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Supplementary Appendix to Dynamic Random Utility

Mira Frick, Ryota Iijima, and Tomasz Strzalecki

F Proof of Theorem 0

F.1 Preliminaries

In this section we prove Theorem 0, which extends the characterizations of REU representations in
Gul and Pesendorfer (2006) and Ahn and Sarver (2013) to allow for an arbitrary separable metric
space X of outcomes. Refer to section 2.1 of the main text for all relevant notation and terminology.
Throughout, we fix some y∗ ∈ X and let R̃X = {0} × RXr{y∗} denote the set of utility functions u in
RX that are normalized by u(y∗) = 0.

We first define the static analog of S-based representations introduced in Appendix A:

Definition 12. An S-based REU representation of ρ is a tuple (S, µ, {Us, τs}s∈S) such that

(i). S is a finite state space and µ is a probability measure on S such that supp(µ) = S

(ii). for each s ∈ S, the utility Us ∈ R̃X is nonconstant and Us 6≈ Us′ for s 6= s′

(iii). for each s ∈ S, the tie-breaking rule τs is a proper finitely-additive probability measure on R̃X
endowed with the Borel σ-algebra

(iv). for all p ∈ ∆(X) and A ∈ A,

ρ(p;A) =
∑
s∈S

µ(s)τs(p,A),

where τs(p,A) := τs({u ∈ R̃X : p ∈M(M(A,Us), u)}).

Analogous arguments as for the DREU part of Proposition A.1 yield the equivalence of S-based
REU representations and static REU representations.

Proposition F.1. Let ρ be a stochastic choice rule on A. Then ρ admits an REU representation if
and only if it admits an S-based REU representation.

Proof. Analogous to Proposition A.1 (i). �

Thus, Theorem 0 is equivalent to the following result, which we prove throughout the rest of this
section.

Theorem F.1. The stochastic choice rule ρ on A satisfies Axiom 0 if and only if ρ admits an S-based
REU representation (S, µ, {Us, τs}s∈S).

Note that because X may be infinite, continuity of each Us in the representation is not directly
implied by linearity. However, the following additional axiom ensures this. As in Section 3.3, let A∗
denote the collection of menus without ties, i.e., the set of all A ∈ A such that for any p ∈ A and any
sequences pn →m p and Bn →m Ar {p}, we have limn→∞ ρ(pn;Bn ∪ {pn}) = ρ(p;A).
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Axiom F.1 (Continuity). ρ : A∗ → ∆(∆(X)) is continuous.

Here A is endowed with the Hausdorff topology induced by the Prokhorov metric π on ∆(X), and
A∗ with the relative topology. We have the following proposition.

Proposition F.2. Suppose ρ admits an S-based REU representation (S, µ, {Us, τs}s∈S). Then ρ
satisfies Axiom F.1 if and only if each utility Us is continuous.

Proof. See Section F.5. �

Additional notation: For any Y ⊆ X, let A(Y ) := {A ∈ A : ∀p ∈ A, supp(p) ⊆ Y } ⊆ A denote
the space of all menus consisting only of lotteries with support in Y . Note that for each A ∈ A, there
is a finite Y such that A ∈ A(Y ). We denote by ρY the restriction of ρ to A(Y ), which can be seen as
a map from A(Y ) to ∆(∆(Y )). If y∗ ∈ Y , we write R̃Y := {0} × RY r{y∗}.

For any A ∈ A(Y ) and p ∈ ∆(X), let NY (A, p) := {u ∈ R̃Y : p ∈ M(A, u)} and let
N+
Y (A, p) := {u ∈ R̃Y : {p} = M(A, u)}. Note that NY ({p}, p) = N+

Y ({p}, p) = R̃Y and that
NY (A, p) = N+

Y (A, p) = ∅ if p /∈ A. Let N (Y ) := {NY (A, p) : A ∈ A(Y ) and p ∈ ∆(X)},
N+(Y ) := {N+

Y (A, p) : A ∈ A(Y ) and p ∈ ∆(X)}.
We will consider both the Borel σ-algebra on R̃Y and its subalgebra F(Y ) that is generated by

N (Y )∪N+(Y ). A finitely-additive probability measure νY on either of these algebras is called proper
if νY (NY (A, p)) = νY (N+

Y (A, p)) for any A ∈ A(Y ) and p ∈ ∆(X). Whenever Y = X, we omit Y
from the description of NY (A, p), N+

Y (A, p), N (Y ), N+(Y ), and F(Y ).

F.2 Proof of Theorem F.1: Sufficiency

F.2.1 Outline

The proof proceeds as follows:

(i). In section F.2.2, we use conditions (i)–(iv) of Axiom 0 and Theorem 2 in Gul and Pesendorfer
(2006) to construct, for each finite Y ⊆ X, a proper finitely-additive probability measure νY

on F(Y ) representing ρY , in the sense that ρY (p;A) = νY (NY (A, p)) for all A, p. Given the
fact that each ρY is derived from the same ρ, it is easy to check that the family {F(Y ), νY } is
Kolmogorov consistent. We can then find a proper finitely-additive probability measure ν on F
extending all the νY (and hence representing ρ).

(ii). The support of ν is defined by

supp(ν) :=
(⋃
{V ∈ F : V is open and ν(V ) = 0}

)c
.

In section F.2.3, we use part (v) of Axiom 0 to show that supp ν is finite (up to positive
affine transformation of utilities) and contains at least one non-constant utility function. While
Axiom 0 (v) is similar to the finiteness axiom in Ahn and Sarver (2013), this step requires more
work in our setting. A key technical challenge is that unlike in Ahn and Sarver, it is not clear
in our infinite outcome space setting how to normalize utilities to ensure that N(A, p)-sets are
compact. Compact sets C have the useful property (used repeatedly by Ahn and Sarver) that
if C ∩ supp ν = ∅, then ν(C) = 0. Lemma F.5 exploits the geometry of N(A, p)-sets to show
that this property continues to hold for N(A, p)-sets in our setting, even though they are not
compact.
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(iii). In section F.2.4, we proceed in a similar way to the proof of Theorem S3 in Ahn and Sarver
(2013)(again using Lemma F.5 to circumvent technical difficulties). Letting S := {s1, . . . , sL}
denote the equivalence classes of nonconstant utilities in supp ν, we find separating neighbor-
hoods Bs ∈ F of each s such that ν(Bs) > 0. We then define µ(s) = ν(Bs) and τs(V ) = ν(V ∩Bs)

ν(Bs)
and show that this yields an S-based REU representation of ρ.

F.2.2 Construction of ν

In this section, we construct a proper finitely-additive probability measure ν on F that represents ρ,
i.e., such that for all A ∈ A and p ∈ A, we have

ρ(p;A) = ν(N(A, p)) = ν(N+(A, p))).

First consider any finite Y ⊆ X with y∗ ∈ Y . By Axiom 0 (i)–(iv) (Regularity, Linearity, Ex-
tremeness, and Mixture Continuity), Theorem 2 in Gul and Pesendorfer (2006) ensures that there is
a proper finitely-additive probability measure νY on FY such that

ρY (p;A) = νY (NY (A, p)) = νY (N+
Y (A, p))

for all A ∈ A(Y ) and p ∈ A.

Claim 4. For any finite Y ′ ⊇ Y 3 y∗, (νY
′
,F(Y ′)) and (νY ,F(Y )) are Kolmogorov consistent, i.e.,

for any E ∈ F(Y ), we have
νY
′
(E × RY

′rY ) = νY (E). (24)

Proof. To see this, note first that the LHS of (24) is well-defined, since E×RY ′rY ∈ FY ′ by Lemma F.4
(iv). Note next that by Lemma F.4 (iii), E is of the form

⋃n
i=1NY (Ai, pi)∩N+

Y (Bi, qi) for some finite
n and Ai, Bi ∈ A(Y ). Let E′ be obtained from E by replacing each NY (Ai, pi) with N+

Y (Ai, pi). By
Lemma F.4 (ii), E′ =

⋃n
i=1N

+
Y (Ci, ri) for some family {Ci} ⊆ A(Y ). Moreover, since both νY and νY

′

are proper, we have that νY (E) = νY (E′) and νY
′
(E ×RY ′rY ) = νY

′
(E′ ×RY ′rY ). Hence, it suffices

to prove that νY
′
(E′ ×RY ′rY ) = νY (E′). For this, it is enough to show that for any collection of sets

N+
1 , . . . , N

+
n ∈ N+(Y ) := {N+(A, p) : A ∈ A(Y )}, we have νY (

⋃n
i=1N

+
i ) = νY

′
(
⋃n
i=1N

+
i × RY ′rY ).

We prove this by induction. For the base case, note that for any N+(A, p) ∈ N+(Y ), we have

νY
′
(N+(A, p))× RY

′rY ) = ρY
′
(p,A) := ρ(p;A) =: ρY (p;A) = νY (N+(A, p)).

Suppose next that the claim is true whenever m < n. Then

νY (
m+1⋃
i=1

N+
i ) = νY (

m⋃
i=1

N+
i ) + νY (N+

m+1)− νY (
m⋃
i=1

(N+
i ∩N

+
m+1)) =

νY
′
(
m⋃
i=1

N+
i × RY

′rY ) + νY
′
(N+

m+1 × RY
′rY )− νY ′(

m⋃
i=1

(N+
i ∩N

+
m+1)× RY

′rY ) =

νY
′
(
m+1⋃
i=1

N+
i × RY

′rY ),

where the second equality follows from the inductive hypothesis and the fact that N+
i ∩N

+
m+1 ∈ N+(Y )

by Lemma F.4 (ii). �
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Now define ν on F by setting ν(E) := νY (projR̃Y E) for any finite Y 3 y∗ such that E = projR̃Y E×
RXrY and projR̃Y E ∈ F

Y . By Lemma F.4 (iv) such a Y exists. Moreover, given Kolmogorov
consistency of the family {νY }Y⊆X , this is well-defined. Finally, it is immediate that ν is a proper
finitely-additive probability measure and that ν represents ρ.

F.2.3 Finiteness of supp ν

The support of a finitely-additive probability measure ν is defined by

supp(ν) :=
(⋃
{V ∈ F : V is open and ν(V ) = 0}

)c
.

The next lemma invokes Axiom 0 (v) (Finiteness) to show that the support of ν constructed in the
previous section contains finitely many equivalence classes of utility functions and contains at least
one nonconstant function. We use 0 to denote the unique constant utility function in R̃X .

Lemma F.1. Let K be as in the statement of the Finiteness Axiom and let Pref(∆(X)) denote the
set of all preferences over ∆(X). Then

#{%∈ Pref(∆(X)) :% is represented by some u ∈ supp(ν) r {0}} = L,

where 1 ≤ L ≤ K.

Proof. We first show that L ≤ K. If not, then we can find utilities {u1, ..., uK+1} ⊆ supp(ν) such
that each ui is non-constant over X and ui 6≈ uj for all i 6= j. By Lemma E.2, we can find a menu
A = {pi : i = 1, . . . ,K + 1} ∈ A such that ui ∈ N+(A, pi) for each i. Take any B ⊆ A with |B| ≤ K.
Then pi 6∈ B for some i.

Fix any sequences pin →m pi and Bn →m B. By definition, this means that there exists r ∈ ∆(X)
and αn → 0 such that pin = αnr + (1 − α)pi for all n, and that for each q ∈ B there exists Bq ∈ A
and βn(q) → 0 such that Bn =

⋃
q∈B(βn(q)Bq + (1 − βn(q)){q}) for all n. Now, B and each Bq

are finite, and ui is linear with ui · pi > ui · q for all q ∈ B. Hence, there is N such that for all
n ≥ N , ui · pin > u · qn for all qn ∈ Bn. Thus, ui ∈ N+({pin} ∪ Bn, pin) for all n ≥ N . But since
ui ∈ supp(ν) and N+({pin} ∪ Bn, pin) is an open set in F , the definition of supp(ν) then implies that
ν(N+({pin} ∪ Bn, pin)) > 0 for all n ≥ N . But then ρ(pin; {pin} ∪ Bn) = ν(N+({pin} ∪ Bn, pin)) > 0 for
all n ≥ N , contradicting Finiteness.

Next we show that L ≥ 1. Indeed, if L = 0, then for any A ∈ A with |A| ≥ 2 and for any p ∈ A, we
have (N(p,A) r {0}) ∩ supp ν = ∅. By Lemma F.5 below, this implies that ν(N+(p,A)) = 0 for any
p ∈ A. But since ν represents ρ, ρ(p;A) = ν(N+(p,A)) for any p ∈ A, so we have

∑
p∈A ρ(p;A) = 0,

which is a contradiction. �

F.2.4 Constructing the REU Representation

Let %1, . . . ,%L denote all the preferences represented by some non-constant utility in supp(ν), where
by Lemma F.1 we know that L is finite and L ≥ 1. For each i = 1, . . . , L, pick some ui ∈ supp ν
representing %i. For any u ∈ R̃X , let [u] := {u′ ∈ R̃X : u′ ≈ u}. By Lemma E.2, we can find
A := {p1, . . . , pL} ∈ A such that ui ∈ N+(A, pi) for all i = 1, . . . , L. Let Bui := N+(A, pi) for all i.
By construction, [ui] ⊆ Bui and Bui ∩ Buj = ∅ for j 6= i. Moreover, by the definition of supp(ν), we
have ν(Bui) > 0 for each i, since Bui ∈ F is open and ui ∈ Bui ∩ supp(ν) 6= ∅.

Let S := {u1, . . . , uL} and define the function µ : S → [0, 1] by

µ(s) = ν(Bs) for each s ∈ S.
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We claim that µ defines a full-support probability measure on S. For this it remains to show that∑
s µ(s) = 1. Since

∑
s µ(s) =

∑
s ν(Bs) = ν(

⋃
s∈S Bs), it suffices to prove the following claim:

Lemma F.2. ν(
⋃
s∈S Bs) = 1.

Proof. It suffices to prove that ν(R̃X r
⋃
s∈S Bs) = 0. Note that R̃X =

⋃L
i=1N(A, pi), since A =

{pi, . . . , pL}. Thus,

R̃X r
⋃
s∈S

Bs ⊆
L⋃
i=1

(N(A, pi) rN+(A, pi)).

By finite additivity of ν, this implies that

ν(R̃X r
⋃
s∈S

Bs) ≤
L∑
i=1

ν(N(A, pi) rN+(A, pi)) = 0,

where the last inequality follows from properness of ν. �

Next, we define a set function τs : F → R+ for each s ∈ S by setting

τs(V ) :=
ν(V ∩Bs)
ν(Bs)

for each V ∈ F . Since ν(Bs) > 0 for all s ∈ S, this is well-defined. Moreover, since ν is a proper
finitely-additive probability measure on F , so is τs.

Note that for all A ∈ A and p ∈ ∆(X), {u ∈ R̃X : p ∈ M(M(A, s), u)} = N(M(A, s), p) ∈ F ,
so τs({u ∈ R̃X : p ∈ M(M(A, s), u)}) is well-defined. The next lemma will allow us to complete the
representation:

Lemma F.3. For each s ∈ S, A ∈ A, and p ∈ A,

ν(N(A, p)) =
∑
s∈S

µ(s)τs({u ∈ R̃X : p ∈M(M(A, s), u)}).

Proof. We first show that for each s ∈ S, supp τsr {0} = [s]. To see that [s] ⊆ supp τsr {0}, consider
any u ∈ [s] and any open V ∈ F such that u ∈ V . By Lemma F.4 (iii), V is a finite union of finite
intersections of sets in N ∪N+. Hence, since each element of N ∪N+ is closed under positive affine
transformations so is V . Thus, u ∈ V implies s ∈ V . But then V ∩ Bs ∈ F is open and contains s,
and hence ν(V ∩Bs) > 0 since s ∈ supp ν. This proves u ∈ supp τs r {0}.

To see that supp τsr {0} ⊆ [s], consider any u 6= 0 such that u /∈ [s]. It suffices to show that there
exists an open V ∈ F such that u ∈ V and τs(V ) = 0. If u ≈ s′ for some s′ ∈ S r {s}, then V = Bs′

is as required since Bs′ ∩ Bs = ∅ and u ∈ Bs′ . If there is no s′ ∈ S r {s} such that u ≈ s′, then
u /∈ supp ν. But then there exists an open V ∈ F such that u ∈ V and ν(V ) = 0, so also τs(V ) = 0.

