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These supplemental materials provide appendices not included in the main text. Sup-

plemental Appendix E considers feasible versions of the procedures in Section 3 in the case

with unknown error distribution and derives their asymptotic efficiency. Supplemental Ap-

pendix F gives some auxiliary results used for relative asymptotic asymptotic efficiency

comparisons. Supplemental Appendix G gives the proof of Theorem D.1.

Appendix E Unknown Error Distribution

The Gaussian regression model (1) makes the assumption of normal iid errors with a known

variance conditional on the xi’s, which is often unrealistic. This section considers a model

that relaxes these assumptions on the error distribution:

yi = f(xi) + ui, {ui}ni=1 ∼ Q, f ∈ F , Q ∈ Qn (S1)

where Qn denotes the set of possible joint distributions of {ui}ni=1 and, as before, {xi}ni=1 is

deterministic and F is a convex set. We derive feasible versions of the optimal CIs in Section 3

and show their asymptotic validity (uniformly over F ,Qn) and asymptotic efficiency. As we

discuss below, our results hold even in cases where the limiting form of the optimal estimator

is unknown or may not exist, and where currently available methods for showing asymptotic

efficiency, such as equivalence with Gaussian white noise, break down.

∗email: timothy.armstrong@yale.edu
†email: mkolesar@princeton.edu
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Since the distribution of the data {yi}ni=1 now depends on both f and Q, we now index

probability statements by both of these quantities: Pf,Q denotes the distribution under (f,Q)

and similarly for Ef,Q. The coverage requirements and definitions of minimax performance

criteria in Section 3 are the same, but with infima and suprema over functions f now taken

over both functions f and error distributions Q ∈ Qn. We will also consider asymptotic

results. We use the notation Zn
d→
F ,Qn

L to mean that Zn converges in distribution to L

uniformly over f ∈ F and Q ∈ Qn, and similarly for
p→

F ,Qn
.

If the variance function is unknown, the estimator L̂δ is infeasible. However, we can

form an estimate based on an estimate of the variance function, or based on some candidate

variance function. For a candidate variance function σ̃2(·), let Kσ̃(·),nf = (f(x1)/σ̃(x1), . . . ,

f(xn)/σ̃(xn))′, and let ωσ̃(·),n(δ) denote the modulus of continuity defined with this choice

of K. Let L̂δ,σ̃(·) = L̂δ,F ,G,σ̃(·) denote the estimator defined in (23) with this choice of K and

Y = (y1/σ̃(x1), . . . , yn/σ̃(xn))′, and let f ∗σ̃(·),δ and g∗σ̃(·),δ denote the least favorable functions

used in forming this estimate. We assume throughout this section that G ⊆ F . More

generally, we will consider affine estimators, which, in this setting, take the form

L̂ = an +
n∑
i=1

wi,nyi (S2)

where an and wi,n are a sequence and triangular array respectively. For now, we assume

that an and wi,n are nonrandom, (which, in the case of the estimator L̂δ,σ̃(·), requires that

σ̃(·) and δ be nonrandom). We provide conditions that allow for random an and wi,n after

stating our result for nonrandom weights. For a class G, the maximum and minimum bias

are

biasG(L̂) = sup
f∈G

[
an +

n∑
i=1

wi,nf(xi)− Lf
]
, biasG(L̂) = inf

f∈G

[
an +

n∑
i=1

wi,nf(xi)− Lf
]
.

By the arguments used to derive the formula (24), we have

biasF(L̂δ,F ,G,σ̃(·)) = −biasG(L̂δ,F ,G,σ̃(·)) =
1

2
(ωn,σ̃(·)(δ;F ,G)− δω′n,σ̃(·)(δ;F ,G)).

This holds regardless of whether σ̃(·) is equal to the actual variance function of the ui’s.

In our results below, we allow for infeasible estimators in which an and wi,n depend on Q

(for example, when the unknown variance σQ(xi) = varQ(yi) is used to compute the optimal

weights), so that biasG(L̂) and biasG(L̂) may depend on Q. We leave this implicit in our
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notation.

Let sn,Q denote the (constant over f) standard deviation of L̂ under Q and suppose that

the uniform central limit theorem∑n
i=1wi,nui
sn,Q

d→
F ,Qn

N (0, 1) (S3)

holds. To form a feasible CI, we will require an estimate ŝen of sn,Q satisfying

ŝen
sn,Q

p→
F ,Qn

1. (S4)

The following theorem shows that using ŝen to form analogues of the CIs treated in Section 3

gives asymptotically valid CIs.

Theorem E.1. Let L̂ be an estimator of the form (S2), and suppose that (S3) and (S4)

hold. Let ĉ = L̂− biasF(L̂)− ŝenz1−α, and let b = max{|biasF(L̂)|, |biasF(L̂)|}. Then

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α (S5)

and

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q

(
Lf ∈

{
L̂± ŝen cvα (b/ŝen)

})
≥ 1− α. (S6)

The worst-case βth quantile excess length of the one-sided CI over G will satisfy

lim sup
n→∞

sup
Q∈Qn

supg∈G qg,Q,β(Lg − ĉ)
biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

≤ 1 (S7)

and the length of the two-sided CI will satisfy

cvα (b/ŝen) ŝen
cvα (b/sn,Q) sn,Q

p→
F ,Qn

1.

Suppose, in addition, that L̂ = L̂δ,F ,G,σ̃(·) with σ̃(·) = σQ(·) where σ2
Q(xi) = varQ(ui) and,

for each n, there exists a Qn ∈ Qn such that {ui}ni=1 are independent and normal under Qn.

Then then no one-sided CI satisfying (S5) can satisfy (S7) with the constant 1 replaced by a

strictly smaller constant on the right hand side.

Proof. Let Zn =
∑n

i=1wi,nui/ŝen, and let Z denote a standard normal random variable. To
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show asymptotic coverage of the one-sided CI, note that

Pf,Q (Lf ∈ [ĉ,∞)) = Pf,Q

(
ŝenz1−α ≥ L̂− Lf − biasF(L̂)

)
≥ Pf,Q (z1−α ≥ Zn)

using the fact that biasF(L̂) +
∑n

i=1wi,nui ≥ L̂−Lf for all f ∈ F by the definition of biasF .

The right hand side converges to 1−α uniformly over f ∈ F and Q ∈ Qn by (S3) and (S4).

For the two-sided CI, first note that∣∣∣∣ cvα (b/ŝen) ŝen
cvα (b/sn,Q) sn,Q

− 1

∣∣∣∣ =

∣∣∣∣cvα (b/ŝen)− cvα (b/sn,Q) + cvα (b/sn,Q) (1− sn,Q/ŝen)

cvα (b/sn,Q) (sn,Q/ŝen)

∣∣∣∣
which converges to zero uniformly over f ∈ F , Q ∈ Qn since cvα(t) is bounded from below

and uniformly continuous with respect to t. Thus, cvα(b/ŝen)ŝen

cvα(b/sn,Q)sn,Q
p→

F ,Qn
1 as claimed. To show

coverage of the two-sided CI, note that

Pf,Q

(
Lf ∈

{
L̂± cvα (b/ŝen) ŝen

})
= Pf,Q

(∣∣∣Z̃n + r
∣∣∣ ≤ cvα (b/sn,Q) · cn

)
where cn = cvα(b/ŝen)ŝen

cvα(b/sn,Q)sn,Q
, Z̃n =

∑n
i=1 wi,nui/sn,Q and r = (an +

∑n
i=1wi,nf(xi)− Lf) /sn,Q.

