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Abstract

Causal relationships in econometrics are typically based on the concept of predictability
and are established in terms of tests for Granger causality. These causal relationships are
susceptible to change, especially during times of financial turbulence, making the real-time
detection of instability an important practical issue. This paper develops a test for detecting
changes in causal relationships based on a recursive rolling window, which is analogous to the
procedure used in recent work on financial bubble detection. The limiting distribution of the
test takes a simple form under the null hypothesis and is easy to implement in conditions of
homoskedasticity, conditional heteroskedasticity and unconditional heteroskedasticity. Sim-
ulation experiments compare the efficacy of the proposed test with two other commonly
used tests, the forward recursive and the rolling window tests. The results indicate that
both the rolling and the recursive rolling approaches offer good finite sample performance
in situations where there are one or two changes in the causal relationship over the sample
period, although the performance of the rolling window algorithm seems to be the best. The
testing strategies are illustrated in an empirical application that explores the causal impact
of the slope of the yield curve on real economic activity in the United States over the period
1985–2013.
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1 Introduction

Causality in econometrics typically relies on economic theory to justify the direction of causality

between variables and to inform empirical testing of the causal hypotheses. In many situations,

however, there is no relevant theoretical foundation for determining the causal ordering between

variables that appear to be jointly determined. Even in celebrated cases, such as the money-

income causality debate, there are difficulties in interpretation, test execution, and treatment

of additional relevant variables. In these instances an empirical view of the concept of causality

based on Granger (1969, 1988) has enjoyed widespread use in econometrics because of its eminent

pragmatism. A variable X causes a variable Y in Granger’s sense if taking into account past

values of X enables better predictions to be made for Y, other things being equal. The popularity

of Granger causality stems in part from the fact that it is not specific to a particular structural

model but depends solely on the stochastic nature of variables, with no requirement to delimit

some variables as dependent variables and others as independent variables.

It is well known that, among other things, testing for Granger causality is sensitive to the

time period of estimation. The most well studied problems in this area are the money-income

relationship (Stock and Watson, 1989; Thoma, 1994; Swanson, 1998; Psaradakis et al., 2005)

and the energy consumption and economic output relationship (Stern, 2000, Balcilar et al.,

2010, and Arora and Shi, 2015), where causal links are found in various subsamples. In view of

the increasing importance of the financial sector in economic modeling, there is now a growing

literature concerned with the detection of changes in patterns of systemic risk. For example,

Billio et al. (2012) and Chen et al. (2013) use Granger causality to explore the causal links

between banks and insurance companies and show that banks are a source of systemic risk to

the rest of the system while insurers are victims of shocks. Their approach necessarily requires

that crisis periods be defined exogenously. Other empirical approaches to systemic risk are

similarly hampered by the need to choose sample periods appropriately (Acharya et al., 2011;

Diebold and Yilmaz, 2013). These limitations point to the need for an endogenous approach to

determining and dating changes in Granger causality.

Several methods have been employed in the literature to deal with the time-varying nature

of causal relationships. These methods include a forward expanding window version of the

Granger causality test (Thoma, 1994, and Swanson, 1998), a rolling window Granger causality

test (Swanson, 1998, Balcilar et al., 2010, and Arora and Shi, 2015), and a Markov-switching
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Granger causality test (Psaradakis et al., 2005). The recent literature for detecting and dating

financial bubbles (Phillips and Yu, 2011; Phillips, Wu and Yu, 2011; Phillips, Shi and Yu, 2015a,

2015b; Leybourne, Kim and Taylor, 2007) recognises that in order to be useful to policymakers

econometric methods for detecting changes in economic and financial structures must have at

least two qualities. These qualities are a good positive detection rate, in order to ensure early and

effective policy implementation, and a low false detection rate so that unnecessary interventions

are avoided.

This paper proposes a new time-varying Granger causality test. The recursive method we

implement was first proposed in Phillips, et al. (2015a, 2015b) for conducting real time detection

of financial bubbles. The procedure involves intensive recursive calculations of the relevant test

statistic, which in the current setting is a Wald test for Granger causality,1 for all subsamples

in a backward expanding sample sequence in which the final observation of all samples is the

(current) observation of interest. Inference regarding the presence of Granger causality for this

observation rely on the supremum taken over the values of all the test statistics in the entire

recursion. As the observation of interest moves forward through the sample, the subsamples in

which the recursive calculations are performed accordingly move forward and the whole sequence

of calculations rolls ahead. This procedure is therefore called a recursive rolling algorithm.

Asymptotic distributions under the null hypothesis of no Granger causality are derived for

the subsample Wald statistic process for forward and rolling window versions of the tests and

the subsample sup Wald statistic process for the recursive rolling window procedure. Limit

theory under the assumption of conditional (and hence unconditional) homoskedasticity is pro-

vided first. To take potential influences of conditional and unconditional heteroskedasticity into

account, heteroskedastic consistent versions of the Wald and sup Wald statistics are proposed.

The asymptotic distributions of these test statistics are then derived under the assumption

of conditional heteroskedasticity of unknown form and a general form of non-stochastic time-

varying unconditional heteroskedasticity. The major result for practical work that emerges from

this limit theory is that the robust test statistics have the same pivotal asymptotics under

homoskedasticity, conditional heteroskedasticity and unconditional heteroskedasticity.

The finite sample performance of forward, rolling and recursive rolling approaches in the

context of Granger causality testing are then examined in detail. The data generating process

employed in the simulations is a bivariate vector autoregressive (VAR) model, so that third

1In the original bubble-detection context the relevant test statistic was a right-sided unit root test.
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variable causal effects are not taken into account in the present study. Under the alternative

hypothesis, one or more episodes of unidirectional Granger causality are specified. In the simu-

lation study, the means and standard deviations of the false detection proportion under the null

hypothesis and the successful detection rate as well as the estimation accuracy of the causality

switch-on and switch-off dates under the alternative hypothesis are reported. The false detection

proportion is defined as the ratio between the number of false detections and the total number of

hypotheses, while the successful detection rate is calculated as the proportion of samples finding

the correct causality episode.

The simulation results suggest that both the recursive rolling and the rolling window ap-

proaches have good finite sample performance, with slightly higher false detection proportions

but much higher correct detection rates than the forward expanding method. On the evidence

presented here, the forward expanding window approach is identified as the least preferred

method while the rolling window algorithm emerges as the most preferred option. Although the

false detection rate of the rolling window test is usually slightly higher than that of the recursive

rolling method, the difference is negligible. More importantly, the rolling window test provides

a much higher successful detection rate and more accurate estimates of the change origination

and termination dates than the recursive rolling window approach, particularly when there is

more than one causal episodes in the sample.

These causality detection methods are used to investigate the causal impact of the yield

curve spread on real economic activity in the United States over the period 1985 - 2013. The

ability of the yield curve to predict real activity is a well-researched area in empirical macroe-

conomics. Some evidence of its predictive capability was first provided in the late 1980s and

1990s for various industrialized countries. The empirical literature also suggests that predictive

relationships between the slope of the yield curve and macroeconomic activity have not been

constant over time (Haubrich and Dombrosky,1996; Dotsey, 1998; Stock and Watson, 1999;

Estrella, Rodrigues and Schich, 2003; Chauvet and Potter, 2005; Giacomini and Rossi, 2006;

Benati and Goodhart, 2008; Chauvet and Senyuz, 2009; Kucko and Chinn, 2009; Hamilton,

2010). The test procedures developed in the present paper provide a natural mechanism for

causal detection in which fragilities in a causal relationship can be captured through intensive

subsample data analysis of the type recommended here.

The paper is organized as follows. Section 2 reviews the concept of Granger causality and

describes the forward expanding window, rolling window, and the new recursive rolling Granger
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causality tests. Section 3 gives the limit distributions of these test statistics under the null

hypothesis of no causality and assumptions of conditional homoskedasticity, conditional het-

eroskedasticity and unconditional heteroskedasticity. Section 4 reports the results of simulations

investigating performance characteristics of the various tests and dating strategies. In Section

5, the three procedures are used to investigate the causal impact of the yield curve spread on

real economic activity in the United States over the last three decades. Section 6 is a brief

conclusion. Proofs are given in the Appendices.

2 Identifying Changes in Causal Relationships

Consider the bivariate Gaussian VAR(p) model given by

y1t = φ10 +

p∑
i=1

φ11iy1 t−i +

p∑
i=1

φ12iy2 t−i + ε1t (1)

y2t = φ20 +

p∑
i=1

φ21iy1 t−i +

p∑
i=1

φ22iy2 t−i + ε2t, (2)

where y1t and y2t are dependent variables, p is the lag length and ε1t and ε2t are finite variance,

martingale difference disturbances. If y2t is important in predicting future values of y1t over

and above lags of y1t alone, then y2t is said to cause y1t in Granger’s sense, and vice versa. In

equation (1), the null (non causal) hypotheses of interest are

H0 : y2t 9 y1t φ121 = φ122 = φ123 = · · · = φ12p = 0
H0 : y1t 9 y2t φ211 = φ212 = φ213 = · · · = φ21p = 0 ,

where the symbol 9 reads “does not Granger cause”.

To establish notation, the unrestricted VAR(p) may be written as

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (3)

or in multivariate regression format simply as

yt = Πxt + εt, t = 1, ..., T (4)

where yt = (y1t, y2t)
′, xt =

(
1,y′t−1,y

′
t−2, · · · ,y′t−p

)′
, and Π2×(2p+1) = [Φ0,Φ1, . . . ,Φp]. The

ordinary least squares (or unrestricted Gaussian maximum likelihood) estimator Π̂ has standard
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limit theory under stationarity of the system (3) given by

√
T
(

Π̂−Π
)

L−→ N(0,ΣΠ), (5)

where the variance matrix (for the row stacking of Π̂) is ΣΠ = Ω ⊗ Q−1, with Ω = E (εtε
′
t),

and Q = E (xtx
′
t) . In (5) and the remainder of the paper the notation

L−→ is used to signify

convergence in distribution in Euclidean space. Let ε̂t = yt − Π̂xt be the regression residuals,

Ω̂ = T−1
∑T

t=1 ε̂tε̂
′
t be the usual least squares estimate of the error covariance matrix Ω, and

X′ = [x1, ...,xT ] be the observation matrix of the regressors in (4).

The Wald test of the restrictions imposed by the null hypothesis H0 : y2t 9 y1t has the

simple form

W =
[
R vec(Π̂)

]′ [
R
(

Ω̂⊗
(
X′X

)−1
)

R′
]−1 [

R vec(Π̂)
]
, (6)

where vec(Π̂) denotes the (row vectorized) 2 (2p+ 1)×1 coefficients of Π̂ and R is the p×2(2p+1)

selection matrix

R =


0 0 1 0 0 · · · 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
. . .

...
...

0 0 0 0 0 · · · 1 0 · · · 0 0

 .
Each row of R picks one of the coefficients to set to zero under the non-causal null hypothesis.

In the present case these are the p coefficients on the lagged values of y2t in equation (1),

φ12,1 · · ·φ12,p. Under the null hypothesis and assumption of conditional homoskedasticity, the

Wald test statistic is asymptotically χ2
p, with degrees of freedom corresponding to the number

of zero restrictions being tested.

As indicated in the introductory remarks, there is ample reason to expect causal relationships

to change over the course of a time series sample. Any changes in economic policy, regulatory

structure, governing institutions, or operating environments that impinge on the variables y1t

and y2t may induce changes in causal relationships over time. In these circumstances, testing

that is based on the entire sample using a statistic like (6) averages the sample information and

inevitably destroys potentially valuable economic intelligence concerning the impact of changes

in policy or structures. Testing for Granger casualty in exogenously defined subsamples of the

data does provide useful information but does not enable the data to reveal the changes or

change points. Consequently, the ultimate objective is to conduct tests that allow the change

points to be determined (and hence identified) endogenously in the sample data.
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Thoma (1994) and Swanson (1998) provide early attempts to isolate changes in causal re-

lationships using forward expanding and rolling window Wald tests. Let f be the (fractional)

observation of interest and f0 be the minimum (fractional) window size required to estimate

the model. Both recursive tests suggest computing a Wald statistic of the null hypothesis

H0 : y2t 9 y1t for each observation from [Tf0] to T obtaining the full sequence of test statistics.

The difference between these two procedures lies in the starting point of the regression used to

calculate the Wald statistics. The ending points of the regressions (f2) of both procedures are on

the observation of interest, f2 = f . For the Thoma (1994) procedure, the starting point of the

regression (f1) is fixed on the first available observation. As the observation of interest f moves

forward from f0 to 1, the regression window size expands (fractionally) from f0 to 1 and hence

is referred to as a forward expanding window Wald test. In contrast, the regression window size

of the rolling procedure is a fixed constant. As the observation of interest (f and hence f2) rolls

forward from f0 to 1, the starting point follows accordingly, maintaining a fixed distance from

f2. A significant change in causality is detected when an element of the Wald statistic sequence

exceeds its corresponding critical value, so that the origination (termination) date of a change

in causality is identified as the first observation whose test statistic value exceeds (goes below)

its corresponding critical value.

While it is possible to use the recursive Wald statistics computed in this fashion to document

any subsample instability in causal relationships, conclusions drawn on the basis of this approach

may be incomplete. Drawing from the recent literature on dating multiple financial bubbles

(Phillips, Shi and Yu, 2015a, 2015b), this paper proposes a test that is based on the supremum

norm (sup) of a series of recursively calculated Wald statistics as follows. For each (fractional)

observation of interest (f ∈ [f0, 1]), the Wald statistics are computed for a backward expanding

sample sequence. As above, the end point of the sample sequence is fixed at f . However, the

starting point of the samples extends backwards from (f − f0), which is the minimum sample size

to accommodate the regression, to 0. The Wald statistic obtained for each subsample regression

is denoted by Wf2 (f1) and the sup Wald statistic is defined as

SWf (f0) = sup {Wf2 (f1) : f1 ∈ [0, f2 − f0] , f2 = f} .

Heteroskedastic consistent Wald and sup Wald statistics are also proposed in the next section.

Both the forward expanding and rolling window procedures are special cases of the new procedure
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with f1 fixed at value zero and f1 = f2 − f0 respectively.2 Importantly, all three procedures

rely only on past information and can therefore be used for real-time monitoring. The added

flexibility obtained by relaxing f1 allows the procedure to search for the optimum starting point

of the regression for each observation (in the sense of finding the largest Wald statistic). This

flexibility accommodates re-initialization in the subsample to accord with (and thereby help to

detect) any changes in structure or causal direction that may occur within the full sample.

Let fe and ff denote the origination and termination points in the causal relationship. These

are estimated as the first chronological observation that respectively exceed or fall below the

critical value. In a single switch case, the dating rules are giving by the following crossing times:

Forward : f̂e = inf
f∈[f0,1]

{f : Wf (0) > cv} and f̂f = inf
f∈[f̂e,1]

{f : Wf (0) < cv} , (7)

Rolling : f̂e = inf
f∈[f0,1]

{f : Wf (f − f0) > cv} and f̂f = inf
f∈[f̂e,1]

{f : Wf (f − f0) < cv} , (8)

Recursive Rolling : f̂e = inf
f∈[f0,1]

{f : SWf (f0) > scv} and f̂f = inf
f∈[f̂e,1]

{f : SWf (f0) < scv} ,

(9)

where cv and scv are the corresponding critical values of the Wf and SWf statistics. Now

suppose there are multiple switches in the sample period. The origination and terminations of

the ith causal relationship are denoted by fie and fif for successive episodes i = 1, 2, . . . , I and

the estimation of dates associated with the first episode (f1e and f1f ) are exactly the same as

those for the single switch case. For i ≥ 2, fie and fif are estimated as follows:

Forward : f̂ie = inf
f∈[f̂i−1t,1]

{f : Wf > cv} and f̂if = inf
f∈[f̂ie,1]

{f : Wf < cv} , (10)

Rolling : f̂ie = inf
f∈[f̂i−1t,1]

{f : Wf (f − f0) > cv} and f̂if = inf
f∈[f̂ie,1]

{f : Wf (f − f0) < cv}

(11)

Recursive Rolling : f̂ie = inf
f∈[f̂i−1t,1]

{f : SWf (f0) > scv} and f̂if = inf
f∈[f̂ie,1]

{f : SWf (f0) < scv} .