By Lemma F.6 below, this implies that τs(N(A, p)) = τs(N(M(A, s), p)) for any A ∈ A and p ∈ A.
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This implies that for any A ∈ A and p ∈ A∑
s∈S

µ(s)τs({u ∈ R̃X : p ∈M(M(A, s), u)}) =
∑
s∈S

µ(s)τs(N(M(A, s), p))

=
∑
s∈S

µ(s)τs(N(A, p))

=
∑
s∈S

ν(N(A, p) ∩Bs)

= ν(N(A, p) ∩
⋃
s∈S

Bs)

= ν(N(A, p),

where the last equality follows from Lemma F.2. �

For any s ∈ S = {u1, . . . , uL}, we write Us := s. We claim that (S, µ, {Us, τs}s∈S) is an S-based
REU representation of ρ. Indeed, by construction, Us is non-constant for all s, Us 6≈ Us′ for any
distinct s, s′ ∈ S, and µ is a full-support probability measure on S. Moreover, each τs is a proper
finitely-additive probability measure on R̃X endowed with the algebra F . By standard arguments (cf.
Rao and Rao (2012)), we can extend τs to a proper finitely-additive probability measure on the Borel
σ-algebra on R̃X . Finally, Lemma F.3 and the fact that ν represents ρ implies that for all A ∈ A and
p ∈ A, we have ρ(p;A) =

∑
s∈S µ(s)τs(p,A), as required.

F.3 Proof of Theorem F.1: Necessity

Suppose that ρ admits an S-based REU representation (S, µ, {Us, τs}s∈S). We show that ρ satisfies
Axiom 0. Observe first that for any finite Y ⊆ X with y∗ ∈ Y , (S, µ, {Us �Y , τs �Y }s∈S) constitutes an
S-based REU representation of ρY , where Us �Y denotes the restriction of Us to Y and τs �Y is given
by τs �Y (B) = τs(B × RXrY ) for any Borel set B on RY . Thus, by Theorem S3 in Ahn and Sarver
(2013), ρY satisfies Regularity, Linearity, Extremeness, and Mixture Continuity.

To show that ρ satisfies Regularity, consider any p ∈ A ⊆ A′. Pick a finite Y ⊆ X with y∗ ∈ Y such
that A,A′ ∈ A(Y ). By definition, ρ(p;A) = ρY (p;A) and ρ(p;A′) = ρY (p;A′). Hence, by Regularity
for ρY , we have ρ(p;A) ≥ ρ(p;A′), as required. Similarly, we can show that ρ satisfies Linearity,
Extremeness, and Mixture Continuity by using the fact that for each finite Y , each ρY satisfies these
axioms.

Finally, to show that ρ satisfies Finiteness, let K := |S| and consider any A ∈ A. For each s ∈ S,
pick any qs ∈M(A,Us), and define B := {qs : s ∈ S}. Note that |B| ≤ K. If B = A, then Finiteness
is trivially satisfied. If B ( A, then pick any p ∈ A r B. We can pick a large enough finite Y ⊆ X
such that each Us is non-constant on Y and Us �Y 6≈ Us′ �Y for any distinct s, s′ ∈ S. Let r ∈ ∆(Y )
be given by r(y) := 1

|Y | for each y ∈ Y . For each s ∈ Y , pick any ys ∈ argmaxy∈Y Us(y). Note that

Us(ys) > Us(r). Define Bn := n−1
n B + 1

n{ys : s ∈ S} and pn := n−1
n p + 1

nr. Then Bn →m B and
pn →m p. Moreover, for all large enough n, we have Us(

n−1
n qs + 1

nys) > Us(p
n) for each s ∈ S. Thus,

ρ(pn; {pn} ∪Bn) = 0, proving Finiteness.
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F.4 Additional Lemmas for Section F

F.4.1 Properties of N(A, p) Sets

Lemma F.4. Fix any X ′ ⊆ X with y∗ ∈ X. For any collection S, we let U(S) denote the set of all
finite unions of elements of S.

(i). If E ∈ N (X ′) (resp. E ∈ N+(X ′)), then Ec ∈ U(N+(X ′)) (resp. Ec ∈ U(N (X ′)).

(ii). If E1, E2 ∈ N (X ′) (resp. E1, E2 ∈ N+(X ′)), then E1 ∩E2 ∈ N (X ′) (resp. E1 ∩E2 ∈ N+(X ′)).

(iii). F(X ′) is the set of all E such that E =
⋃
`∈LM`∩N` for some finite index set L and M` ∈ N (X ′),

N` ∈ N+(X ′) for each ` ∈ L.

(iv). F(X ′) is the set of all E for which there exists a finite Y ⊆ X ′ with y∗ ∈ Y and EY ∈ F(Y )
such that E = EY × RXrY .

Proof.

(i): If E = N(A, p) ∈ N (X ′), then Ec =
⋃
q∈Ar{p}N

+({p, q}, q) ∈ U(N+(X ′)) if p ∈ A and Ec =

R̃X′ ∈ U(N+(X ′)) if p /∈ A. Similarly, if E = N+(A, p) ∈ N+(X ′), then Ec =
⋃
q∈Ar{p}N({p, q}, q) ∈

U(N (X ′)) if p ∈ A and Ec = R̃X′ ∈ U(N (X ′)) if p /∈ A.
(ii): If N(A1, p1), N(A2, p2) ∈ N (X ′), then N(A1, p1) ∩N(A2, p2) = N(1

2A1 + 1
2A2,

1
2p1 + 1

2p2) ∈
N (X ′). The same argument goes through replacing all instances of N with N+.

(iii): By standard results, F(X ′) can be described as follows: Let F0(X ′) denote the set of all
elements ofN (X ′)∪N+(X ′) and their complements. Let F1(X ′) denote the set of all finite intersections
of elements of F0(X ′). Then F(X ′) is the set of all finite unions of elements of F1(X ′). By part (i),
F0(X) = U(N(X)) ∪ U(N(X ′)) is the collection of all finite unions of elements of N (X ′) and of all
finite unions of elements of N+(X ′). By part (ii), F1(X ′) = F0(X) ∪ I(X ′), where I(X ′) consists
of all finite unions of the form

⋃
`∈LM` ∩ N`, where M` ∈ N (X ′) and N` ∈ N+(X ′) for each ` ∈ L.

Note that R̃X′ ∈ N (X ′) ∩ N+(X ′), since R̃X′ = NX′({p}, p) = N+
X′({p}, p) for any p ∈ ∆(X ′). Thus,

F0(X) = U(N(X)) ∪ U(N(X ′)) ⊆ I(X). Hence, F1(X) = I(X) = F(X).
(iv): Note first that for anyNX′(A, p) ∈ N (X ′) (resp.N+

X′(A, p) ∈ N
+(X ′)) and any finite Y ⊆ X ′

with y∗ ∈ Y and A ∈ A(Y ), we have NX′(A, p) = NY (A, p) × RX′rY (resp. N+
X′(A, p) = N+

Y (A, p) ×
RX′rY ). Now fix any E ∈ F(X ′). By part (iv), we have a finite index set L and M` ∈ N (X ′),
N` ∈ N+(X ′) for each ` ∈ L such that E =

⋃
`∈LM` ∩N`. By the first sentence, we can then pick a

finite Y ⊆ X ′ with y∗ ∈ Y such that for each `, we have M` = MY
` × RX′rY and N` = NY

` × RX′rY ,
where MY

` ∈ N (Y ) and NY
` ∈ N+(Y ). Then E = EY ×RXrY , where EY :=

⋃
`∈LM

Y
` ∩NY

` ∈ F(Y ).
Conversely, if EY ∈ F(Y ), then by part (iv), EY is of the form

⋃
`∈LM

Y
` ∩NY

` ∈ F(Y ) for some finite

collection of MY
` ∈ N (Y ) and NY

` ∈ N+(Y ). Then by the first sentence, M` := MY
` ×RX

′rY ∈ N (X ′)

and N` = NY
` × RX′rY ∈ N+(X ′), so EY × RX′rY =

⋃L
`=1M` ∩N`) ∈ F(X ′) by part (iv). �

F.4.2 Properties of Proper Finitely-additive Probability Measures on F

Lemma F.5. Let ν be a proper finitely-additive probability measure on F and suppose that (N(p,A)r
{0}) ∩ supp ν = ∅ for some A ∈ A and p ∈ A, where 0 denotes the unique constant utility in R̃X .
Then ν(N+(A, p)) = ν(N(A, p)) = 0.

Proof. Since (N(A, p) r {0}) ∩ supp ν = ∅, we have

N(A, p) r {0} ⊆ (supp ν)c :=
⋃
{V ∈ F : V open and ν(V ) = 0}.
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Thus, for some possibly infinite index set I, there exists a family {Vi}i∈I , with Vi ∈ F open and
ν(Vi) = 0 for each i such that

N(A, p) r {0} ⊆
⋃
i∈I

Vi.

We now show that there is a finite subset {i1, . . . , in} ⊆ I such that

N(A, p) r {0} ⊆
n⋃
j=1

Vij .

To see this, define L(A, p) := (N(A, p) ∩ [−1, 1]X) r {0}. Note that since [−1, 1]X is compact in RX
(by Tychonoff’s theorem) and N(A, p) is closed in R̃X , C(A, p) is compact in the relative topology on
R̃X r {0}. Hence, since L(A, p) ⊆ N(A, p) r {0} is covered by

⋃
i∈I Vi and each Vi is open, it has a

finite subcover
⋃n
j=1 Vij .

We claim that N(A, p)r {0} is also covered by
⋃n
j=1 Vij . To see this, consider any u∗ ∈ N(A, p)r

{0}. We can find a finite Y ⊆ X such that y∗ ∈ Y , u∗ �Y is not constant, N(A, p) = NY (A, p)×RXrY ,
and for each j = 1, . . . , n, Vij = V Y

ij
× RXrY for some V Y

ij
∈ FY (see Lemma F.4 (iv)).

Since Y is finite, there exists α > 0 small enough such that αu∗(y) ∈ [−1, 1] for all y ∈ Y .
Define u ∈ R̃X by u �Y = αu∗ �Y and u(x) = 0 for all x ∈ X r Y . Note that u ∈ N(A, p):
Indeed, u∗ ∈ N(A, p) = NY (A, p) × RXrY , u �Y = αu∗ �Y , and NY (A, p) is closed under positive
scaling. Moreover, u is not constant, since u∗ �Y is not constant. Finally, u ∈ [−1, 1]X . This shows
u ∈ L(A, p). Since L(A, p) is covered by

⋃n
j=1 Vij , there exists j such that u ∈ Vij = V Y

ij
× RXrY .

But note that V Y
ij

is closed under positive scaling, since by Lemma F.4 (iii) it is a finite union of sets
which are closed under positive scaling. Since u �Y = αu∗ �Y , this implies u∗ ∈ Vij .

The above shows that N(A, p) r {0} is covered by
⋃n
j=1 Vij , and hence so is N+(A, p). But since

ν(Vij ) = 0 for all j = 1, . . . , n and ν is finitely additive, it follows that ν(N+(A, p)) = 0. Moreover, by
properness of ν, this implies ν(N(A, p)) = 0. �

Lemma F.6. Suppose ν is a proper finitely-additive probability measure on F and supp νr{0} = [u]
for some u ∈ R̃X . Then for any A ∈ A and p ∈ A, we have ν(N(A, p)) = ν(N(M(A, u), p)).

Proof. Fix any A ∈ A and p ∈ A. Note first that for any q ∈ A,

q /∈M(A, u)⇒ ν(N(A, q)) = 0. (25)

Indeed, if q /∈ M(A, u), then ∅ = [u] ∩ N(A, q) = (N(A, q) r {0}) ∩ supp ν. But then Lemma F.5
implies that ν(N(A, q)) = 0, as claimed.

Suppose now that p /∈ M(A, u). Then (25) implies that ν(N(A, p)) = 0. Moreover, N(B, p) := ∅
if p /∈ B, so also ν(N(M(A, u), p)) = 0, as required.

Suppose next that p ∈M(A, u). Then

N(A, p) ⊆ N(M(A, u), p) ⊆ N(A, p) ∪
⋃

q∈ArM(A,u)

N(A, q),

so that

ν(N(A, p)) ≤ ν(N(M(A, u), p)) ≤ ν(N(A, p)) +
∑

q∈ArM(A,u)

ν(N(A, q)) = ν(N(A, p)),

where the last equality follows from (25). This again shows that ν(N(A, p)) = ν(N(M(A, u), p)), as
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required. �

F.5 Proof of Proposition F.2

“Only if” direction: We prove the contrapositive. Suppose that there exists some s′ ∈ S and x ∈ X
such that limn Us′(xn) 6= Us′(x) for some sequence xn → x. Since S is finite, by taking an appropriate
subsequence of {xn}, we can assume that limn Us(xn) exists (allowing for ±∞) for every s ∈ S.

Let S+ := {s ∈ S : limn Us(xn) < Us(x)}, S− := {s ∈ S : limn Us(xn) > Us(x)}, and S0 :=
S r (S+ ∪ S−). Then there exist γ > 0 and N such that for all n ≥ N , Us(xn) + 2γ < Us(x) for all
s ∈ S+ and Us(xn) > Us(x) + 2γ for all s ∈ S−. Let p = αδx + (1 − α)δxN . By setting α sufficiently
large, we can guarantee that for all n ≥ N , Us(xn) + γ < Us(p) for all s ∈ S+ and Us(xn) > Us(p) + γ
for all s ∈ S−. Note also that Us(x) > Us(p) + 2γ(1−α) for all s ∈ S+ and Us(x) + 2γ(1−α) < Us(p)
for all s ∈ S−.

Since S is finite and each Us is non-constant, we can assume that Us(p) 6= Us(x) for all s ∈ S.
(Otherwise, we can replace p with a lottery that is obtained by mixing an appropriate lottery to p,
without violating the above construction). This implies that there exist γ′ > 0 and N ′ such that for
all s ∈ S0, either min{Us(xn), Us(x)} > Us(p) + γ′ for all n ≥ N ′ or max{Us(xn), Us(x)}+ γ′ < Us(p)
for all n ≥ N ′. Let S0− be the set of states in S0 that satisfy the former inequality, and S0+ be the
set of states in S0 that satisfy the latter inequality.

Let m := |S|. By Lemma E.2 we can find distinct lotteries {q1, ..., qm} such that Usi ∈
N+({q1, .., qm}, qi) for each si ∈ S. Define pi = (1− ε)p+ εqi for each si ∈ S, and A := {p1, ..., pm, δx}
and An := {p1, ..., pm, δxn}. By construction, if we take ε sufficiently small, then for all n ≥
max{N,N ′},

[Usi ∈ N+(An, pi) ∩N+(A, δx), ∀si ∈ S+], [Usi ∈ N+(An, δxn) ∩N+(A, pi), ∀si ∈ S−],

[Usi ∈ N+(An, δxn) ∩N+(A, δx),∀si ∈ S0−], [Usi ∈ N+(An, pi) ∩N+(A, pi), ∀si ∈ S0+].

By Lemma E.3, A,An ∈ A∗ for all n ≥ max{N,N ′}. Note that S+ ∪ S− 6= ∅ by assumption. Take
any si ∈ S+ ∪ S−. If si ∈ S+, then ρ(pi;An) = µ(si) for every n ≥ max{N,N ′} and ρ(pi;A) = 0. If
si ∈ S−, then ρ(pi;An) = 0 for every n ≥ max{N,N ′} and ρ(pi;A) = µ(si). In either case, Axiom F.1
is violated.
“If” direction: Suppose each Us is continuous. Take any sequence An → A of menus that converge
under the Hausdorff metric such that A,An ∈ A∗ for each n. Enumerate the elements in A by
A = {p1, ..., pm}, where we can assume up to relabeling that for some k ≤ m we have ρ(pi;A) > 0 for
each i = 1, ..., k and ρ(pi;A) = 0 for each i = k + 1, ...,m. For each i = 1, ..., k, define Si := {s ∈ S :
M(A,Us) = {pi}}. Note that by Lemma E.3, S = ∪iSi since A ∈ A∗.

Take any B that is a continuity set under ρ(·;A). For each i = 1, ..., k, we have either pi ∈ intB or
pi ∈ int(∆(X) rB). We can pick ε > 0 sufficiently small such that:

(i). Bε(pi) ⊆ intB if pi ∈ intB, and Bε(pi) ⊆ int(∆(X) rB) if pi ∈ int(∆(X) rB)

(ii). for any i, j = 1, ...,m with i 6= j, we have Bε(pi) ∩Bε(pj)

(iii). for any i = 1, ..., k, j = 1, ...,m with i 6= j, qi ∈ Bε(pi), and qj ∈ Bε(pj), we have Usi(qi) > Usi(qj)
for all si ∈ Si.

