves over time.

5.4 An Example: The Uniform Prior

We illustrate the results now for the case of the uniform prior, and assume that $\theta_0 \sim U[0, 1]$ throughout this section. With the uniform prior we can then directly compute from the

\(^{15}\text{For the case of observable arrivals this problem was analyzed in Board (2007) and Kruse and Strack (2015).}\)
revenue formula (17) the value threshold θ^* and the associated flow price p^* in the optimal progressive participation mechanism:

$$\theta^* = \frac{1}{2} \frac{1 + \beta}{\beta},$$

$$p^* = \frac{1}{2} \frac{\beta^2 - 1}{\beta^2}.$$

In the dynamic mechanism, the value threshold and the associated price are determined exclusively by the virtual value at $t = 0$, and thus under the uniform distribution, the corresponding threshold and flow price are given by

$$\theta^o = p^o = \frac{1}{2}.$$

Thus the price in the progressive mechanism is below the dynamic mechanism whereas the threshold of the progressive mechanism is above the dynamic mechanism:

$$p^* < p^o = \theta^o < \theta^*.$$

In Figure 2 we display the behavior of the thresholds and the prices as a function of $\beta \in (1, \infty)$. As β increases, the discounting rate and the renewal rate are increasing, and the buyer becomes less forward-looking. As β decreases towards one, the gap between the value threshold θ^* and the price p^* increases. As the option value becomes more significant, the buyer chooses to wait until his value has reached a higher threshold, thus he will wait longer to enter into a relationship with the seller. Faced with a more hesitant buyer, the seller decreases the flow price as β decreases. Yet, the decrease in the flow price only partially offsets the option value, and the buyer still waits longer to enter into the relationship with the seller. In contrast, the threshold value, and the price, in the dynamic mechanism, θ^o and p^o, respectively remain invariant with respect to the patience of the buyer β. An important aspect of the progressive mechanism is that the buyer enters the relationship gradually rather than once and for all, as in the dynamic mechanism. In Figure 3a we plot the probability that an initial type drawn from the uniform distribution consumes the object as a function of the time since his arrival. In the dynamic mechanism, this probability is constant over time. As all values θ_0 above $\theta^o = 1/2$ buy the object, and all those with initial values $\theta_0 < \theta^o = 1/2$ never buy the object, the probability of consumption does not change over time, and is always equal to 1/2. By contrast, in the progressive mechanism, the probability of
participation is progressing over time, and thus the probability of consumption is increasing over time. The geometric Brownian motion displays sufficient variance, so that eventually every buyer purchases the product.

We now zoom in on the purchase behavior of the initial types θ_0. Figure 3b, quantity, illustrates the discounted expected consumption quantity $q(\theta_0)$ as a function of the initial valuation θ_0 for various values of β. We find again that in the dynamic mechanism there is a sharp distinction in the consumption quantities between the initial values below and above the threshold of $\theta^* = 1/2$. By contrast in the progressive mechanism, the consumption quantity is continuous and monotone increasing in the initial value θ_0. As the buyer becomes more patient, and hence as β decreases, the slope of the consumption quantity flattens outs and the threshold θ^* upon which consumption occurs immediately is increasing.
The differing thresholds and allocation probabilities give us some indication regarding the contrasts in welfare properties between progressive and dynamic mechanism. As the price in the progressive mechanism is uniformly lower, this allows us to immediately conclude that the consumer surplus is larger in the progressive mechanism than in the corresponding dynamic mechanism. Conversely, as the seller could have offered the progressive mechanism in the dynamic setting, but did not, it follows that the revenue of the seller is uniformly lower in the progressive mechanism. Thus, the option of the buyer to postpone his allocation is indeed valuable and increases the consumer surplus significantly. This leaves open the question as to how the social surplus is impacted by these different participation constraints. With the uniform prior, we can further compute that the social welfare is uniformly larger in the progressive than in the dynamic mechanism.