By (S3) and the fact that cn
p→

F ,Qn
1, this is equal to Pf,Q (|Z + r| ≤ cvα (b/sn,Q)) (where

Z ∼ N (0, 1)) plus a term that converges to zero uniformly over f,Q (this can be seen by

using the fact that convergence in distribution to a continuous distribution implies uniform

convergence of the cdfs; see Lemma 2.11 in van der Vaart 1998). Since |r| ≤ b/sn,Q, (S6)

follows.

To show (S7), note that,

Lg − ĉ = Lg − an −
n∑
i=1

wi,ng(xi)− ŝenZn + biasF(L̂) + ŝenz1−α

≤ biasF(L̂)− biasG(L̂) + ŝen(z1−α − Zn)

for any g ∈ G. Thus,

Lg − ĉ
biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

− 1 ≤ ŝen(z1−α − Zn)− sn,Q(z1−α + zβ)

biasF(L̂)− biasG(L̂) + sn,Q(z1−α + zβ)

=
(ŝen/sn,Q) · (z1−α − Zn)− (z1−α + zβ)

[biasF(L̂)− biasG(L̂)]/sn,Q + (z1−α + zβ)
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The β quantile of the above display converges to 0 uniformly over f ∈ F and Q ∈ Qn, which

gives the result.

For the last statement, let [c̃,∞) be a sequence of CIs with asymptotic coverage 1−α. Let

Qn be the distribution from the conditions in the theorem, in which the ui’s are independent

and normal. Then, by Theorem 3.1,

sup
g∈F

qf,Qn,β(c̃− Lg) ≥ ωσQn (·),n(δ̃n),

where δ̃n = z1−αn +zβ and 1−αn is the coverage of [c̃,∞) over F ,Qn. When L̂ = L̂δ,F ,G,σQ(·),

the denominator in (S7) for Q = Qn is equal to ωσQn (·),n(z1−α + zβ), which gives

supg∈G qg,Qn,β(ĉ− Lg)

biasF(L̂)− biasG(L̂) + sn,Qn(z1−α + zβ)
≥
ωσQn (·),n(z1−αn + zβ)

ωσQn (·),n(z1−α + zβ)
.

If αn ≤ α, then z1−αn +zβ ≥ z1−α−zβ so that the above display is greater than one by mono-

tonicity of the modulus. If not, then by concavity, ωσQn (·),n(z1−αn + zβ) ≥ [ωσQn (·),n(z1−α +

zβ)/(z1−α + zβ)] · (z1−αn + zβ), so the above display is bounded from below by (z1−αn +

zβ)/(z1−α + zβ), and the lim inf of this is at least one by the coverage requirement.

The efficiency bounds in Theorem E.1 use the assumption that the class of possible

distributions contains a normal law, as is often done in the literature on efficiency in non-

parametric settings (see, e.g., Fan, 1993, pp. 205–206). We leave the topic of relaxing this

assumption for future research.

Theorem E.1 requires that a known candidate variance function σ̃(·) and a known δ be

used when forming CIs based on the estimate L̂δ. However, the theorem does not require

that the the candidate variance function be correct in order to get asymptotic coverage, so

long as the standard error ŝen is consistent. If it turns out that σ̃(·) is indeed the correct

variance function, then it follows from the last part of the theorem that the resulting CI is

efficient. In the special case where F imposes a (otherwise unconstrained) linear model, this

corresponds to the common practice of using ordinary least squares with heteroskedasticity

robust standard errors.

In some cases, one will want to use a data dependent σ̃(·) and δ in order to get efficient

estimates with unknown variance. The asymptotic coverage and efficiency of the resulting

CI can then be derived by showing equivalence with an the infeasible estimator L̂δ∗,F ,G,σQ(·),

where δ∗ is chosen according to the desired performance criterion. The following theorem

gives conditions for this asymptotic equivalence. We verify them for our regression disconti-
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nuity example in Section G.

Theorem E.2. Suppose that L̂ and ŝen satisfy (S3) and (S4). Let L̃ and s̃en be another

estimator and standard error, and let b̃iasn and b̃iasn be (possibly data dependent) worst-case

bias formulas for L̃ under F . Suppose that

L̂− L̃
sn,Q

p→
F ,Qn

0,
biasF(L̂)− b̃iasn

sn,Q

p→
F ,Qn

0,
biasF(L̂)− b̃iasn

sn,Q

p→
F ,Qn

0,
ŝen
s̃en

p→
F ,Qn

1.

Let c̃ = L̃− b̃iasn− s̃enz1−α, and let b̃ = max{|b̃iasn|, |b̃iasn|}. Then (S5) and (S6) hold with

ĉ replaced by c̃, L̂ replaced by L̃, b replaced by b̃ and ŝen replaced by s̃en. Furthermore, the

performance of the CIs is asymptotically equivalent in the sense that

supQ∈Qn supg∈G qg,Q,β(c̃− Lg)

supQ∈Qn supg∈G qg,Q,β(ĉ− Lg)
→ 1 and

cvα(b/ŝen)ŝen

cvα(b̃/s̃en)s̃en

p→
F ,Qn

1.

Proof. By the conditions of the theorem, we have, for some cn that converges in probability

to zero uniformly over F ,Qn,

c̃− Lf = L̃− Lf − b̃iasn − s̃enz1−α = L̂− Lf − biasF(L̂)− sn,Qz1−α + cnsn,Q

≤
n∑
i=1

wi,nui − sn,Qz1−α + cnsn,Q.

Thus,

Pf,Q (Lf ∈ [c̃,∞)) = Pf,Q (0 ≥ c̃− Lf) ≥ Pf,Q

(
0 ≥

∑n
i=1 wi,nui
sn,Q

− z1−α + cn

)
,

which converges to 1 − α uniformly over F ,Qn. By Theorem E.1, supg∈G qg,Q,β(ĉ − Lg) is

bounded from below by a constant times sn,Q. Thus,
∣∣∣ supQ∈Qn supg∈G qg,Q,β(c̃−Lg)

supQ∈Qn supg∈G qg,Q,β(ĉ−Lg) − 1
∣∣∣ is bounded

from above by a constant times

sup
Q∈Qn

sup
g∈G

∣∣∣∣qg,Q,β(c̃− Lg)− qg,Q,β(ĉ− Lg)

sn,Q

∣∣∣∣ = sup
Q∈Qn

sup
g∈G
|qg,Q,β(c̃/sn,Q)− qg,Q,β(ĉ/sn,Q)| ,

which converges to zero since (c̃− ĉ)/sn,Q
p→

F ,Qn
0.

The claim that cvα(b/ŝen)ŝen
cvα(b̃/s̃en)s̃en

p→
F ,Qn

1 follows using similar arguments to the proof of Theo-
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rem E.1. To show coverage of the two-sided CI, note that

Pf,Q

(
Lf ∈

{
L̃± cvα

(
b̃/s̃en

)
s̃en

})
= Pf,Q

(
|L̃− Lf |
sn,Q

≤ cvα (b/sn,Q) · cn

)
,

where cn = cvα(b̃/s̃en)s̃en
cvα(b/sn,Q)sn,Q

p→
F ,Qn

1. Since |L̃−Lf |
sn,Q

= |Vn + r| where r = (an +
∑n

i=1wi,nf(xi) −

Lf)/sn,Q and Vn =
∑n

i=1 wi,nui/sn,Q + (L̃ − L̂)/sn,Q
d→
F ,Qn

N (0, 1), the result follows from

arguments in the proof of Theorem E.1.