(12)
2It is assumed that the rolling window size equals f0.
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3 Asymptotic Distributions

The notation introduced in the previous section is now used for the general multivariate case,

which allows both for changing coefficients in subsamples of the data and for changing (fractional)

sample sizes in the asymptotic theory.

Let ‖·‖ denote the Euclidean norm, ‖.‖p the Lp-norm so that ‖x‖p = (E ‖x‖p)1/p , and

Ft = σ {εt, εt−1..} be the natural filtration. Consider an n× 1 vector of dependent variables yt

whose dynamics follow a VAR(p) given by

yt = Φ0 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt, (13)

with constant coefficients over the subsample t = bTf1c, . . . , bTf2c. The sample size in this

regression is Tw = [Tfw] where fw = f2 − f1 ∈ [f0, 1] for some fixed f0 ∈ (0, 1).

Assumption (A0): The roots of
∣∣In − Φ1z − Φ2z

2 − · · · − Φpz
p
∣∣ = 0 lie outside the unit circle.

Under assumption A0, yt has a simple moving average (linear process) representation in

terms of the past history of εt

yt = Φ̃0 + Ψ (L) εt,

where Ψ (L) =
(
In − Φ1L− Φ2L

2...− ΦpL
p
)−1

=
∑∞

i=0 ΨiL
i with ‖Ψi‖ < Cθi for some θ ∈

(0, 1) and Φ̃0 = Ψ (1) Φ0. The model can be written in regression format as

yt = Πf1,f2xt + εt, (14)

in which xt =
(
1,y′t−1,y

′
t−2, · · · ,y′t−p

)′
and Πf1,f2 = [Φ0,Φ1, . . . ,Φp].

The ordinary least squares (or Gaussian maximum likelihood with fixed initial conditions)

estimator of the autoregressive coefficients is denoted by Π̂f1,f2 and defined as

Π̂f1,f2
n×(np+1)

=

 [Tf2]∑
t=[Tf1]

ytx
′
t

 [Tf2]∑
t=[Tf1]

xtx
′
t

−1

.

Let k = np + 1 and let π̂f1,f2 ≡ vec
(

Π̂f1,f2

)
denote the (row vectorized) nk × 1 coefficients

resulting from an OLS regression of each of the elements of yt on xt for a sample running from

9



[Tf1] to [Tf2] given by

π̂f1,f2 =
[
π̂1,f1,f2 π̂2,f1,f2 . . . π̂n,f1,f2

]′
,

in which π̂i,f1,f2 =
[∑[Tf2]

t=[Tf1] yitx
′
t

] [∑[Tf2]
t=[Tf1] xtx

′
t

]−1
. It follows that

π̂f1,f2 − πf1,f2 =

In ⊗
[Tf2]∑
t=[Tf1]

xtx
′
t

−1  [Tf2]∑
t=[Tf1]

ξt

 ,
where πf1,f2 denotes the corresponding population coefficients and ξt ≡ εt ⊗ xt. The cor-

responding estimate of the residual variance matrix Ω is Ω̂f1,f2 = T−1
w

∑[Tf2]
t=[Tf1] ε̂tε̂

′
t, where

ε̂′t = [ε̂1t, ε̂2t, . . . , ε̂nt] and ε̂it = yit − x′tπ̂i,f1,f2 .

The primary concern is the distribution of the Wald test for causality under the null hy-

pothesis. In this instance, the coefficient matrix Πf1,f2 has constant coefficients for the entire

sample [f1, f2]. The null hypothesis for the causality test falls in the general framework of linear

hypotheses of the form H0 : Rπf1,f2 = 0, where R is a coefficient restriction matrix (of full row

rank d). Given (f1, f2), the usual form of the Wald statistic for this null hypothesis is

Wf2 (f1) = (Rπ̂f1,f2)′

R

Ω̂f1,f2 ⊗

 [Tf2]∑
t=[Tf1]

xtx
′
t

−1R′


−1

(Rπ̂f1,f2) . (15)

The heteroskedasiticity consistent version of the Wald statistic is denoted by W ∗f2 (f1) and is

defined as

W ∗f2 (f1) = Tw (Rπ̂f1,f2)′
[
R
(
V̂−1
f1,f2

Ŵf1,f2V̂
−1
f1,f2

)
R′
]−1

(Rπ̂f1,f2) , (16)

where V̂f1,f2 ≡ In ⊗ Q̂f1,f2 with Q̂f1,f2 ≡ 1
Tw

∑[Tf2]
t=[Tf1] xtx

′
t, and Ŵf1,f2 ≡ 1

Tw

∑[Tf2]
t=[Tf1] ξ̂tξ̂

′
t with

ξ̂t ≡ ε̂t ⊗ xt. The heteroskedasticity consistent sup Wald statistic is

SW ∗f (f0) := sup
{
W ∗f2 (f1) : f1 ∈ [0, f2 − f0] , f2 = f

}
.

As the fractions (f1, f2) vary, the statistics Wf2 (f1) and W ∗f2 (f1) are stochastic processes indexed

with (f1, f2) .
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3.1 Homoskedasticity

Under the assumption of homoskedasticity, the innovations are stationary, conditionally ho-

moskedastic martingale differences satisfying either of the following two conditions.

Assumption (A1): {εt,Ft} is a strictly stationary and ergodic martingale difference sequence

(mds) with E (εtε
′
t|Ft−1) = Ω a.s. and positive definite Ω.

Assumption (A2): {εt,Ft} is a covariance stationary mds with E (εtε
′
t|Ft−1) = Ω a.s., positive

definite Ω, and supt E ‖εt‖
4+c <∞ for some c > 0.

Lemma 3.1 Given the model (13), under assumption A0 and A1 or A2 and the null (main-

tained) hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all (fractional) subsamples

(f1, f2) we have

(a) π̂f1,f2 →a.s. πf1,f2 = vec (Πf1,f2) ,

(b) Ω̂f1,f2 →a.s. Ω,

(c)
√
T (π̂f1,f2 − πf1,f2)⇒ [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
,

where B is vector Brownian motion with covariance matrix Ω ⊗ Q, where Q =E (xtx
′
t) > 0,

and π̂f1,f2 and Ω̂f1,f2 are the least squares estimators of πf1,f2 and Ω. The finite dimensional

distribution of the limit in (c) for fixed f2 and f1 is N
(
0, 1

fw
Ω⊗Q−1

)
.

The proof of lemma 3.1 is given in the Appendix A. From part (c) and for fixed (f1, f2) the

asymptotic variance-covariance matrix of
√
T (π̂f1,f2 − π) is f−1

w

(
Ω⊗Q−1

)
and is dependent on

the fractional window size fw. The limit in (c) may be interpreted as a linear functional of the

process B (·) .
Note that under A2, the limit of the matrix Ŵf1,f2 that appears in the heteroskedastic

consistent Wald statistic (16) would be given by Ω ⊗Q and the asymptotic covariance matrix

would simplify as follows

V̂−1
f1,f2

Ŵf1,f2V̂
−1
f1,f2

→a.s (In ⊗Q)−1 (Ω⊗Q) (In ⊗Q)−1 = Ω⊗Q−1.

In this case, therefore, the heteroskedasitic consistent test statistics, W ∗f2 (f1) and SW ∗f (f0),

reduce to the conventional Wald and sup Wald statistics of Wf2 (f1) and SWf (f0).
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Proposition 3.1 Under A0 and A1 or A2, the null hypothesis Rπf1,f2 = 0, and the main-

tained null of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample Wald

process and sup Wald statistic converge weakly to the following limits

Wf2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
(17)

SWf (f0)
L→ sup

f1∈[0,f2−f0],f2=f

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
(18)

= sup
fw∈[f0,f2],f2=f

[
Wd (fw)′Wd (fw)

fw

]
(19)

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restric-

tions (the rank of R) under the null.

The proof of Proposition 3.1 is given in the Appendix A. The limit process that appears

in (17) is a quadratic functional of the limit process Wd (·) . Its finite dimensional distribution

for fixed f1 and f2 is χ2
d, whereas the sup functional that appears in (18) and (19) involves

the supremum of the continuous stochastic process Wd(fw)′Wd(fw)
fw

taken over fw ∈ [f0, f2] with

f2 = f.

3.2 Conditional heteroskedasticity of unknown form

The conditional heteroskedasticity case requires the following additional assumption.

Assumption (A3): {εt,Ft} is an mds satisfying the following conditions:

(i) εt is strongly uniformly integrable with a dominating random variable ε that satisifies

E
(
‖ε‖4+c

)
<∞ for some c > 0;

(ii) T−1
∑T

t=1 E (εtε
′
t|Ft−1)→a.s. Ω where Ω is positive definite with elements Ω = (Ωij) ;

(iii) T−1
∑T

t=1 E
(
ε2
i,t|Ft−1

)
εt−s →a.s. 0 and T−1

∑T
t=1 E (εi,tεj,t|Ft−1) εt−sε

′
t−s →a.s. ΩijΩ for

i, j = 1, · · · , n and s ≥ 1.

Strong uniform integrability is commonly assumed in cases of conditional and unconditional

heterogeneity (see, for instance, Phillips and Solo, (1992), Remarks 2.4(i) and 2.8 (i) and (ii)).

Assumption A3 implies that {εt} is serially uncorrelated, unconditionally homoskedastic if
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E (εtε
′
t) = Ω for all t (and hence covariance stationary in that case), but potentially condi-

tionally heteroskedastic. A3 allows, among other possibilities, stable ARCH or GARCH errors.

Note that A3(i) is equivalent to assuming that

sup
t

E ‖εt‖4+c <∞ for some c > 0,

a condition that is often used in work involving conditional and unconditional heteroskedasticity

(see, for example, Boswijk et al. (2013) and Bodnar and Zabolotskyy (2011)). A3(iii) is required

for Lemma 3.3(b), and is used by Hannan and Heyde (1972, Theorem 2), Gonçalves and Kilian

(2004), and Boswijk et al. (2013).

Lemma 3.2 Under A0 and A3, for all f2, f1 ∈ [0, 1] and f2 > f1,

(a) T−1
w

∑[Tf2]
t=[Tf1] εt →a.s 0,

(b) T−1
w

∑[Tf2]
t=[Tf1] εtε

′
t →a.s Ω,

(c) T−1
w

∑[Tf2]
t=[Tf1] εtε

′
s →a.s 0,

(d) T−1
w

∑[Tf2]
t=[Tf1] xtε

′
t →a.s 0,

(e) T−1
w

∑[Tf2]
t=[Tf1] xtx

′
t →a.s Q, where Q is defined as

Q ≡
[

1 1′p ⊗ Φ̃′0
1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θ

]
with Θ =

∞∑
i=0

 ΨiΩΨ′i · · · Ψi+p−1ΩΨ′i
...

. . .
...

ΨiΩΨ′i+p−1 · · · ΨiΩΨ′i

 .
The proof of this Lemma is in Appendix B. In view of the covariance stationarity of εt,

Lemma 3.2 holds for all possible fixed fractions of data with f2, f1 ∈ [0, 1] and f2 > f1. However,

this is not in general true under global covariance stationary (Davidson, 1994) or nonstationary

volatility settings, where the right hand side of the statements in Lemma 3.2 may depend on f1

and f2.

Recalling that ξt ≡ εt⊗ xt it is now shown that {ξt} obeys a martingale invariance principle

as in Theorem 3 of Brown (1971), for example. This invariance result requires the two conditions

stated in Lemma 3.3 below.

13



Lemma 3.3 Under A0 and A3, the mds {ξt,Ft} satisfies the following Lindeberg and stability

conditions:

(a) For every δ > 0

1

T

T∑
t=1

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

}
p→ 0, (20)

(b) T−1
∑T

t=1 E {ξtξ′t|Ft−1} →a.s W, where W =
{
W(i,j)

}
i,j∈[1,n]

with block partitioned ele-

ments

W(i,j) =

[
Ωij 1′p ⊗ ΩijΦ̃

′
0

1p ⊗ ΩijΦ̃0 Ip ⊗ ΩijΦ̃0Φ̃′0 + Ξ(i,j)

]
and

Ξ(i,j) ≡
∞∑
i=0

 ΨiΩijΩΨ′i · · · Ψi+p−1ΩijΩΨ′i
...

. . .
...

ΨiΩijΩΨ′i+p−1 · · · ΨiΩijΩΨ′i


The proof of this lemma is in Appendix B. Under Lemma 3.3, partial sums of {ξt} satisfy a

martingale invariance principle, so that

1√
T

[Tf2]∑
t=[Tf1]

ξt ⇒ B (f2)−B (f1) , (21)

where the limit process in (21) is a linear functional of the vector Brownian motion B (·) with

covariance matrix W. Here and elsewhere, the notation ⇒ is used to signify weak convergence

in the Skorohod space D [0, 1].

Lemma 3.4 Under A0 and A3,

(a) π̂f1,f2 →a.s. πf1,f2 ,

(b) Ω̂f1,f2 →a.s. Ω,

(c)
√
Tw (π̂f1,f2 − πf1,f2) ⇒ f

−1/2
w V−1 [B (f2)−B (f1)], where V = In ⊗ Q and B is vector

Brownian motion with covariance matrix W.

(d) T−1
w

∑[Tf2]
t=[Tf1] ξ̂tξ̂

′
t →a.s. W, where ξ̂t ≡ ε̂t ⊗ xt−1.

14



Proposition 3.2 Under A0 and A3, the null hypothesis Rπf1,f2 = 0, and the maintained

hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample

heteroskedastic consistent Wald process and sup Wald statistic converge weakly to the following

limits

W ∗f2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]
,

SW ∗f (f0)
L→ sup

fw∈[f0,f2],f2=f

[
Wd (fw)′Wd (fw)

fw

]
,

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restric-

tions (the rank of R) under the null.

If the presence of conditional heteroskdasticity in yt is ignored in the construction of the

(conventional) test statistic (15), the Wald and sup Wald statistics have non-standard asymptotic

distributions as detailed in the following result.

Proposition 3.3 Under A0 and A3, the null hypothesis Rπf1,f2 = 0, and the maintained

hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample

Wald process and sup Wald statistic converge weakly to the following limits

Wf2 (f1)⇒

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
AB−1A′

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
,

SWf2 (f0)
L→ sup

f1∈[0,f2−f0],f2=f

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
AB−1A′

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
,

where Wnk is vector Brownian motion with covariance matrix Ink, A = W1/2V−1R′, and B =

R (Ω⊗Q) R′.

3.3 Unconditional heteroskedasticity

Consider an array error specification of the form εt := G (t/T ) ut where the matrix function G (·)
and error process ut are defined below in Assumptions A4 and A5. This framework involves a

time evolving error variance matrix that allows for unconditional error heteroscedasticity.

Assumption (A4): The matrix function G (·) is nonstochastic, measurable and uniformly

bounded on the interval (−∞, 1] with a finite numbers of points of discontinuity, and satisfies a
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Lipschitz condition except at points of discontinuity.

This formulation of heteroskedasticity was used in Phillips and Xu (2006) for the univariate

case and Bodnar and Zabolotskyy (2011) and Boswijk et al. (2013) for the multivariate case.