Significantly, the social welfare comparison does not extend to all prior distributions. In particular, if there is only a small amount of private information, so that the static virtual utility is non-negative for all initial values, then the dynamic mechanism will not distort the allocation, and thus support the first best social welfare. For example, in the class of uniform distribution on the interval \([a, 1]\), the static virtual utility:

\[
\theta - \frac{1 - F(\theta)}{f(\theta)}
\]

is positive for all \(\theta \in [a, 1]\) if the lower bound \(a\) in the support of the distribution is sufficiently large, or \(a > 1/2\). In these circumstances, the seller in the dynamic environment will cease to discriminate against any initial value, and rather sell the object forever to all initial types \(\theta \in [a, 1]\). By contrast, in the progressive mechanism, the option value remains an attractive opportunity for all buyers, and thus the seller will never sell to all buyers irrespective of their initial value \(\theta \in [a, 1]\). In consequence, the revenue maximizing progressive mechanism leads to some initial inefficiency, and thus will not attain the first best.

6 Beyond Geometric Brownian Motion and Unit Demand

We considered a model where the valuation of a buyer with unit demand evolves according to a geometric Brownian motion and the seller has a constant marginal cost of production. A natural question is how our model, methods, and results extend to more general environments. Our approach worked in the following steps. We decomposed the progressive mechanism problem into an intertemporal participation (entry) problem and an intertemporal
incentive problem. The novel arguments then centered on the treatment of the participation problem. By contrast, we could rely on earlier insights for the optimal allocation conditional upon entering into the contract.

We approached the participation problem in three steps. First, we considered only a small subset of deviations in reporting the arrival time, namely reporting the arrival once the value exceeds some threshold. Second, we proved that this constraint can be rewritten as a condition bounding the derivative of the value function. Third, we solved the relaxed optimization problem where we only imposed this constraint and showed that its solution is implementable.

As we will argue next the first two steps generalize to other stochastic processes and allocation problems. In the case of the geometric Brownian motion the condition we obtained in the second step was

$$ V'(x) \leq \beta \frac{V(x)}{x}, $$

for all $x \geq 0$, see (21). A similar condition can be obtained in general allocation problems and for arbitrary diffusion processes. To see this define

$$ \phi(x, y) = \mathbb{E} \left[e^{-r\tau_y} | \theta_0 = x \right] $$

where $\tau_y = \inf\{t : \theta_t \geq y\}$. Note that $\phi(x, z) = \phi(x, y)\phi(y, z)$ for all $x \leq y \leq z$ and that ϕ is differentiable. This implies that there exists a function $h : \mathbb{R} \to \mathbb{R}_+$ such that

$$ \phi(x, y) = e^{-\int_x^y h(s)ds}. $$

Consequently, the constraint that the buyer does not want to deviate by reporting his arrival once his value is sufficiently high simplifies in a way completely analogous to Proposition 6, i.e. for all $x < y$:

$$ V(x) \leq \phi(x, y)V(y) = e^{-\int_x^y h(s)ds}V(y) $$

$$ \Leftrightarrow e^{-\int_0^x h(s)ds}V(x) \leq e^{-\int_0^y h(s)ds}V(y) $$

$$ \Leftrightarrow V'(x) \leq h(x)V(x). $$

In the special case of the geometric Brownian motion $h(x) = \beta/x$. The above condition thus remains necessary for arbitrary processes.

What changes for more general stochastic processes is the expected revenue as a function
of the value of the buyer given in (22) and (23). The particularly simple multiplicative structure of the virtual value is a consequence of the geometric Brownian motion. For other processes such as the arithmetic Brownian motion, or the mean reverting Ornstein-Uhlenbeck process, the corresponding virtual value is obtained in Bergemann and Strack, 2015. Using these virtual values and replacing β/x by $h(x)$, one obtains a relaxed program that is analogous to (23)-(26). Notably, this provides a reduction of our original dynamic problem into a completely static problem without any incentive constraints.