The results above give high level conditions that can be applied to a wide range of

estimators and CIs. We now introduce an estimator and standard error formula that give

asymptotic coverage for essentially arbitrary functionals L under generic low level conditions

on F and the xi’s. The estimator is based on a nonrandom guess for the variance function

and, if this guess is correct up to scale (e.g. if the researcher correctly guesses that the errors

are homoskedastic), the one-sided CI based on this estimator will be asymptotically optimal

for some quantile of excess length.

Let σ̃(·) be some nonrandom guess for the variance function bounded away from 0 and∞,

and let δ > 0 be a deterministic constant specified by the researcher. Let f̂ be an estimator

of f . The variance of L̂δ,σ̃(·) under some Q ∈ Qn is equal to

varQ(L̂δ,σ̃(·),n) =

(
ω′σ̃(·),n(δ)

δ

)2 n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2σ2

Q(xi)

σ̃4(xi)
.

We consider the estimate

ŝe2
δ,σ̃(·),n =

(
ω′σ̃(·),n(δ)

δ

)2 n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2(yi − f̂(xi))

2

σ̃4(xi)
.

Suppose that f : X → R where X is a metric space with metric dX such that the functions

f ∗σ̃(·),δ and g∗σ̃(·),δ satisfy the uniform continuity condition

sup
n

sup
x,x′ : dX(x,x′)≤η

max
{∣∣f ∗σ̃(·),δ(x)− f ∗σ̃(·),δ(x

′)
∣∣ , ∣∣g∗σ̃(·),δ(x)− g∗σ̃(·),δ(x

′)
∣∣} ≤ g(η), (S8)
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where limη→0 g(η) = 0 and, for all η > 0,

min
1≤i≤n

n∑
j=1

I (dX(xj, xi) ≤ η)→∞. (S9)

We also assume that the estimator f̂ used to form the variance estimate satisfies the uniform

convergence condition

max
1≤i≤n

|f̂(xi)− f(xi)|
p→

F ,Qn
0. (S10)

Finally, we impose conditions on the moments of the error distribution. Suppose that there

exist K and η > 0 such that, for all n, Q ∈ Qn, the errors {ui}ni=1 are independent with, for

each i,

1/K ≤ σ2
Q(xi) ≤ K and EQ|ui|2+η ≤ K. (S11)

In cases where function class F imposes smoothness on f , (S8) will often follow directly

from the definition of F . For example, it holds for the Lipschitz class {f : |f(x) − f(x′)| ≤
CdX(x, x′)}. The condition (S9) will hold with probability one if the xi’s are sampled

from a distribution with density bounded away from zero on a sufficiently regular bounded

support. The condition (S10) will hold under regularity conditions for a variety of choices

of f̂ . It is worth noting that smoothness assumptions on F needed for this assumption are

typically weaker than those needed for asymptotic equivalence with Gaussian white noise.

For example, if X = Rk with the Euclidean norm, (S8) will hold automatically for Hölder

classes with exponent less than or equal to 1, while equivalence with Gaussian white noise

requires that the exponent be greater than k/2 (see Brown and Zhang, 1998). Furthermore,

we do not require any explicit characterization of the limiting form of the optimal CI. In

particular, we do not require that the weights for the optimal estimator converge to a limiting

optimal kernel or efficient influence function.

The condition (S11) is used to verify a Lindeberg condition for the central limit theorem

used to obtain (S3), which we do in the next lemma.

Lemma E.1. Let Zn,i be a triangular array of independent random variables and let an,j,

1 ≤ j ≤ n be a triangular array of constants. Suppose that there exist constants K and η > 0
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such that, for all i,

1/K ≤ σ2
n,i ≤ K and E|Zn,i|2+η ≤ K

where σ2
n,i = EZ2

n,i, and that

lim
n→∞

max1≤j≤n a
2
n,j∑n

j=1 a
2
n,j

= 0.

Then ∑n
i=1 an,iZn,i√∑n
i=1 a

2
n,iσ

2
n,i

d→ N (0, 1).

Proof. We verify the conditions of the Lindeberg-Feller theorem as stated on p. 116 in

Durrett (1996), with Xn,i = an,iZn,i/
√∑n

j=1 a
2
n,jσ

2
j . To verify the Lindeberg condition, note

that

n∑
i=1

E
(
|Xn,m|21(|Xn,m| > ε)

)
=

∑n
i=1E

[
|an,iZn,i|2I

(
|an,iZn,i| > ε

√∑n
j=1 a

2
n,jσ

2
j

)]
∑n

i=1 a
2
n,iσ

2
n,i

≤
∑n

i=1E (|an,iZn,i|2+η)

εη
(∑n

i=1 a
2
n,iσ

2
n,i

)1+η/2
≤ K2+η/2

εη

∑n
i=1 |an,i|2+η(∑n
i=1 a

2
n,i

)1+η/2
≤ K2+η/2

εη

(
max1≤i≤n a

2
n,i∑n

i=1 a
2
n,i

)1+η/2

.

This converges to zero under the conditions of the lemma.

Theorem E.3. Let L̂δ,σ̃(·) and ŝe2
δ,σ̃(·),n be defined above. Suppose that, for each n, f ∗σ̃(·),δ,

g∗σ̃(·),δ achieve the modulus under σ̃(·) with ‖Kσ̃(·),n(g∗σ̃(·),δ − f ∗σ̃(·),δ)‖ = δ, and that (S8) and

(S9) hold. Suppose the errors satisfy (S11) and are independent over i for all n and Q ∈ Qn.

Then (S3) holds. If, in addition, the estimator f̂ satisfies (S10), then (S4) holds with ŝen

given by ŝeδ,σ̃(·),n.

Proof. Condition (S3) will follow by applying Lemma E.1 to show convergence under arbi-

trary sequences Qn ∈ Qn so long as

max1≤i≤n(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2/σ̃(xi)

4∑n
i=1(f ∗σ̃(·),δ(xi)− g∗σ̃(·),δ(xi))

2/σ̃(xi)4
→ 0.

Since the denominator is bounded from below by δ2/max1≤i≤n σ̃
2(xi), and σ̃2(xi) is bounded
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away from 0 and∞ over i, it suffices to show that max1≤i≤n(g∗σ̃(·),δ(xi)−f ∗σ̃(·),δ(xi))
2 → 0. To

this end, suppose, to the contrary, that there exists some c > 0 such that max1≤i≤n(g∗σ̃(·),δ(xi)

− f ∗σ̃(·),δ(xi))
2 > c2 infinitely often. Let η be small enough so that g(η) ≤ c/4. Then, for n

such that this holds and kn achieving this maximum,

n∑
i=1

(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2 ≥

n∑
i=1

(c− c/2)21(dX(xi, xkn) ≤ η)→∞.

But this is a contradiction since
∑n

i=1(g∗σ̃(·),δ(xi)−f ∗σ̃(·),δ(xi))
2 is bounded by a constant times∑n

i=1(g∗σ̃(·),δ(xi)− f ∗σ̃(·),δ(xi))
2/σ̃2(xi) = δ2.