Here Bε(·) denotes ε-neighborhoods with respect to the Prokhorov metric π, and (iii) holds by the
assumption that each Us is continuous. Since An → A, there exists N such that for all n ≥ N ,
we have the following: (a) for each q ∈ An, there exists i = 1, ...,m such that q ∈ Bε(pi); and (b)
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for each i = 1, ...,m, there exists q ∈ An such that q ∈ Bε(pi). For such n ≥ N , we then have
M(An, Usi) ∈ Bε(pi) for each i = 1, ..., k and si ∈ Si. Thus ρ(B;An) =

∑k
i=1 µ(Si) = ρ(B;A). By the

Portmanteau theorem, this guarantees that ρ(·;An)→ ρ(·;A) under weak convergence, as claimed. �

G Proofs for Section 5

G.1 Proof of Proposition 1

The first part is immediate from the i.i.d. full-support assumption on ε. To show the second part,
suppose that v1(z1) < v1(z′1). We consider the equivalent problem of scaling v terms by α := 1

λ > 0
while fixing ε terms. That is, we write

U0(z0, A
big
1 ) = αv0(z0) + ε

(z0,A
big
1 )

0 + δE[max{αv1(z1) + εz11 , αv1(z′1) + ε
z′1
1 }]

U0(z0, A
small
1 ) = αv0(z0) + ε

(z0,Asmall
1 )

0 + δαv1(z1),

where the second line used the fact that εz11 has mean zero.
By the i.i.d. full-support assumption on ε0, the desired claim follows if we show that the difference

U0(z0, A
big
1 )− U0(z0, A

small
1 ) is decreasing in α. To show this, suppose without loss of generality that

v0(z0) = 0. Then for all α, the derivatives of the utilities satisfy

dU(z0, A
big
1 )

dα
= δ

(
ρ1(z1, A

big
1 )v1(z1) + ρ1(z′1, A

big
1 )v1(z′1)

)
,
dU(z0, A

small
1 )

dα
= δv1(z′1),

where we can suppress the dependence on histories in ρ1 since ε shocks are i.i.d. Moreover, letting

f denote the density of the ε shocks and setting κ(ε
z′1
1 ) := α(v1(z′1) − v1(z1)) + ε

z′1
1 , we have that

ρ1(z1, A
big
1 ) =

∫∞
−∞

∫∞
κ(ε

z′1
1 )
f(εz11 )dεz11 f(ε

z′1
1 )dε

z′1
1 and ρ1(z′1, A

big
1 ) = 1 − ρ1(z1, A

big
1 ). Note that both

choice probabilities are strictly positive since the ε1 shocks are i.i.d. with full support. Thus, v1(z1) <

v1(z′1) implies
dU(z0,A

big
1 )

dα <
dU(z0,Asmall

1 )
dα for all α, as required. �

G.2 Proof of Proposition 2

BEU: For BEU, we have

U0(x,Aearly
1 ) = E[max{E[u2(y)|F1],E[u2(z)|F1]}|F0]

U0(x,Alate
1 ) = E[E[max{u2(y), u2(z)}|F1]|F0].

By the conditional Jensen inequality and convexity of the max operator, U0(x,Aearly
1 ) ≤ U0(x,Alate

1 ).
Moreover, this inequality is strict at ω as long as there exist ω′, ω′′ ∈ F0(ω) with F1(ω′) = F1(ω′′)
such that u2(y)− u2(z) changes sign on {ω′, ω′′}.

i.i.d. DDC: For i.i.d. DDC, to simplify the notation we assume v0(x) = v1(x) = 0 without loss of
generality. Take a measurable function σ : R2 → [0, 1] such that

σ(εy, εz) ∈ argmaxα∈[0,1] α(v2(y) + εy) + (1− α)(v2(z) + εz)
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for all (εy, εz) ∈ R2.80 Then U0(x,Alate
1 )− ε(x,Alate

1 )
0 is equal to

δ2E[max{v2(y) + εy2, v2(z) + εz2}]
= δ2E[σ(εy2, ε

z
2)(v2(y) + εy2) + (1− σ(εy2, ε

z
2))(v2(z) + εz2)]

= δ2(α∗v2(y) + (1− α∗)v2(z)) + δ2E[σ(εy2, ε
z
2)εy2 + (1− σ(εy2, ε

z
2))εz2]

where α∗ := E[σ(εy2, ε
z
2)]. Since εy2 and εz2 have mean zero, δ2(α∗v2(y) + (1− α∗)v2(z)) in the last line

is equal to the expected value the agent would obtain from Alate
1 if in period 2 she chooses y with

probability α∗ regardless of the realization of ε2. Since such a decision rule is strictly suboptimal at
Alate

1 under the full support assumption on ε2, the term δ2E[σ(εy2, ε
z
2)εy2 + (1− σ(εy2, ε

z
2))εz2] in the last

line is strictly positive. At the same time, U0(x,Aearly
1 )− ε(x,Aearly

1 )
0 is equal to

δE[max{δv2(y) + ε
(x,{y})
1 , δv2(z) + ε

(x,{z})
1 }]

≥ δE[σ(ε
(x,{y})
1 , ε

(x,{z})
1 )(δv2(y) + ε

(x,{y})
1 ) + (1− σ(ε

(x,{y})
1 , ε

(x,{z})
1 ))(δv2(z) + ε

(x,{z})
1 )]

= δ2(α∗v2(y) + (1− α∗)v2(z)) + δE[σ(εy2, ε
z
2)εy2 + (1− σ(εy2, ε

z
2))εz2]

where the inequality follows since the value in the second line is the expected payoff if the agent follows
the decision rule σ at Aearly

1 . The equality holds by the i.i.d. assumption on ε1 and ε2. Since δ ∈ (0, 1),

it follows that U0(x,Aearly
1 )− ε(x,Aearly

1 )
0 > U0(x,Alate

1 )− ε(x,Alate
1 )

0 . Thus, the desired claim follows from
the i.i.d. assumption on ε0.

“Moreover” part: We consider the equivalent problem in which we scale v terms by a scaling
factor α := 1

λ > 0 while fixing ε terms. Assume v2(y) > v2(z) without loss of generality. Then:

U0(x,Aearly
1 ) = ε

(x,Aearly
1 )

0 + δE[max{δαv2(y) + ε
x,{y}
1 , δαv2(z) + ε

x,{z}
1 }]

U0(x,Alate
1 ) = ε

(x,Alate
1 )

0 + δ2E[max{αv2(y) + εy2, αv2(z) + εz2}]

By the i.i.d full-support assumption on ε0, the desired claim follows if we show that U0(x,Aearly
1 )−

U0(x,Alate
1 ) is strictly decreasing in α. As in the proof of Proposition 1, the derivatives of utilities

with respect to α satisfy

dU0(x,Aearly
1 )

dα
= δ2

(
ρ1((x, {y});Aearly

1 )v2(y) + ρ1((x, {z});Aearly
1 )v2(z)

)
,

dU0(x,Alate
1 )

dα
= δ2 (ρ2(y; {y, z})v2(y) + ρ2(z; {y, z})v2(z)) ,

where we can again suppress the dependence of choice probabilities on histories due to the i.i.d. ε
assumption. But note that

ρ1((x, {y});Aearly
1 ) = Pr[δ(v2(y)−v2(z)) ≥ εx,{z}1 − εx,{y}1 ] < Pr[v2(y)−v2(z) ≥ εz2− ε

y
2] = ρ2(y; {y, z}),

where the inequality holds since δ < 1, v2(y) > v2(z) and by the i.i.d. full support assumption on ε.

Thus,
dU0(x,Aearly

1 )
dα <

dU0(x,Alate
1 )

dα , as required. �

80The existence of such a function follows by the measurable selection theorem.
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G.3 Proof of Proposition 3

Let G denote the cdf of the difference ε− ε′ of two shocks ε, ε′ that are independently drawn from F .

Proof of Proposition 3. Because the density of ε is symmetric and unimodal around 0, G dominates
F in terms of the peakedness order by Theorem 3.D.4 in Shaked and Shanthikumar (2007). Thus,
F (γ) ≥ G(γ) for any γ > 0 and F (γ) ≤ G(γ) for any γ < 0 by Theorem 3.D.1 in Shaked and
Shanthikumar (2007); moreover, the inequalities are strict because the distribution F has full support.

We express choice probabilities of a in each period as functions of parameters (w, δ), where we
can suppress the dependence on histories by the i.i.d. assumption on shocks. That is, for each model
M = DDC,BEU, let ρM

0 (w, δ) := ρM
0 (a;A0) and ρM

1 (w, δ) := ρM
1 (a;A1) for each (w, δ). Let V (w) :=

E[max{w + εa1, ε
b
1}]. Note that V (w) ≥ 0 since shocks have mean zero, and the inequality is strict

because of the full support assumption. We have ρDDC
1 (w, δ) = ρBEU

1 (w, δ) = Pr(w+εa1 ≥ εb1) = G(w).
Moreover, ρDDC

0 (w, δ) = Pr(w + εa0 ≥ δV (w) + εA1
0 ) = 1 − G(δV (w) − w). Finally, ρBEU

0 (w, δ) =
Pr(w + εa0 ≥ δV (w)) = 1− F (δV (w)− w).

For each model M, we consider the maximization problem

max
(ω̂,δ̂)∈Θ

ρ0(a;A0) log[ρM
0 (ŵ, δ̂)] + (1− ρ0(a;A0)) log[1− ρM

0 (ŵ, δ̂)]

+(1− ρ0(a;A0))
(
ρ1(a;A1) log[ρM

1 (ŵ, δ̂)] + (1− ρ1(a;A1)) log[1− ρM
1 (ŵ, δ̂)]

)
.

By the assumption that ρ is compatible, for each model M = DDC, BEU, there exists (ŵM, δ̂M) ∈ Θ
such that

ρ0(a;A0) = ρM
0 (ŵM, δ̂M) and ρ1(a;A1) = ρM

1 (ŵM, δ̂M) (26)

hold. By Gibbs’ inequality, (ŵM, δ̂M) achieves the maximum of the above maximization problem. The
latter condition in (26) implies ŵDDC = ŵBEU = G−1(ρ1(a,A1)) =: ŵ∗ (the value is unique as G is
strictly increasing). Then the first condition in (26) implies 1 − ρ0(a;A0) = G(δ̂DDCV (ŵ∗) − ŵ∗) =
F (δ̂BEUV (ŵ∗)− ŵ∗) and the corresponding values of δ̂DDC, δ̂BEU are uniquely determined (as F,G are
strictly increasing and V (·) > 0). If ρ0(a;A0) > 0.5, then δ̂DDCV (ŵ∗) − ŵ∗, δ̂BEUV (ŵ∗) − ŵ∗ < 0.
By the observation in the first paragraph, this implies δ̂DDCV (ŵ∗) < δ̂BEUV (ŵ∗). Thus δ̂DDC < δ̂BEU

since V (ŵ∗) > 0. If ρ0(a;A0) < 0.5, a symmetric argument yields δ̂DDC > δ̂BEU.
By standard results (e.g., Theorem 2 in White (1982)) the maximum likelihood estimates (ŵM

n , δ̂
M
n )

for each model M converge almost surely to (ŵM, δ̂M). This completes the proof. �

In Proposition 3, we assumed that distribution F has a symmetric and unimodal density around 0.
While this assumption is satisfied by several commonly used distributions including the probit model,
it rules out other instances such as the logit model. The following proposition accommodates such
distributions under the assumption that F and G have finite crossings, i.e., |{γ : F (γ) = G(γ)}| <∞.

Proposition G.1. Suppose that the data generating process ρ is compatible with both models. If F
and G have finite crossings, then there exist α, α ∈ (0, 1) such that almost surely

(i). limn ŵ
DDC
n = limn ŵ

BEU
n

(ii). limn δ̂
DDC
n < limn δ̂

BEU
n if ρ0(a;A0) > α and limn δ̂

DDC
n > limn δ̂

BEU
n if ρ0(a;A0) < α.

The proposition shows that the same conclusion as in Proposition 3 holds as long as period 0 choice
probabilities are relatively extreme. The proof is identical to Proposition 3 except for modifying the
first paragraph in the following manner. Note that F and G cross at least once since they have the
same mean. By the finite crossing assumption, we can take γ and γ to be the largest and smallest
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crossing points of F and G. Since ε has mean zero, G is a mean-preserving spread of F by construction.
Thus, since their means are finite,

∫ p
0 F

−1(q)dq ≥
∫ p

0 G
−1(q)dq and

∫ 1
p F

−1(q)dq ≤
∫ 1
p G

−1(q)dq hold

for any p ∈ (0, 1) (Theorem 3.A.5 in Shaked and Shanthikumar (2007)). This implies F (γ) < G(γ)
for all γ < γ and F (γ) > G(γ) for all γ > γ. Based on this modification, the remaining proof goes
through by defining α := F (γ) and α := F (γ).

Finally, while we have assumed that shocks to each option are identically distributed according to
F , this assumption is also not crucial. In particular, suppose that the shock distribution can depend
on both the option and the time period; i.e., for each x ∈ {a, b, A1} and t ∈ {0, 1}, εxt follows some
mean-zero distribution F xt with full-support density and all shocks are independent. In this more
general case, the same argument as above yields the same predictions as Proposition G.1 as long as
F a0 and FA1

0 have finite crossings.

H Proofs for Section 6

We use the following preliminary lemma in the proofs.

Lemma H.1. Take any finite set of non-constant utilities {u1, .., um} ⊆ RZ and a convex set D ⊆ RZ
such that {u1, .., um} ∩ [D] 6= ∅. Suppose there exist `, ` ∈ ∆(Z) such that ui(`) > ui(`) for each
i = 1, ...,m. Then there exists a finite set L ⊆ ∆(Z) and `∗ ∈ int∆(Z) such that (i) |M(L, ui)| = 1
for all ui, (ii) M(L, ui) = {`∗} if and only if ui ∈ [D].

Proof. We suppose {u1, .., um} 6⊆ [D], because otherwise we can take any lottery `∗ ∈ int∆(Z) and
set L = {`∗}. For convenience, we relabel the utilities such that ui ∈ [D] for i = 1, ..., k and ui 6∈ [D]
for i = k + 1, ..,m. By the affine aggregation theorem (e.g., Theorem 2 in Fishburn (1984)), for any
u ∈ RZ , the following statements are equivalent:

(i). for any w ∈ RZ such that
∑

z∈Z w(z) = 0,

[∀i = 1, ..., k, ui · w ≤ 0]⇒ u · w ≤ 0

(ii). u ∈ [co{u1, ..., uk}].

Note that by definition for any i = k+1, ...,m, ui does not belong to [co{u1, ..., uk}] ⊆ [D]. Thus, by
the above equivalence result, for each i = k+1, ...,m, we can find a vector wi ∈ RZ with

∑
z∈Z w

i(z) = 0
such that ui · wi > 0 ≥ uj · wi for any j = 1, ..., k. Fix any ` ∈ int∆(Z). For each i = k + 1, ...,m,
we construct `(i) ∈ ∆(Z) such that the vector `(i)− ` (in RZ) is proportional to wi. Note that such
a construction is possible because ` is in the interior of ∆(Z). Thus uj(`) ≥ maxi=k+1,...,m u

j(`(i)) for
each j = 1, ..., k and ui(`) < ui(`(i)) for each i = k + 1, ...,m.

Let `∗ := `+ε(`−`), where ε > 0 is small enough so that the lottery is well-defined (this is possible
because ` is in the interior). By choosing ε small, we can guarantee that uj(`∗) > maxi=k+1,...,m u

j(`(i))
for each j = 1, ..., k and ui(`∗) < ui(`(i)) for each i = k+1, ...,m. Let L := `∗∪{`(i) : i = k+1, ...,m}.
Since each utility is non-constant, up to perturbing lotteries in L, we can assume without loss that
|M(L, ui)| = 1 for each i = 1, ...,m while preserving the above strict inequalities. This completes the
proof as M(L, uj) = {`∗} for each j = 1, ..., k and M(L, ui) 6= {`∗} for each i = k + 1, ...,m. �

H.1 Proof of Proposition 4

“If” direction: Consider any L0 ∈ L∗0, L1 ∈ A∗1 with L1 ⊆ L0 such that ρZ0 (`;L0), ρZ0 (`′;L0) > 0.
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Let U0(`) := {u0(ω) : ω ∈ C(L0, `)} and U0(`′) := {u0(ω) : ω ∈ C(L0, `
′)}. Note that since L1

features no ties, Lemma E.3 implies C(L1, `) = {ω : ` ∈ M(L1, u1(ω))} by the representation in the
atemporal domain. Hence

ρZ1 (`;L1|L0, `) = µ({` ∈M(L1, u1)}|C(L0, `)) ≥ min
u∈U0(`)

µ({p ∈M(L1, u1)}|{u0 ≈ u}). (27)

Likewise,

ρZ1 (`;L1|L0, `) = µ({` ∈M(L1, u1)}|C(L0, `
′)) ≤ max

u′∈U0(`′)
µ({` ∈M(L1, u1)}|{u0 ≈ u′}). (28)

Pick u ∈ U0(`) (respectively, u′ ∈ U0(`′)) which achieve the min (respectively max) in (27) (respectively,
in (28)). Let {u1

1, ..., u
m
1 } := {u1(ω) : ω ∈ C(L0, `) ∪ C(L0, `

′) and ` ∈ M(L1, u1(ω))} and let D :=
co{u, u1

1, ..., u
m
1 }. Note that since L0 ⊇ L1, we have ` ∈ M(L1, u). Hence, {ω : u0(ω) ≈ u, ` ∈

M(L1, u1(ω))} = {ω : u0(ω) ≈ u, u1(ω) ∈ [D]}, and likewise {ω : u0(ω) ≈ u′, ` ∈ M(L1, u1(ω))} =
{ω : u0(ω) ≈ u′, u1(ω) ∈ [D]}. Thus,

µ({` ∈M(L1, u1)}| ∩ {u0 ≈ u}) = µ([D]|{u0 ≈ u}) ≥
µ([D]|{u0 ≈ u′}) = µ({` ∈M(L1, u1)}|{u0 ≈ u′}),

(29)

where the inequality holds by assumption. Combining (27), (28), and (29) yields ρZ1 (`;L1|L0, `) ≥
ρZ1 (`;L1|L0, `

′), as required.