For general processes or models with convex production cost, the resulting problem will not admit the same simple multiplicatively separable structure. As a consequence, we could not use our Proposition 8 to solve for the optimal mechanism, but would have to rely on other methods such as the Pontryagin Principle. Yet, whenever the solution to this relaxed general program is implementable it will constitute an optimal mechanism. Whether the restriction we imposed on the buyer that he can only misreport his arrival using threshold strategies is sufficient to guarantee implementability depends on the details of the environment. A necessary and sufficient condition for a general martingale with diffusion coefficient σ is that the interim value of the agent V for all x satisfies16

$$V''(x)\frac{\sigma^2(x)}{2} \leq (r + \gamma)V(x)$$

(31)

i.e. that the agent’s value is not too convex. For the case of the geometric Brownian motion without production cost this was the case as the solution to the relaxed program (23)-(26) is a posted price mechanism in which the interim value is linear for participating buyers. More generally, this is the case whenever the derivative of the value function of the buyer, which (roughly) corresponds to the expected discounted quantity promised to the buyer does not react to strongly to the buyer’s initial type. We conjecture that this is the case whenever the generalized virtual value of the buyer (derived in Bergemann and Strack, 2015) does not change too fast as a function of his initial type. Beyond the unit demand model, this might be guaranteed by production costs that are sufficiently convex.

By contrast, if the virtual value were to react too strongly to the type, then the stopping constraint (31) may be binding at several disconnected intervals. This would imply that there is not a single and always lower interval at which the agent would wait, but rather a collection of disconnected intervals. In each one of these intervals, the agent would wait until his value leaves the interval, either below or above. In consequence, the optimal strategy for

16The second derivative here is to be understood in a viscosity sense.
the agent could not be expressed anymore in terms of a simple threshold strategy as in the current setting.

7 Conclusion

We considered a dynamic mechanism problem where each buyer is described by two dimensions of private information, his willingness to pay (which may change over time) and his arrival time. We considered a stationary environment – in which the buyers arrive and depart at random – and a stationary contract. In this arguably more realistic setting for revenue management, the seller has to guarantee both interim incentive as well as interim participation constraints. As the buyer has the valuable option of delaying his participation, the mechanism has to offer incentives to enter into the relationship.

One challenge in our environment is that the first-order approach and other standard methods fail as global incentive constraints bind in the optimal contract. We were able to solve this multi-dimensional incentive problem by rephrasing the participation decision of the buyer as a stopping problem, and then solve a new optimal control problem. More precisely, we decomposed the progressive mechanism problem into an intertemporal participation (entry) problem and an intertemporal incentive problem. Given the separability between these two problems, our approach can be possibly extended to allocation problems beyond the unit demand problem considered here. There are (at least) three natural directions to extend the analysis. First, the stochastic evolution of the value was governed by the geometric Brownian motion, and clearly other stochastic process could be considered. Second, the allocation problem could be extended to nonlinear allocation problems rather than the unit demand problem considered here. Third, a natural next step is to extend the techniques developed here to multi-buyer environments, say competing bidders for a scarce resource. The final generalization will pose new challenges as we will have to investigate whether the solution of the individual stopping problem can be decentralized or distributed in a consistent manner across the buyers. This is a problem similar to the reduced form auction as posed by Border (1991) but now in dynamic rather than static allocation problem.
References

A Appendix

Lemma 4. We have that

\[V_\alpha(\theta) = \mathbb{E}\left[\int_0^\infty e^{-(r+\gamma)(t-\alpha_i)} \left\{ \theta_i^tx_t^i - p_t^i \right\} dt \mid \alpha_i = \alpha, \theta_\alpha = \theta \right] . \]