To show convergence of ŝe2
δ,σ̃(·),n/varQ(L̂δ,σ̃(·)), note that

ŝe2
δ,σ̃(·),n

varQ(L̂δ,σ̃(·))
− 1 =

∑n
i=1 an,i

[
(yi − f̂(xi))

2 − σ2
Q(xi)

]
∑n

i=1 an,iσ
2
Q(xi)

where an,i =
(g∗
σ̃(·),δ(xi)−f

∗
σ̃(·),δ(xi))

2

σ̃4(xi)
. Since the denominator is bounded from below by a constant

times
∑n

i=1 an,iσ̃
2(xi) = δ2, it suffices to show that the numerator, which can be written as

n∑
i=1

an,i
[
u2
i − σQ(xi)

2
]

+
n∑
i=1

an,i(f(xi)− f̂(xi))
2 + 2

n∑
i=1

an,iui(f(xi)− f̂(xi)),

converges in probability to zero uniformly over f and Q. The second term is bounded by a

constant times max1≤i≤n(f(xi)− f̂(xi))
2
∑n

i=1 an,iσ̃
2(xi) = max1≤i≤n(f(xi)− f̂(xi))

2δ2, which

converges in probability to zero uniformly over f and Q by assumption. Similarly, the last

term is bounded by max1≤i≤n |f(xi)− f̂(xi)| times 2
∑n

i=1 an,i|ui|, and the expectation of the

latter term is bounded uniformly over F and Q. Thus, the last term converges in probability

to zero uniformly over f and Q as well. For the first term in this display, an inequality of

von Bahr and Esseen (1965) shows that the expectation of the absolute 1 + η/2 moment of

this term is bounded by a constant times

n∑
i=1

a
1+η/2
n,i EQ

∣∣u2
i − σQ(xi)

2
∣∣1+η/2 ≤

(
max
1≤i≤n

a
η/2
n,i

)
max
1≤i≤n

EQ
∣∣ε2
i − σ2

Q(xi)
∣∣1+η/2

n∑
i=1

an,i,

which converges to zero since max1≤i≤n an,i → 0 as shown earlier in the proof and
∑n

i=1 an,i

is bounded by a constant times
∑n

i=1 an,iσ̃
2(xi) = δ2.

If the variance function used by the researcher is correct up to scale (for example, if the
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variance function is known to be constant), the one-sided confidence intervals in (E.3) will

be asymptotically optimal for some level β, which depends on δ and the magnitude of the

true error variance relative to the one used by the researcher. We record this as a corollary.

Corollary E.1. If, in addition to the conditions in Theorem E.3, σ2
Q(x) = σ2 · σ̃2(x) for all

n and Q ∈ Qn, then, letting β = Φ(δ/σ − z1−α), no CI satisfying (S5) can satisfy (S7) with

the constant 1 replaced by a strictly smaller constant on the right hand side.

Appendix F Asymptotics for the Modulus and Effi-

ciency Bounds

As discussed in Section 3, asymptotic relative efficiency comparisons can often be performed

by calculating the limit of the scaled modulus. Here, we state some lemmas that can be used

to obtain asymptotic efficiency bounds and limiting behavior of the value of δ that optimizes

a particular performance criterion. We use these results in the proof of Theorem D.1 in

Supplemental Appendix G.

Before stating these results, we recall the characterization of minimax affine performance

given in Donoho (1994). To describe the results, first consider the normal model Z ∼ N (µ, 1)

where µ ∈ [−τ, τ ]. The minimax affine mean squared error for this problem is

ρA(τ) = min
δ(Y ) affine

max
µ∈[−τ,τ ]

Eµ(δ(Y )− µ)2.

The solution is achieved by shrinking Y toward 0, namely δ(Y ) = cρ(τ)Y , with cρ(τ) =

τ 2/(1 + τ 2), which gives ρA(τ) = τ 2/(1 + τ 2). The length of the smallest fixed-length affine

100 · (1− α)% confidence interval is

χA,α(τ) = min

{
χ : there exists δ(Y ) affine s.t. inf

µ∈[−τ,τ ]
Pµ(|δ(Y )− µ| ≤ χ) ≥ 1− α

}
.

The solution is achieved at some δ(Y ) = cχ(τ)Y , and it is characterized in Drees (1999).

Using these definitions, the minimax affine root MSE is given by

sup
δ>0

ω(δ)

δ

√
ρA

(
δ

2σ

)
σ,

and the MSE optimal estimate is given by L̂δ,χ where χ maximizes the above display. Simi-
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larly, the optimal fixed-length affine CI has half length

sup
δ>0

ω(δ)

δ
χA,α

(
δ

2σ

)
σ,

and is centered at L̂δχ where δχ maximizes the above display (it follows from our results

and those of Donoho 1994 that this leads to the same value of δχ as the one obtained by

minimizing CI length as described in Section 3.4).

The results below give the limiting behavior of these quantities as well as the bound

on expected length in Corollary 3.3 under pointwise convergence of a sequence of functions

ωn(δ) that satisfy the conditions of a modulus scaled by a sequence of constants.

Lemma F.1. Let ωn(δ) be a sequence of concave nondecreasing nonnegative functions on

[0,∞) and let ω∞(δ) be a concave nondecreasing function on [0,∞) with range [0,∞). Then

the following are equivalent.

(i) For all δ > 0, limn→∞ ωn(δ) = ω∞(δ).

(ii) For all b ∈ (0,∞), b is in the range of ωn for large enough n, and limn→∞ ω
−1
n (b) =

ω−1
∞ (b).

(iii) For any δ > 0, limn→∞ supδ∈[0,δ] |ωn(δ)− ω∞(δ)| = 0.

Proof. Clearly (iii) =⇒ (i). To show (i) =⇒ (iii), given ε > 0, let 0 < δ1 < δ2 < · · · < δk = δ

be such that ω(δj) − ω(δj−1) ≤ ε for each j. Then, using monotonicity of ωn and ω∞, we

have supδ∈[0,δ1] |ωn(δ)− ω∞(δ)| ≤ max {|ωn(δ1)|, |ωn(0)− ω∞(δ1)|} → ω∞(δ1) and

sup
δ∈[δj−1,δj ]

|ωn(δ)− ω∞(δ)| ≤ max {|ωn(δj)− ω∞(δj−1)|, |ωn(δj−1)− ω∞(δj)|}

→ |ω∞(δj−1)− ω∞(δj)| ≤ ε.

The result follows since ε can be chosen arbitrarily small. To show (i) =⇒ (ii), let δ` and δu

be such that ω∞(δ`) < b < ω∞(δu). For large enough n, we will have ωn(δ`) < b < ωn(δu) so

that b will be in the range of ωn and δ` < ω−1
n (b) < δu. Since ω∞ is strictly increasing, δ` and

δu can be chosen arbitrarily close to ω−1
∞ (b), which gives the result. To show (ii) =⇒ (i), let b`

and bu be such that ω−1
∞ (b`) < δ < ω−1

∞ (bu). Then, for large enough n, ω−1
n (b`) < δ < ω−1

n (bu),

so that b` < ωn(δ) < bu, and the result follows since b` and bu can be chosen arbitrarily close

to ω∞(δ) since ω−1
∞ is strictly increasing.
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Lemma F.2. Suppose that the conditions of Lemma F.1 hold with limδ→0 ω∞(δ) = 0 and

limδ→∞ ω∞(δ)/δ = 0. Let r be a nonnegative function with 0 ≤ r(δ/2) ≤ rmin{δ, 1} for

some r <∞. Then

lim
n→∞

sup
δ>0

ωn(δ)

δ
r

(
δ

2

)
= sup

δ>0

ω∞(δ)

δ
r

(
δ

2

)
.

If, in addition r is continuous, ω∞(δ)
δ
r
(
δ
2

)
has a unique maximizer δ∗, and, for each n, δn

maximizes ωn(δ)
δ
r
(
δ
2

)
, then δn → δ∗ and ωn(δn) → ω∞(δ∗). In addition, for any σ > 0 and

0 < α < 1 and Z a standard normal variable,

lim
n→∞

(1− α)E[ωn(2σ(z1−α − Z))|Z ≤ z1−α] = (1− α)E[ω∞(2σ(z1−α − Z))|Z ≤ z1−α].