“Only if” direction: We prove the contrapositive. Suppose that for some u, u′ ∈ RZ and convex
D ⊆ RZ with u ∈ D such that µ({u0 ≈ u}), µ({u0 ≈ u′}) > 0, we have

µ({u1 ∈ [D]}|{u0 ≈ u}) < µ({u1 ∈ [D]}|{u0 ≈ u′}). (30)

Let U1 be the set of possible realizations of u1 conditional on the event {ω : u0 ≈ u or u0 ≈ u′}. Let
U0 be the set of possible realizations of u0. Enumerate {u1

1, ..., u
m
1 } := U1 ∩ [D], which is nonempty by

(30).
By Condition 1, ut(`) > ut(`) for each t = 1, 2 and any possible realization ut. Thus we can apply

Lemma H.1 so that there exist some menu L1 and `∗ such that (i) M(L1, u) = M(L1, u
i
1) = {`∗} for all

i = 1, ...,m, (ii) |M(L1, u1)| = 1 and M(L1, u1) 63 `∗ for each u1 ∈ U1 r [D]. Subject to perturbations
of the lotteries in L1, we can assume without loss that |M(L1, ut)| = 1 for each t = 1, 2 and any
possible realization of ut (since every such realization is non-constant). Thus L1 ∈ A∗1 by Lemma E.3.

By construction of L1, we have

{`∗ ∈M(u1, L1)} ∩ {u0 ≈ u} = {u1 ∈ [D]} ∩ {u0 ≈ u}

Let {[u1
0], ..., [uk0]} denote the collection of equivalence classes of utilities in U0, and assume without

loss that u ∈ [u1
0]. By Lemma E.2, we construct a collection of consumption lotteries {`(h) : h =

1, ..., k} such that u0(`(h)) > u0(`(h′)) for any distinct h, h′ = 1, ..., k with u0 ∈ [uh0 ].
Pick ε′ > 0 sufficiently small such that `∗ + ε′(`(h) − `(1)) ∈ ∆(Z) for all h = 2, . . . , k; the

construction is possible since `∗ is in the interior of ∆(Z). Define a menu L0 by

L0 := L1 ∪ {`∗ + ε′(`(h)− `(1)) : h = 2, ..., k}.

For each h = 2, ..., k and u0 ∈ [uh0 ], u0(`∗ + ε′(`(h) − `(1))) is non-constant in ε′; therefore, for small
enough ε′ > 0, M(L0, u0) is either {`∗ + ε′(`(h) − `(1))} or a singleton included in L1. Furthermore,
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M(L0, u0) = {`∗} for each u0 ∈ [u1
0]. This ensures that L0 ∈ L∗0 by Lemma E.3. Furthermore,

{`∗ ∈M(u0, L0)} = {u0 ≈ u}.

Since u 6≈ u′, there is a lottery `0 ∈ L0 different from `∗ such that M(L0, u
′) = {`0}.

By the previous observations, we have L0 ⊇ L1 and ρZ1 (`∗;L1|L0, `
∗) = µ(u1 ∈ [D]|u0 ≈ u)

and ρZ1 (`∗;L1|L0, `0) = µ(u1 ∈ [D]|u0 ≈ u′). But then (30) implies that ρZ1 (`∗;L1|L0, `0) <
ρZ1 (`∗;L1|L0, `0), which is a violation of consumption persistence. �

H.2 Proof of Proposition 5

For each menu L of consumption lotteries and ` ∈ L, recall the notation N(L, `) = {u ∈ RZ : u · ` ≥
u · `′,∀`′ ∈ L}. Note that N(L, `) is convex with N(L, `) = [N(L, `)].
“If” direction: ρZ0 = ρ̂Z0 follows directly from the condition that µ({u0 ≈ u}) = µ̂({û0 ≈ u}) for
each u ∈ RZ .

Take any L0 ∈ L∗0, L1 ∈ A∗1 and ` ∈ L0 such that L0 ⊇ L1. Let {[u1
0], ..., [uk0]} denote the set of

possible consumption preferences in period 0 that can realize with positive probabilities under µ or µ̂
and belong to [N(L0, `)]. Since there is no tie in L0 and L1, we can write

ρZ1 (`, L1|L0, `) =

∑k
i=1 µ({u0 ≈ ui0})µ({u1 ∈ N(L1, `)}|{u0 ≈ ui0})∑k

i=1 µ({u0 ≈ ui0})

≥
∑k

i=1 µ̂({û0 ≈ ui0})µ({û1 ∈ N(L1, `)}|{û0 ≈ ui0})∑k
i=1 µ̂({û0 ≈ ui0})

= ρ̂Z1 (`, L1|L0, `)

where the inequality follows from the condition that µ({u0 ≈ ui0}) = µ̂({û0 ≈ ui0}) and µ({u1 ∈
N(L1, `)}|{u0 ≈ ui0}) ≥ µ({û1 ∈ N(L1, `)}|{û0 ≈ ui0}) for each i = 1, ..., k.
“Only if” direction: For each u ∈ RZ , µ({u0 ≈ u}) = µ̂({u0 ≈ û}) follows directly from ρZ0 = ρ̂Z0 .
To complete the remaining part, we suppose to the contrary that there exist u ∈ RZ and a convex set
D 3 u such that µ({u1 ∈ [D]}|{u0 ≈ u}) < µ̂({û1 ∈ [D]}|{û0 ≈ u}).

Let {[u1
0], ..., [uk0]} and {[u1

1], ..., [um1 ]} denote the set of possible consumption preferences that can
realize with positive probabilities under µ or µ̂ in periods 0 and 1, respectively. Note that by the
joint uniformly ranked pair condition, ui1(`) > ui1(`) for each i = 1, ...,m. Thus, by Lemma H.1, there
exist a lottery `∗ and a menu L1 such that (i) M(L1, u) = M(L1, u

i
1) = {`∗} for each i = 1, ...,m

with ui1 ∈ [D], and (ii) M(L1, u
i
1) 63 `∗ and |M(L1, u

i
1)| = 1 for each i = 1, ...,m with ui1 6∈ [D]. Thus

L1 ∈ A∗1.
Moreover, following the same construction as in the proof of Proposition 4, we construct a menu

L0 ⊇ L1 such that (i) M(L0, u) = {`∗} and (ii) M(L0, u
i
0) 63 `∗ and |M(L0, u

i
0)| = 1 for each i = 1, ..., k

with ui0 6∈ [u]. Thus, L0 ∈ L∗0.
Based on this, we can write the choice probabilities as

ρZ1 (`∗, L1|L0, `
∗) = µ({u1 ∈ {[u1

1], ..., [uk1]} ∩ [D]}|{u0 ≈ u})
< µ̂({û1 ∈ {[u1

1], ..., [uk1]} ∩ [D]}|{û0 ≈ u}) = ρ̂Z1 (`∗, L1|L0, `
∗),

which contradicts the fact that ρZ features more consumption persistence than ρ̂Z . �
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H.3 Proof of Corollary 1

(i) =⇒ (ii):
We consider the case m ≥ 2 as otherwise the desired statement trivially holds with any α. Observe

first that for any distinct indices i, j ∈ {1, . . . ,m}, consumption persistence and its characterization
(Proposition 4) imply

Mii = µ({u1 ∈ [ui]}|u0 = ui) ≥ µ({u1 ∈ [ui]}|u0 = uj) = Mji (31)

by taking D = {ui}. (Note that by definition both ui and uj arise with positive probability in period
0). Moreover, if D = co{ui, uj}, then by the non-collinearity assumption there is no k /∈ {i, j} such
that uk ∈ [D]. Thus, by consumption persistence and its characterization (Proposition 4),

Mii +Mij = µ({u1 ∈ [D]}|u0 = ui) = µ({u1 ∈ [D]}|u0 = uj) = Mjj +Mji. (32)

Suppose first that m = 2. Since 1 = M11+M12 = M22+M21, we have M11−M21 = M22−M12 := α,
which is nonnegative by (31). Since the Markov chain is irreducible, M21,M12 > 0, which also ensures
α < 1. One can verify the desired form by setting ν(u1) = M21

1−α and ν(u2) = M12
1−α .

Suppose next that m ≥ 3. Take any distinct i, j, k ∈ {1, ...,m} and let D′ = co{ui, uj , uk}. By non-
collinearity assumption there is no l /∈ {i, j, k} such that ul ∈ [D′]. Thus, by consumption persistence
and its characterization (Proposition 4),

Mii +Mij +Mik = µ({u1 ∈ [D′]}|u0 = ui) = µ({u1 ∈ [D′]}|u0 = uj) = Mjj +Mji +Mjk.

Combined with (32), this implies that Mik = Mjk for any distinct i, j, k. Thus, for any k, we can
define βk := Mik for some arbitrary i 6= k. Here βk > 0, because otherwise

∑
i s.t. i 6=kMik = 0,

contradicting irreducibility of the Markov chain. By (32), Mii −Mji = Mjj −Mij for any i, j, and
thus Mii−βi = Mjj −βj =: α for any i, j. By (31) α ≥ 0, and α < 1 as βk > 0 for all k. Thus, setting

ν(uj) =
βj

1−α for each j yields to the desired form.
(ii) =⇒ (i):

Take any pair u, u′ ∈ RZ of possible realizations of period 0 felicities. Then for any convex set
D ⊆ RZ with u ∈ D, by (ii) we have

µ({u1 ∈ [D]}|u0 ≈ u) = α+(1−α)
∑
uj∈[D]

ν(uj) ≥ αIu′∈[D]+(1−α)
∑
uj∈[D]

ν(uj) = µ({u1 ∈ [D]}|u0 ≈ u′).

Thus, ρ features consumption persistence by Proposition 4.
(ii) =⇒ (iii):

Note that for any L = {`1, ..., `m} ∈ L∗0 and distinct indices i, j, we have ρZ1 (`i;L|, L, `i) = α +
(1 − α)

∑
uk∈N(L,`i) ν(uk) = α + (1 − α)ρZ0 (`i;L) and ρZ1 (`j ;L|L, `i) = (1 − α)

∑
uk∈N(L,`j) ν(uk) =

(1− α)ρZ0 (`j ;L).
(iii) =⇒ (ii):

Since {u1, ..., um} are ordinally distinct, Lemma E.2 yields L = {`1, ..., `m} such that M(L, ui) =
{`i} for each i. Then by the Markov representation we have ρZ1 (`j ;L|L, `i) = Mij and ρZ0 (`i;L) = ν(ui)
for all indices i, j. Thus, by (iii), there exists β ∈ [0, 1) such that Mii = β + (1 − β)ν(ui) and
Mij = (1− β)ν(uj) for all i 6= j, which verifies (ii). �
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H.4 Proof of Corollary 2

Since ρ and ρ̂ admit stationary renewal process representations, for each ` ∈ L1 ⊆ L0 with L0 ∈ L∗0
and L1 ∈ A∗1, choice probabilities satisfy:

ρZ0 (`;L0) =
∑

ui∈N(L0,`)

ν(ui), ρ̂Z0 (`;L0) =
∑

ui∈N(L0,`)

ν̂(ui),

ρZ1 (`;L1|L0, `) = α+ (1− α)
∑

ui∈N(L1,`)

ν(ui), ρ̂Z1 (`;L1|L0, `) = α̂+ (1− α̂)
∑

ui∈N(L1,`)

ν̂(ui).

The “if” direction is immediate from these expressions. For the “only if” direction, the existence of
the bijection φ follows from the fact that ρZ and ρ̂Z coincide on period 0 consumption choices and the
assumption that in each representation all felicities are ordinally distinct. To show that α ≥ α̂, consider
any ` ∈ L1 ⊆ L0 (with L0 ∈ L∗0 and L1 ∈ A∗1) such that

∑
ui∈N(L1,`)

ν(ui) =
∑

ui∈N(L1,`)
ν̂(ui) < 1.

Then ρZ1 (`;L1|L0, `) ≥ ρ̂Z1 (`;L1|L0, `) implies α ≥ α̂. �

H.5 Proof of Proposition 6

Necessity:
Take any L ∈ L∗0 and `, `′ ∈ L with {`, `′} ∈ A∗1. If ρZ0 (`;L) > 0, then there exists u ∈ N(L, `)

such that µ({u0 = u}) > 0. This implies u(`) > u(`′). Then by (2), there exists some u′ ∈ RZ
with µ({u1 = u′}|{u0 = u}) > 0 such that u′(`) > u′(`′). This ensures ρZ1 (`; {`, `′}|L, `) > 0 because
µ({u1 ≈ u′}|{u0 ∈ N(L, `)}) > 0.
Sufficiency:

Take a BEU representation (Ω,F∗, µ, (Ft, Ut, ut, δt,Wt)) of ρZ . Let F̂0 be the sigma algebra gen-
erated by the random equivalence class [u0], i.e., F̂0 is induced by the finest partition over Ω such
that u0(·) corresponds to the same preference within each cell. Likewise, let F̂1 be the sigma algebra
generated by the random sequence of equivalence classes ([u0], [u1]). Note that F̂0 ⊆ F0 and F̂1 ⊆ F1.
For each t = 0, 1, construct an F̂t-measurable function ût such that ût(ω) ≈ ut(ω) and

∑
z ût(ω)(z) = 0

for each ω.
We consider a tuple (Ω,F∗, µ, (F̂t, Ût, ût, δt, Ŵt)), where (Ût) is induced from (µ, (F̂t, ût, δt)) by

equation (1), and (Ŵt) is any F∗-measurable tiebreaker that satisfies the properness condition with
respect to (µ, (F̂t)). This tuple is clearly a BEU representation of ρZ , since (ut) and (ût) are ordinally
equivalent at every state.81

Next we fix any û ∈ RZ such that µ({û0 = û}) > 0, and let Uû := {û′ ∈ RZ : µ({û1 = û′}|{û0 =
û}) > 0}. We now use Axiom 10 (consumption inertia) to show that û ∈ coUû. By the affine
aggregation theorem (e.g., Theorem 2 in Fishburn (1984)), it suffices to establish that for all `, `′ ∈
∆(Z), we have

[û′(`′) ≥ û′(`),∀û′ ∈ Uû]⇒ û(`′) ≥ û(`).

Suppose to the contrary that [û′(`′) ≥ û′(`), ∀û′ ∈ Uû] and û(`′) < û(`) for some `, `′. By the Uniformly
Ranked Pair condition, we have û′(`) > û′(`) for all û′ ∈ Uû. Thus, by mixing ` with `′ (resp. ` with
`) with a small weight on ` (resp. `), we can assume without loss that [û′(`′) > û′(`),∀û′ ∈ Uû]
and û(`) > û(`′). In addition, since the relevant inequalities are all strict, we can assume that
`, `′ ∈ int∆(Z) and {`, `′} ∈ A∗1. Take a menu of consumption lotteries L ∈ L∗0 such that `, `′ ∈ L,
M(L, û) = {`}, and M(L, û′′) 63 ` for all other period 0 felicities û′′ 6= û that can realize with

81Note that the exact specification of (Ŵt) is irrelevant in this argument because we restrict attention to
menus without ties.
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positive probability under µ.82 For this menu L, it follows that ρZ0 (`;L) = µ({û0 = û}) > 0 and
ρZ1 (`; {`, `′}|L, `) = µ({û1(`) > û1(`′)}|{û0 = u}) = 0, contradicting consumption inertia.

The observation in the previous paragraph implies that for each û ∈ RZ such that µ({û0 = û}) > 0,
there exist constants (αû,û′)û′∈Uû ≥ 0 and βû ∈ R such that

û =
∑
û′∈Uû

αû,û′ û
′ + βû. (33)

Since by construction
∑

z ût(ω)(z) = 0 at every state ω and period t, we must have βû = 0.

Define û′0(ω) := û0(ω) and û′1(ω) :=
αû0(ω),û1(ω)

µ(E1(ω)|E0(ω)) û1(ω) for each ω, where Et(·) denotes each cell

of the partition that generates F̂t for t = 1, 2. Note that each û′t is F̂t-measurable. We consider the
tuple (Ω,F∗, µ, (F̂t, Û ′t , û′t, δt, Ŵt)), where (Û ′t) is induced from (µ, (F̂t, û′t, δt)) by equation (1). This
tuple is still a BEU representation of ρZ , since (û′t) and (ût) are ordinally equivalent at every state.