Proof. By the law of iterated expectations and the fact that the departure time of the buyer \(\alpha_{i+1} \) is independent of the arrival time \(\alpha_i \) and the valuation process \(\theta^i \) and hence of \(x_t^i, p_t^i \) and \(u_t^i = \theta^tx_t^i - p_t^i \)

\[
\mathbb{E}\left[\int_0^T e^{-r(t-\alpha_i)} u_t^i dt \right] = \mathbb{E}\left[\int_0^\infty 1{T\geq t} e^{-r(t-\alpha_i)} u_t^i dt \right] = \mathbb{E}\left[\int_0^\infty \mathbb{E}\left[1{\alpha_{i+1}\geq t} \right] e^{-r(t-\alpha_i)} u_t^i dt \right] \\
= \mathbb{E}\left[\int_0^\infty \mathbb{P}[T \geq t] e^{-r(t-\alpha_i)} u_t^i dt \right] = \mathbb{E}\left[\int_0^\infty e^{-\gamma(t-\alpha_i)} e^{-r(t-\alpha_i)} u_t^i dt \right].
\]

\(\square \)

Proof of Lemma 1. As each buyer’s allocation is only a function of his own reports and the willingness to pay is independent between different buyers the law of iterated expectations implies that the revenue can be rewritten as

\[
\mathbb{E}\left[\sum_{i=0}^{\infty} \int_{\alpha_i}^{\alpha_{i+1}} e^{-r^t} p_t^i dt \right] = \mathbb{E}\left[\sum_{i=0}^{\infty} e^{-r\alpha_i} \mathbb{E}\left[\int_{\alpha_i}^{\alpha_{i+1}} e^{-r(t-\alpha_i)} p_t^i dt \right] \right].
\]

As buyer are ex-ante identical they are necessarily treated the same in the optimal mechanism which yields that the revenue equals

\[
\max_{(x,p)\in\mathcal{M}} \mathbb{E}\left[\sum_{i=0}^{\infty} \int_{\alpha_i}^{\alpha_{i+1}} e^{-r^t} p_t^i dt \right] = \max_{(x,p)\in\mathcal{M}} \mathbb{E}\left[\int_{\alpha_i}^{\alpha_{i+1}} e^{-r(t-\alpha_i)} p_t^i dt \right] \mathbb{E}\left[\sum_{i=0}^{\infty} e^{-r\alpha_i} \right].
\]

Note, that \(\alpha_{i+1} - \alpha_i = \tau_i - \alpha_i \) are independently and identically exponentially distributed with rate \(\gamma \) it follows from this that

\[
\mathbb{E}\left[\sum_{i=0}^{\infty} e^{-r\alpha_i} \right] = \mathbb{E}\left[\sum_{i=0}^{\infty} e^{-r\alpha_0} \prod_{j=0}^{i-1} e^{-r(\alpha_{j+1} - \alpha_j)} \right] = \mathbb{E}\left[e^{-r\alpha_0} \sum_{i=0}^{\infty} \prod_{j=0}^{i-1} \mathbb{E}\left[e^{-r(\alpha_{j+1} - \alpha_j)} \right] \right] \\
= \sum_{i=0}^{\infty} \mathbb{E}\left[e^{-r(\alpha_{j+1} - \alpha_j)} \right]^i = \sum_{i=0}^{\infty} \left(\frac{\gamma}{r + \gamma} \right)^i = \frac{r + \gamma}{r}.
\]
This yields the result. \qed

Proof of Proposition 1. The first part of the Proposition follows by applying the envelope theorem. By the hypothesis of the Proposition, it is optimal for the buyer to report his initial value θ_0 truthfully. Therefore, we can compute the derivative of the buyer’s indirect utility by treating the allocation (x, p) as independent of the buyer’s report:

$$V' (\theta_0) = \frac{\partial}{\partial \theta_0} \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma) t} \{ x_t, \theta_t - p_t \} \, dt \mid \theta_0 \right] = \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma) t} x_t \left(\frac{\partial}{\partial \theta_0} \theta_t \right) \, dt \mid \theta_0 \right]$$

(32)