Proof. We will show that the objective can be made arbitrarily small for δ outside of [δ, δ]

for δ small enough and δ large enough, and then use uniform convergence over [δ, δ]. First,

note that, if we choose δ < 1, then, for δ ≤ δ,

ωn(δ)

δ
r

(
δ

2

)
≤ ωn(δ)r ≤ ωn(δ)r → ω∞(δ),

which can be made arbitrarily small by making δ small. Since ωn(δ) is concave and nonneg-

ative, ωn(δ)/δ is nonincreasing, so, for δ > δ,

ωn(δ)

δ
r

(
δ

2

)
≤ ωn(δ)

δ
r ≤ ωn(δ)

δ
r → ω∞(δ)

δ
r,

which can be made arbitrarily small by making δ large. Applying Lemma F.1 to show

convergence over [δ, δ] gives the first claim. The second claim follows since δ and δ can be

chosen so that δn ∈ [δ, δ] for large enough n (the assumption that ω∞(δ)
δ
r
(
δ
2

)
has a unique

maximizer means that it is not identically zero), and uniform convergence to a continuous

function with a unique maximizer on a compact set implies convergence of the sequence of

maximizers to the maximizer of the limiting function.

For the last statement, note that, by positivity and concavity of ωn, we have, for large

enough n, 0 ≤ ωn(δ) ≤ ωn(1) max{δ, 1} ≤ (ωn(1) + 1) max{δ, 1} for all δ > 0. The result

then follows from the dominated convergence theorem.

Lemma F.3. Let ωn(δ) be a sequence of nonnegative concave functions on [0,∞) and let

ω∞(δ) be a nonnegative concave differentiable function on [0,∞). Let δ0 > 0 and suppose
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that ωn(δ)→ ω∞(δ) for all δ in a neighborhood of δ0. Then, for any sequence dn ∈ ∂ωn(δ0),

we have dn → ω′∞(δ0). In particular, if ωn(δ)→ ω∞(δ) in a neighborhood of δ0 and 2δ0, then
ωn(2δ0)

ωn(δ0)+δ0ω′n(δ0)
→ ω∞(2δ0)

ω∞(δ0)+δ0ω′∞(δ0)
.

Proof. By concavity, for η > 0 we have [ωn(δ0)−ωn(δ0−η)]/η ≥ dn ≥ [ωn(δ0 +η)−ωn(δ0)]/η.

For small enough η, the left and right hand sides converge, so that [ω∞(δ0)−ω∞(δ0−η)]/η ≥
lim supn dn ≥ lim infn dn ≥ [ω∞(δ0 + η) − ω∞(δ0)]/η. Taking the limit as η → 0 gives the

result.

Appendix G Asymptotics for Regression Discontinu-

ity

This section proves Theorem D.1. We first give a general result for linear estimators un-

der high-level conditions in Section G.1. We then consider local polynomial estimators in

Section G.2 and optimal estimators with a plug-in variance estimate in Section G.3. Theo-

rem D.1 follows immediately from the results in these sections.

Throughout this section, we consider the RD setup where the error distribution may

be non-normal as in Section D.4, using the conditions in that section. We repeat these

conditions here for convenience.

Assumption G.1. For some pX,+(0) > 0 and pX,−(0) > 0, the sequence {xi}ni=1 satisfies
1
nhn

∑n
i=1m(xi/hn)1(xi > 0) → pX,+(0)

∫∞
0
m(u) du and 1

nhn

∑n
i=1m(xi/hn)1(xi < 0) →

pX,−(0)
∫ 0

−∞m(u) du for any bounded function m with bounded support and any hn with

0 < lim infn hnn
1/(2p+1) ≤ lim supn hnn

1/(2p+1) <∞.

Assumption G.2. For some σ(x) with limx↓0 σ(x) = σ+(0) > 0 and limx↑0 σ(x) = σ−(0) >

0, we have

(i) the uis are independent under any Q ∈ Qn with EQui = 0, varQ(ui) = σ2(xi)

(ii) for some η > 0, EQ|ui|2+η is bounded uniformly over n and Q ∈ Qn.

Theorem D.1 considers affine estimators that are optimal under the assumption that the

variance function is given by σ̂+1(x > 0) + σ̂−1(x < 0), which covers the plug-in optimal

affine estimators used in our application. Here, it will be convenient to generalize this slightly

by considering the class of affine estimators that are optimal under a variance function σ̃(x),

which may be misspecified or data-dependent, but which may take some other form. We

consider two possibilities for how σ̃(·) is calibrated.
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Assumption G.3. σ̃(x) = σ̂+1(x > 0) + σ̂−1(x < 0) where σ̂+
p→

F ,Qn
σ̃+(0) > 0 and σ̂−

p→
F ,Qn

σ̃−(0) > 0.

Assumption G.4. σ̃(x) is a deterministic function with limx↓0 σ̃(x) = σ̃−(0) > 0 and

limx↑0 σ̃(x) = σ̃+(0) > 0.

Assumption G.3 corresponds to the estimate of the variance function used in the applica-

tion. It generalizes Assumption D.3 slightly by allowing σ̂+ and σ̂− to converge to something

other than the left- and right-hand limits of the true variance function. Assumption G.4 is

used in deriving bounds based on infeasible estimates that use the true variance function.

Note that, under Assumption G.3, σ̃+(0) is defined as the probability limit of σ̂+ as

n→∞, and does not give the limit of σ̃(x) as x ↓ 0 (and similarly for σ̃−(0)). We use this

notation so that certain limiting quantities can be defined in the same way under each of

the Assumptions G.4 and G.3.

G.1 General Results for Kernel Estimators

We first state results for affine estimators where the weights asymptotically take a kernel

form. We consider a sequence of estimators of the form

L̂ =

∑n
i=1 k

+
n (xi/hn)1(xi > 0)yi∑n

i=1 k
+
n (xi/hn)1(xi > 0)

−
∑n

i=1 k
−
n (xi/hn)1(xi < 0)yi∑n

i=1 k
−
n (xi/hn)1(xi < 0)

where k+
n and k−n are sequences of kernels. The assumption that the same bandwidth is used

on each side of the discontinuity is a normalization: it can always be satisfied by redefining

one of the kernels k+
n or k−n . We make the following assumption on the sequence of kernels.