To conclude that the representation is BEB, we verify that (2) holds with ũ := û′1. That is, for
each ω

E[û′1|F̂0(ω)] =
∑

E1⊆E0(ω)

µ(E1|E0(ω))û′1(E1) =
∑

E1⊆E0(ω)

αû0(ω),û1(E1)û1(E1) = û0(ω) = û′0(ω)

where the second and fourth equalities hold by definition of û′t and the third equality uses (33) with
βû0(ω) = 0 for each ω. �

I Additional Results

I.1 Identification

The following proposition provides identification results for our representations (see Remark 1 for the
discussion).

Proposition I.1. Suppose ρ and ρ̂ admit DREU representations D = (Ω,F∗, µ, (Ft, Ut,Wt)) and
D̂ = (Ω̂, F̂∗, µ̂, (F̂t, Ût, Ŵt)), with partitions Πt and Π̂t generating Ft and F̂t, respectively. Then ρ = ρ̂
if and only if for each t there exists a bijection φt : Πt → Π̂t and Ft-measurable functions αt : Ω→ R++

and βt : Ω→ R such that for all ω ∈ Ω:

(i). µ(F0(ω)) = µ̂(φ0(F0(ω))) and µ(Ft(ω)|Ft−1(ω)) = µ̂(φt(Ft(ω))|φt−1(Ft−1(ω))) if t ≥ 1;

(ii). Ut(ω) = αt(ω)Ût(ω̂) + βt(ω) whenever ω̂ ∈ φt(Ft(ω));

(iii). µ[{Wt ∈ Bt(ω)}|Ft(ω)] = µ̂[{Ŵt ∈ Bt(ω)}|φt(Ft(ω))] for any Bt(ω) such that Bt(ω) = {w ∈
RX : pt ∈M(M(At, Ut(ω)), w)} for some pt ∈ At ∈ At.

82To see why such a construction is possible, first note that all the possible realizations of period 0 felicities
û0(·) are ordinally distinct by construction. Take a set of consumption lotteries L̄ that separates all the period 0
felicities û0(·) by Lemma E.2. Here we can assume that the sup-norm distance among these lotteries is bounded
by ε by mixing them to a common lottery if necessary, where ε := minz∈Z{`(z), 1− `(z)} > 0. Let ¯̀∈ L̄ be the
lottery that strictly maximizes û in L̄. Then we define L̄∗ := {` + ¯̀′′ − ¯̀ : ¯̀′′ ∈ L̄}. This is a well-defined set
of lotteries by the construction of ε. Note that this set also separates all period 0 felicities. Then the desired
set L can be constructed by adding `′ to L̄∗ such that there is no tie (that is guaranteed by slightly perturbing
lotteries if necessary).
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If (D, (ut, δt)) is a BEU representation of ρ, then (D̂, (ût, δ̂t)) is a BEU representation of ρ if and only
if (i)-(iii) hold and additionally, for all t = 0, . . . , T :

(iv). αt(ω) = α0(ω)
∏t−1
τ=0

δ̂τ (ω̂)
δτ (ω) whenever ω̂ ∈ φt(Ft(ω))

(v). ut(ω) = αt(ω)ût(ω̂) + γt(ω) whenever ω̂ ∈ φt(Ft(ω)), where γT (ω) := βT (ω) and γt(ω) :=
βt(ω)− δt(ω)Eµ[βt+1|Ft(ω)] if t ≤ T − 1.

If (D, (ut, δt)) is a BEB representation of ρ that satisfies Condition D.1, then (D̂, (ût, δ̂t)) is a BEB
representation of ρ if and only if (i)-(v) hold and additionally, for all t = 0, . . . , T − 1:

(vi). δt(ω) = δ̂t(ω̂) for all ω̂ ∈ φt(Ft(ω))

(vii). γt(ω) = Eµ[βT |Ft(ω)] for all ω.

Proof. See Appendix J.3. �

I.2 Markov Evolving Utility

Definition 13. A (stationary) Markov evolving utility representation is a BEU representation
(Ω,F∗, µ, (Ft, Ut,Wt, ut, δt)) for which there exists a finite set of felicities U = {u1, u2, . . . , um} ⊆ RZ ,
with ui 6≈ uj for all i 6= j, along with a stationary distribution ξ ∈ ∆◦(U) and a right stochastic
transition matrix Π = (Πi,j)i,j=1,...,m such that

(i). µ(ut(ω) ≈ ui) = ξ(ui) for all t = 0, . . . , T and i = 1, . . . ,m;

(ii). µ(ut+1(ω) ≈ ut+1|u0(ω) ≈ u0, . . . , ut−1(ω) ≈ ut−1, ut(ω) ≈ ut) = µ(ut+1(ω) ≈ ut+1|ut(ω) ≈ ut)
for all t = 0, . . . , T − 1 and u0, . . . , ut+1 ∈ U ;

(iii). µ(ut+1(ω) ≈ uj |ut(ω) ≈ ui) = Πi,j for all t = 0, 1, . . . , T − 1 and i, j = 1, . . . ,m.

We assume that ρ admits a BEU representation. As in Section 6, we consider the restriction ρZ

of ρ to atemporal consumption problems without ties; this is well-defined given the assumption that
ρ admits a BEU representation. For each `T−1 ∈ ∆(Z) and LT−1, LT ∈ K(∆(Z)), we define the
lottery (`T−1, LT ) := (δ`T−1

, δLT ) and menu (LT−1, LT ) := {(`′T−1, LT ) : `′T−1 ∈ LT−1}. Recursively,
for each t ≤ T − 2, `t ∈ ∆(Z), and Lt, ..., LT−1 ∈ K(∆(Z)), we define the lottery (`t, LT−1, ..., LT ) :=
(δ`t , δ(Lt+1,...,LT )) and menu (Lt, ..., LT ) := {(`′t, Lt+1, ..., LT ) : `′t ∈ Lt}.

Let L∗0 ⊆ K(∆(Z)) denote the set of period 0 consumption menus without ties, which consists of all
L0 such that (L0, L1) ∈ A∗0 for all L1 ∈ K(∆(Z)). For any L0 ∈ L∗0 and `0 ∈ L0, define ρZ0 (`0;L0) :=
ρ0((`0, L1); (L0, L1)) for an arbitrary choice of L1. This induces the set of all period 0 consumption
histories without ties, i.e., sequences h0

Z = (L0, `0) such that ρZ0 (`0, L0) > 0 and L0 ∈ L∗0. Recursively,
for each period t − 1 consumption history without ties ht−1

Z = (L0, `0, ..., Lt−1, `t−1), we denote by
L∗t (ht−1

Z ) the set of period t consumption menus without ties conditional on ht−1
Z , which consists of

all Lt such that (Lt, Lt+1, .., LT ) ∈ A∗t (ht−1) for all Lt+1, .., LT , where ht−1 = (A0, p0, ..., At−1, pt−1) is
given by Aτ = (Lτ , Lτ+1, ..., LT ) and pτ = (`τ , Lτ+1, ..., LT ) for each τ = 0, ..., t − 1. Given any such
ht−1
Z and ht−1, we define ρZt (`t, Lt|ht−1

Z ) := ρt((`t, Lt+1, ..., LT ), (Lt, ..., LT )|ht−1) for each L∗t ∈ Lt(ht−1
Z )

and `t ∈ Lt; if ρZt (`t, Lt|ht−1
Z ) > 0 then we say that the sequence (L0, `0, ..., Lt, `t) is a consumption

history without ties in period t. Finally, we say that a consumption history without ties is degenerate
if the corresponding Lτ ’s are all singleton.

Axiom I.1 (Unconditional Stationarity). For all degenerate consumption histories dt−1
Z , L ∈

L∗t (dt−1
Z ) ∩ L∗0, and ` ∈ L, we have ρZ0 (`, L) = ρZt (`, L|dt−1

Z ).
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A consumption atom is a pair (L, `) with L ∈ L∗0 and ` ∈ ∆◦(Z) such that

(i). ρZ0 (`, L) > 0;

(ii). ρZ0 (`, L′) ∈ {ρZ0 (`, L), 0} for all L′ ∈ L∗0 with L′ ⊇ L.

Axiom I.2 (Markov). For any consumption atom (L, `) and consumption history ht−1
Z without ties,

we have ρZ1 (·|L, `) = ρZt+1(·|ht−1
Z , L, `).

Proposition I.2. Suppose that ρ admits a BEU representation that satisfies Condition D.1 (Uniformly
Ranked Pair). Then ρZ satisfies Axioms I.1 and I.2 if and only if it admits a Markov evolving utility
representation.

Proof. See Appendix J.4. �

J Proofs for Sections A, E, and I

J.1 Proof of Proposition A.1

The following three subsections prove Proposition A.1, that is, the equivalence between DREU, BEU,
BEB and their respective S-based analogs.

J.1.1 DREU

“If” direction: Suppose ρ admits an S-based DREU representation
(St, {µst−1

t }st−1∈St−1 , {Ust , τst}st∈St)t=0,...,T . We will construct a DREU representation

(Ω̂, F̂∗, µ̂, (F̂t, Ût, Ŵt)).
Consider the space G :=

∏T
t=0

(
St × RXt

)
of all sequences of states and tie-breaking utilities.

Let Ω̂ := {(s0,W0, . . . , sT ,WT ) ∈ G :
∏t
k=0 µ

sk−1

k (sk) > 0}. Let F̂∗ be the restriction to Ω̂ of the

product sigma-algebra of the discrete sigma-algebra on
∏T
t=0 St and the product Borel sigma-algebra

on
∏T
t=0 RXt . For each K = ({s0},K0, ..., {sT },KT ) ∈ F̂∗, let µ̂(K) =

∏T
t=0 µ

st−1

t (st)τst(Kt); by

finiteness of
∏T
t=0 St, µ̂ extends to a finitely-additive probability measure on Ω̂ in the natural way.

Let Πt be the finite partition of Ω̂ whose cells are all the cylinders C(s0, . . . , st) := {ω̂ ∈ Ω̂ :
projS0×...×St(ω̂) = (s0, . . . , st)}. Let F̂t be the sigma-algebra generated by Πt; by definition of Ω̂,

µ(F̂t(ω̂)) > 0 for all ω̂ ∈ Ω̂. Also, F̂t(ω̂) =
⋃
ω̂′∈F̂t(ω̂) F̂t+1(ω̂′), so (F̂t)0≤t≤T ⊆ F̂∗ is a filtration.

Define Ût : Ω̂ → RXt by Ût(ω̂) = Ust where projSt(ω̂) = st. Note that (Ût) is adapted to (F̂t) and

that Ût(ω̂) is nonconstant for each ω̂ since each Ust is nonconstant. Finally, if Ft−1(ω̂) = Ft−1(ω̂′) and
Ft(ω̂) 6= Ft(ω̂′), then projSt−1

(ω̂) = projSt−1
(ω̂) = st−1 and projSt(ω̂) = st 6= s′t = projSt(ω̂

′) for some

st−1 ∈ St−1 and st, s
′
t ∈ suppµ

st−1

t . By DREU1 (a), this implies Ût(ω̂) := Ust 6≈ Us′t =: Ût(ω̂
′). Thus,

(Ft, Ut) are simple.
Define Ŵt : Ω̂ → RXt by Ŵt(ω̂) = Wt where projRXt (ω̂) = Wt. Note that for all At, µ̂({ω̂ ∈ Ω̂ :

|M(At, Ŵt)| = 1}) =
∑

(s0,...,sT )

(∏T
k=0 µ

sk−1

k (sk)
)
τst({Wt ∈ RXt : |M(At,Wt)| = 1}) = 1, since each

τst is proper. Thus, (Ŵt) satisfies part (i) of the properness requirement for DREU. Moreover, for any
F̂T (ω̂) = C(s0, . . . , sT ) and any sequence (Bt) of Borel sets Bt ⊆ RXt , the definition of µ̂ implies

µ̂

(
T⋂
t=0

{Ŵt ∈ Bt}|C(s0, . . . , sT )

)
=

T∏
t=0

τst(Bt) =
T∏
t=0

µ̂
(
{Ŵt ∈ Bt} | C(s0, . . . , st)

)
. (34)
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Since F̂T (ω̂) = C(s0, . . . , sT ) implies F̂t(ω̂) = C(s0, . . . , st) for all t ≤ T , this shows that (Ŵt) also
satisfies parts (ii) and (iii) of the properness requirement.

Finally, to see that (Ω̂, F̂∗, µ̂, (F̂t, Ût, Ŵt)) represents ρ, fix any ht = (A0, p0, ..., At, pt) ∈ Ht. Then

µ̂(C(ht)) = µ̂
(⋂t

k=0{ω̂ ∈ Ω̂ : pk ∈M(M(Ak, Ûk(ω̂)), Ŵk(ω̂))}
)

=∑
C(s0,...,st)∈Πt

µ̂(C(s0, ..., st))µ̂
(⋂t

k=0{ω̂ ∈ Ω̂ : pk ∈M(M(Ak, Ûk), Ŵk)}|C(s0, ..., st)
)

=∑
(s0,...,st)∈S0×...×St

∏t
k=0 µ

sk−1

k (sk)µ̂
(⋂t

k=0{ω̂ ∈ Ω̂ : pk ∈M(M(Ak, Usk), Ŵk)}|C(s0, ..., st)
)

=∑
(s0,...,st)∈S0×...×St

∏t
k=0 µ

sk−1

k (sk)τsk(pk, Ak)

where the third equality follows from the definition of µ̂ and Û , and the final equality follows from
(34). Thus, as required, we have

µ̂(C(pt, At)|C(ht−1)) =
µ̂(C(ht))

µ̂(C(ht−1)
=

∑
(s0,...,st)

∏t
k=0 µ

sk−1

k (sk)τsk(pk, Ak)∑
(s0,...,st−1)

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)
= ρt(pt;At|ht−1),

where the final equality holds by DREU2.
“Only if” direction: Take any DREU representation (Ω,F∗, µ, (Ft, Ut,Wt)) of ρ. We will construct
an S-based DREU representation (St, {µ̂st−1

t }st−1∈St−1 , {Ûst , τst}st∈St)t=0,...,T .
For each t, let St := {Ft(ω) : ω ∈ Ω} denote the partition generating Ft, which is finite since

(Ft) is simple. Each µ̂stt+1 is defined to be the one-step-ahead conditional of µ, i.e., µ̂0(s0) := µ(s0)
for all s0 ∈ S0 and µ̂stt+1(st+1) := µ(st+1|st) for all st ∈ St, st+1 ∈ St+1. This is well-defined since

µ(Ft(ω)) > 0 for all ω. For each st ∈ St, define Ûst := Ut(ω) if ω ∈ st; this is well-defined as (Ut)
is Ft-adapted and each Ust is nonconstant since each Ut(ω) is nonconstant. Finally, for any Borel
set Bt ⊆ RXt , define τst(Bt) := µ({Wt ∈ Bt}|st). This is well-defined since Wt is F∗-measurable.
Moreover, because µ({ω ∈ Ω : |M(At,Wt(ω)| = 1} = 1 for all At and |St| is finite, it follows that
τst(N(At, pt)) = τst(N

+(At, pt)) for all pt, i.e., τst is proper. Thus, each (St, µ
st−1

t , {Ust , τst}st∈St) is
an REU form on Xt.

Moreover, (a) for any distinct st, s
′
t ∈ supp(µ

st−1

t ), we have ω, ω′ such that Ft−1(ω) = st−1 =
Ft−1(ω′) and Ft(ω) = st 6= Ft(ω′) = s′t. Thus, Ûst = Ut(ω) 6≈ Ut(ω

′) = Ûs′t , since (Ut,Ft) is simple.
Also, since (Ft) is adapted, the partition St refines the partition St−1, so that (b) for any distinct

st−1, s
′
t−1, we have supp(µ̂

st−1

t )∩ supp(µ̂
s′t−1

t ) = ∅. Since additionally µ(st) > 0 for all st ∈ St, we have
(c)
⋃
st−1∈St−1

supp µ̂
st−1

t = St. Thus, DREU1 is satisfied.

To see that DREU2 holds, observe that for each ht = (A0, p0, ..., At, pt) ∈ Ht, we have

µ(C(ht)) =
∑

sT∈ST µ(sT )µ
(
C(ht)|sT

)
=
∑

sT∈ST µ(sT )µ
(⋂t

k=0{ω ∈ Ω : pk ∈M(M(Ak, Uk),Wk)}|sT
)

=
∑

(s0,...,sT )
∃ω∈Ω∀t: st=Ft(ω)

µ(sT )µ
(⋂t

k=0{pk ∈M(M(Ak, Usk),Wk)}|st
)

=
∑

(s0,...,sT )
∃ω∈Ω∀t: st=Ft(ω)

µ(sT )
∏t
k=0 µ ({pk ∈M(M(Ak, Usk),Wk)}|sk)

=
∑

(s0,...,st)
∃ω∈Ω∀k≤t: sk=Fk(ω)

∏t
k=0 µ

sk−1

k (sk)
∏t
k=0 τsk(pk, Ak)

=
∑

(s0,...,st)∈S0×...×St
∏t
k=0 µ

sk−1

k (sk)
∏t
k=0 τsk(pk, Ak),

where the third equality follows from the fact that (Ut) is Ft-adapted, the fourth equality follows from
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parts (ii) and (iii) of the properness assumption on (Wt), the final equality follows from the fact that∏t
k=0 µ

sk−1

k (sk) = 0 whenever (s0, . . . , st) 6= (F0(ω), . . . ,Ft(ω)) for all ω, and the remaining equalities

hold by definition. Since ρt(pt;At|ht−1) = µ(C(ht))
µ(C(ht−1)

by (3), this shows that DREU2 holds.