As $(\theta_t)_{t\geq0}$ is a geometric Brownian motion, the evolution of θ_t can be explicitly represented as:

$$\theta_t = \theta_0 \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right).$$

(33)

We can then insert the derivative $\partial \theta_t / \partial \theta_0$ and obtain:

$$V' (\theta_0) = \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma) t} x_t \left(\frac{\partial}{\partial \theta_0} \theta_t \right) \, dt \mid \theta_0 \right]$$

$$= \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma) t} x_t \left\{ \theta_0 \cdot \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right) \right\} \, dt \mid \theta_0 \right]$$

$$= \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma) t} x_t \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right) \, dt \mid \theta_0 \right]$$

$$= q(\theta_0),$$

where the last line follows from the definition of the aggregate quantity $q(\theta_0)$ given earlier in (5).

Similarly, we can express the revenue of the seller in terms of the dynamic virtual value as given earlier in (6):

$$J_t(\theta_t) \triangleq \theta_t - \frac{1 - F(\theta_0)}{f(\theta_0)} \frac{d \theta_t}{d \theta_0},$$

and we observe that using (33) we can express the derivative equivalently as

$$\frac{d \theta_t}{d \theta_0} = \frac{\theta_t}{\theta_0}.$$
The expected revenue of the seller can therefore be expressed as:

\[
\mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} p_t dt \right] = \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \left(\theta_t - \frac{1 - F(\theta_0)}{f(\theta_0)} \right) dt \right]
\]

\[
= \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \theta_t \left(1 - \frac{1 - F(\theta_0)}{f(\theta_0)} \right) dt \right]
\]

\[
= \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \theta_t \left(\theta_0 - \frac{1 - F(\theta_0)}{f(\theta_0)} \right) dt \right] - V(0)
\]

\[
= \int \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \theta_t \left(\theta_0 - \frac{1 - F(\theta_0)}{f(\theta_0)} \right) dt | \theta_0 \right] f(\theta_0)d\theta_0 - V(0)
\]

\[
= \left(\theta_0 - \frac{1 - F(\theta_0)}{f(\theta_0)} \right) \int \mathbb{E} \left[\int_0^\infty e^{-r^t} x_t \theta_t dt | \theta_0 \right] f(\theta_0)d\theta_0 - V(0)
\]

Plugging in the explicit representation of \(\theta_t \) given by (33) yields that the expected revenue satisfies

\[
\mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} p_t dt \right] = \int \bar{J}(\theta_0) \mathbb{E} \left[\int_0^\infty e^{-(r+\gamma)t} x_t \exp \left(-\frac{\sigma^2}{2} t + \sigma W_t \right) dt | \theta_0 \right] f(\theta_0)d\theta_0 - V(0) .
\]

\[\square\]

Proof of Proposition 2. The result follows as \(q \) plays the same role as the quantity in a static allocation problem.

\[\square\]

Proof of Proposition 3. The result follows from Dixit and Pindyck (1994), Section 5.2.

\[\square\]

Proof of Lemma 2. For \(\theta_0 \geq x \), the buyer stops immediately and thus the statement is true. For \(\theta_0 < x \) we have that

\[
\mathbb{E} \left[e^{-(r+\gamma)\tau_x} | \theta_0 \right] = \mathbb{E} \left[e^{-(r+\gamma)\tau_x} \left(\frac{\theta_{\tau_x}}{\theta_x} \right)^\beta | \theta_0 \right] = \mathbb{E} \left[e^{-(r+\gamma)\tau_x} \left(\theta_0 e^{-\frac{\sigma^2}{2} \tau_x + \sigma W_{\tau_x}} \right)^\beta | \theta_0 \right]
\]

\[
= \mathbb{E} \left[e^{-\left[(r+\gamma) - \frac{\sigma^2}{2} \right] \tau_x + \beta \sigma W_{\tau_x}} \left(\frac{\theta_0}{x} \right)^\beta | \theta_0 \right]
\]

\[
= \mathbb{E} \left[e^{-\left[(r+\gamma) + \frac{\sigma^2}{2} \right] \tau_x - \frac{\sigma^2}{2} \beta} \tau_x + \beta \sigma W_{\tau_x} \left(\frac{\theta_0}{x} \right)^\beta | \theta_0 \right] .
\]