Assumption G.5. The sequences of kernels and bandwidths k+
n and hn satisfy

(i) k+
n has support bounded uniformly over n. For a bounded kernel k+ with

∫
k+(u) du >

0, we have supx |k+
n (x)− k+(x)| → 0

(ii) 1
nhn

∑n
i=1 k

+
n (xi/hn)1(xi > 0)(xi, . . . , x

p−1
i )′ = 0 for each n

(iii) hnn
1/(2p+1) → h∞ for some constant 0 < h∞ <∞,

and similarly for k−n for some k−.
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Let

biasn =

∑n
i=1 |k+

n (xi/hn)|1(xi > 0)C|xi|p∑n
i=1 k

+
n (xi/hn)1(xi > 0)

+

∑n
i=1 |k−n (xi/hn)|1(xi < 0)C|xi|p∑n

i=1 k
−
n (xi/hn)1(xi < 0)

= Chpn

(∑n
i=1 |k+

n (xi/hn)|1(xi > 0)|xi/hn|p∑n
i=1 k

+
n (xi/hn)1(xi > 0)

+

∑n
i=1 |k−n (xi/hn)|1(xi < 0)|xi/hn|p∑n

i=1 k
−
n (xi/hn)1(xi < 0)

)
and

vn =

∑n
i=1 k

+
n (xi/hn)21(xi > 0)σ2(xi)

[
∑n

i=1 k
+
n (xi/hn)1(xi > 0)]

2 +

∑n
i=1 k

−
n (xi/hn)21(xi < 0)σ2(xi)

[
∑n

i=1 k
−
n (xi/hn)1(xi < 0)]

2

=
1

nhn

 1
nhn

∑n
i=1 k

+
n (xi/hn)21(xi > 0)σ2(xi)[

1
nhn

∑n
i=1 k

+
n (xi/hn)1(xi > 0)

]2 +
1
nhn

∑n
i=1 k

−
n (xi/hn)21(xi < 0)σ2(xi)[

1
nhn

∑n
i=1 k

−
n (xi/hn)1(xi < 0)

]2


Note that vn is the (constant over Q ∈ Qn) variance of L̂, and that, by arguments in

Section D.1, biasn = supf∈F(Ef,QL̂ − Lf) = − inff∈F(Ef,QL̂ − Lf) for any Q ∈ Qn under

Assumption G.5 (ii).

To form a feasible CI, we need an estimate of vn. While the results below go through with

any consistent uniformly consistent variance estimate, we propose one here for concreteness.

For a possibly data dependent guess σ̃(·) of the variance function, let ṽn denote vn with σ(·)
replaced by σ̃(·). We record the limiting behavior of biasn, vn and ṽn in the following lemma.

Let

bias∞ = Chp∞

(∫∞
0
|k+(u)||u|p du∫∞
0
k+(u) du

+

∫ 0

−∞ |k
−(u)||u|p du∫ 0

−∞ k
−(u) du

)

and

v∞ =
1

h∞

 σ2
+(0)

∫∞
0
k+(u)2 du

pX,+(0)
[∫∞

0
k+(u) du

]2 +
σ2
−(0)

∫ 0

−∞ k
−(u)2 du

pX,−(0)
[∫ 0

−∞ k
−(u) du

]2

 .

Lemma G.1. Suppose that Assumption G.1 holds. If Assumption G.5 also holds, then

limn→∞ n
p/(2p+1)biasn = bias∞ and limn→∞ n

2p/(2p+1)vn = v∞. If, in addition, σ̃(·) satis-

fies Assumption G.3 or Assumption G.4 with σ̃+(0) = σ+(0) and σ̃−(0) = σ−(0), then

n2p/(2p+1)ṽn
p→

F ,Qn
v∞ under Assumption G.3 and limn→∞ n

2p/(2p+1)ṽn = v∞ under Assump-

tion G.4.
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Proof. The results follow from applying the convergence in Assumption G.1 along with

Assumption G.5(i) to the relevant terms in biasn and ṽn.

Theorem G.1. Suppose that Assumptions G.1, G.2 and G.5 hold, and that ṽn is formed

using a variance function σ̃(·) that satisfies Assumption G.3 or G.4 with σ̃+(0) = σ+(0) and

σ̃−(0) = σ−(0). Then

lim inf
n→∞

inf
f∈FRDT,p(C),Q∈Qn

Pf,Q

(
Lf ∈

{
L̂± cvα

(
biasn/ṽn

)√
ṽn

})
≥ 1− α

and, letting ĉ = L̂− biasn − z1−α
√
ṽn,

lim inf
n→∞

inf
f∈FRDT,p(C),Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α.

In addition, np/(2p+1) cvα(biasn/ṽn)ṽn
p→

F ,Qn
cvα(bias∞/v∞)v∞ if σ̃(·) satisfies Assumption G.3

and np/(2p+1) cvα(biasn/ṽn)ṽn → cvα(bias∞/v∞)v∞ if σ̃(·) satisfies Assumption G.4. The

minimax β quantile of the one-sided CI satisfies

lim sup
n→∞

np/(2p+1) sup
f∈FRDT,p(C),Q∈Qn

qf,Q,β(Lf − ĉ) ≤ 2bias∞ + (zβ + z1−α)
√
v∞.

The worst-case β quantile over FRDT,p(0) satisfies

lim sup
n→∞

np/(2p+1) sup
f∈FRDT,p(0),Q∈Qn

qf,Q,β(Lf − ĉ) ≤ bias∞ + (zβ + z1−α)
√
v∞.

Furthermore, the same holds with L̂, biasn and ṽn replaced by by any L̂∗, bias
∗
n and ṽ∗n such

that

np/(2p+1)
(
L̂− L̂∗

)
p→

F ,Qn
0, np/(2p+1)

(
biasn − bias

∗
n

)
p→

F ,Qn
0,

ṽn
ṽ∗n

p→
F ,Qn

1.

Proof. We verify the conditions of Theorem E.1. Condition (S4) follows from Lemma G.1.

To verify (S3), note that L̂ takes the general form in Theorem E.1 with wn,i given by wn,i =

k+
n (xi/hn)/

∑n
j=1 k

+
n (xj/hn)1(xj > 0) for xi > 0 and wn,i = k−n (xi/hn)/

∑n
j=1 k

−
n (xj/hn) ·

1(xj < 0) for xi < 0. The uniform central limit theorem in (S3) with wn,i taking this form

follows from Lemma E.1. This gives the asymptotic coverage statements.

For the asymptotic formulas for excess length of the one-sided CI and length of the

two-sided CI, we apply Theorem E.2 with n−p/(2p+1)bias∞ playing the role of b̃iasn and
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n−p/(2p+1)v∞ playing the role of s̃en. Finally, the last statement of the theorem is immediate

from Theorem E.2.

G.2 Local Polynomial Estimators

The (p− 1)th order local polynomial estimator of f+(0) based on kernel k∗+ and bandwidth

h+,n is given by

f̂+(0) =e′1

(
n∑
i=1

p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n)1(xi > 0)

)−1

n∑
i=1

k∗+(xi/h+,n)1(xi > 0)p(xi/h+,n)yi

where e1 = (1, 0, . . . , 0)′ and p(x) = (1, x, x2, . . . , xp−1)′. Letting the local polynomial es-

timator of f−(0) be defined analogously for some kernel k∗− and bandwidth h−,n, the local

polynomial estimator of Lf = f+(0)− f−(0) is given by

L̂ = f̂+(0)− f̂−(0).

This takes the form given in Section G.1, with hn = hn,+,

k+
n (u) = e′1

(
1

nhn

n∑
i=1

p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n)1(xi > 0)

)−1

k∗+(u)p(u)1(u > 0)

and

k−n (u) =e′1

(
1

nhn

n∑
i=1

p(xi/h−,n)p(xi/h−,n)′k∗+(xi/h−,n)1(xi < 0)

)−1

k∗+(u(hn,+/hn,−))p(u(hn,+/hn,−))1(u < 0).

Let M+ be the (p−1)×(p−1) matrix with
∫∞

0
uj+k−2k∗+(u) as the i, jth entry, and let M− be

the (p−1)×(p−1) matrix with
∫ 0

−∞ u
j+k−2k∗−(u) as the i, jth entry. Under Assumption G.1,

for k∗+ and k∗− bounded with bounded support, 1
nhn

∑n
i=1 p(xi/h+,n)p(xi/h+,n)′k∗+(xi/h+,n) ·

1(xi > 0) → M+pX,+(0) and similarly 1
nhn

∑n
i=1 p(xi/h−,n)p(xi/h−,n)′k∗+(xi/h−,n) · 1(xi <

0) → M−pX,−(0). Furthermore, Assumption G.5 (ii) follows immediately from the normal

equations for the local polynomial estimator. This gives the following result.
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Theorem G.2. Let k∗+ and k∗− be bounded and uniformly continuous with bounded support.