J.1.2 BEU

“If” direction: Suppose ρ admits an S-based BEU representation
(St, {µst−1

t }st−1∈St−1 , {Ust , ust , τst}st∈St)t=0,...,T . Let (Ω̂, F̂∗, µ̂, (F̂t, Ût, Ŵt)) denote the corre-
sponding DREU representation of ρ obtained in the “if” direction for DREU. In addition, define
ût : Ω̂ → RZ for each t by ût(ω̂) := ust whenever projSt(ω̂) = st. Note that the process (ût) is

F̂t-adapted. Moreover, for each ω̂ = (s0,W0, ..., sT ,WT ), we have ÛT (ω̂) = UsT = usT = ûT (ω̂) and
for each t ≤ T − 1 and (zt, At+1)

Ût(ω̂)(zt, At+1) = Ust(zt, At+1)

= ust(zt) +
∑

st+1∈St+1

µstt+1(st+1) max
pt+1∈At+1

Ust+1(pt+1)

= ût(ω̂)(zt) +
∑

st+1∈St+1

µ̂(st+1|st) max
pt+1∈At+1

Ust+1(pt+1)

= ût(ω̂)(zt) + E[ max
pt+1∈At+1

Ût+1(pt+1)|F̂t(ω̂)],

where we let µ̂(st+1|st) := µ̂ (C(s0, . . . , st+1) | C(s0, . . . , st)). Thus we constructed a BEU representa-
tion with δt(·) = 1 for every t.
“Only if” direction: Suppose ρ admits a BEU representation (Ω,F∗, µ, (Ft, Ut, ut, δt,Wt)). We
construct another tuple (Ω,F∗, µ, (Ft, U ′t , u′t, δ′t,Wt)) by setting U ′t(ω) :=

∏t−1
τ=0 δτ (ω)Ut(ω), u′t(ω) :=∏t−1

τ=0 δτ (ω)ut(ω), and δ′t(ω) = 1 for each t and ω, which are all Ft-measurable. By Proposition I.1,
(Ω, µ, (Ft, U ′t ,Wt)) is still a DREU representation of ρ. Furthermore, for each ω (omitting its notational
dependence),

U ′t(zt, At+1) =
t−1∏
τ=0

δτUt(zt, At+1) =
t−1∏
τ=0

δτ

(
ut(z) + δtE[max

At+1

Ut+1|Ft]
)

= u′t(z) + δtE[max
At+1

U ′t+1|Ft]

for every (zt, At+1). Thus (Ω,F∗, µ, (Ft, U ′t , u′t, δ′t,Wt)) is still a BEU representation of ρ. Based on this
tuple, let (St, {µ̂st−1

t }st−1∈St−1 , {Ûst , τst}st∈St)t=0,...,T denote the corresponding S-based DREU repre-
sentation obtained in the “only if” direction for DREU. In addition, for each st, define ûst ∈ RZ
by ûst = u′t(ω) for any ω ∈ st; this is well-defined as (u′t) is Ft-adapted. Reversing the ar-
gument in the previous part, we can verify that ûsT = ÛsT for each sT and Ûst(zt, At+1) =
ûst(zt) +

∑
st+1

µ̂stt+1(st+1) maxpt+1∈At+1 Ûst+1(pt+1) for each st with t ≤ T − 1.

J.1.3 BEB

“If” direction: Suppose ρ admits an S-based BEB representation
(St, {µst−1

t }st−1∈St−1 , {Ust , ust , τst , δst}st∈St)t=0,...,T . Let (Ω̂, F̂∗, µ̂, (F̂t, Ût, ût, 1, Ŵt)) denote the corre-

sponding BEU representation obtained in the “if” direction for BEU. In addition, define δ̂t : Ω̂ → R
for each t by δ̂t(ω̂) := δst whenever projSt(ω̂) = st. Note that for each ω̂ = (s0,W0, .., sT ,WT )

and t ≤ T − 1, we have ût(ω̂) = ust = 1
δst

∑
st+1

µstt+1(st+1)ust+1 = 1
δ̂t(ω̂)

E[ût+1|F̂t(ω̂)]. Iterating

expectations, this yields ût(ω̂) = E[
∏T−1
τ=t δ̂

−1
τ ûT |F̂t(ω̂)] = E[

∏T−1
τ=t δ̂

−1
τ ÛT |F̂t(ω̂)]. Replace Ût(ω̂) with
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Û ′t(ω̂) := E[
∏T−1
τ=t δ̂τ |F̂t(ω̂)]Ût(ω̂) for each t and ω̂. By Proposition I.1, (Ω̂, F̂∗, µ̂, (F̂t, Û ′t , Ŵt)) is still

a DREU representation of ρ. Moreover, for each t ≤ T − 1, we have

Û ′t(ω̂)(zt, At+1) = E[
T−1∏
τ=t

δ̂τ |F̂t(ω̂)]ût(ω̂)(zt) + E[
T−1∏
τ=t

δ̂τ max
pt+1∈At+1

Ût+1(pt+1)|F̂t(ω̂)]

= E[Û ′T (zt) | F̂t(ω̂)] + δ̂t(ω̂)E[ max
pt+1∈At+1

Û ′t+1(pt+1)|F̂t(ω̂)].

Thus, (Ω̂, F̂∗, µ̂, (F̂t, Û ′t , δ̂t, Ŵt)) is a BEB representation of ρ.
“Only if” direction: Suppose that ρ admits a BEB representation (Ω, µ, (Ft, Ut, δt,Wt)). Let
(Ω,F∗, µ, (Ft, U ′t , u′t, δ′t,Wt)) and (St, {µ̂st−1

t }st−1∈St−1 , {Û ′st , û
′
st , τst}st∈St)t=0,...,T respectively denote

the corresponding BEU representation and S-based BEU representation of ρ obtained in the “only if”
direction for BEU. In addition, define δ̂st := δt(ω) for Ft(ω) = st. Then for each t ≤ T − 1 and ω with
Ft(ω) = st, we have

û′st = u′t(ω) =
t−1∏
τ=0

δτ (ω)ut(ω) =
t−1∏
τ=0

δτ (ω)E[ut+1(ω)|Ft(ω)] =
1

δt(ω)
E[u′t+1|Ft(ω)] =

1

δ̂st

∑
st+1

µ̂stt+1(st+1)û′st

where the first and last equality used the construction of S-based BEU, and the second and fourth
equality used the construction of BEU. Thus (St, {µ̂st−1

t }st−1∈St−1 , {Û ′st , û
′
st , δ̂st , τst}st∈St)t=0,...,T is an

S-based BEB representation of ρ. �

J.2 Proofs for Appendix E

This appendix presents proofs of all lemmas from Appendix E.

J.2.1 Proof of Lemma E.1

By standard arguments, for any separable metric space (Y, d): (a) the set P(Y ) of Borel probability
measures on Y endowed with the topology of weak convergence is a separable metric space metrized
by the Prokhorov metric πd induced by d (e.g., Theorem 15.12 in Aliprantis and Border (2006)); (b)
the set KC(Y ) of nonempty compact subsets of Y endowed with the Hausdorff distance induced by
d is a separable metric space (e.g., Khamsi and Kirk (2011) p. 40); (c) every dense subspace of Y is
separable.

We now prove the claim inductively, working backwards from period T . Since XT := Z is finite, the
claim is immediate. Consider t < T and suppose that Xτ is a separable metric space for all τ ≥ t+ 1.
By (a) above, P(Xt+1) endowed with the induced Prokhorov metric is separable, so since ∆(Xt+1) is
dense in P(Xt+1) (e.g., Theorem 15.10 in Aliprantis and Border (2006)) ∆(Xt+1) is also separable (by
(c)). Then by (b) above, KC(∆(Xt+1)) endowed with the induced Hausdorff metric is separable, so
since At+1 := K(∆(Xt+1)) is dense in KC(∆(Xt+1)) (e.g., Lemma 0 in Gul and Pesendorfer (2001)),
At+1 is also separable. Finally, Xt := Z ×At+1 endowed with the product of the discrete metric and
the Hausdorff metric is separable, as required. �

J.2.2 Proof of Lemma E.2

By the finiteness of S, there is a finite set Y ′ ⊆ Y such that for each s the restriction Us �Y ′ to Y ′

is nonconstant and for any distinct s, s′, Us �Y ′ 6≈ Us′ �Y ′ (that is, there exists p, q ∈ ∆(Y ′) such that
Us(p) ≥ Us(q) and Us′(p) < Us′(q)). By Lemma 1 in Ahn and Sarver (2013), there is a collection of
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lotteries {ps : s ∈ S} ⊆ ∆(Y ′) such that Us(p
s) = Us �Y ′ (ps) > Us �Y ′ (ps

′
) = Us(p

s′) for any distinct
s, s′. �

J.2.3 Proof of Lemma E.3

(i) =⇒ (ii): We prove the contrapositive. Suppose that there is st−1 ∈ S(ht−1) and st ∈ suppµ
st−1

t

such that |M(At, Ust)| > 1. Pick any pt ∈ M(At, Ust) such that τst(pt, At) > 0. Since Ust is non-
constant, we can find lotteries r, r ∈ ∆(Xt) such that Ust(r) < Ust(r). Fix any sequence αn ∈ (0, 1)
with αn → 0. Let pnt := αnr + (1 − αn)pt. For every qt ∈ At r {pt}, let qn

t
:= αnr + (1 − αn)qt and

qnt := αnr + (1 − αn)qt. Let Bn
t := {qn

t
: qt ∈ At r {pt}}, let B

n
t := {qnt : qt ∈ At r {pt}}, and let

Bn
t := Bn

t ∪B
n
t . Then Bn

t →m At r {pt} and pnt →m pt.
Moreover, since |M(At, Ust)| > 1, there exists qt ∈ At r {pt} such that Ust(αnr + (1 − αn)qt) >

Ust(p
n
t ) for all n, so that τst(p

n
t , B

n
t ∪ {pnt }) = 0. Furthermore, note that for all s′t ∈ St r {st}, we

have N(M(At, Us′t), pt) = N(M(Bn
t ∪{pnt }, Us′t), p

n
t ) ⊇ N(M(Bn

t ∪{pnt }, Us′t), p
n
t ), so that τs′t(pt, At) ≥

τs′t(p
n
t , B

n
t ∪ {pnt }) for all n. Letting pred(st−1) = (s0, . . . , st−2), Lemma E.5 then implies that for all

n,

ρt(pt;At|ht−1)− ρt(pnt ;Bn
t ∪ {pnt }|ht−1) =∑

s′0,...,s
′
t

∏t−1
k=0 µ

s′k−1

k (s′k)τs′k(pk, Ak)µ
s′t−1

t (s′t)
(
τs′t(pt, At)− τs′t(p

n
t , B

n
t ∪ {pnt })

)
∑

s′0,...,s
′
t−1

∏t−1
k=0 µ

s′k−1

k (s′k)τs′k(pk, Ak)
≥

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)µ
st−1

t (st)τst(pt, At)∑
s′0,...,s

′
t−1

∑
s′0,...,s

′
t−1

∏t−1
k=0 µ

s′k−1

k (s′k)τs′k(pk, Ak)
> 0.

Since the last line does not depend on n, this implies limn→∞ ρt(p
n
t ;Bn

t ∪{pnt }|ht−1) < ρt(pt;At|ht−1).
By definition of A∗t , this means At /∈ A∗t (ht−1).

(ii) =⇒ (i): Suppose At satisfies (ii). Consider any pt ∈ At, pnt →m pt, B
n
t →m Atr{pt}. Consider any

st−1 ∈ S(ht−1) and st ∈ suppµ
st−1

t . By (ii), we either have M(At, Ust) = {pt} or pt /∈ M(At, Ust). In
the former case, Ust(pt) > Ust(qt) for all qt ∈ Atr{pt}. But then, for all n large enough, linearity of Ust
implies Ust(p

n
t ) > Ust(q

n
t ) for all qnt ∈ Bn

t , i.e., τst(pt, At) = limn τst(p
n
t , B

n
t ∪ {pnt }) = 1. In the latter

case, Ust(pt) < Ust(qt) for some qt ∈ Atr{pt}. But then, for all n large enough, linearity of Ust implies
Ust(p

n
t ) < Ust(q

n
t ) for all qnt ∈ Bn

t such that qnt →m qt, i.e., τst(pt, At) = limn τst(p
n
t , B

n
t ∪ {pnt }) = 0.

Thus, for all st−1 ∈ S(ht−1) and st ∈ suppµ
st−1

t , we have τst(pt, At) = limn τst(p
n
t , B

n
t ∪ {pnt }).

Hence, the representation in Lemma E.5 implies that for all n sufficiently large,

ρt(p
n
t ;Bn

t ∪ {pnt }|ht−1) = ρt(pt;At|ht−1),

as required. �

J.2.4 Proof of Lemma E.4

Let k := max{n = 0 . . . , t− 1 : qn 6= q̂n} be the last entry at which dt−1 and d̂t−1 differ, where we set
k = −1 if qn = q̂n for all n = 0, . . . , t− 1. We prove the claim by induction on k.

Suppose first that k = −1, i.e., that dt−1 = d̂t−1. If λ0 > λ̂0, then the 0-th entry of λht−1 +
(1 − λ)dt−1 can be written as an appropriate mixture of the 0-th entry of λ̂ht−1 + (1 − λ̂)d̂t−1 with
(A0, p0); if λ0 ≤ λ̂0, then the 0-th entry of λht−1 + (1 − λ)dt−1 can be written as an appropriate
mixture of the 0-th entry of λ̂ht−1 +(1− λ̂)d̂t−1 with ({q0}, q0). In either case, Axiom B.2 implies that
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ρt(·;At|λ̂ht−1 + (1 − λ̂)d̂t−1) is unaffected after replacing the 0-th entry of λ̂ht−1 + (1 − λ̂)d̂t−1 with
the 0-th entry of λht−1 + (1 − λ)dt−1. Continuing this way, we can successively apply Axiom B.2 to
replace each entry of λ̂ht−1 + (1− λ̂)d̂t−1 with the corresponding entry of λht−1 + (1−λ)dt−1 without
affecting ρt. This yields the desired conclusion.

Suppose the claim holds whenever k ≤ m − 1 for some 0 ≤ m ≤ t − 1. We show that the claim
continues to hold for k = m. Note first that we can assume that

1

2
ht−1 +

1

2
dt−1,

1

2
ht−1 +

1

2
d̂t−1 ∈ Ht−1(At);

2

3
Bm +

1

3
{q̂m}, {

1

2
qm +

1

2
q̂m} ∈ supp qAm−1;

2

3
B̂m +

1

3
{qm}, {

1

2
qm +

1

2
q̂m} ∈ supp q̂Am−1,

(35)

where Bm := 1
2Am + 1

2{qm},B̂m := 1
2Am + 1

2{q̂m}, rm := 1
2pm + 1

2qm, and r̂m := 1
2pm + 1

2 q̂m.
Indeed, we can find a sequence of lotteries (`n)t−1

n=0 such that for all n = 1, . . . , t− 1

λnAn + (1− λn){on},
1

2
An +

1

2
{on}, λ̂nAn + (1− λ̂n){ôn},

1

2
An +

1

2
{ôn}, {on} ∈ supp `An−1;

2

3
Bm +

1

3
{ôm},

2

3
B̂m +

1

3
{om}, {

1

2
om +

1

2
ôm} ∈ supp `Am−1,

where on := 1
2qn + 1

2`n and ôn := 1
2 q̂n + 1

2`n. Letting ct−1 := ({on}, on)t−1
n=0 and ĉt−1 := ({ôn}, ôn)t−1

n=0,

we have that ct−1, ĉt−1 ∈ Dt−1, λht−1 + (1−λ)ct−1, λ̂ht−1 + (1− λ̂)ĉt−1 ∈ Ht−1(At), and the last entry
at which ct−1 and ĉt−1 differ is m. Moreover, repeated application of Axiom B.2 implies

ρt(·;At|λht−1 + (1− λ)dt−1) = ρt(·;At|λht−1 + (1− λ)ct−1);

ρt(·;At|λ̂ht−1 + (1− λ̂)d̂t−1) = ρt(·;At|λ̂ht−1 + (1− λ̂)ĉt−1).