As \((r + \gamma) + \frac{\sigma^2}{2} \beta - \frac{\sigma^2 \beta^2}{2} \sigma W_t \) is a uniformly integrable martingale it
follows from Doob’s optional sampling theorem that

$$E\left[e^{-r\tau_\theta} \mid \theta_0 \right] = E\left[\left(\frac{\theta_0}{x}\right)^\beta \mid \theta_0 \right].$$

Proof of Proposition 4. By Proposition 3 the buyer acquires the object once his valuation exceeds $\theta^* = \frac{\beta}{\beta-1}p$. By Lemma 1 the expected revenue the seller generates from a single buyer with initial valuation θ_0 is given by

$$\frac{r + \gamma}{r} E\left[\int_{\tau_{\theta^*}}^{\infty} e^{-(r+\gamma)t} p \mid \theta_0 \right] = \frac{1}{r} E\left[e^{-(r+\gamma)\tau_{\theta^*}} p \mid \theta_0 \right] = \frac{p}{r} E\left[e^{-(r+\gamma)\tau_{\theta^*}} \mid \theta_0 \right]$$

Consequently, the expected discounted revenue from buyer with random initial valuation distributed according to F is given by

$$\frac{p}{r} \int_0^\infty \min\left\{\left(\frac{\theta_0}{\theta^*}\right)^\beta, 1\right\} f(\theta) d\theta.$$

Proof of Proposition 5. It follows from the envelope theorem that the value function is continuous and convex in any mechanism where truthfully reporting the initial valuation is incentive compatible. Furthermore, the envelope theorem implies that V is absolutely continuous, thus any non-differentiability must take the form of a convex kink. As it is never optimal to stop in a convex kink it follows that V is differentiable.

Proof of Proposition 7. By Proposition 1 and 6 we have that IC-A implies that for all θ

$$\frac{\theta q(\theta)}{\beta} \leq V(\theta) = V(0) + \int_0^\theta q(z)dz$$

$$\Leftrightarrow \frac{\theta q(\theta)}{\beta} - \int_0^\theta q(z)dz \leq V(0).$$

Taking the supremum over θ yields the results.

Proof of Lemma 3. Define $\Delta \equiv g - h$. Suppose, that there exists a point θ' such that $\Delta(\theta') > 0$. As $\Delta(0) \leq 0$ and by the absolute continuity of Δ there exists a point θ'' such
that $\Delta(\theta'') = 0$ and as $\Delta' \geq 0$ we have that $\Delta(\theta) \geq 0$ for all $\theta \in [\theta'', \theta']$. This implies that there exists a constant $L > 0$ such that for all $\theta \in [\theta'', \theta']$

$$
\Delta'(\theta) = g'(\theta) - h'(\theta) \leq \Phi(g(\theta), \theta) - \Phi(h(\theta), \theta) \leq |\Phi(g(\theta), \theta) - \Phi(h(\theta), \theta)|
\leq L |g(\theta) - h(\theta)| = L |\Delta(\theta)| = L \Delta(\theta).
$$

By Gronwall’s inequality we thus have that $\Delta(\theta') \leq \Delta(\theta'') e^{L(\theta' - \theta'')} = 0$ which contradicts the assumption that $\Delta(\theta') > 0$.

\[\square\]

Lemma 5 (Generalized Comparison Principle).