Let hn,+n
1/(2p+1) → h∞ > 0 and suppose hn,−/hn,+ converges to a strictly positive constant.

Then Assumption G.5 holds for the local polynomial estimator so long as Assumption G.1

holds.

G.3 Optimal Affine Estimators

We now consider the class of affine estimators that are optimal under the assumption that the

variance function is given by σ̃(·), which satisfies either Assumption G.3 or Assumption G.4.

We use the same notation as in Section D, except that n and/or σ̃(·) are added as subscripts

for many of the objects under consideration to make the dependence on {xi}ni=1 and σ̃(·)
explicit.

The modulus problem is given by Equation (38) in Section D.2 with σ̃(·) in place of

σ(·). We use ωσ̃(·),n(δ) to denote the modulus, or ωn(δ) when the context is clear. The

corresponding estimator L̂δ,σ̃(·) is then given by Equation (45) in Section D.2 with σ̃(·) in

place of σ(·).
We will deal with the inverse modulus, and use Lemma F.1 to obtain results for the

modulus itself. The inverse modulus ω−1
σ̃(·),n(2b) is given by Equation (44) in Section D.2,

with σ̃2(xi) in place of σ2(xi), and the solution takes the form given in that section. Let

hn = n−1/(2p+1). We will consider a sequence b = bn, and will define b̃n = np/(2p+1)bn =

h−pn bn. Under Assumption G.4, we will assume that b̃n → b̃∞ for some b̃∞ > 0. Under

Assumption G.3, we will assume that b̃n
p→

F ,Qn
b̃∞ for some b̃∞ > 0. We will then show that

this indeed holds for 2bn = ωσ̃(·),n(δn) with δn chosen as in Theorem G.3 below.

Let b̃n = np/(2p+1)bn = h−pn bn, b̃−,n = np/(2p+1)b−,n = h−pn b−,n, d̃+,j,n = n(p−j)/(2p+1)d+,j,n =

hj−pn d+,j,n and d̃−,j,n = n(p−j)/(2p+1)d−,j,n = hj−pn d−,j,n for j = 1, . . . , p − 1, where bn, b−,n,

d+,n, and d−n correspond to the function gb,C that solves the inverse modulus problem, given

in Section D.2. These values of b̃+,n, b̃−,n, d̃+,n and d̃−,n minimize Gn(b+, b−, d+, d−) subject
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to b+ + b− = b̃n where, letting A(xi, b, d) = hpnb+
∑p−1

j=1 h
p−j
n djx

j
i ,

Gn(b+, b−, d+, d−) =
n∑
i=1

σ̃−2(xi)
(
(A(xi, b+, d+)− C|xpi |)+ + (A(xi, b+, d+) + C|xi|p)−

)2
1(xi > 0)

+
n∑
i=1

σ̃−2(xi)
(
(A(xi, b−, d−)− C|xi|p) + (A(xi, b−, d−) + C|xi|p)−

)2
1(xi < 0)

=
1

nhn

n∑
i=1

k+
σ̃(·)(xi/hn; b+, d+)2σ̃2(xi) +

1

nhn

n∑
i=1

k−σ̃(·)(xi/hn; b−, d−)2σ̃2(xi)

with

k+
σ̃(·)(u; b, d) = σ̃−2(uhn)

(b+

p−1∑
j=1

dju
j − C|u|p

)
+

−

(
b+

p−1∑
j=1

dju
j + C|u|p

)
−

 1(u > 0),

k−σ̃(·)(u; b, d) = σ̃−2(uhn)

(b+

p−1∑
j=1

dju
j − C|u|p

)
+

−

(
b+

p−1∑
j=1

dju
j + C|u|p

)
−

 1(u < 0).

We use the notation k+
c for a scalar c to denote k+

σ̃(·) where σ̃(·) is given by the constant

function σ̃(x) = c.

With these definitions, the estimator L̂δ,σ̃(·) with ωσ̃(·),n(δ) = 2bn takes the general kernel

form in Section G.1 with k+
n (u) = k+

σ̃(·)(u; b̃+,n, d̃+,n) and similarly for k−n . In the notation

of Section G.1, biasn is given by 1
2
(ωσ̃(·),n(δ)− δω′σ̃(·),n(δ)) and ṽn is given by ω′σ̃(·),n(δ)2 (see

Equation (24) in the main text). If δ is chosen to minimize the length of the fixed-length

CI, the half-length will be given by

cvα(biasn/
√
ṽn)
√
ṽn = inf

δ>0
cvα

(
ωσ̃(·),n(δ)

2ω′σ̃(·),n(δ)
− δ

2

)
ω′σ̃(·),n(δ),

and δ will achieve the minimum in the above display. Similarly, if the MSE criterion is used,

δ will minimize bias
2

n + vn.

We proceed by verifying the conditions of Theorem G.1 for the case where σ̃(·) is non-

random and satisfies Assumption G.4, and then using Theorem E.2 for the case where σ̃(·)
satisfies Assumption G.3. The limiting kernel k+ and k− in Assumption G.5 will correspond
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to an asymptotic version of the modulus problem, which we now describe. Let

G∞(b+, b−, d+, d−) = pX,+(0)

∫ ∞
0

σ̃2
+(0)k+

σ̃+(0)(u; b+, d+)2 du

+ pX,−(0)

∫ ∞
0

σ̃2
−(0)k+

σ̃−(0)(u; b+, d+)2 du.

Consider the limiting inverse modulus problem

ω−1
σ̃+(0),σ̃−(0),∞(2b̃∞) = min

f+,f−∈FRDT,p(C)

√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

f+(u)2 du+
pX,−(0)

σ̃2
−(0)

∫ 0

−∞
f−(u)2 du

s.t. f+(0) + f−(0) ≥ b̃∞.

We use ω∞(δ) = ωσ̃+(0),σ̃−(0),∞(δ) to denote the limiting modulus corresponding to this

inverse modulus. The limiting inverse modulus problem is solved by the functions f+(u) =

σ̃2
+(0)k+

σ̃+(0)(u; b+, d+) = k+
1 (u; b+, d+) and f−(u) = σ̃2

−(0)k+
σ̃−(0)(u; b−, d−) = k−1 (u; b+, d+)

for some (b+, b−, d+, d−) with b+ + b− = b̃∞ (this holds by the same arguments as for the

modulus problem in Section D.2). Thus, for any minimizer of G∞, the functions k+
1 (·; b+, d+)

and k+
1 (·; b+, d+) must solve the above inverse modulus problem. The solution to this problem

is unique by strict convexity, which implies that G∞ has a unique minimizer. Similarly, the

minimizer of Gn is unique for each n. Let (b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) denote the minimizer of

G∞. The limiting kernel k+ in Assumption G.5 will be given by k+
σ̃+(0)(·; b̃+,∞, d̃+,∞) and

similarly for k−.