A4 implies that each element of the matrix G (r) = {gij (r)}i,j=1,...,n is integrable on [0, 1]

up to any finite order,
∫ 1

0 |gij (r)|m dr < ∞ for all m > 0. The function G (·) is defined for

r ∈ (−∞, 1] since the initial conditions are in the infinite past and we make use of the infinite

moving average representation of the process {yt}. Since {εt} and {yt} are triangular arrays,

an additional subscript T should be included to signify the presence of an array but will be

subsumed within the usual time series notation for simplicity in what follows.

Assumption (A5): {ut,Ft} is an mds satisfying

(i) ut is strongly uniformly integrable with dominating random variable u that satisifies

E
(
‖u‖4+c

)
<∞ for some c > 0;

(ii) E (utu
′
t|Ft−1) = In a.s.

A5 implies that {ut} is serially uncorrelated and homoskedastic (both conditionally and un-

conditionally) and hence covariance stationary. Note that A5(i) implies that supt E ‖ut‖
4+c <∞

for some c > 0. As in Phillips and Xu (2006) and Bodnar and Zabolotskyy (2011), it fol-

lows that E (εtε
′
t|Ft−1) = E

(
G (t/T ) utu

′
tG (t/T )′ |Ft−1

)
= G (t/T ) G (t/T )′ and E (εtε

′
t) =

G (t/T ) G (t/T )′. Both conditional and unconditional variances of {εt} are nonstochastic and

time-varying of the form G (t/T ) G (t/T )′. Unlike Phillips and Xu (2006) and Bodnar and

Zabolotskyy (2011), the assumption of strong (α-)mixing {ut} is not required.

Lemma 3.5 Under A0, A4 and A5,

(a) T−1
w

∑[Tf2]
t=[Tf1] εt →a.s 0;

(b) T−1
w

∑[Tf2]
t=[Tf1] εtε

′
t →a.s Ωf1,f2 ≡

∫ f2
f1

G (r) G (r)′ dr;

(c) T−1
w

∑[Tf2]
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
→a.s

∫ f2
f1

∑∞
i=0 Ψi+jG (r) G (r)′Ψ′idr;

(d) T−1
w

∑[Tf2]
t=[Tf1] xtε

′
t →a.s 0;
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(e) T−1
w

∑[Tf2]
t=[Tf1] xtx

′
t →a.s Qf1,f2 , where the n× n matrix Qf1,f2 is defined as

Qf1,f2 =

[
1 1′p ⊗ Φ̃′0

1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θf1,f2

]
with

Θf1,f2 :=

∞∑
i=0

∫ f2

f1

 ΨiG (r) G (r)′Ψ′i · · · Ψi+p−1G (r) G (r)′Ψ′i
...

. . .
...

ΨiG (r) G (r)′Ψ′i+p−1 · · · ΨiG (r) G (r)′Ψ′i

 dr.
The proof is given in Appendix C. Once again partial sums of ξt satisfy a martingale invari-

ance principle, which is verified using the two conditions established in Lemma 3.6.

Lemma 3.6 Under A0, A4 and A5, {ξt,Ft} is an mds satisfying the following Lindeberg and

stability conditions:

(a) T−1
∑T

t=1 E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

}
p→ 0, for all δ > 0; and

(b) T−1
w

∑[Tf2]
t=[Tf1] E {ξtξ

′
t|Ft−1} →a.s Wf1,f2 ,where Wf1,f2 =

{
W

(i,j)
f1,f2

}
i,j∈[1,n]

with block parti-

tioned form

W
(i,j)
f1,f2

=

[ ∫ f2
f1

∑n
q=1 giq (r) gjq (r) dr 1′p ⊗

∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃′0

1p ⊗
∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃0 Ip ⊗

∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃0Φ̃′0 + Ξ

(i,j)
f1,f2

]
,

and

Ξ
(i,j)
f1,f2

≡
∞∑
i=0


ΨiΛ

(i,j)
f1,f2

Ψ′i · · · Ψi+p−1Λ
(i,j)
f1,f2

Ψ′i
...

. . .
...

ΨiΛ
(i,j)
f1,f2

Ψ′i+p−1 · · · ΨiΛ
(i,j)
f1,f2

Ψ′i

 ,
Λ

(i,j)
f1,f2

=

∫ f2

f1

n∑
q=1

giq (r) gjq (r) G (r) G (r)′ dr.

The proof is given in Appendix C. Under Lemma 3.6, partial sums of ξt satisfy a martingale

invariance principle, so that

1√
T

[Tf2]∑
t=[Tf1]

ξt → B∗ (f2)−B∗ (f1) , (22)
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where B∗ is vector Brownian motion with covariance matrix Wf1,f2 . Using (22) we find the

limit behavior of the estimator process π̂f1,f2 and the heteroskedasticity consistent Wald statistic

process W ∗f2 (f1).

Lemma 3.7 Under A0, A4 and A5, we have

(a) π̂f1,f2 →a.s. πf1,f2 ,

(b) T−1
w

∑[Tf2]
t=[Tf1] ε̂tε̂

′
t →a.s. Ωf1,f2 ,

(c)
√
Tw (π̂f1,f2 − πf1,f2)⇒ f

−1/2
w V−1

f1,f2
[B∗ (f2)−B∗ (f1)], where Vf1,f2 = In⊗Qf1,f2 and B∗

is vector Brownian motion with covariance matrix Wf1,f2.

(d) T−1
w

∑[Tf2]
t=[Tf1] ξ̂tξ̂

′
t →a.s. Wf1,f2 , where ξ̂t ≡ ε̂t ⊗ xt−1.

Proposition 3.4 Under A0, A4 and A5, the null hypothesis Rπf1,f2 = 0, and the maintained

hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample

heteroskedastic consistent Wald process and sup Wald statistic converge weakly to the following

limits

W ∗f2 (f1)⇒

[
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]′ [
Wd (f2)−Wd (f1)

(f2 − f1)1/2

]

SW ∗f (f0)
L→ sup

fw∈[f0,f2],f2=f

[
Wd (fw)′Wd (fw)

fw

]
,

where Wd is vector Brownian motion with covariance matrix Id and d is the number of restric-

tions (the rank of R) under the null.

The presence of nonstochastic and time-varying errors affects the limit behavior of the stan-

dard Wald statistic, which no longer has the limit (17). In consequence, use of the limit theory

(19) for the sup Wald statistic may lead to invalid and distorted inference.

Proposition 3.5 Under A0, A4 and A5, the null hypothesis Rπf1,f2 = 0, and the maintained

hypothesis of an unchanged coefficient matrix Πf1,f2 = Π for all subsamples, the subsample

heteroskedastic consistent Wald process and the sup Wald statistic have the following limits

Wf2 (f1)⇒

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
Af1,f2B

−1
f1,f2

A′f1,f2

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]
,
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Figure 1: Panel (a) shows the 5% asymptotic critical values of the Wald and sup Wald statistic
with d = 2 and f0 = 0.05. Panel (b) shows the 5% asymptotic critical value of the sup Wald
statistic with d = 2 and f0 = {0.01, 0.05, 0.10, 0.20}. These are estimated from 2,000 replications.
The Wiener process is approximated by partial sums of 2000 standard normal variates.
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SWf (f0)
L→ sup

fw∈[f0,f2],f2=f

{[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
Af1,f2B

−1
f1,f2

A′f1,f2

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]}
,

where Af1,f2 = W
1/2
f1,f2

V−1
f1,f2

R′, Bf1,f2 = R
(
Ωf1,f2⊗Qf1,f2

)
R, and Wnk is vector Brownian

motion with covariance matrix Ink.

3.4 Simulated Asymptotic Distributions

The limit theory shows that the robust test statistics remain unchanged for all three scenarios

– homoskedasticity, conditional heteroskedasticity, and unconditional heteroskedasticity. The

asymptotic distributions are the same as those of the Wald process and sup Wald statistic under

the assumption of homoskedasticity, given in equations (17) and (19).

Figure 1 plots the 5% standard asymptotic critical values (estimated from 2,000 replications)

of the test statistics (17) and (19) against the (fractional) observation of interest f . Wiener pro-

cesses are approximated by partial sums of 2, 000 standard normal variates. Panel (a) compares

critical values of the Wald and sup Wald statistics with fixed values of d and f0 (d = 2 and

f0 = 0.05). It is clear that the critical values for the sup Wald statistic are well above those of

the Wald statistic, which is distributed as χ2
2. In addition, one can see that the 5% critical value

of the sup Wald statistic rises from 6.06 to 11.4 as the observation of interest f increases from
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0.05 to 1. Moreover, the distribution stretches out to the right as the search range [f0, f ] expands

with f . Panel (b) plots the 5% asymptotic critical value of the sup Wald statistic for various

minimum window sizes f0 (f0 ∈ {0.01, 0.05, 0.10, 0.20}) and for d = 2. It is evident smaller

values of f0 lead to larger critical values for the sup Wald statistic. This result is consistent

with expectations because the search range [f0, f ] widens as f0 decreases. Although the results

are not reported here, the critical values of both the Wald and sup Wald statistics increase with

the value d.

4 Simulation Experiments

There is significant evidence to suggest that Wald tests, including Granger causality tests, suffer

from size distortion to an extent that makes small sample considerations important in empirical

work (Guilkey and Salemi, 1982; Toda and Phillips, 1993, 1994). By its very nature both the

Wald test of the rolling window approach and the sup Wald test of the recursive rolling procedure

involve the repeated use of small subsamples of data, thereby accentuating the importance of

finite sample performance. This section therefore reports a series of simulation experiments

designed to assess the finite sample characteristics of the causality tests.

The prototype model used in the simulation experiments is the bivariate VAR(1) model:

DGP :

[
y1t

y2t

]
=

[
φ11 φst
0 φ22

] [
y1t−1

y2t−1

]
+

[
ε1t

ε2t

]
(23)

where ε1t and ε2t are i.i.d. N (0, 1). Assumption A0 requires |φ11| < 1 and |φ22| < 1. For

simplicity, the causal channel from y1 to y2 is shut down. Parameter φst controls the strength

of the causal path running from y2t to y1t. Under the null hypothesis of no causality, φst = 0.

Under the alternative hypothesis, causation runs from y2t−1 to y1t for certain periods of the

sample. Let st be a causal indicator that takes the value unity for the causal periods and zero

otherwise so that the autoregressive coefficient φst is defined as φst = φ12st.

The next two subsections investigate the performance of the forward expanding, rolling and

recursive rolling causality tests under this DGP with different parameter settings under the null

and alternative hypotheses. In these experiments the following general specifications apply:

(i) asymptotic critical values are obtained from simulating the distributions in Proposition

3.1 with 10,000 replications;
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(ii) Wiener processes are approximated by partial sums of standard normal variates with 2, 000

steps;

(iii) the lag length p in the regression model is fixed at unity;

(iv) initial values of the data series (y11 and y21) are set to unity;

(v) the rolling window test procedure uses a window length taken to be the minimum window

size, f0; and

(vi) the experiments are repeated 2,000 times for each parameter constellation.

4.1 False Detection Proportion

For all three approaches, we compare the test statistic with its corresponding critical value for

each observation starting from bTf0c to T , so that the number of hypotheses tested, N , equals

T − bTf0c + 1. It is well known that the probability of making a Type I error rises with the

number of hypotheses in a test, a phenomenon commonly referred to as multiplicity. Instead

of examining the family wise error rate or size (probability of rejecting at least one true null

hypothesis), therefore, we report the mean and standard deviation of the actual false detection

proportion, which is defined as the ratio between the number of false rejections, F , and the total

number of hypotheses N , given by F/N . Notice that this ratio differs from the false discovery

rate promoted by Benjamini and Hockberg (1995). They define the false discovery rate as the

expected value of the proportion of false discoveries among all discoveries, or E [F/max (R, 1)],

where R is the total number of rejections. By construction, therefore, under the null hypothesis

the false discovery rate takes the value of unity.

Table 1 reports the impact of the persistence parameters {φ11, φ22} (top panel), the minimum

window size f0 (middle panel), and the sample size T (bottom panel), respectively, on the switch

detection rates of the three algorithms under the null hypothesis. The top panel of Table 1 shows

the effects of different parameter settings of {φ11, φ22} with a fixed minimum window size and

sample size (f0 = 0.24 and T = 100). Summary statistics that are reported refer to the means

and standard deviations (in parentheses) of the false detection proportion.

Overall, the rolling and recursive rolling window approaches have higher false detection

proportion than the forward expansion approach. For example, in the top panel of Table 1,

when {φ11, φ22} = {0.5, 0.8}, the false detection proportion is 11% using the rolling and recursive
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Table 1: The mean and standard deviation (in parentheses) of the false detection proportion
of the testing procedures under the null hypothesis based on the 5% asymptotic critical values.
Parameter settings: y11 = y21 = 1 and φ12 = 0. Calculations are based on 2,000 replications.

Forward Rolling Recursive Rolling

(φ11, φ22): f0 = 0.24 and T = 100
(0.5,0.5) 0.07 (0.17) 0.10 (0.10) 0.09 (0.14)
(0.5,0.8) 0.08 (0.18) 0.11 (0.11) 0.11 (0.15)
(-0.5,0.8) 0.06 (0.16) 0.08 (0.09) 0.07 (0.13)
(0.5,-0.8) 0.05 (0.15) 0.07 (0.09) 0.06 (0.12)

f0: (φ11, φ22) = (0.5, 0.8) and T = 100
0.12 0.09 (0.17) 0.19 (0.08) 0.22 (0.15)
0.24 0.07 (0.17) 0.10 (0.10) 0.09 (0.14)
0.36 0.08 (0.19) 0.09 (0.13) 0.08 (0.15)
0.48 0.07 (0.20) 0.08 (0.15) 0.06 (0.15)

T : (φ11, φ22) = (0.5, 0.8) and f0 = 0.24
100 0.07 (0.17) 0.10 (0.10) 0.09 (0.14)
200 0.07 (0.17) 0.08 (0.10) 0.07 (0.13)
400 0.00 (0.04) 0.02 (0.13) 0.01 (0.09)

rolling window approaches – in contrast to 8% for the forward expanding approach. The false

detection rate of the rolling window approach is slightly higher than that of the recursive rolling

algorithm, except when the minimum window size is small, i.e. f0 = 0.12. These results also

reveal that there is a slightly greater chance of drawing false positive conclusions when y2t is

more persistent (witness the case where φ22 rises from 0.5 to 0.8 with φ11 fixed at 0.5). The

false detection proportion appears to decline when the persistence parameters φ11 and φ22 are

of different signs, showing that differing autoregressive behaviour in the two series can improve

performance when the null is true.

The results reported in Table 1 show that the problem of false identification is alleviated

when the number of observations included in the minimum window is increased. This can be

achieved in one of two ways.

(i) When T expands from 100 to 400 with a fixed fractional window size, f0, the false detection

proportion decreases by 7%, 8% and 8% respectively for the forward, rolling and recursive

rolling approaches (bottom panel).
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(ii) When f0 rises from 0.12 to 0.48, the false detection proportion reduces from 9% to 7%,

from 19% to 8% and from 22% to 6% for the forward, rolling, and recursive rolling algo-

rithms respectively (middle panel). The reduction is particularly obvious for the rolling

and recursive rolling window approaches (11% and 16% reductions in the false detection

proportion) where the minimum window size plays a more decisive role.

4.2 Causality Detection

The performance of the three algorithms under the alternative hypothesis is now investigated.

We first consider the case when there is a single causality episode in the sample period, switching

on at bfeT c and off at bffT c. Specifically, let st in (23) be defined as

st =

{
1, if bfeT c ≤ t ≤ bffT c
0, otherwise

.