Let $g, h : [0, \bar{\theta}] \to \mathbb{R}$ be absolutely continuous and satisfy $g'(\theta) \leq \Phi(g(\theta), \theta)$ and $h'(\theta) \geq \Phi(h(\theta), \theta)$ where $\Phi : \mathbb{R} \times [0, \bar{\theta}] \to \mathbb{R}$ is uniformly Lipschitz continuous in the first variable. If $g(\hat{\theta}) = h(\hat{\theta})$ we have that $g(\theta) \leq h(\theta)$ for all $\theta \in [\hat{\theta}, \bar{\theta}]$ and $g(\theta) \geq h(\theta)$ for all $\theta \in [0, \hat{\theta}]$.

Proof. The first part of the result follows by considering the functions $\bar{g}(s) = g(\hat{\theta} + s), \bar{h}(s) = \bar{g}(\hat{\theta} + s)$ and applying Lemma 3. The second part follows by considering the functions $\bar{g}(s) = -g(\hat{\theta} - s), \bar{h}(s) = -h(\hat{\theta} - s)$ for $s \in [0, \hat{\theta}]$ and applying Lemma 3 which implies that for all $s \in [0, \hat{\theta}]$

$$
\bar{g}(s) \leq \bar{h}(s) \Leftrightarrow -g(\hat{\theta} - s) \leq -h(\hat{\theta} - s) \Leftrightarrow g(\hat{\theta} - s) \geq h(\hat{\theta} - s).
$$

\[\square\]

Lemma 6.

Suppose that $\mathcal{J} : [0, \bar{\theta}]$ is a non-decreasing function with $\mathcal{J}(\bar{\theta}) \leq 0$, and $g, h : [0, \bar{\theta}] \to \mathbb{R}$ are absolutely continuous with $g \geq h$ then

$$
\int_{0}^{\bar{\theta}} \mathcal{J}(\theta)g'(\theta)dt + \mathcal{J}(0)g(0) \leq \int_{0}^{\bar{\theta}} \mathcal{J}(\theta)h'(\theta)d\theta + \mathcal{J}(0)h(0).
$$
Proof. The result follows from partial integration, the assumption that $J(\theta) \leq 0$

$$
\int_0^\theta J(\theta)g'(\theta)dt + J(0)g(0) = [J(\theta)g(\theta)]_{\theta=0}^{\theta=\theta} - \int_0^\theta g(\theta)dJ(\theta) + J(0)g(0)
$$

$$
= J(\theta)g(\theta) - J(0)g(0) - \int_0^\theta g(\theta)dJ(\theta) + J(0)g(0)
$$

$$
\leq J(\theta)h(\theta) - J(0)h(0) - \int_0^\theta h(\theta)dJ(\theta) + J(0)h(0)
$$

$$
= [J(\theta)h(\theta)]_{\theta=0}^{\theta=\theta} - \int_0^\theta h(\theta)dJ(\theta) + J(0)h(0)
$$

$$
= \int_0^\theta J(\theta)h'(\theta)d\theta + J(0)h(0).
$$

Proof of Proposition 8. Let g be an arbitrary feasible policy in the optimization problem (27). Define $\theta^* = \inf\{\theta: J(\theta) \geq 0}\}$. As J is continuous $J(\theta^*) = 0$. Let $h : [0, \theta^*] \to \mathbb{R}$ be the solution to

$$
h'(\theta) = \Phi(h(\theta), \theta),
$$

$$
h(\theta^*) = g(\theta^*).
$$

The proof proceeds in two step: first we establish that h leads to a higher value of the integral (27) above θ^* and in the second step we establish the analogous result below θ^*.