Thus, we can replace dt−1 and d̂t−1 with ct−1 and ĉt−1 if need be and guarantee that (35) is satisfied.
Given (35), 1

2h
t−1 + 1

2d
t−1, 1

2h
t−1 + 1

2 d̂
t−1 ∈ Ht−1(At), so the base case of the proof implies

ρt(·;At|λht−1 + (1− λ)dt−1) = ρt(·;At|
1

2
ht−1 +

1

2
dt−1);

ρt(·;At|λ̂ht−1 + (1− λ̂)d̂t−1) = ρt(·;At|
1

2
ht−1 +

1

2
d̂t−1).

(36)

Also, (35) guarantees that ((1
2h

t−1 + 1
2d

t−1)−m, (
2
3Bm + 1

3{q̂m},
2
3rm + 1

3 q̂m)) and ((1
2h

t−1 +
1
2 d̂

t−1)−m, (
2
3B̂m + 1

3{qm},
2
3 r̂m + 1

3qm)) are well-defined histories in Ht−1(At). Thus, by Axiom B.2

ρt(·;At|
1

2
ht−1 +

1

2
dt−1) = ρt(·;At|(

1

2
ht−1 +

1

2
dt−1)−m, (

2

3
Bm +

1

3
{q̂m},

2

3
rm +

1

3
q̂m));

ρt(·;At|
1

2
ht−1 +

1

2
d̂t−1) = ρt(·;At|(

1

2
ht−1 +

1

2
d̂t−1)−m, (

2

3
B̂m +

1

3
{qm},

2

3
r̂m +

1

3
qm)).

(37)
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But note that(
2

3
Bm +

1

3
{q̂m},

2

3
rm +

1

3
q̂m

)
=

(
1

3
Am +

2

3
{1

2
qm +

1

2
q̂m},

1

3
pm +

2

3
(
1

2
qm +

1

2
q̂m)

)
=

(
2

3
B̂m +

1

3
{qm},

2

3
r̂m +

1

3
qm

)
.

Thus, ((1
2h

t−1 + 1
2d

t−1)−m, (
2
3Bm + 1

3{q̂m},
2
3rm + 1

3 q̂m)) is an entry-wise mixture of ht−1 with
the degenerate history et−1 := ((dt−1)−m, ({1

2qm + 1
2 q̂m},

1
2qm + 1

2 q̂m) and similarly ((1
2h

t−1 +
1
2 d̂

t−1)−m, (
2
3B̂m + 1

3{qm},
2
3 r̂m + 1

3qm)) is an entry-wise mixture of ht−1 with the degenerate his-

tory êt−1 := ((d̂t−1)−m, ({1
2qm + 1

2 q̂m},
1
2qm + 1

2 q̂m). But the last entry at which et−1 and êt−1 differ is
strictly smaller than m. Hence, applying the inductive hypothesis, we obtain

ρt(·;At|(
1

2
ht−1 +

1

2
dt−1)−m, (

2

3
Bm +

1

3
{qm},

2

3
rm +

1

3
qm)) =

ρt(·;At|(
1

2
ht−1 +

1

2
d̂t−1)−m, (

2

3
B̂m +

1

3
{qm},

2

3
r̂m +

1

3
qm)).

(38)

Combining (36), (37), and (38) yields the required equality

ρt(·;At|λht−1 + (1− λ)dt−1) = ρt(·;At|λ̂ht−1 + (1− λ̂)d̂t−1).

Finally, let d̂t−1 and λ̂ ∈ (0, 1] be the choices from Definition 9 such that ρh
t−1

t (·;At) :=
ρt(·;At|λ̂ht−1 + (1− λ̂)d̂t−1). Then the above implies that ρh

t−1

t (·;At) = ρt(·;At|λht−1 + (1− λ)dt−1),
as claimed. �

J.2.5 Proof of Lemma E.5

If ht
′−1 ∈ Ht′−1(At′), the claim is immediate from DREU2. So suppose ht

′−1 /∈ Ht′−1(At′). Let
λ ∈ (0, 1) and dt

′−1 = ({q`}, q`)t
′−1
`=0 ∈ Dt′−1 be the choices from Definition 10 such that λht

′−1 + (1−
λ)dt

′−1 ∈ Ht′−1(At′) and ρt′(pt′ , At′ |ht
′−1) := ρt′(pt′ , At′ |λht

′−1 + (1− λ)dt
′−1).

Note that for all k ≤ t′, sk ∈ Sk, and w ∈ RXk , we have pk ∈ M(M(Ak, Usk), w) if and only if
λpk + (1− λ)qk ∈M(M(λAk + (1− λ){qk}, Usk), w). Hence, τsk(pk, Ak) = τsk(λpk + (1− λ)qk, λAk +
(1 − λ){qk}). Thus, the claim follows from DREU2 applied to the history λht

′−1 + (1 − λ)dt
′−1 ∈

Ht′−1(At′). �

J.2.6 Proof of Lemma E.6

Let St(st−1) := suppµ
st−1

t . By DREU1, we can find a finite Yt ⊆ Xt such that (i) for any st ∈
St(st−1), Ust is non-constant over Yt; (ii) for any distinct st, s

′
t ∈ St(st−1), Ust 6≈ Us′t over Yt; and (iii)⋃

pt∈At supppt ⊆ Yt. By (i) and (ii) and Lemma E.2, we can find a menu Dt := {qstt : st ∈ St(st−1)} ⊆
∆(Yt) such that M(Dt, Ust) = {qstt } for all st ∈ St(st−1). Define bt :=

∑
y∈Yt

1
|Yt|δy ∈ ∆(Y ). For each

st ∈ St(st−1), pick zst ∈ argmaxy∈Y Ust and let gstt := δzst . By (i), we have Ust(g
st
t ) > Ust(bt) for all

st ∈ St(st−1). Hence, there exists α ∈ (0, 1) small enough such that for all st ∈ St(st−1), we have
Ust(q̂

st) > Ust(bt), where q̂st := αqstt + (1−α)gstt . Note that setting D̂ := {q̂stt : st ∈ St(st−1)}, we still
have M(D̂t, Ust) = {q̂stt }.

For each st ∈ St(st−1), pick some pt(st) ∈ M(At, Ust). For the “moreover” part, we can ensure
that pt(s

∗
t ) = p∗t . Fix any sequence (εn) from (0, 1) such that εn → 0. For each n and st ∈ St(st−1),

let pnt (st) := (1 − ε)pt(st) + εq̂stt . And for each rt ∈ At, let rnt := (1 − ε)rt + εbt. Finally, let
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Ant := {pnt (st) : st ∈ St(st−1)} ∪ {rnt : rt ∈ At}. Note that Ant →m At. Moreover, by construction, for
all st ∈ St(st−1) and n, we have M(Ant , Ust) = {pnt (st)}: Indeed, Ust(p

n
t (st)) > Ust(r

n
t ) for all rt ∈ At

since Ust(pt(st)) ≥ Ust(rt) and Ust(q̂
st
t ) > Ust(bt); and Ust(p

n
t (st)) > Ust(p

n
t (s′t)) for all s′t 6= st, since

Ust(pt(st)) ≥ Ust(pt(s′t)) and Ust(q̂
st
t ) > Ust(q̂

s′t
t ).

Since st−1 is the only state consistent with ht−1, Lemma E.3 implies that Ant ∈ A∗t (ht−1), as
required. Finally, for the “moreover” part, note that we ensured that pt(s

∗
t ) = p∗t . Hence pnt (s∗t )

constructed above has the desired property that pnt (s∗t ) →m p∗t and Ust(Ant , pnt (s∗t )) = {Us∗t } for all
n. �

J.3 Proof of Proposition I.1

J.3.1 “If” directions:

DREU: Consider any ht = (p0, A0, ..., pt, At) ∈ Ht. Then

µ(C(ht)) =
∑

FT (ω)∈ΠT

µ(FT (ω))µ

(
t⋂

k=0

{pk ∈M(M(Ak, Uk),Wk)}|FT (ω)

)

=
∑

Ft(ω)∈Πt

t∏
k=0

µ(Fk(ω) | Fk−1(ω))µ ({Wk ∈ N(M(Ak, Uk(ω)), pk)}|Fk(ω))

=
∑

Ft(ω)∈Πt

t∏
k=0

µ̂(φk(Fk(ω)) | φk−1(Fk−1(ω)))µ̂
(
{Ŵk ∈ N(M(Ak, Uk(ω)), pk)}|φk(Fk(ω))

)

=
∑

F̂t(ω̂)∈Π̂t

t∏
k=0

µ̂(F̂k(ω̂) | F̂k−1(ω))µ̂
(
{Ŵk ∈ N(M(Ak, Ûk(ω̂)), pk)}|F̂k(ω̂)

)

=
∑

F̂T (ω̂)∈Π̂T

µ̂(F̂T (ω̂))

(
t⋂

k=0

{pk ∈M(M(Ak, Ûk), Ŵk)} | F̂T (ω̂)

)
= µ̂(Ĉ(ht)),

where the second equality follows from properness of (Wt) and Ft-adaptedness of (Ut), the third
equality follows from assumptions (i) and (iii), the fourth equality from the fact that φt is a bijection
and assumption (ii), the fifth equality from the properness of (Ŵt) and F̂t-adaptedness of (Ût), and
the first and last equalities hold by definiton. Since D represents ρ and D̂ represents ρ̂, this implies

ρt(pt, At|ht−1) = µ(C(ht))
µ(C(ht−1))

= µ̂(Ĉ(ht))

µ̂(Ĉ(ht−1))
= ρ̂t(pt, At|ht−1). Thus, ρ̂ = ρ, as required.

BEU: By the “if” direction for DREU, D̂ is a DREU representation of ρ. It remains to show that
(D̂, (ût, δ̂t)) satisfies (1). From assumptions (ii), (iv), and (v) it is immediate that ÛT = ûT . Moreover,
for all t ≤ T − 1, and ω ∈ Ω, ω̂ ∈ φt(Ft(ω)), we have

αt(ω)Ût(ω̂)(z,At+1) = Ut(ω)(z,At+1)− βt(ω) = ut(ω)(z)− βt(ω) + δt(ω)Eµ[ max
pt+1∈At+1

Ut+1(pt+1) | Ft(ω)]

= αt(ω)ût(ω̂)(z)− δt(ω)Eµ[βt+1|Ft(ω)] + δt(ω)Eµ̂[αt+1 max
pt+1∈At+1

Ût+1(pt+1) | F̂t(ω̂)] + δt(ω)Eµ[βt+1|Ft(ω)]

= αt(ω)

(
ût(ω̂)(z) + δ̂t(ω̂)Eµ̂[ max

pt+1∈At+1

Ût+1(pt+1) | F̂t(ω̂)]

)
where the first equality follows from (ii), the second from (1) for (D, (ut, δt)), the third from (i), (ii),
and (v) (and the fact φt is a bijection), and the fourth by (iv). Thus, (D̂, (ût, δ̂t)) satisfies (1).
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BEB: By the “if” direction for BEU, (D̂, (ût, δ̂t)) is an BEU representation of ρ. It remains to
show that (D̂, (ût, δ̂t)) satisfies (2). For all t ≤ T − 1 and ω ∈ Ω, ω̂ ∈ φt(Ft(ω)), we have

α0(ω)ût(ω̂) + γt(ω) = ut(ω) = Eµ[UT |Ft(ω)] = α0(ω)Eµ̂[ÛT |F̂t(ω̂)] + Eµ[βT |Ft(ω)],

where the first equality follows from (iv), (v), and (vi), the second from (2) for (D, (ut, δt)), and the
third from (i), (ii), (iv), (vi) (and the fact that φt is a bijection). But since γt(ω) = Eµ[βT |Ft(ω)] by

(vii), the above implies that ût(ω̂) = Eµ̂[ÛT |F̂t(ω̂)], whence (D̂, (ût, δ̂t)) satisfies (2) with ˆ̃u := ÛT .

J.3.2 “Only if” directions:

DREU: Throughout the proof, for any t and Et = Ft(ω) ∈ Πt, we let Ut(Et) denote Ut(ω) and
likewise for Û ; this is well-defined by adaptedness. We construct the sequence (φt, αt, βt) inductively,
dealing with the base case t = 0 and the inductive step simultaneously.

Suppose t ≥ 0 and that we have constructed (φt′ , αt′ , βt′) satisfying (i)–(iii) for all t′ < t (disregard
the latter assumption if t = 0). If t > 0, fix any Et−1 = Ft−1(ω∗) ∈ Πt−1, let Êt−1 := φt−1(Et−1),
and let Πt(Et−1) := {Et = Ft(ω) ∈ Πt : Ft−1(ω) = Et−1} and Π̂t(Êt−1) := {Êt = F̂t(ω̂) ∈ Π̂t :
F̂t−1(ω̂) = Êt−1}. As in the proof of Lemma B.2, we can repeatedly apply Lemma E.2 to find a
separating history for Et−1 = Ft−1(ω∗), i.e., a history ht−1 = (B0, q0, . . . , Bt−1, qt−1) ∈ H∗t−1 such
that {ω ∈ Ω : qk ∈ M(Bk, Uk(ω))} = Fk(ω∗) for all k = 0, . . . , t − 1. By inductive hypothesis ht−1

is then also a separating history for Êt−1. Thus, by Lemma E.3 (and the translation to S-based
DREU in Proposition A.1), C(ht−1) = Et−1 and Ĉ(ht−1) = Êt−1. If t = 0, then in the following we
let Et−1 := Ω, Êt−1 := Ω̂, Πt(Et−1) := Π0, Π̂t(Et−1) := Π̂0, and we disregard all references to the
separating history.

Enumerate Πt(Et−1) = {Eit : i = 1, . . . ,m} with corresponding utilities U it := Ut(E
i
t) and

Π̂t(Êt−1) = {Êjt : j = 1, . . . , m̂} with corresponding utilities Û j0 := Ût(Ê
j
t ). Since (Ft, Ut) and

(F̂t, Ût) are both simple, we have µ(Eit) > 0 for all i and U it 6≈ U i
′
t for i 6= i′, and likewise µ̂(Êjt ) > 0 for

all j and Û jt 6≈ Û
j′

t for j 6= j′. Note that for every j there exists a unique i(j) such U
i(j)
t ≈ Û jt . Indeed,

if such an i(j) exists it is unique because all the U it represent different preferences. And the desired
i(j) exists, since otherwise by Lemma E.2, we can find a menu Bt = {qit : i = 1, . . . ,m} ∪ {q̂jt } such
that M(Bt, U

i
t ) = {qit} for each i and M(Bt, Û

j
t ) = {q̂jt }. We can additionally assume (by replacing

ht−1 with an appropriate mixture if need be) that ht−1 ∈ H∗t−1(Bt). Since D and D̂ both represent ρ,
we obtain

0 = µ[C(q̂jt , Bt)|Et−1] = ρt(q̂
j
t ;Bt|ht−1) = µ̂[Ĉ(q̂jt , Bt)|Êt−1) ≥ µ̂(Êjt |Êt−1) > 0,

a contradiction. Similarly, for every i, there exists a unique j(i) such that Û
j(i)
t ≈ U it . Thus, defining

φt : Πt(Et−1) → Π̂t(Êt−1) by φt(E
i
t) = Ê

j(i)
t yields a bijection. By construction, Ut(E

i
t) ≈ Ût(φt(E

i
t))

for all i, so we can find αt(E
i
t) ∈ R++ and β(Eit) ∈ R such that Ut(E

i
t) = αt(E

i
t)Ût(φt(E

i
t)) + β(Eit).

Defining α(ω) = α(Ft(ω)) and β(ω) = β(Ft(ω)) this yields Ft-measurable maps αt, βt : Et−1 → R
such that (ii) holds for all ω ∈ Et−1. Moreover, applying Lemma E.2 again, we can find a menu
Dt = {rit : i = 1, . . . , n} such that M(Dt, U

i
t ) = {rit} for each i. Again, slightly perturbing the

separating history ht−1 for Et−1 if need be, we can assume that ht−1 ∈ H∗t−1(Dt). Then by the

representation, µ(Eit |Et−1) = ρt(r
i
t;D

i
t|ht−1) = µ̂(φt(E

i
t)|Êt−1) for all i, yielding (i).

To show (iii), consider any pt ∈ At, where we can again assume ht−1 ∈ H∗t−1(1
2At + 1

2Dt).
Let Bi

t := {w ∈ RXt : pt ∈ M(M(At, Ut(E
i
t)), w)}. Note that by (ii), Bi

t = {w ∈ RXt : pt ∈
M(M(At, Ût(φt(E

i
t))), w)}. Thus, µ({Wt ∈ Bt}|Eit) = µ(C(pt, At)|Eit) and µ̂({Ŵt ∈ Bt}|φt(Eit)) =

28



µ̂(Ĉ(pt, At)|φt(Eit)). But since D and D̂ both represent ρ and by choice of Dt,

µ(Eit |Et−1)µ[C(pt, At)|Eit ] = µ[C(
1

2
pt +

1

2
rit,

1

2
At +

1

2
Dt)|Et−1] =

ρt(
1

2
pt +

1

2
rit;

1

2
At +

1

2
Dt|ht−1) =

µ̂[Ĉ(
1

2
pt +

1

2
rit,

1

2
At +

1

2
Dt)|Êt−1] = µ̂(φt(E

i
t)|Êt−1)µ̂[Ĉ(pt, At)|φt(Eit)],

which implies µ[C(pt, At)|Eit ] = µ̂[Ĉ(pt, At)|φt(Eit)], since by (i) we have µ(Eit |Et−1) = µ̂(φt(E
i
t)|Êt−1).