Performance is evaluated from several perspectives: the successful detection rate (SDR), the

mean and standard deviation (in parentheses) of the bias of the estimated fractional origination

and termination dates of the switches (f̂e − fe and f̂f − ff ),3, as well as the average number

of switches detected. Successful detection is defined as an outcome when the estimated switch

origination date falls between the true origination and termination dates, that is fe ≤ f̂e ≤ ff .

The mean and standard deviation of the bias are calculated among those episodes that have

been successfully detected.

Table 2 considers the impact of the general model parameters on test performance. Causal

strength is fixed with the value φ12 = 0.8 and causality (from y2t → y1t) switches on in the middle

of the sample (fe = 0.5) and the relationship lasts for 20% of the sample with termination at

ff = 0.7. We vary the autoregressive parameters (φ11, φ22) (top panel), the minimum window

size bf0T c (middle panel), and the sample size T (bottom panel) in the simulations. Table 3

focuses on the impact of causal characteristics, namely, causal strength φ12 (top panel), causal

duration, D (middle panel), and the location of the causal episode fe (bottom panel).

It is apparent from the results reported in Tables 2 and 3 that the rolling window proce-

dure has the highest successful detection rate, followed by the recursive rolling procedure. The

detection rate of the forward expansion algorithm is the lowest among the three algorithms.

3Let stat denote the test statistic and cv be the corresponding critical values. A switch originates at period t if
statt−2 < cvt−2, statt−1 < cvt−1, statt > cvt and statt+1 > cvt+1 and terminates at period t′ if statt′−1 > cvt′−1,
statt′ < cvt′ , statt′+1 < cvt′+1.
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For example, from the top panel of Table 2, when (φ11, φ22) = (0.5, 0.8), the SDR of the rolling

procedure is, respectively, 7.2% and 31.2% higher than those of the recursive rolling and forward

expanding procedures. Notice that, relative to the forward expanding procedure, the difference

in SDR between the rolling and recursive procedures is much less dramatic.

There is no obvious difference in the estimation accuracy of the causal switch-on date. For

example, when (φ11, φ22) = (0.5, 0.8) in the top panel of Table 2, the average delay in the

detection of the switch-on date is 10 to 11 observations (with a standard deviation of 5 to 6

observations) for all three procedures. Importantly, the rolling window procedure provides a

much more accurate estimator for the switch-off date in the sense that the quantity f̂f − ff is of

smaller magnitude and has less variance. With the same parameter settings, the average delay

in the switch-off point detection is 12 observations (standard deviation of 7 observations) for

the rolling procedure, as opposed to 23 observations delay (standard deviations of 10 and 11

observations) for the recursive rolling and forward expanding algorithms, respectively.

As mentioned earlier, the rolling and recursive window procedures have more significant size

distortions than the forward expanding window approach. This observation is reflected in the

estimated average number of switches reported in Tables 2 and 3. The true number of switches

in the simulation is unity. It can be seen from Tables 2 and 3 that the rolling and recursive rolling

window procedures tend to detect more causal episodes than there are. In addition, the upward

bias in the estimator for the rolling window procedure is higher than that of the recursive rolling

procedure. The forward expanding algorithm underestimates the number of switches when the

sample size is 100 and overestimates the statistic (at a lesser magnitude than the rolling and

recursive rolling procedures) when the sample size increases to 200 and 400 (bottom panel of

Table 2).

Taking a closer look at Table 2, in the top panel, we see that for all three approaches the SDR

increases when the persistence level of y2t ( φ22 ) increases from 0.5 to 0.8, with f0 = 0.24, T = 100

and φ11 fixed at 0.5. Successful detections are generally higher when the persistent parameters

φ11 and φ22 are of different signs. No obvious difference is observed in the estimation accuracy

of the switch-on and -off dates. For the middle panel, we set (φ11, φ22) = (0.5, 0.8), T = 100, and

let the minimum window size vary from 24 to 48 observations. The minimum window size does

not have any impact on the correct detection rate of the forward expanding procedure. However,

we observe significant reductions in SDR for the rolling and recursive rolling procedures when

the minimum window size increases. As a case in point, there is a 10.8% and 10.2% drop in SDR,
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respectively, for the former and the latter when f0 rises from 0.24 to 0.36. However, these falls

are not as extensive as the declines in the false detection rates (23.8% and 21.5% respectively).

In the bottom panel of Table 2, we increase the sample size from 100 to 400, keeping (φ11, φ22)

and f0 fixed at (0.5, 0.8) and 0.24. It is clear from the results in this panel that for all tests, the

successful detection rate and the estimation accuracy of the switch-on date increases with the

sample size, whereas the estimation accuracy of the switch-off date deteriorates. Notice that the

SDR of the forward expanding and recursive rolling procedures rises rapidly and exceeds that

of the rolling approaches when the sample size reaches 400. Nevertheless, the SDR of all three

approaches are above 90% when the sample size is larger than 400 and the difference in SDR

are not dramatic.

Table 3 focuses on the characteristics of the causal relationship. For all tests, SDR increases

with the strength of the causal relationship (captured by the value of φ12). One can see that when

φ12 rises from 0.2 to 1.5, the SDR increases from 13.9% to 78.1%, from 45.6% to 92.1%, and from

31.5% to 89% for the forward expanding, rolling and recursive rolling algorithms, respectively.

Notice that the gap between the SDRs of the rolling and recursive rolling procedures narrows

as causality strengthens. Moreover, as the causal relationship gets stronger, there is some mild

improvement in the estimation accuracy of the switch-on date using those three approaches,

whereas for all three tests the accuracy of the estimates of the switch-off date deteriorates. For

example, for the rolling test, when φ12 rises from 0.2 to 1.5, the bias of the switch-on date reduces

from 12 observations to 8 observations, while the bias of the switch-off date increases from 2

observations to 15 observations. The dramatic increase in the estimation bias of the switch-off

date is mainly due to situations in which a switch is detected but the termination date of this

switch is not found until the end of the sample. If this situation eventuates, a termination date

of r̂f = 1 is imposed at the cost of significant bias in the estimates. The proportion of samples

for which this occurs increases as the causal relationship gets stronger.

In the middle panel of Table 3, the causal relationship is switched on at the 50th observation

and the causal episode is defined to last for 10%, 20%, and 30% of the sample, respectively.

The SDR of all tests rises dramatically as the duration, D, of the causal relationship increases.

The SDR increases from 50% to 91.8% (from 38% to 90% ) for the rolling (recursive rolling)

algorithm as the duration expands from 10 to 30 observations. Interestingly, it is also clear

that the biases of the estimated origination dates also increase with longer causal duration.

As for the termination dates, while the estimation accuracy improves slightly for the forward
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expanding approach, no obvious change patterns are observed for the rolling and recursive rolling

approaches.

The bottom panel of Table 3 reports results for the location parameter fe, which takes the

values fe = {0.3, 0, 5, 0.7}. In the first scenario, causality is switched on at the 30th observation

and lasts for 20 observations, while for the second and third scenarios causality is assumed to

originate from the 50th and 70th observations, respectively, and last for the same length of time.

The performance is better (with higher SDR and smaller bias in the switch-on date estimate)

for the forward expanding approach and slightly better for the recursive rolling approach when

the change in causality happens early in the sample. By contrast, the location of the switch

does not have an obvious impact on the performance of the rolling algorithm. Notice that the

bias of the termination date estimates declines significantly as the causal episode moves towards

the end of the sample period. This bias is mainly due to the truncation that is imposed in the

estimation. Specifically, when the causal effect terminates at the 90th data point, due to the

delay bias in estimation, the procedure may not detect the switch-off date until the end of the

sample. In these cases, the estimated termination date is set to be the last observation of the

sample, a strategy which results in a bias of 0.10 for the estimated of ff and which reduces both

the bias and the variance of the estimate.

4.2.1 Multiple Episodes

Suppose there are two switches in the sample period, where the first period of causality runs

from f1e to f1f and the second from f2e to f2f . This situation is denoted as follows:

st =

{
1, if bf1eT c ≤ t ≤ bf1fT c and bf2eT c ≤ t ≤ bf2fT c
0, otherwise

.

The strength of the first and second episodes are denoted by φ1
12 and φ2

12, respectively, and the

durations of the causal episodes are D1 = f1f − f1e and D2 = f2f − f2e. The sample size is set

to be 200 and the minimum window size f0 = 0.24.

In the top panel of Table 4, the location of the switches is set at the 25th and 75th observa-

tions respectively (f1e = 0.25, f2e = 0.75) and the causality strength of both episodes is set to 0.8

(φ1
12 = φ2

12 = 0.8). The durations of the causal episodes are varied, using {D1 = 0.1,D2 = 0.1},
{D1 = 0.1,D2 = 0.2} and {D1 = 0.2,D2 = 0.1}. In the bottom panel, with the causality dura-

tion fixed at D1 = 0.1 and D2 = 0.1, the causal strength of the second episode φ2
12 is increased
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Table 4: Test performance in the presence of two causal episodes based on 5% asymptotic critical
values. Parameter settings: y11 = y21 = 1, φ11 = 0.5, φ22 = 0.8, f0 = 0.24, T = 200. Figures in
parentheses are standard deviations. Calculations are based on 1,000 replications.

First Episode Second Episode

SDR f̂1e − f1e f̂1f − f1f SDR f̂2e − f2e f̂2f − f2f # Switches

f1e = 0.25, f2e = 0.75, φ112 = φ212 = 0.8
D1 = 0.1, D2 = 0.1
Forward 0.515 0.05 (0.03) 0.36 (0.27) 0.378 0.05 (0.03) 0.14 (0.03) 1.44 (1.12)
Rolling 0.633 0.05 (0.03) 0.14 (0.07) 0.601 0.06 (0.03) 0.11 (0.06) 2.50 (1.06)
Recursive Rolling 0.601 0.06 (0.03) 0.32 (0.25) 0.423 0.05 (0.03) 0.13 (0.04) 1.98 (1.14)

D1 = 0.1, D2 = 0.2
Forward 0.515 0.05 (0.03) 0.36 (0.27) 0.579 0.08 (0.05) 0.05 (0.00) 1.56 (1.01)
Rolling 0.633 0.05 (0.03) 0.14 (0.07) 0.938 0.08 (0.04) 0.05 (0.02) 2.44 (0.96)
Recursive Rolling 0.601 0.06 (0.03) 0.32 (0.25) 0.633 0.08 (0.05) 0.05 (0.01) 1.99 (1.04)

D1 = 0.2, D2 = 0.1
Forward 0.862 0.09 (0.05) 0.47 (0.17) 0.151 0.04 (0.02) 0.14 (0.03) 1.23 (0.74)
Rolling 0.910 0.08 (0.04) 0.16 (0.06) 0.601 0.06 (0.03) 0.11 (0.06) 2.30 (0.85)
Recursive Rolling 0.924 0.08 (0.04) 0.47 (0.16) 0.125 0.04 (0.02) 0.13 (0.04) 1.26 (0.74)

D1 = 0.1, D2 = 0.1
f1e = 0.25, f2e = 0.75, φ112 = 0.8, and φ212 = 1.5
Forward 0.515 0.05 (0.03) 0.36 (0.27) 0.512 0.04 (0.03) 0.14 (0.02) 1.55 (1.05)
Rolling 0.633 0.05 (0.03) 0.14 (0.07) 0.773 0.05 (0.02) 0.13 (0.04) 2.49 (1.04)
Recursive Rolling 0.601 0.06 (0.03) 0.32 (0.25) 0.545 0.04 (0.03) 0.14 (0.03) 2.02 (1.11)

f1e = 0.25, f2e = 0.85, φ112 = 0.8, and φ212 = 1.5
Forward 0.515 0.05 (0.03) 0.35 (0.26) 0.515 0.04 (0.03) 0.05 (0.00) 1.62 (1.16)
Rolling 0.633 0.05 (0.03) 0.14 (0.07) 0.786 0.05 (0.03) 0.05 (0.01) 2.47 (1.08)
Recursive Rolling 0.601 0.06 (0.03) 0.30 (0.24) 0.603 0.05 (0.03) 0.05 (0.01) 2.10 (1.13)

from 0.8 to 1.5 (first section) and the second episode is moved further towards the end of the

sample period so that these two episodes are further apart, that is f2e = 0.85 (second section).

Three general observations may be made on the results reported in Table 4. First, in all of

the reported scenarios, the correct detection rates of the rolling procedure for both episodes are

generally the highest of the three procedures, followed by the recursive rolling window procedure

– except for the case of {D1 = 0.2,D2 = 0.1} where the detection rate of the first episode of the

recursive rolling window method is the highest. Second, location plays a decisive role in the

success of the detection procedures for multiple causality episodes. This result is particular

true for the forward and recursive rolling window procedures and is partially due to the low
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estimation accuracy in the causal termination date. As mentioned, when using the forward and

recursive rolling window approaches, the termination dates are not found until the end of the

sample period for a significant proportion of replications. It is, therefore, impossible to detect

the second episode of causality for those sample replications. Third, the correct detection rates

of all procedures increase with causal strength and the distance between two episodes.

There are also a number of more specific results. For causal episodes of the same causal

strength and duration, the detection rate is higher for the episode occurring first. As a case in

point, when D1 = 0.1,D2 = 0.1, the detection rates of the first and second episodes are 63.3%

and 60.1%, respectively, using the rolling window approach. The detection rates of the second

episode using the forward and recursive rolling window algorithms are 37.8% and 42.3%, which

are 13.7% and 17.8% lower than those for the first episode.

It is also easier for all procedures to detect episodes with longer duration. For example, when

D1 = 0.1 and D2 = 0.2, the detection rates of the second episode, respectively, 6.4%, 30.5%, and

3.2%, are higher than the detection rates for the first episode for all three algorithms. Combining

location and duration, it is expected that the detection rates will be lower when the duration

of the second bubble is shorter than the first one. This expectation is realized when moving

from the case of D1 = 0.1 and D2 = 0.2 to D1 = 0.2 and D2 = 0.1. Specifically, when D1 = 0.2

and D2 = 0.1, the detection rates of the second episode decline from 57.9% to 15.1%, from

93.8% to 60.1%, from 63.3% to 12.5%, respectively, for the forward, rolling and recursive rolling

procedures. Notice that the detection rates of the second episode of the forward expanding and

recursive rolling procedures for this case are around 15%. This result is partially due to the

inaccuracy of these two procedures in estimating the termination date of the first episode. The

average delay f̂1f − f1f of these two procedures is 0.47.

It is also obvious from the bottom panel that SDR increases with causal strength and the

distance between two episodes. The successful detection rate of the second episode of the

forward, rolling and recursive rolling methods rises 13.4%, 17.2% and 12.2% respectively when

φ2
12 rises from 0.8 to 1.5. When moving the second episode from the 75th observation to the 85th

observation, there is a slight increase in the detection rates (0.3%, 1.3%, and 5.8%, respectively,

for forward, rolling and recursive rolling approaches).

Finally, the estimated average numbers of switches for all three algorithms are reported in

the last column of Table 4. The rolling window procedure tends to overestimate the number of

causal episodes whereas the forward approach tends to underestimate this number.
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4.3 Asymptotic versus Finite Sample Critical Values

In practical work, the residual based bootstrap method is often used to generate small sample

critical values with the intent to improve finite sample performance characteristics. See, for

example, Balcilar et al. (2010) and Arora and Shi (2015). The calculations for the family-wise

false positive detection rate (size) and successful detection rates are repeated using tests based

on 5% bootstrap critical values using 1,000 replications. Similar conclusions to those reported

above are drawn with regard to the relative performance of the forward, rolling and recursive

rolling algorithms. There are some reductions in both sizes and successful detection rates for

all algorithms, as the finite sample critical values are generally higher than the corresponding

asymptotic critical values (especially when the sample size is small).