Step 1: As $g'(\theta) \leq \Psi(g(\theta), \theta)$ it follows from Lemma 5 that $g(\theta) \leq h(\theta)$ for $\theta \in [\theta^*, \theta]$ and $g(\theta) \geq h(\theta)$ for $\theta \in [a, \theta^*]$ for every $a > 0$. As g and h are continuous it follows that $g(0) \geq h(0)$. The monotonicity of Φ in the first variable implies that for $\theta \geq \theta^*$

$$
g'(\theta) \leq \Phi(g(\theta), \theta) \leq \Phi(h(\theta), \theta) = h'(\theta).
$$

As $J(\theta^*) = 0$ and $\theta \mapsto \min\{J(\theta), 0\}$ is non-decreasing we have that $J(\theta) \geq 0$ for $\theta \geq \theta^*$ we have that

$$
\int_0^{\theta^*} J(\theta)g'(\theta)d\theta \leq \int_0^{\theta^*} J(\theta)h'(\theta)d\theta.
$$

(34)

Step 2: Note, that by Lemma 5 $g(\theta) \geq h(\theta)$ for $\theta \leq \theta^*$. Furthermore, by definition of θ^* we have that $J(\theta) = \min\{J(\theta), 0\}$ for $\theta \leq \theta^*$. As $\theta \mapsto \min\{J(\theta), 0\}$ is non-decreasing $J(\theta)$
is non-decreasing for \(\theta \leq \theta^* \). Lemma 6 implies that

\[
\int_0^{\theta^*} J'(\theta)g'(\theta)d\theta + J(0)g(0) \leq \int_0^{\theta^*} J'(\theta)h'(\theta)d\theta + J(0)h(0) .
\]

Combining the inequalities (34) and (35) with the assumption that \(J(0) = -1 \) yields that

\[
\int_0^{\theta^*} J'(\theta)g'(\theta)d\theta - g(0) \leq \int_0^{\theta^*} J'(\theta)h'(\theta)d\theta - h(0) .
\]

As \(\Phi \) is continuous in both variables it follows that \(h \) is continuously differentiable and thus feasible and an optimal policy.

Proof of Proposition 1. Define \(J(\theta) = J(\theta)f(\theta) \) and recall that \(\theta^o = \min \{ \theta: J(\theta) = 0 \} \).

We first note, that \(J(\theta) \) is negative for \(\theta < \theta^o \) and \(J(0) = -1 \). Consider the problem of solving

\[
\max_{V} \int_0^{\theta^*} V'(z)J(z)dz - V(0) .
\]

subject to \(V'(\theta) \leq [\Psi(v,\theta) \) for all \(\theta \in [\theta_k, \theta^*] \),

where \(\Psi(v,\theta) = \min \left\{ \frac{v}{\theta^o}, \frac{1}{r+\gamma} \right\} \). By Proposition 3 we have that there exists an optimal policy that solves

\[
V'(\theta) = \Psi(v,\theta) \] \ (36)

We have that all solutions to the ODE (36) are of the form

\[
V(\theta) = \begin{cases}
\left(\frac{\theta}{\theta^o} \right)^{\beta} V(\theta^*) & \text{for } \theta \leq \theta^*
\end{cases}
\]

where \(\frac{1}{r+\gamma} = V'(\theta^*) = \frac{\beta}{\theta^o} V(\theta^*) \). Thus, plugging in \(V(\theta^*) \) yields that

\[
V(\theta) = \begin{cases}
\left(\frac{\theta}{\theta^o} \right)^{\beta} \frac{\theta^o/\beta}{r+\gamma} & \text{for } \theta \leq \theta^*
\end{cases}
\]

We note that \(V \geq 0 \) and \(V' \) is increasing. It is thus feasible in the control problem (23)-(26)
and we hence have found an optimal policy.

Consider the sales contract where the object is sold at a flow price of \(p = \frac{\beta-1}{\beta} \theta^* \). Proposition 3 yields that the buyer’s value is given by

\[
V(\theta) = \begin{cases}
\frac{1}{r+\gamma} \left(\frac{\theta}{\theta^*} \right)^{\frac{\beta}{\beta-1}} \theta^* & \text{for } \theta \leq \theta^* \\
\frac{1}{r+\gamma} \left(\theta - \frac{\beta-1}{\beta} \theta^* \right) & \text{for } \theta \geq \theta^*
\end{cases}
\]

and thus satisfies (28) which establishes the result. \(\square\)