Thus, µ({Wt ∈ Bt}|Eit) = µ̂({Ŵt ∈ Bt}|φt(Eit)), as required.
Finally, note that the collection {Πt(Et−1) : Et−1 ∈ Πt−1} partitions Πt, and similarly {Π̂t(Êt−1) :

Êt−1 ∈ Π̂t−1} partitions Π̂t. Thus, applying the above construction for every Et−1 ∈ Πt−1 yields a
bijection φt : Πt → Π̂t and Ft-measurable maps αt : Ω → R++ and βt : Ω → R such that (i)–(iii) are
satisfied.

BEU: The “only if” part for DREU yields sequences (φt, αt, βt) such that (i)–(iii) are satisfied. It
remains to show that (iv) and (v) hold. Throughout the proof, for any Et = Ft(ω) ∈ Πt, we sometimes
use Ut(Et), δt(Et), αt(Et), βt(Et) to denote Ut(ω), δt(ω) αt(ω), βt(ω); this is well-defined since they
are Ft-measurable. We also let Ft−1(Et) := Ft−1(ω); this is well-defined since Ft(ω) = Ft(ω′) implies
Ft−1(ω) = Ft−1(ω′), as (Ft) is a filtration.

For (iv), fix any ω and t ≤ T − 1. Let Et := Ft(ω) and pick any At+1, Bt+1 and zt. Then

Ut(Et)(zt, At+1)− Ut(Et)(zt, Bt+1) = αt(Et)(Ût(φt(Et))(zt, At+1)− Ût(φt(Et))(zt, Bt+1))

= αt(Et)δ̂t(φt(Et))
∑

Êt+1∈Π̂t+1

µ̂(Êt+1|φt(Et))[max
At+1

Ût+1(Êt+1)−max
Bt+1

Ût+1(Êt+1)]

= αt(Et)δ̂t(φt(Et))
∑

Et+1∈Πt+1

µ̂(φt+1(Et+1)|φt(Et))[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))]

= αt(Et)δ̂t(φt(Et))
∑

Et+1∈Πt+1

µ(Et+1|Et)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))]

= αt(Et)δ̂t(φt(Et))
∑

Et+1 s.t. Ft(Et+1)=Et

µ(Et+1|Et)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))],

(39)

where the first equality holds by (ii), the second equality follows from (D̂, (ût, δ̂)) being a BEU repre-
sentation, the third equality from the fact that φt is a bijection, the fourth equality from (i), and the
fifth equality from the fact that µ(Ft+1(ω′)|Et) > 0 iff Ft(ω′) = Et.

At the same time, we have

Ut(Et)(zt, At+1)− Ut(Et)(zt, Bt+1)

= δt(Et)
∑

Et+1∈Πt+1

µ(Et+1|Et)[max
At+1

Ut+1(Et+1)−max
Bt+1

Ut+1(Et+1)

= δt(Et)
∑

Et+1∈Πt+1

µ(Et+1|Et)αt+1(Et+1)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))]

= δt(Et)
∑

Et+1 s.t. Ft(Et+1)=Et

µ(Et+1|Et)αt+1(Et+1)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))],

(40)
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where the first equality follows from (D, (ut, δt)) being a BEU representation, the second equality from
(ii), and the third equality from the fact that µ(Ft+1(ω′)|Et) > 0 iff Ft(ω′) = Et.

Combining (39) and (40), we have that for all At+1 and Bt+1,

δ̂t(φt(Et))
∑

Et+1 s.t. Ft(Et+1)=Et

µ(Et+1|Et)αt(Et)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))]

= δt(Et)
∑

Et+1 s.t. Ft(Et+1)=Et

µ(Et+1|Et)αt+1(Et+1)[max
At+1

Ût+1(φt+1(Et+1))−max
Bt+1

Ût+1(φt+1(Et+1))].

(41)

Since (F̂t, Ût) is simple and φt is a bijection, Ût+1(φt+1(Et+1)) 6≈ Ût+1(φt+1(E′t+1)) for all dis-
tinct Et+1, E

′
t+1 with Ft(Et+1) = Et = Ft(E′t+1). So by Lemma E.2, we can find a menu

At+1 := {qEt+1

t+1 : Ft(Et+1) = Et} such that for all Et+1 with Ft(Et+1) = Et we have

M(At+1, Ût+1(φt+1(Et+1)) = {qEt+1

t+1 }. Let E∗t+1 := Ft+1(ω) and let Bt+1 = At+1 r {qE
∗
t+1

t+1 }. Then

in (41), [maxAt+1 Ût+1(φt+1(Et+1)) − maxBt+1 Ût+1(φt+1(Et+1))] 6= 0 iff Et+1 = E∗t+1. Hence, (41)

implies δ̂t(φt(Et))
δt(Et)

αt(ω) = δ̂t(φt(Et))
δt(Et)

αt(Et) = αt+1(E∗t+1) = αt+1(ω). Since this is true for all t ≤ T − 1,

(iv) follows.
For (v), note that the claim for T is immediate from (ii) and the fact that UT = uT , ÛT = ûT .

Next, fix any ω ∈ Ω, ω̂ ∈ φt(Ft(ω)), t ≤ T − 1, and (z, {pt+1}). Then

Ut(ω)(z, {pt+1}) = ut(ω)(z) + δt(ω)Eµ[Ut+1(pt+1)|Ft(ω)]

= ut(ω)(z) + αt(ω)δ̂t(ω̂)Eµ̂[Ût+1(pt+1)|F̂t(ω̂)] + δt(ω)Eµ[βt+1|Ft(ω)],
(42)

where the first equality follows from (D, (ut, δt)) being an evolving utility representation and the second
equality from (i), (ii), (iv) (and the fact that φt is a bijection). At the same time, we have

Ut(ω)(z, {pt+1}) = αt(ω)Ût(ω̂)(z, {pt+1}) + βt(ω)

= αt(ω)ût(ω)(z) + αt(ω)δ̂t(ω̂)Eµ̂[Ût+1(pt+1)|F̂t(ω̂)] + βt(ω),
(43)

where the first equality follows from (ii) and the second equality from (D̂, (ût, δ̂t)) being an evolving
utility representation. Combining (42) and (43) yields the desired claim.

BEB: The “only if” part for BEU yields sequences (φt, αt, βt) such that (i)–(v) are satisfied. It
remains to show that (vi) and (vii) hold.

For (vi), Fix any ω ∈ Ω and t. Take `, ` from Condition D.1 (Uniform Ranked Pair). Then based
on the representation one can verify that ut(ω)(`) > ut(ω)(`) holds by following the similar line as in
Lemma D.1.

Note that by (2) and iterated expectations, we have

Ut(ω)(`t, `t+1, At+2) = ut(ω)(`t) + δt(ω)

(
ut(ω)(`t+1) + E[δt+1 max

At+2

Ut+2|Ft(ω)]

)
for any (`t, `t+1, At+2). Hence Ut(ω)(`, `, At+2) − Ut(ω)(η` + (1 − η)`, η` + (1 − η)`, At+2) = 0 if and
only if η = 1

1+δt(ω) .

Now pick any ω̂ ∈ φt(Ft(ω)). Then since (D̂, (ût, δ̂t)) is also a BEU representation, by the same
reasoning as above we have that Ût(ω̂)(`, `, At+2)− Ût(ω̂)(η`+ (1− η)`, η`+ (1− η)`, At+2) = 0 if and
only if η = 1

1+δ̂t(ω̂)
. By (ii), this implies that δt(ω) = δ̂t(ω̂), proving (vi).
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Finally (vii) is verified by observing that for any t, ω, and ω̂ ∈ φt(Ft(ω)),

γt(ω) = ut(ω)− αt(ω)ût(ω̂) = Eµ[uT |Ft(ω)]− αt(ω)Eµ̂[ûT |F̂t(ω̂)] = Eµ[βT |Ft(ω)],

where the first equality uses (v), the second uses (2), and the third uses (i), (v) and αt(ω) = αT (ω)
(which follows from (iv) and (vi)). �

J.4 Proof of Proposition I.2

(i) =⇒ (ii): Suppose that ρZ admits a BEU representation (Ω,F∗, µ, (Ft, Ut,Wt, ut, δt)) and satisfies

Axioms I.1 and I.2. For each t, we can pick a finite collection Ut = {u1
t , . . . , u

mt
t } of ordinally distinct

felicities such that [Ut] = [{ut(ω) : ω ∈ Ω}]. Condition D.1 (Uniformly ranked pairs) ensures that these
felicities are non-constant. Let U := {u1, . . . , um}, where m = m0 and ui = ui0 for all i = 1, . . . ,m.
Define ξ ∈ ∆◦(U) by ξ(ui) := µ(u0(ω) ≈ ui) for all i.

By Axiom I.1, for each degenerate consumption history dt−1
Z , ρZ0 and ρZt (·|dt−1

Z ) represent the same
static stochastic choice rule over finite menus of consumption lotteries without ties. Hence, the same
argument in the proof of Proposition I.1 implies that after suitable relabeling we can assume that
mt = m and uit ≈ ui for all i and µ(ut(ω) ≈ ui) = ξ(ui). Thus, property (i) of the Markov evolving
utility representation is satisfied.

Next, we construct a menu L = {`1, . . . , `m} ∈ L∗0 such that ui(`i) > ui(`j) for all i 6= j and such
that each (L, `i) is a consumption atom. Indeed, since the ui are nonconstant and ordinally distinct,
Lemma E.2 yields a menu L = {`1, . . . , `m} ∈ L∗0 such that ui(`i) > ui(`j) for all i 6= j; moreover, up
to mixing all `i with some full-support lottery ` ∈ ∆◦(Z), we can assume that L ⊆ ∆◦(Z). By the
representation, ρ0(`i, L) = µ(u0(ω) ≈ ui) > 0 for all i. Finally, suppose that L′ ∈ L∗ and L′ ⊇ L.
Then either `i ∈ M(L′, ui), in which case ρ0(`i, L′) = µ(u0(ω) ≈ ui) = ρ0(`i, L); or `i /∈ M(L′, ui), in
which case ρ0(`i, L′) = 0 since uj(`i) < uj(`j) for all j 6= i. Thus, each (L, `i) is a consumption atom.

Now, consider any t ≤ T − 1 and any u0, . . . , ut+1 ∈ U . For each s = 0, . . . , t+ 1, let `s denote the
maximizer of us in menu L that we constructed in the previous paragraph. Then for any degenerate
consumption history dt−1

Z , we have

µ(ut+1(ω) ≈ ut+1|u0(ω) ≈ u0, . . . , ut−1(ω) ≈ ut−1, ut(ω) ≈ ut) =

ρZt+1(`t+1, L | L, `0, . . . , L, `t−1, L, `t) =

ρZ1 (`t+1, L | L, `t) = ρZt+1(`t+1, L | dt−1
Z , Lt, `t) =

µ(ut+1(ω) ≈ ut+1|ut(ω) ≈ ut),

where the first and fourth equality hold by the BEU representation of ρ together with the fact that
M(L, ui) = {`i} for all i, and the second and third equality follow from Axiom I.2 and the fact
that (L, `t) is a consumption atom. This establishes property (ii) of the Markov evolving utility
representation.

Finally, set Πi,j := µ(u1(ω) ≈ uj |u0(ω) ≈ ui) for all i, j = 1, . . . ,m. Note that this yields a
right stochastic matrix Π, because

∑
j Πi,j = 1 by part (i) of Definition 13 that we established above.

Consider any i, j = 1, . . . ,m. Then letting L, `i and `j be as constructed in the third paragraph, we
have for any degenerate consumption history dt−1

Z that

µ(ut+1(ω) ≈ uj |ut(ω) ≈ ui) = ρZt+1(`j , L | dt−1
Z , L, `i) =

ρZ1 (`j , L | L, `i) = µ(u1(ω) ≈ uj |u0(ω) ≈ ui) = Πi,j
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where the first and third equalities again follow from the representation and the construction of L and
the second equality holds by Axiom I.2 and the fact that (L, `i) is a consumption atom. This proves
property (iii) of the Markov evolving utility representation.

(ii) =⇒ (i): Suppose that ρ admits a Markov evolving utility representation. To show that Ax-

iom I.1 holds, consider any degenerate consumption history dt−1
Z , L ∈ L∗0 ∩ L∗t (d

t−1
Z ), ` ∈ L. Then

ρZ0 (`, L) = µ{ω : ` ∈M(L, u0(ω))} =

ξ{ui ∈ U : ` ∈M(L, ui)} = µ{ω : ` ∈M(L, ut(ω))} = ρZt (`, L|dt−1
Z ),

where the first and final equalities hold by the BEU representation and the fact that L is without
ties and dt−1

Z is degenerate, and the second and third equalities hold by property (i) of the Markov
evolving utility representation.

To establish Axiom I.2, consider any consumption atom (L, `). We first show that there exists
ui ∈ U such that µ(` ∈ M(L, ut(ω)) = µ(ut(ω) ≈ ui) for all t. Since L is without ties, it suffices
to show that there is a unique i ∈ {1, . . . ,m} such that ` ∈ M(L, ui). To see this, note that since
µ(` ∈M(L, u0(ω)) = ρ0(`, L) > 0, there exists ui such that ` ∈M(L, ui). Suppose for a contradiction
that ` ∈ M(L, uj) for some j 6= i. Since ui 6≈ uj , we can find m ∈ ∆(Z) such that ui(`) > ui(m) and
uj(`) < uj(m).83 Then, letting M = L∪{m}, we have that ξ(ui) ≤ ρ0(`,M) ≤ ρ0(`, L)− ξ(uj). Thus,
ρ0(`,M) /∈ {ρ0(`, L), 0}, contradicting the fact that (L, `) is a consumption atom.

Now, consider any consumption history ht−1
Z without ties. For any L′ ∈ L∗t (ht−1

Z ) and `′ ∈ L′, we
have

ρZ1 (`′, L′|L, `) = µ(`′ ∈M(L′, u1(ω)) | u0(ω) ≈ ui) =∑
{j:`′∈M(L′,uj)}

µ(u1(ω) ≈ uj | u0(ω) ≈ ui) =
∑

{j:`′∈M(L′,uj)}

Πi,j

=
∑

{j:`′∈M(L′,uj)}

µ(ut+1(ω)) ≈ uj | ut(ω) ≈ ui) = µ(`′ ∈M(L′, ut+1(ω)) | ut(ω) ≈ ui),

where the second and final equality follow from property (i) of the Markov evolving utility represen-
tation and the fact that L′ is without ties, and the third and fourth equality follow from property (iii)
of the Markov evolving utility representation.

Moreover, letting U(ht−1
Z ) denote the set of all sequences of felicity realizations from U that are

consistent with history ht−1
Z ,84 we have

ρZt+1(`′, L′|ht−1
Z , L, `) = µ(`′ ∈M(L′, ut+1(ω)) | ut(ω) ≈ ui, ω ∈ C(ht−1

Z )) =∑
(u0,...,ut−1)∈U(ht−1

Z ) µ(`′ ∈M(L′, ut+1(ω)) | ut(ω) ≈ ui,
⋂t−1
s=0{us(ω) ≈ us})µ(ut(ω) ≈ ui,

⋂t−1
s=0{us(ω) ≈ us})∑

(u0,...,ut−1)∈U(ht−1
Z ) µ(ut(ω) ≈ ui,

⋂t−1
s=0{us(ω) ≈ us}

= µ(`′ ∈M(L′, ut+1(ω)) | ut(ω) ≈ ui),

where the third equality follows from property (ii) of the Markov evolving utility representation. Com-

83Indeed, since ui 6≈ uj , we can find `i, `j such that ui(`i) > ui(`j) and uj(`j) > uj(`i). Then for small enough
ε > 0, m := `+ ε(`j − `i) is a well-defined consumption lottery in ∆(Z), as ` ∈ ∆◦(Z). Moreover, ui(`) > ui(m)
and uj(`) < uj(m), as required.

84More formally, since ht−1Z is a consumption history without ties and by property (i) of the Markov rep-
resentation, we can find U(ht−1Z ) ⊆ U t such that C(ht−1Z ) = {ω : ∃(u0, . . . , ut−1) ∈ U(ht−1) with us(ω) ≈
us for all s = 0, . . . , t− 1}.
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bining the previous two paragraphs, we have ρZ1 (`′, L′|L, `) = ρZt+1(`′, L′|ht−1
Z , L, `). This establishes

Axiom I.2. �
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