Table 5: The differences in false detection proportion and SDRs of the testing algorithms using
5% asymptotic and bootstrap critical values. Calculations are based on 1,000 replications.

Difference in false detection proportion Difference in SDRs
Forward Rolling Recursive

Rolling
Forward Rolling Recursive

Rolling
100 -0.03 -0.17 -0.15 -0.05 -0.02 -0.00
200 -0.02 -0.10 -0.12 -0.03 -0.00 -0.02
400 -0.03 -0.01 -0.05 -0.00 -0.01 -0.01

For the sake of brevity, all the results are not reported here but as an example, Table 5

reports differences in the sizes and the successful detection rates between using the bootstrap

and asymptotic critical values for a typical set of parameters. Specifically, y11 = y21 = 1 and

φ11 = 0.5, , φ22 = 0.8, bf0T c = 0.24, fe = 0.5 and ff = 0.7, and φ12 = 0 under the null and 0.8

under the alternative. The sample size varies from 100 to 400.4

Overall, the bootstrap critical values do not lead to dramatic reductions in the successful

detection rates of the three algorithms and in the false positive detection rate of the forward

expanding approach. However, there are substantial reductions in the false positive rates of

the rolling and recursive rolling procedures when the sample size is small. For example, when

T = 100, the false positive detection rates of the rolling and recursive rolling window procedure

drop 17% and 15% respectively when replacing the asymptotic critical values with the bootstrap

4The residual bootstrap method is computationally intensive. For example, it takes around 380 hours to
finish a simulation with 1,000 replications for the case of T = 400 by doing parallel computing on a 16-core high
performance machine. Due to limitations in available computing power, simulations using the residual based
bootstrap method for the case of T = 1000 are not conducted.
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critical values. This reduction becomes significantly smaller and almost negligible when the

sample size increases to 400. Putting these together, the results suggest a strategy of using the

residual based bootstrap method for the rolling and recursive rolling window algorithms when

the sample size is smaller and using the asymptotic critical values for all other cases.

5 The Predictive Power of the Slope of the Yield Curve

The slope of the yield curve (usually defined as the difference between zero-coupon interest rates

on three-month Treasury bills and 10-year Treasury bonds) has traditionally been regarded as

a potentially important explanatory variable in the prediction of real economic activity and

inflation (Harvey, 1988). The term structure of interest rates embodies market expectations of

the behaviour of the future short-term interest rate (the expectations theory) and contains a term

premium component that compensates for the risk of holding longer-term securities (the liquidity

premium theory). The link between the slope of the yield curve and macroeconomic activity

which is founded on the expectations theory is now widely accepted, whereas the contribution

of the term premium to the prediction of output growth and inflation is less well established.5

Empirical evidence of the ability of the slope of the yield curve to forecast macroeconomic

activity, including real economic growth or recessions, was provided in the 1980s and 1990s

for several countries (Stock and Watson, 1989; Estrella and Hardouvelis, 1991; Estrella and

Mishkin, 1998; Dotsey, 1998; Estrella and Mishkin, 1997; Plosser and Rouwenhorst, 1994). The

slope of the yield curve was also found to be a significant predictor of inflation (Mishkin, 1990a,

1990b, 1990c; Jorion and Mishkin, 1991). More recent work in the context of predicting real

activity and recessions suggests that the slope of the yield curve still retains its predictive power

(Estrella, 2005; Chauvet and Potter, 2002, 2002; Ang, Piazzesi, and Wei, 2006; Wright, 2006;

Estrella and Trubin, 2006; Rudebusch and Williams, 2009; Kauppi and Saikonen, 2008).

While most of the earlier literature focused on the ability of the yield curve to predict real

activity, it is reasonable to conjecture that feedback effects from real activity to monetary policy

and therefore to the yield curve exist (Estrella and Hardouvelis, 1991; Estrella and Mishkin,

1997; Estrella, 2005). Consequently a substantial body of empirical work in this area has been

conducted in terms of VAR models (Ang and Piazzesi, 2003; Evans and Marshall, 2007; Diebold,

5Although Hamilton and Kim (2002) find that both components make significant contributions to forecasting
real economic activity, Estrella and Wu (2008) find the opposite result, namely, that decomposing the spread into
expectations and term premium components does not enhance the predictive power of the yield curve.
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Rudebusch and Aruba, 2006), which provides ample precedence to support the use of VAR

models to establish the direction of Granger causality in these macroeconomic relationships.

In the present application a four-variable VAR model is used to test for changes in Granger

causal relationships between the slope of the yield curve and the macroeconomy. The variables

included are the output gap (yt), inflation (πt), the monetary policy interest rate (it), and the

yield curve spread (St). The data are quarterly data for the United States for the period 1980:Q1

to 2015:Q1 with T = 141 observations. The data are plotted in Figure 2.

Figure 2: Time series plots of the data used in the VAR model to test for changes in Granger
causal relationships between the slope of the yield curve and the macroeconomy for the period
1980:Q1 to 2015:Q1 (141 observations). The output gap and inflation (right axis) are plotted
in the top panel, with official NBER recession periods shaded in grey. The Federal funds rate
and the slope of the yield curve are plotted in the bottom panel with vertical lines marking the
generally accepted dates of the onset of an inverted yield curve.
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The output gap is calculated using the official Congressional Budget Office (CBO) 2016

measure of real potential output (billions of chained 2009 dollars, not seasonally adjusted) and

2016:Q1 GDP (billions of chained 2009 dollars, seasonally adjusted annual rate) data. Inflation
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is measured from the core consumer price index and calculated as quarterly log differences

(multiplied by 400). The policy rate is measured using the effective Federal funds rate. Term

spread is defined as the difference between the three-month treasury bill rate and the 10-year

government bond rate. All macroeconomic data are either obtained quarterly or monthly from

the Federal Reserve Bank of St. Louis FRED6 where appropriate monthly observations are

converted to quarterly frequency by averaging.

The variability of the inflation gap is more muted than that of the output gap. The infla-

tion gap fluctuates around the 2% level and shows persistent decline towards the end of the

sample period, consistent with the deflationary conditions prevalent in the United States econ-

omy after the Global Financial Crisis. Official NBER recession periods that coincide with the

sample period, namely 1980:M01-M07,1981:M07-1982:M11,1990:M07-1991:M03, 2001:M03-M11

and 2007:M12-2009:M06 are marked in grey. Since the yield curve is typically upward sloping,

the slope factor, defined as the difference between the zero-coupon interest rates on three-month

Treasury bills and 10-year Treasury bonds, usually takes a negative value. Steeper yield curves

are represented by lower values of the slope factor. If the yield curve becomes inverted then the

slope factor will be positive and the dates of the onset of an inverted yield curve are shown by

vertical lines.7 Notable instances are in 2000 (when a recession followed) and in 2006 (when the

inverted yield curve was not immediately followed by a recession). A final feature of the data in

the bottom panel of Figure 2 is the settling of the effective funds rate at zero for the latter part

of the sample period after 2009Q1, the so-called zero lower bound period of monetary policy.

The decision to use a four-variable VAR model means that two other factors associated with

the term structure of interest rates, the level and curvature, are not included. The fact that

the level of the Federal funds target rate is included in the VAR means that the level factor

may be safely omitted without much loss of information. The main reason for omitting the

curvature (or bow) of the yield curve is that its relationship with the macroeconomy has been

hard to establish. There have been attempts to devise theoretical links between curvature and

the macroeconomy (Dewachter and Lyrio, 2006; Modena, 2008; Moench, 2008) but there is little

evidence to support the nature of the relationship. In view of the ambivalent evidence and the

shortage of degrees of freedom in the present application with quarterly data, it was decided not

to include the curvature in the VAR.

6Website: wwww.research.stlouisfed.org/fred2/.
7Note that these dates are generally established using higher frequency data on the yield curve than the

quarterly data plotted here.
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In estimating the VAR and implementing tests of Granger causality, the lag order is obtained

using the Bayesian information criterion (BIC) with a maximum potential lag length 12. When

implementing the recursive testing procedure the minimum window size is 28 observations (f0 =

0.2) and this constant window size is also used for the rolling testing procedure. The 5% critical

value sequences are obtained from bootstrapping with 500 replications.8

5.1 Yield Curve Slope to the Output Gap

Figure 3 displays the time-varying Wald test statistics for causal effects from the slope of the

yield curve to the output gap. The three rows illustrate the sequences of test statistics obtained

from the forward recursive, rolling window and recursive-rolling procedures, respectively, while

the columns of the figure refer to the two different assumptions of the residual error term

(homoskedasticity and heteroskedasticity) for the VAR. Sequences of the test statistics start

from 1986:Q4 as the first 28 observations represent the minimum window size, the shaded areas

are the NBER recession periods, vertical lines are the dates of the onset of an inverted yield

curve and the dates of causal episodes are also shown.

It is clearly apparent from panel (a) of Figure 3, that the test statistic of the predictive

power of the slope of the yield curve for the output gap lies below its critical value at the end of

the sample period in 2015:Q1. Consequently, the null hypothesis of no Granger causality from

the yield curve slope to the output gap over the whole sample period cannot be rejected. This

result highlights the danger of simply using Wald tests of Granger causality indiscriminately

over the full sample period. Indeed, the fact that slope of the yield curve would have little

predictive power towards the end of the sample is to be expected given that starting in 2009:Q1

the Federal funds rate has been constrained by the zero lower bound. The relative lack of

information encoded in the slope of the yield curve during this period will have a significant

influence on inference based on the entire sample.

The results for the full-sample forward recursive Wald test of causality indicate no causal

relationship (or change in the causal relationship) between the slope of the yield curve and real

economic activity at all over the entire sample period. This conclusion is contrary to expectations

and to all existing evidence of the usefulness of the slope in predicting real economic activity. The

failure of the forward recursive procedure to identify any periods of Granger causality confirms

the results of the simulation exercises where this approach performed poorly by comparison with

8The data and Matlab codes are available for download from http://www.ncer.edu.au/data/data.jsp.
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Figure 3: Tests for Granger causality running from the yield curve slope to the output gap.
Tests are obtained from a VAR model allowing for homoskedasitic errors (panels (a), (c) and
(e)) and for heteroskedastic errors (panels (b), (d) and (f)). The sequence of tests for the
forward recursive, rolling window and recursive-rolling procedures run from 1986:Q4 to 2015:Q1
with 28 observations for the minimum window size. The lag orders are selected using BIC with
a maximum lag order of 12. The shaded areas are the NBER recession periods, the vertical lines
are the dates of the onset of an inverted yield curve and causal periods are shown in text.
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the rolling window and recursive-rolling procedures.

Indeed, panels (c) and (e) of Figure 3 show a very different picture from that of an unequivocal

failure to reject the null hypothesis of no predictability. Instead a dynamic picture of the

evolution of Granger causal relationships between the slope of the yield curve and the output

gap is revealed. The two major periods of predictability that are detected in these tests are over

1997 - 1999 and 2005 - 2008 although there is some disagreement between the rolling and the

recursive rolling tests about the exact dates of occurrence of these two episodes. The rolling

window algorithm suggests the predictability of the yield curve slope to output gap in the period

of 1997:Q1 - 1998:Q3, while the recursive rolling approach detects the origination (termination)

of the causality one (two) quarter(s) later than the rolling method. For the latter period, the

recursive rolling window tests suggest two sub-periods (2005:Q3-2006:Q2 and 2008:Q1-Q2), while

this division is less pronounced in the case of the recursive rolling procedure (last episode starts

in 2007:Q4 with an additional short episode in 2007:Q1-Q2). It is also interesting to note that

these patterns in causality are robust to heterogeneity of various forms in the VAR errors.

Additionally, both methods detect two short causality episodes: 1991Q1 and 1994Q1. The

episode in 1994 can be observed from the heteroskedastic consistent results in (d) and (f). Lastly,

the recursive rolling methods identifies an additional period of causality in 2000:Q2-Q4 which is

not found by the rolling approach.

The results from panels (d) and (e) in Figure 3 are consistent with some existing evidence.

In particular, the test sequence findings corroborate two general conclusions in the literature.

First, Dotsey (1998) argues that, in contrast to previous periods, the information content of

the slope of the term structure is not statistically significant for predicting output between the

beginning of 1985 and the middle of 1997. Here, only two single-observation causal episodes

(1991:Q1 and 1994:Q1) are observed. Second, Kucko and Chinn (2009) find that the overall

predictive ability of the yield slope decreased after 1998 (although their measure of real activity

is industrial production rather than the output gap). A quiet period between 1998 and 2005 is

observed in this data and there is then a re-bound in the causal relationship in the second half

of 2005. The causality from the yield curve spread to output gap lasts until 2008:Q2 -beginning

of the 2008 recession.

This second period of predictability, ending in 2008, appears to have led to a spate of recent

empirical findings that have claimed the slope of the yield curve still provides information about

output (Estrella, 2005; Chauvet and Potter, 2002, 2005; Ang, Piazzesi, and Wei, 2006; Wright,
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2006; Estrella and Trubin, 2006). Later studies, by Rudebusch and Williams (2009) and Kauppi

and Saikonen (2008), reached a similar conclusion and use sample periods that end in 2006,

just as the predictive power of the slope appears to be on the wane. Nonetheless, a finding

of significant predictive ability over the entire sample period used in these studies is consistent

with the subsample results discovered here.

Finally, it is worth noting that the test results from the rolling window approach shows the

value of the Wald test of causality from the slope of the yield curve to economic activity reach

rock bottom around 2009Q1, corresponding exactly to the start of the zero lower bound era of

monetary policy. This result accords with expectations and confirms that the rolling window

method provides the most dynamic sequence of test statistics. The rolling recursive test results

do not show this severe drop-off but they do show a steady decline toward the end of the sample

period. A slight rebound in the values in the sequence of the Wald statistics occurs around

the 2010Q3 which may be attributed to the second round of quantitative easing in the United

States. The effect on the slope of the term structure is evident in Figure 2, but the values of

the test statistics remain well below their critical values.

5.2 Output to the Yield Curve Slope

Figure 4 displays the time-varying Wald test statistics for causal effects running from the out-

put gap to the slope of the yield curve. The rows of the figure again display sequences of tests

obtained from forward recursive, rolling window and recursive-rolling procedures, while the

columns refer to the different assumptions on the errors (homoskedasticity and heteroskedas-

ticity) of the VAR. Sequences of test statistics start from 1986:Q4 as the first 28 observations

represent the minimum window size.

Both the rolling and recursive rolling procedures detect a causality episode during the 1990

recession, which is not found by the forward expanding procedure. The rolling procedure iden-

tifies two sub-periods (1990:Q1-1991:Q3 and 1993:Q1-1994:Q4), while the recursive rolling sup

Wald sequence indicates a longer causal episode running from 1990:Q1 to 1995:Q1. Addition-

ally, both the rolling and recursive rolling procedures finds a causality episode in the second half

of 1990s, respectively, 1997:Q3-1998:Q1 and 1996:Q2-1999:Q1 and 1999:Q3. Notice that the

termination dates estimated by the recursive rolling method are consistently later than those

from the rolling window method, a pattern that accords with the simulation evidence presented

previously.
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Figure 4: Tests for Granger causality running from the yield curve slope to the inflation gap.
Tests are obtained from a VAR model allowing for homoskedasitic errors (panels (a), (c) and (e))
and for heteroskedastic errors (panels (b), (d) and (f)). The sequence of tests for the forward
recursive, rolling window and recursive-rolling procedures run from 1991:Q1 to 2013:Q4 with 22
observations for the minimum window size and a fixed lag order 2.
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All three procedures detect a change in causality in early 2000s. From panel (b), (d), and

(f), the warning signal provided by the rolling algorithm for this change is earlier (2000:Q3)

than that of the forward expanding and recursive rolling methods (2001:Q4 and 2001:Q2). The

change in causality in the early 2000s appears to be a robust feature of the data and is also

consistent with the results reported by Ang and Piazzesi (2003) who argue that macroeconomic

factors are able to help explain movements in bonds yields primarily at the shorter maturities.

There is, however, disagreement between the testing algorithms about the termination date

of this causal episode. The rolling method identifies a termination date of 2002:Q4 (with a

one-quarter break in 2002:Q2), whereas both the forward expanding and the recursive rolling

procedures suggest the causal relationship lasts until the end of the sample period (with a short

break in 2009:Q1). This result is consistent with the simulation evidence that the forward and

recursive rolling procedures may fail to find causality termination dates when the strength of

causality is strong.

The rolling window algorithm detects several additional short durations episodes from 2002:Q4

onwards, which include two episodes during and after the 2008 recession (2008:Q3-Q4 and

2009:Q2–2011:Q4) and one at the end of the sample period (2014:Q4-2015:Q1). This pattern

is consistent with the simulations where the forward and recursive rolling window approaches

were found to have low power in detecting later causality episodes.

6 Conclusion

This paper introduces a recursive rolling testing procedure to detect and date changes in Granger

causal relationships which use sequences the supremum norm of Wald statstics. Variants of

the test that are robust to departures from homoskedasticity are also examined. Asymptotic

distributions of the tests are obtained and are shown to have simple forms that are amenable

to computation for purpose of providing critical values. The recursive rolling procedure is

compared to simple recursive testing and to tests based on a rolling window. The simulation

findings suggest that the recursive rolling and the rolling window procedures are generally to be

preferred to the simple forward recursive testing approach.

These tests are used to investigate causal relationships between the slope of the yield curve

and the output gap using United States data over 1985-2013. The empirical application builds

on earlier findings in the literature concerning bidirectional causal effects between the yield slope
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on output. The results are consistent with much of the earlier literature but their most striking

feature is that fact that causal relationships show considerable sensitivity to the subsample

period. In sum, the various approaches to testing for causality reveal how endogenous detection

of switches in causality gives useful insights about the trajectory of the macroeconomic impact

of the yield curve slope and also issues a strong warning about the indiscriminate application of

the tests over arbitrarily chosen subsamples.
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A Appendix A: Limit Theory Under Assumption A1 and A2

Lemma 3.1 and Proposition 3.1 is first proved under Assumptions A0 and A2. The proof for

strictly stationary and ergodic sequences εt (Assumption A1) is standard and therefore omitted.

A.1 Proof of Lemma 3.1

(a) Write the estimation error as

π̂f1,f2 − πf1,f2 =

In ⊗
[Tf2]∑
t=[Tf1]

xtx
′
t

−1  [Tf2]∑
t=[Tf1]

ξt

 ,
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and, under A2, {ξt,Ft} is a covariance stationary mds with E (ξt|Ft−1) = 0 and supt E
(
‖ξt‖2

)
<

∞, so that T−1
w

∑[Tf2]
t=[Tf1] ξt →a.s. 0 by a standard martingale strong law. Define Q̂f1,f2 =

1
Tw

∑[Tf2]
t=[Tf1] xtx

′
t. Then, by a strong law for second order moments of linear processes (Phillips

and Solo, 1992, Theorem 3.7), we have Q̂f1,f2 →a.s. Q =E (xtx
′
t) > 0 and then

π̂f1,f2 − πf1,f2 =
[
In ⊗ Q̂f1,f2

]−1

 1

Tw

[Tf2]∑
t=[Tf1]

ξt

→a.s. 0,

so that π̂f1,f2 →a.s. πf1,f2 = π under the maintained null of constant coefficients.

(b) Because ε̂t = εt −
(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt), we have

Ω̂f1,f2 =
1

bTfwc

bTf2c∑
t=bTf1c

εtε
′
t −

2

bTfwc

bTf2c∑
t=bTf1c

εt (In ⊗ xt)
′ (π̂f1,f2 − πf1,f2)

+
1

bTfwc

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
In ⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)

p→ Ω,

since 1
bTfwc

∑bTf2c
t=bTf1c εtε

′
t →a.s. Ω, π̂f1,f2 →a.s. πf1,f2 ,

1
bTfwc

∑bTf2c
t=bTf1c ξt →a.s. 0, and Q̂f1,f2 →a.s.

Q > 0.

(c) Under A2 the martingale conditional variance satisfies the strong law

1

Tw

[Tf2]∑
t=[Tf1]

E
(
ξtξ
′
t|Ft−1

)
= Ω⊗ 1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t →a.s. Ω⊗Q > 0,

so that the stability condition for the martingale CLT is satisfied (Phillips and Solo, 1992,

Theorem 3.4). Next, the conditional Lindeberg condition is shown to hold hold, so that for

every δ > 0

1

Tw

[Tf2]∑
t=[Tf1]

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

}
p→ 0. (24)

Let AT =
{
ξt : ‖ξt‖ ≥

√
Twδ

}
. For some α ∈ (0, c/2) if follows that

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)]
=

∫
AT

‖ξt‖2 dP ≤
1(√
Twδ

)α ∫
AT

‖ξt‖2+α dP
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Hence,

E

 1

Tw

[Tf2]∑
t=[Tf1]

E
{
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

}
=

1

Tw

[Tf2]∑
t=[Tf1]

E
{
‖ξt‖2 1

(
‖ξt‖ ≥

√
Twδ

)}
≤ T−α/2w δ−α sup

t
E
[
‖ξt‖2+α

]
≤ T−α/2w δ−α/2K sup

t
E ‖εt‖4+2α → 0

for some constant K <∞ as T →∞ since

E ‖ξt‖2+α = E ‖εt⊗xt‖2+α = E
(
‖εt‖2+α ‖xt‖2+α

)
≤ K sup

t
E ‖εt‖4+2α <∞,

in view of A2. Hence,

1

Tw

[Tf2]∑
t=[Tf1]

E
{
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Twδ

)
|Ft−1

}
L1→ 0,

which ensures that the Lindeberg condition (24) holds.

By the martingale invariance principle for linear processes (Phillips and Solo, 1992, Theorems

3.4), for f2 > f1 it follows that

1√
T

[Tf2]∑
t=[Tf1]

ξt ⇒ B (f2)−B (f1) ,

whereB is vector Brownian motion with covariance matrix Ω⊗Q. Rewriting
√
T (π̂f1,f2 − πf1,f2)

as

√
T (π̂f1,f2 − πf1,f2) =

[
In ⊗ Q̂f1,f2

]−1

 T

Tw

1√
T

[Tf2]∑
t=[Tf1]

ξt

⇒ [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
,

(25)

The limit in (25) may be interpreted as a linear functional of the limit process B (·), whose finite

dimensional distribution for fixed f1 and f2 is simplyN
(
0,Ω⊗ f−1

w Q−1
)
, so that

√
T (π̂f1,f2 − πf1,f2)

L→
N
(
0,Ω⊗ f−1

w Q−1
)
, as stated.
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A.2 Proof of Proposition 3.1

In view of (25), under the null hypothesis

√
TRπ̂f1,f2 ⇒ R [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
= R

[
Ω1/2 ⊗Q−1/2

] [Wnk (f2)−Wnk (f1)

fw

]
,

where Wnk is vector standard Brownian motion with covariance matrix Ink. It follows that

Zf2 (f1) :=

R

Ω̂f1,f2 ⊗

 [Tf2]∑
t=[Tf1]

xtx
′
t

−1R′

−1/2

Rπ̂f1,f2

=

R

Ω̂f1,f2 ⊗

Tw
T

1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t

−1R′

−1/2

√
TRπ̂f1,f2

⇒ f1/2
w

[
R
(
Ω⊗Q−1

)
R′
]−1/2

R [In ⊗Q]−1

[
B (f2)−B (f1)

fw

]
=
[
R
(
Ω⊗Q−1

)
R′
]−1/2

R
[
Ω1/2 ⊗Q−1/2

] [Wnk (f2)−Wnk (f1)

fw

]
,

whose finite dimensional distribution for fixed f1 and f2 is N (0, Id). Next, observe that the

Wald statistic

Wf2 (f1) = Zf2 (f1)′ Zf2 (f1)

⇒

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′ [
Ω1/2 ⊗Q−1/2

]
R′
[
R
(
Ω⊗Q−1

)
R′
]−1

R
[
Ω1/2 ⊗Q−1/2

] [Wnk (f2)−Wnk (f1)

f
1/2
w

]

=

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
A
(
A′A

)−1
A′

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]
, with Ank×d =

[
Ω1/2 ⊗Q−1/2

]
R′,

=d

[
Wd (f2)−Wd (f1)

f
1/2
w

]′ [
Wd (f2)−Wd (f1)

f
1/2
w

]
(26)

which is a quadratic functional of the limit process Wd (·). The finite dimensional distribution

of (26) for fixed f1 and f2 is χ2
d. It follows by continuous mapping that as T →∞

SWf2 (f0)
L→ sup

f1∈[0,f2−f0],f2=f

[
Wd (f2)−Wd (f1)

f
1/2
w

]′ [
Wd (f2)−Wd (f1)

f
1/2
w

]
,

where Wd is vector Brownian motion with covariance matrix Id.
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B Appendix B: Limit Theory Under Assumption A3

This section provides proofs of Lemma 3.2, 3.3 and 3.4 and Proposition 3.2 and 3.3 under A0

and A3.

B.1 Proof of Lemma 3.2

The proof of (a) follows directly from the strong law of large number for martingales (Hall and

Heyde, 1980, theorem 2.19) under A3(i).

For the proof of (b) and (c), it is shown that for all h ≥ 0, z > 0

P
(∥∥εtε′t−h∥∥ ≥ z) = P

(
‖εt‖

∥∥ε′t−h∥∥ ≥ z)
≤ P

(
‖εt‖ ≥ z1/2

)
+ P

(
‖εt−h‖ ≥ z1/2

)
≤ 2γP

(
‖ε‖2 ≥ z

)
.

The last inequality follows by uniform integrability because P (‖εt‖ ≥ z) ≤ γP (‖ε‖ ≥ z) for

each z ≥ 0, t ≥ 1 and for some constant γ under A3(i). Therefore, from the martingale strong

law

1

Tw

[Tf2]∑
t=[Tf1]

εtε
′
t →a.s Ω and

1

Tw

[Tf2]∑
t=[Tf1]

εtε
′
s →a.s 0 for s 6= t.

See also Remarks 2.8(i) and (ii) of Phillips and Solo (1992).

For (d), by construction

1

Tw

[Tf2]∑
t=[Tf1]

xt−1ε
′
t =

1

Tw

[Tf2]∑
t=[Tf1]

[
εt εty

′
t−1 · · · εty

′
t−p

]′
.

and, from (a), T−1
w

∑[Tf2]
t=[Tf1] εt →a.s 0. Next consider the product yt−hε

′
t with 1 ≤ h ≤ p. Since

yt−hε
′
t =

[
Φ̃0 +

∞∑
i=0

Ψiεt−h−i

]
ε′t = Φ̃0ε

′
t +

∞∑
i=0

Ψiεt−h−iε
′
t,

it follows from absolute summability that
∑∞

i=0 ‖Ψi‖ <∞ and results (a) and (c), that T−1
w

∑[Tf2]
t=[Tf1] yt−hε

′
t →a.s

0, giving the required T−1
w

∑[Tf2]
t=[Tf1] xt−1ε

′
t →a.s 0.
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For (e), note that typical block elements of xtx
′
t have the form yt−hy

′
t−h−j and yt−h, so it

suffices to calculate the limits of the following sample moments

(i)
1

Tw

[Tf2]∑
t=[Tf1]

yt−h, where 1 ≤ h ≤ p;

(ii)
1

Tw

[Tf2]∑
t=[Tf1]

yt−hy
′
t−h−j , where 1 ≤ h ≤ p and 1 ≤ j ≤ p− h.

Since yt−h − Φ̃0 =
∑∞

i=0 Ψiεt−h−i and
∑∞

i=0 ‖Ψi‖ <∞ by virtue of A0, it follows that

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)
=

1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i=0

Ψiεt−h−i =
∞∑
i=0

Ψi

 1

Tw

[Tf2]∑
t=[Tf1]

εt−h−i

→a.s 0,

by results in (a), and

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
=

1

Tw

[Tf2]∑
t=[Tf1]

( ∞∑
i=0

Ψiεt−h−i

)( ∞∑
i=0

Ψiεt−h−j−i

)′

→a.s

∞∑
i=0

Ψi+jΩΨ′i,

by results in (b) and (c). Hence,

T−1
w

[Tf2]∑
t=[Tf1]

yt−h →a.s Φ̃0, T−1
w

[Tf2]∑
t=[Tf1]

yt−hy
′
t−h−j →a.s Φ̃0Φ̃′0 +

∞∑
i=0

Ψi+jΩΨ′i,

giving

T−1
w

[Tf2]∑
t=[Tf1]

xt−1x
′
t−1 →a.s Q ≡

[
1 1′p ⊗ Φ̃′0

1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θ

]
,

with

Θ =
∞∑
i=0

 ΨiΩΨ′i · · · Ψi+p−1ΩΨ′i
...

. . .
...

ΨiΩΨ′i+p−1 · · · ΨiΩΨ′i

 .
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B.2 Proof of Lemma 3.3

(a) The following conditional Lindeberg condition holds for all δ > 0:

1

T

T∑
t=1

E
[
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]
p→ 0. (27)

Let AT =
{
ξt : ‖ξt‖ ≥

√
Tδ
}

. For some α ∈ (0, c/2)

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

=

∫
AT

‖ξt‖2 dP ≤
1(√
Tδ
)α ∫

AT

‖ξt‖2+α dP ≤ 1(√
Tδ
)αE(‖ξt‖2+α

)
.

Hence,

E

{
1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]}

=
1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

≤ T−α/2δ−α sup
t

E
(
‖ξt‖2+α

)
≤ T−α/2δ−αK sup

t
E
(
‖εt‖4+2α

)
→ 0,

for some constant K <∞ as T →∞ since

E ‖ξt‖2+α = E ‖εt ⊗ xt‖2+α ≤ E
(
‖εt‖2+α ‖xt‖2+α

)
≤ KE ‖ε‖4+2α <∞,

in view of A3(i) and the stability condition A0 which ensures that ‖xt‖ ≤ A
∑∞

i=0 θ
i ‖εt−i‖ for

some constant A and |θ| < 1. Then (27) holds by L1 convergence.

(b) The stability condition involves the convergences

1

T

T∑
t=1

ξtξ
′
t,

1

T

T∑
t=1

E
{
ξtξ
′
t|Ft−1

}
→a.s W. (28)

By A3(i) and A0, it follows that E
{
‖ξtξ′t‖

1+δ
}

= E
{
‖εtε′t‖

1+δ ‖xtx′t‖
1+δ
}
≤ KE ‖ε‖4+4δ <∞

for some finite K > 0 and δ < c/4. Then, by the martingale strong law (Hall and Heyde, 1980,
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theorem 2.19) we have T−1
∑T

t=1 {ξtξ′t| − E (ξtξ
′
t|Ft−1)} →a.s 0, where the limit

lim
T→∞

1

T

T∑
t=1

E
(
ξtξ
′
t|Ft−1

)
= W, (29)

may be obtained by an explicit calculation using A3(ii) and (iii). By definition

ξtξ
′
t = εtε

′
t ⊗ xtx

′
t =

 ε2
1,txtx

′
t · · · ε1,tεn,txtx

′
t

...
. . .

...
ε1,tεn,txtx

′
t · · · ε2

n,txtx
′
t

 ,
and therefore limT→∞ T

−1
∑T

t=1 E
(
ε2

1,txtx
′
t|Ft−1

)
. The other limits can be computed in the

same way. The leading block submatrix of ξtξ
′
t is

ε2
1,txtx

′
t =


ε2

1,t ε2
1,ty

′
t−1 · · · ε2

1,ty
′
t−p

ε2
1,tyt−1 ε2

1,tyt−1y
′
t−1 · · · ε2

1,tyt−1y
′
t−p

...
...

. . .
...

ε2
1,tyt−p ε2

1,tyt−py
′
t−1 · · · ε2

1,tyt−py
′
t−p

 .
First, by the same martingale strong law T−1

∑T
t=1

{
ε2

1,t − E
(
ε2

1,t|Ft−1

)}
→a.s 0 and from

Lemma 3.2(b) T−1
∑T

t=1 ε
2
1,t →a.s Ω11, with T−1

∑T
t=1 E

(
ε2

1,t|Ft−1

)
→a.s Ω11 from A3(ii). To

obtain the limit of T−1
∑T

t=1 E
(
ε2

1,tyt−1|Ft−1

)
, note that

1

T

T∑
t=1

E
[
ε2

1,t

(
yt−1 − Φ̃0

)
|Ft−1

]
=

1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) (
yt−1 − Φ̃0

)
=

1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) ∞∑
i=0

Ψiεt−1−i =

∞∑
i=0

Ψi

[
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)
εt−1−i

]
→a.s 0,

from Assumption A3(iii) and A0. It follows that

1

T

T∑
t=1

E
[
ε2

1,tyt−1|Ft−1

]
→a.s Ω11Φ̃0 and

1

T

T∑
t=1

E
(
ε2

1,ty
′
t−1|Ft−1

)
→a.s Ω11Φ̃′0.
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Similarly, to obtain the limit of T−1
∑T

t=1 E
(
ε2

1,tyt−hy
′
t−h−j |Ft−1

)
, observe that

1

T

T∑
t=1

E
[
ε2

1,t

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
|Ft−1

]

=
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)( ∞∑
i=0

Ψiεt−h−i

)( ∞∑
i=0

Ψiεt−h−j−i

)

=
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

) ∞∑
i=0

Ψi+jεt−h−j−iε
′
t−h−j−iΨ

′
i + op (1)× 11′

=

∞∑
i=0

Ψi+j

[
1

T

T∑
t=1

E
(
ε2

1,t|Ft−1

)
εt−h−j−iε

′
t−h−j−i

]
Ψ′i + op (1)× 11′

→a.s

∞∑
i=0

Ψi+jΩ11ΩΨ′i,

from Assumption A3(iii) and A0. It may be deduced that

1

T

T∑
t=1

E
[
ε2

1,tyt−hy
′
t−h−j |Ft−1

]
→a.s

[
Ω11Φ̃0Φ̃′0 +

∞∑
i=0

Ψi+jΩ11ΩΨ′i

]
.

Therefore

1

T

T∑
t=1

E
(
ε2

1,txtx
′
t|Ft−1

)

→a.s


Ω11 Ω11Φ̃′0 · · · Ω11Φ̃′0

Ω11Φ̃0 Ω11Φ̃0Φ̃′0 +
∑∞

i=0 ΨiΩ11ΩΨ′i · · · Ω11Φ̃0Φ̃′0 +
∑∞

i=0 Ψi+p−1Ω11ΩΨ′i
...

...
. . .

...

Ω11Φ̃0 Ω11Φ̃0Φ̃′0 +
∑∞

i=0 ΨiΩ11ΩΨ′i+p−1 · · · Ω11Φ̃0Φ̃′0 +
∑∞

i=0 ΨiΩ11ΩΨ′i

 ,
with similar calculations for the other components of the matrix partition, leading to the stability

condition (29), with W =
{
W(i,j)

}
i,j∈[1,n]

defined in terms of the component matrix partitions

W(i,j) =

[
Ωij 1′p ⊗ ΩijΦ̃

′
0

1p ⊗ ΩijΦ̃0 Ip ⊗ ΩijΦ̃0Φ̃′0 + Ξ(i,j)

]
,
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and

Ξ(i,j) ≡
∞∑
i=0

 ΨiΩijΩΨ′i · · · Ψi+p−1ΩijΩΨ′i
...

. . .
...

ΨiΩijΩΨ′i+p−1 · · · ΨiΩijΩΨ′i

 .
B.3 Proof of Lemma 3.4

(a) By definition

π̂f1,f2 − πf1,f2 =

In ⊗
1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t

−1 √T
Tw

1√
T

[Tf2]∑
t=[Tf1]

ξt

→a.s. 0,

from Lemma 3.2(e) and (21).

(b) Using ε̂t = εt −
(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt), it follows that

1

Tw

bTf2c∑
t=bTf1c

ε̂tε̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

εtε
′
t −

2

Tw

bTf2c∑
t=bTf1c

εt (I⊗ xt)
′ (π̂f1,f2 − πf1,f2)

+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)→a.s. Ω,

since T−1
w

∑bTf2c
t=bTf1c εtε

′
t →a.s. Ω from Lemma 3.2(b), π̂f1,f2 →a.s. πf1,f2 , T

−1
∑bTf2c

t=bTf1c ξt →a.s. 0,

and T−1
w

∑bTf2c
t=bTf1c xtx

′
t →a.s. Q > 0.

(c) The scaled and centred estimation error process is

√
Tw (π̂f1,f2 − πf1,f2) =

In ⊗
1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t

−1  √T√
Tw

1√
T

[Tf2]∑
t=[Tf1]

ξt


⇒ f−1/2

w V−1 [B (f2)−B (f1)] ,

whose finite dimensional distribution for fixed (f1, f2) is
√
Tw (π̂f1,f2 − πf1,f2)

L→ N
(
0,V−1WV−1

)
,

where V = In⊗ Q.
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(d) By definition

1

Tw

bTf2c∑
t=bTf1c

ξ̂tξ̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

(
ε̂tε̂
′
t ⊗ xtx

′
t

)

=
1

Tw

bTf2c∑
t=bTf1c

[
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

] [
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

]′ ⊗ xtx
′
t

=
1

Tw

bTf2c∑
t=bTf1c

εtε
′
t ⊗ xtx

′
t −

2

Tw

bTf2c∑
t=bTf1c

[(
εtIn ⊗ εtx′t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

]

+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

=
1

Tw

bTf2c∑
t=bTf1c

ξtξ
′
t + op (1)→a.s W.

from Lemma 3.2(d) and (e), Lemma 3.4(a), and Lemma 3.3(b).

B.4 Proof of Proposition 3.2

In view of Lemma 3.4(c), under the null hypothesis√
TwRπ̂f1,f2 ⇒ f−1/2

w RV−1 [B (f2)−B (f1)]

= f−1/2
w RV−1W1/2 [Wnk (f2)−Wnk (f1)] ,

where Wnk is vector standard Brownian motion with covariance matrix Ink. It follows that

Z∗f2 (f1) :=
[
R
(
V̂−1
f1,f2

Ŵf1,f2V̂
−1
f1,f2

)
R′
]−1/2 (√

TwRπ̂f1,f2

)
⇒ f−1/2

w

[
R
(
V−1WV−1

)
R′
]−1/2

RV−1W1/2 [Wnk (f2)−Wnk (f1)] .

Observe that the Wald statistic process

W ∗f2 (f1) = Z∗f2 (f1)′ Z∗f2 (f1)

⇒ f−1
w [Wnk (f2)−Wnk (f1)]′A

(
A′A

)−1
A′ [Wnk (f2)−Wnk (f1)]

=d f−1
w [Wd (f2)−Wd (f1)]′ [Wd (f2)−Wd (f1)] ,
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with A =W 1/2V−1R′, whose finite dimensional distribution for fixed (f1, f2) is χ2
d. It follows

by continuous mapping that as T →∞

SW ∗f2 (f0)
L→ sup

f1∈[0,f2−f0],f2=f

[
Wd (f2)−Wd (f1)

f
1/2
w

]′ [
Wd (f2)−Wd (f1)

f
1/2
w

]

= sup
fw∈[f0,f2],f2=f

[
Wd (fw)′Wd (fw)

fw

]
,

where Wd is vector Brownian motion with covariance matrix Id.

B.5 Proof of Proposition 3.3

In view of Lemma 3.4(c), under the null hypothesis√
TwRπ̂f1,f2 ⇒ f−1/2

w RV−1 [B (f2)−B (f1)]

= f−1/2
w RV−1W1/2 [Wnk (f2)−Wnk (f1)] ,

where Wnk is vector standard Brownian motion with covariance matrix Ink. It follows that

Zf2 (f1) :=

[
R
(
Ω̂f1,f2 ⊗ Q̂f1,f2

)−1
R′
]−1/2 (√

TwRπ̂f1,f2

)
⇒ f−1/2

w

[
R (Ω⊗Q)−1 R′

]−1/2
RV−1W1/2 [Wnk (f2)−Wnk (f1)] .

Next, observe that the Wald statistic process

Wf2 (f1) = Zf2 (f1)′ Zf2 (f1)

⇒

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
AB−1A′

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]
,

with A =W 1/2V−1R′ and B = R (Ω⊗Q) R′. It follows by continuous mapping that as T →∞

SW 0
f2 (f0)

L→ sup
f1∈[0,f2−f0],f2=f

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
AB−1A′

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]
,

giving the required result.
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C Appendix C: Limit Theory Under Assumptions A4 and A5

This Appendix contains the proofs of Lemma 3.5, 3.6 and 3.7 and Proposition 3.4 allowing for

unconditional heterogeneity in the errors under A0, A4 and A5.

C.1 Proof of Lemma 3.5

(a) Under A4, by the martingale strong law and covariance stationarity of {ut}, it follows that

1

Tw

[Tf2]∑
t=[Tf1]

ut →a.s. E (ut) = 0 (30)

1

Tw

[Tf2]∑
t=[Tf1]

utu
′
t →a.s. E

(
utu

′
t

)
= In (31)

1

Tw

[Tf2]∑
t=[Tf1]

utu
′
s →a.s. E

(
utu

′
s

)
= 0 for s 6= t, (32)

where the results hold for every subsample involving sample fractions f1, f2 ∈ [0, 1] with f1 < f2.

Further, since G (·) is uniformly bounded and ut is strongly uniformly integrable under A5 ,

for small δ > 0, it follows that

sup
t

E ‖εt‖1+δ ≤ sup
t
‖G (t/T )‖1+δ sup

t
E ‖ut‖1+δ <∞

and then T−1
w

∑[Tf2]
t=[Tf1] εt →a.s. 0, again by the martingale strong law and for all fractions f1 < f2.

(b) The subsample second moment matrix of εt satisfies

1

Tw

[Tf2]∑
t=[Tf1]

εtε
′
t =

1

Tw

[Tf2]∑
t=[Tf1]

G (t/T ) utu
′
tG (t/T )′

=
1

Tw

[Tf2]∑
t=[Tf1]

G (t/T )E
(
utu

′
t

)
G (t/T )′ +

1

Tw

[Tf2]∑
t=[Tf1]

G (t/T )
{
utu

′
t − E

(
utu

′
t

)}
G (t/T )′

→a.s.

∫ f2

f1

G (r) G (r)′ dr,

since E (utu
′
t) = In, T

−1
w

∑[Tf2]
t=[Tf1] G (t/T ) G (t/T )′ =

∫ ([Tf2]+1)/T
[Tf1]/T G (r) G (r)′ dr + o (1) →
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∫ f2
f1

G (r) G (r)′ dr, and

1

Tw

[Tf2]∑
t=[Tf1]

G (t/T )
{
utu

′
t − In

}
G (t/T )′ →a.s. 0,

again by the martingale strong law because

sup
t

E
∥∥G (t/T )

{
utu

′
t − In

}
G (t/T )

∥∥1+δ ≤ sup
t
‖G (t/T )‖2+2δ sup

t
E
∥∥utu′t − In

∥∥1+δ
<∞,

for all small δ > 0 in view of A5(i) and the strong uniform integrability of ‖ut‖4 .

(c) Using E
(
ut−h−j−iu

′
t−h−j−q

)
= Inδiq where δiq = 1 {i = q} is the Kronecker delta, so

that

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
=

1

Tw

[Tf2]∑
t=[Tf1]

( ∞∑
i=0

Ψiεt−h−i

) ∞∑
q=0

Ψqεt−h−j−q

′

=
1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i=0

Ψi+jG

(
t− h− j − i

T

)
G

(
t− h− j − i

T

)′
Ψ′i

+
1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i,q=0

Ψi+jG

(
t− h− j − i

T

){
ut−h−j−iu

′
t−h−j−q − Inδiq

}
G

(
t− h− j − i

T

)′
Ψ′q

=
1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i=0

Ψi+jG

(
t− h− j − i

T

)
G

(
t− h− j − i

T

)′
Ψ′i + oa.s. (1)

=

∫ ([Tf2]+1)/T

[Tf1]/T

∞∑
i=0

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′idr + oa.s. (1) ,

since G is uniformly bounded,
∑∞

i,q=0 ‖Ψi+j‖
∥∥Ψ′q

∥∥ < ∞ uniformly in j by virtue of A0, and

by the martingale strong law

1

Tw

[Tf2]∑
t=[Tf1]

{
ut−h−j−iu

′
t−h−j−q − Inδiq

}
→a.s. 0.

Further,

∞∑
i=0

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i
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=

S∑
i=0

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i (33)

+

∞∑
i=S+1

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i (34)

where S > 0 such that S
T + 1

S → 0. The first term (33) satisfies

S∑
i=0

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i →a.s

∞∑
i=0

Ψi+jG (r) G (r)′Ψ′i,

and the second term (34) tends to zero because ‖Ψi‖ < Cθi with |θ| < 1, which gives

∞∑
i=S+1

∥∥∥∥Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i

∥∥∥∥ ≤ C2θj
∞∑

i=S+1

θ2i → 0,

as T, S →∞. Thus,

∞∑
i=0

Ψi+jG

(
[rT ]− h− j − i

T

)
G

(
[rT ]− h− j − i

T

)′
Ψ′i →a.s

∞∑
i=0

Ψi+jG (r) G (r)′Ψ′i,

and hence

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
→a.s

∫ f2

f1

∞∑
i=0

Ψi+jG (r) G (r)′Ψ′idr,

as stated.

(c) It is required to show that T−1
w

∑[Tf2]
t=[Tf1] xtεt →a.s 0. It suffices to show that T−1

w

∑[Tf2]
t=[Tf1] εt →a.s

0, which holds by (a), and T−1
w

∑[Tf2]
t=[Tf1] yt−hεt →a.s 0 for 1 ≤ h ≤ p. Under A0, yt−hεt =(

Φ̃0 +
∑∞

i=0 Ψiεt−h−i

)
εt and T−1

w

∑[Tf2]
t=[Tf1] Φ̃0εt →a.s 0 holds by (a). Next,

1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i=0

Ψiεt−h−iεt =

∞∑
i=0

Ψi

T−1
w

[Tf2]∑
t=[Tf1]

εt−h−iεt

→a.s. 0,

by the martingale strong law since εt = G (t/T ) ut,G is uniformly bounded, h ≥ 1, and ut−h−iut

is strongly uniformly integrable with dominating random variable u satisfying E ‖ut‖4+c < ∞
by A5(i). It follows that T−1

w

∑[Tf2]
t=[Tf1] xt−1ε

′
t →a.s 0. as required.

60



(d) It is known that

xtx
′
t =


1 y′t−1 · · · y′t−p

yt−1 yt−1y
′
t−1 · · · yt−1y

′
t−p

...
...

. . .
...

yt−p yt−py
′
t−1 · · · yt−py

′
t−p

 .
In order to prove the statement, the following limits for 1 ≤ h ≤ p must be calculated:

(i) lim
T→∞

1

Tw

[Tf2]∑
t=[Tf1]

yt−h; (ii) lim
T→∞

1

Tw

[Tf2]∑
t=[Tf1]

yt−hy
′
t−h−j , for 1 ≤ j ≤ p− h.

Since yt−h − Φ̃0 =
∑∞

i=0 Ψiεt−h−i, it follows that

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)
=

1

Tw

[Tf2]∑
t=[Tf1]

∞∑
i=0

Ψiεt−h−i =
∞∑
i=0

Ψi

 1

Tw

[Tf2]∑
t=[Tf1]

εt−h−i

→a.s 0

by (a); and from (c),

1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
→a.s

∫ f2

f1

∞∑
i=0

Ψi+jG (r) G (r)′Ψ′idr.

Thus

1

Tw

[Tf2]∑
t=[Tf1]

yt−h →a.s Φ̃0,
1

Tw

[Tf2]∑
t=[Tf1]

yt−hy
′
t−h−j →a.s Φ̃0Φ̃′0 +

∫ f2

f1

∞∑
i=0

Ψi+jG (r) G (r)′Ψ′idr,

so that

1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t →a.s Qf1,f2 =

[
1 1′p ⊗ Φ̃′0

1p ⊗ Φ̃0 Ip ⊗ Φ̃0Φ̃′0 + Θf1,f2

]
,

where

Θf1,f2 ≡
∫ f2

f1

∞∑
i=0

 ΨiG (r) G (r)′Ψ′i · · · Ψi+p−1G (r) G (r)′Ψ′i
...

. . .
...

ΨiG (r) G (r)′Ψ′i+p−1 · · · ΨiG (r) G (r)′Ψ′i

 dr.
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C.2 Proof of Lemma 3.6

(a) As in the proof of lemma 3.3, the procedure is to show that the conditional Lindeberg

conditon holds

1

T

T∑
t=1

E
[
‖ξt‖2 .1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]
p→ 0 for all δ > 0. (35)

Let AT =
{
ξt : ‖ξt‖ ≥

√
Tδ
}

. For some α ∈ (0, c/2)

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

=

∫
AT

‖ξt‖2 dP ≤
1(√
Tδ
)α ∫

AT

‖ξt‖2+α dP ≤ 1(√
Tδ
)αE(‖ξt‖2+α

)
.

Hence,

E

{
1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)
|Ft−1

]}

=
1

T

T∑
t=1

E
[
‖ξt‖2 1

(
‖ξt‖ ≥

√
Tδ
)]

≤ T−α/2δ−α sup
t

E
(
‖ξt‖2+α

)
≤ T−α/2δ−αK sup

t
E
(
‖εt‖4+2α

)
→ 0,

for some constant K <∞ as T →∞ since

E ‖ξt‖2+α = E ‖εt ⊗ xt−1‖2+α = E
(
‖εt‖2+α ‖xt−1‖2+α

)
≤ K sup

t
‖G (r)‖4+2α E ‖u‖4+2α <∞,

in view of A5(i) and (ii). Hence, (35) follows.

(b) Again the proof of Lemma 3.3 is followed. The stability condition involves the convergence

1

T

T∑
t=1

ξtξ
′
t,

1

T

T∑
t=1

E
{
ξtξ
′
t|Ft−1

}
→a.s W.

By A5(i) and A0, it follows that E
{
‖ξtξ′t‖

1+δ
}

= E
{
‖ξt‖2+2δ

}
= E

{
‖εtε′t‖

2+2δ ‖xtx′t‖
2+2δ

}
≤

KE ‖ε‖4+4δ < ∞ for some finite K > 0 and δ < c/4. Then, by the martingale strong law (Hall

and Heyde, 1980, theorem 2.19) it follows that T−1
∑T

t=1 {ξtξ′t| − E (ξtξ
′
t|Ft−1)} →a.s 0, where

the limit

lim
T→∞

1

T

T∑
t=1

E
(
ξtξ
′
t|Ft−1

)
= W,
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may be obtained by an explicit calculation using A5(ii) and (iii). Again, by definition,

ξtξ
′
t =

(
εtε
′
t

)
⊗
(
xtx
′
t

)
=

 ε2
1,txtx

′
t · · · ε1,tεn,txtx

′
t

...
. . .

...
ε1,tεn,txtx

′
t · · · ε2

n,txtx
′
t


nk×nk

.

The limit limT→∞
1
Tw

∑[Tf2]
t=[Tf1] E

(
ε2

1,txt−1x
′
t−1|Ft−1

)
is calculated and the other limits in prob-

ability are computed in the same way. It then follows that

ε2
1,txtx

′
t =


ε2

1,t ε2
1,ty

′
t−1 · · · ε2

1,ty
′
t−p

ε2
1,tyt−1 ε2

1,tyt−1y
′
t−1 · · · ε2

1,tyt−1y
′
t−p

...
...

. . .
...

ε2
1,tyt−p ε2

1,tyt−py
′
t−1 · · · ε2

1,tyt−py
′
t−p


k×k

.

Write G = (giq) and then from lemma 3.5(b)

1

Tw

[Tf2]∑
t=[Tf1]

E
(
ε2

1,t|Ft−1

)
=

1

Tw

[Tf2]∑
t=[Tf1]

E

 n∑
q=1

g1q (t/T )ujt

2

|Ft−1


=

1

Tw

[Tf2]∑
t=[Tf1]

n∑
q=1

g2
1q (t/T )E

(
u2
qt|Ft−1

)
=

∫ ([Tf2]+1)/T

[Tf1]/T

n∑
q=1

g2
1q (r) dr

→a.s.

∫ f2

f1

n∑
q=1

g2
1q (r) dr.

Next,

1

Tw

[Tf2]∑
t=[Tf1]

E
[
ε2

1,t

(
yt−h − Φ̃0

)
|Ft−1

]
=

1

Tw

[Tf2]∑
t=[Tf1]

E
(
ε2

1,t|Ft−1

) (
yt−h − Φ̃0

)

=
∞∑
i=0

Ψi

 1

Tw

[Tf2]∑
t=[Tf1]

E
(
ε2

1,t|Ft−1

)
εt−h−i

→a.s 0,

because
∑∞

i=0 ‖Ψi‖ <∞ and

1

Tw

[Tf2]∑
t=[Tf1]

E
(
ε2

1,t|Ft−1

)
εt−h−i =

n∑
j=1

1

Tw

[Tf2]∑
t=[Tf1]

g2
1j (t/T ) G

(
t− h− i

T

)
ut−h−i →a.s 0,

by the martingale strong law using A5(i) and uniform boundedness of the elements of G. It
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follows that

1

Tw

[Tf2]∑
t=[Tf1]

E
[
ε2

1,tyt−h|Ft−1

]
→a.s

∫ f2

f1

n∑
q=1

g2
1q (r) drΦ̃0.

To evaluate limT→∞
1
Tw

∑[Tf2]
t=[Tf1] E

(
ε2

1,tyt−hy
′
t−h−j |Ft−1

)
, consider

1

Tw

[Tf2]∑
t=[Tf1]

E
[
ε2

1,t

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
|Ft−1

]

=

n∑
q=1

g2
1q (r)

 1

Tw

[Tf2]∑
t=[Tf1]

(
yt−h − Φ̃0

)(
yt−h−j − Φ̃0

)′
→a.s

∞∑
i=0

Ψi+j

∫ f2

f1

n∑
q=1

g2
1q (r) G (r) G (r)′ drΨ′i,

which follows from Lemma 3.5(c). Thus,

1

Tw

[Tf2]∑
t=[Tf1]

E
[
ε2

1,tyt−hy
′
t−h−j |Ft−1

]
→a.s

∫ f2

f1

n∑
q=1

g2
1q (r) drΦ̃0Φ̃′0+

∞∑
i=0

Ψi+j

∫ f2

f1

n∑
q=1

g2
1q (r) G (r) G (r)′ drΨ′i.

and hence T−1
w

∑[Tf2]
t=[Tf1] ξtξ

′
t →a.s Wf1,f2 , where Wf1,f2 =

{
W

(i,j)
f1,f2

}
i,j∈[1,n]

with

W
(i,j)
f1,f2

=

[ ∫ f2
f1

∑n
q=1 giq (r) gjq (r) dr 1′p ⊗

∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃′0

1p ⊗
∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃0 Ip ⊗

∫ f2
f1

∑n
q=1 giq (r) gjq (r) drΦ̃0Φ̃′0 + Ξ

(i,j)
f1,f2

]
,

and

Ξ
(i,j)
f1,f2

≡
∞∑
i=0


ΨiΛ

(i,j)
f1,f2

Ψ′i · · · Ψi+p−1Λ
(i,j)
f1,f2

Ψ′i
...

. . .
...

ΨiΛ
(i,j)
f1,f2

Ψ′i+p−1 · · · ΨiΛ
(i,j)
f1,f2

Ψ′i

 ,
Λ

(i,j)
f1,f2

=

∫ f2

f1

n∑
q=1

giq (r) gjq (r) G (r) G (r)′ dr.
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C.3 Proof of Lemma 3.7

(a) As shown earlier,

π̂f1,f2 − πf1,f2 =

In ⊗
1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t

−1 √T
Tw

1√
T

[Tf2]∑
t=[Tf1]

ξt

→a.s. 0,

using Lemma 3.5(e) and (21).

(b) Using ε̂t = εt −
(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt), it follows that

1

Tw

bTf2c∑
t=bTf1c

ε̂tε̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

εtε
′
t −

2

Tw

bTf2c∑
t=bTf1c

εt (I⊗ xt)
′ (π̂f1,f2 − πf1,f2)

+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)→a.s. Ωf1,f2 ,

since T−1
w

∑bTf2c
t=bTf1c εtε

′
t →a.s Ωf1,f2 from Lemma 3.5(b), π̂f1,f2 →a.s. πf1,f2 , T

−1
∑bTf2c

t=bTf1c ξt →a.s.

0, and T−1
w

∑bTf2c
t=bTf1c xtx

′
t →a.s. Qf1,f2 > 0.

(c) Write the centred and scaled process
√
Tw (π̂f1,f2 − πf1,f2) asIn ⊗

1

Tw

[Tf2]∑
t=[Tf1]

xtx
′
t

−1  √T√
Tw

1√
T

[Tf2]∑
t=[Tf1]

ξt

⇒ f−1/2
w V−1

f1,f2
[B∗ (f2)−B∗ (f1)] ,

whose finite dimensional distribution for fixed (f1, f2) is
√
Tw (π̂f1,f2 − πf1,f2)

L→ N
(

0,V−1
f1,f2

Wf1,f2V
−1
f1,f2

)
,

where Vf1,f2 = In⊗ Qf1,f2 .

(d) By definition,

1

Tw

bTf2c∑
t=bTf1c

ξ̂tξ̂
′
t =

1

Tw

bTf2c∑
t=bTf1c

(
ε̂tε̂
′
t ⊗ xtx

′
t

)

=
1

Tw

bTf2c∑
t=bTf1c

[
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

] [
εt −

(
π̂′f1,f2 − π

′
f1,f2

)
(In ⊗ xt)

]′ ⊗ xtx
′
t

=
1

Tw

bTf2c∑
t=bTf1c

εtε
′
t ⊗ xtx

′
t −

2

Tw

bTf2c∑
t=bTf1c

[(
εtIn ⊗ εtx′t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

]
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+
1

Tw

bTf2c∑
t=bTf1c

(
π̂′f1,f2 − π

′
f1,f2

) (
I⊗ xtx

′
t

)
(π̂f1,f2 − πf1,f2)⊗ xtx

′
t

=
1

Tw

bTf2c∑
t=bTf1c

ξtξ
′
t + op (1) 11′ →a.s Wf1,f2 ,

from Lemma 3.5(d) and (e), Lemma 3.7(a), and Lemma 3.6(b).

C.4 Proof of Proposition 4

In view of Lemma 3.7(c), under the null hypothesis√
TwRπ̂f1,f2 ⇒ f−1/2

w RV−1
f1,f2

[B∗ (f2)−B∗ (f1)]

= f−1/2
w RV−1

f1,f2
W

1/2
f1,f2

[Wnk (f2)−Wnk (f1)] ,

where B∗ is vector Brownian motion with covariance matrix Wf1,f2 and Wnk is vector standard

Brownian motion with covariance matrix Ink. It follows that

Z∗f2 (f1) :=
[
R
(
V̂−1
f1,f2

Ŵf1,f2V̂
−1
f1,f2

)
R′
]−1/2 (√

TwRπ̂f1,f2

)
⇒ f−1/2

w

[
R
(
V−1
f1,f2

Wf1,f2V
−1
f1,f2

)
R′
]−1/2

RV−1
f1,f2

W
1/2
f1,f2

[Wnk (f2)−Wnk (f1)] .

The Wald statistic process is

W ∗f2 (f1) = Z∗f2 (f1)′ Z∗f2 (f1)

⇒ f−1
w [Wnk (f2)−Wnk (f1)]′Af1,f2

(
A′f1,f2Af1,f2

)−1
A′f1,f2 [Wnk (f2)−Wnk (f1)]

=d f−1
w [Wd (f2)−Wd (f1)]′ [Wd (f2)−Wd (f1)] ,

with Af1,f2 = W
1/2
f1,f2

V−1
f1,f2

R′, whose finite dimensional distribution for fixed f1 and f2 is χ2
d. It

follows by continuous mapping that as T →∞

SW ∗f2 (f0)
L→ sup

f1∈[0,f2−f0],f2=f

[
Wd (fw)′Wd (fw)

fw

]
,

where Wd is vector standard Brownian motion with covariance matrix Id.
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C.5 Proof of Proposition 5

In view of Lemma 3.7(c), under the null hypothesis the limit process is given by√
TwRπ̂f1,f2 ⇒ f−1/2

w RV−1
f1,f2

[B∗ (f2)−B∗ (f1)]

= f−1/2
w RV−1

f1,f2
W

1/2
f1,f2

[Wnk (f2)−Wnk (f1)] ,

where B∗ is vector Brownian motion with covariance matrix Wf1,f2 and Wnk is vector standard

Brownian motion with covariance matrix Ink. It follows that

Zf2 (f1) :=

[
R
(
Ω̂f1,f2 ⊗ Q̂f1,f2

)−1
R′
]−1/2 (√

TwRπ̂f1,f2

)
⇒ f−1/2

w

[
R (Ωf1,f2 ⊗Qf1,f2)−1 R′

]−1/2
RV−1

f1,f2
W

1/2
f1,f2

[Wnk (f2)−Wnk (f1)] .

The Wald statistic process

Wf2 (f1) = Zf2 (f1)′ Zf2 (f1)

⇒ f−1
w [Wnk (f2)−Wnk (f1)]′Af1,f2B

−1
f1,f2

A′f1,f2 [Wnk (f2)−Wnk (f1)] ,

with Af1,f2 = W
1/2
f1,f2

V−1
f1,f2

R′ and Bf1,f2 = R
(
Ωf1,f2⊗Qf1,f2

)
R. It follows by continuous

mapping that as T →∞

SWf2 (f0)
L→ sup

f1∈[0,f2−f0],f2=f

{[
Wnk (f2)−Wnk (f1)

f
1/2
w

]′
Af1,f2B

−1
f1,f2

A′f1,f2

[
Wnk (f2)−Wnk (f1)

f
1/2
w

]}
.
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