To derive the form of the limiting modulus of continuity, we argue as in Donoho and Low

(1992). Let k+
1 (·; b̃+,∞,1, d̃+,∞,1) and k+

1 (·; b̃+,∞,1, d̃+,∞,1) solve the inverse modulus problem

ω−1
∞ (2b̃∞) for b̃∞ = 1. The feasible set for a given b̃∞ consists of all b+, b−, d+, d− such that

b+ + b− ≥ b̃∞, and a given b+, b−, d+, d− in this set achieves the value√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

k+
1 (u; b+, d+)2 du+

pX,−(0)

σ̃2
−(0)

∫ 0

−∞
k−1 (u; b−, d−)2 du

=

√
pX,+(0)

σ̃2
+(0)

∫ ∞
0

k+
1 (vb

1/p
∞ ; b+, d+)2 d(vb

1/p
∞ ) +

pX,−(0)

σ̃2
−(0)

∫ 0

−∞
k−1 (vb

1/p
∞ ; b−, d−)2 d(vb

1/p
∞ )

=

√
pX,+(0)

σ̃2
+(0)

b̃
1/p
∞

∫ ∞
0

b̃2
∞k

+
1 (v; b+/b̃∞, d̄+)2 dv +

pX,−(0)

σ̃2
−(0)

b̃
1/p
∞

∫ 0

−∞
b̃2
∞k
−
1 (v; b−/b̃∞, d̄−)2 dv,

where d̄+ = (d+,1/b̃
(p−1)/p
∞ , . . . , d+,p−1/b̃

1/p
∞ )′ and similarly for d̄−. This uses the fact that, for
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any h > 0, hpk+
1 (u/h; b+, d+) = k+

1 (u; b+h
p, d+,1h

p−1, d+,2h
p−2, . . . , d+,p−1h) and similarly for

k−1 . This can be seen to be b̃
(2p+1)/(2p)
∞ times the objective evaluated at (b+/b̃∞, b−/b̃∞, d̄+, d̄−),

which is feasible under b̃∞ = 1. Similarly, for any feasible function under b̃∞ = 1, there is a

feasible function under a given b̃∞ that achieves b̃
(2p+1)/(2p)
∞ times the value of under b̃∞ = 1. It

follows that ω−1
∞ (2b) = b(2p+1)/(2p)ω∞(2). Thus, ω−1

∞ is invertible and the inverse ω∞ satisfies

ω∞(δ) = ωσ̃+(0),σ̃−(0),∞(δ) = δ2p/(2p+1)ωσ̃+(0),σ̃−(0),∞(1).

If b̃∞ = ω∞(δ∞) for some δ∞, then it can be checked that the limiting variance and

worst-case bias defined in Section G.1 correspond to the limiting modulus problem:

bias∞ =
1

2
(ω∞(δ∞)− δ∞ω′∞(δ∞)) ,

√
v∞ = ω′∞(δ∞). (S12)

Furthermore, we will show that, if δ is chosen to optimize FLCI length for ωσ̃(·),n, then this

will hold with δ∞ optimizing cvα(bias∞/
√
v∞)
√
v∞. Similarly, if δ is chosen to optimize MSE

for ωσ̃(·),n, then this will hold with δ∞ optimizing bias
2

∞ + v∞.

We are now ready to state the main result concerning the asymptotic validity and effi-

ciency of feasible CIs based on the estimator given in this section.

Theorem G.3. Suppose Assumptions G.1 and G.2 hold. Let L̂ = L̂δn,σ̃(·) where δn is chosen

to optimize one of the performance criteria for ωσ̃(·),n (FLCI length, RMSE, or a given

quantile of excess length), and suppose that σ̃(·) satisfies Assumption G.3 or Assumption G.4

with σ̃+(0) = σ+(0) and σ̃+(0) = σ−(0). Let biasn = 1
2
(ωσ̃(·),n(δn) − δnω′σ̃(·),n(δn)) and ṽn =

ω′σ̃(·),n(δn)2 denote the worst-case bias and variance formulas. Let ĉα,δn = L̂−biasn−z1−α
√
ṽn

and χ̂ = cvα(biasn/
√
ṽn)
√
ṽn so that [ĉα,δn ,∞) and [L̂− χ̂, L̂+ χ̂] give the corresponding CIs.

The CIs [ĉα,δn ,∞) and [L̂− χ̂, L̂+ χ̂] have uniform asymptotic coverage at least 1−α. In

addition, np/(2p+1)χ̂
p→

F ,Qn
χ∞ where χ∞ = cvα(bias∞/

√
v∞)
√
v∞ with bias∞ and

√
v∞ given

in (S12) and δ∞ = zβ + z1−α if excess length is the criterion, δ∞ = arg minδ cvα( ω∞(δ)
2ω′∞(δ)

−
δ
2
)ω′∞(δ) if FLCI length is the criterion, and δ∞ = arg minδ[

1
4

(ω∞(δ∞)− δ∞ω′∞(δ∞))2 +

ω′∞(δ)2] if RMSE is the criterion.

Suppose, in addition, that each Qn contains a distribution where the uis are normal. If

the FLCI criterion is used, then no other sequence of linear estimators L̃ can satisfy

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q

(
Lf ∈

{
L̃± n−p/(2p+1)χ

})
≥ 1− α

with χ a constant with χ < χ∞. In addition, for any sequence of confidence sets C with

lim infn→∞ inff∈F ,Q∈Qn Pf,Q (Lf ∈ C) ≥ 1−α, we have the following bound on the asymptotic
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efficiency improvement at any f ∈ FRDT,p(0):

lim inf
n→∞

sup
Q∈Qn

np/(2p+1)Ef,Qλ(C)
2χ∞

≥ (1− α)22p/(2p+1)E[(z1−α − Z)2p/(2p+1) | Z ≤ z1−α]
4p

2p+1
infδ>0 cvα (δ/(4p)) δ−1/(2p+1)

where Z ∼ N (0, 1).

If the excess length criterion is used with quantile β (i.e. δn = zβ + z1−α), then any

one-sided CI [ĉ,∞) with

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ [ĉ,∞)) ≥ 1− α

must satisfy

lim inf
n→∞

supf∈F ,Q∈Qn qf,Q,β (Lf − ĉ)
supf∈F ,Q∈Qn qf,Q,β (Lf − ĉα,δn)

≥ 1

and, for any f ∈ FRDT,p(0),

lim inf
n→∞

supQ∈Qn qf,Q,β (Lf − ĉ)
supQ∈Qn qf,Q,β (Lf − ĉα,δn)

≥ 22p/(2p+1)

1 + 2p/(2p+ 1)
.

To prove this theorem, we first prove a series of lemmas. To deal with the case where δ

is chosen to optimize FLCI length or MSE, we will use the characterization of the optimal δ

for these criterion from Donoho (1994), which is described at the beginning of Supplemental

Appendix F. In particular, for ρA and χA,α given in Supplemental Appendix F, the δ that

optimizes FLCI length is given by the δ that maximizes ωσ̃(·),n(δ)χA,α(δ)/δ, and the result-

ing FLCI half length is given by supδ>0 ωσ̃(·),n(δ)χA,α(δ)/δ. In addition, when δ is chosen

to optimize FLCI length, χ∞ in Theorem G.3 is given by supδ>0 ω∞(δ)χA,α(δ)/δ, and δ∞

maximizes this expression. If δ is chosen according to the MSE criterion, then δ maximizes

ωσ̃(·),n(δ)
√
ρA(δ)/δ and δ∞ maximizes ω∞(δ)

√
ρA(δ)/δ.

Lemma G.2. For any constant B, the following holds. Under Assumption G.4,

lim
n→∞

sup
‖(b+,b−,d+,d−)‖≤B

|Gn(b+, b−, d+, d−)−G∞(b+, b−, d+, d−)| = 0.
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Under Assumption G.3,

sup
‖(b+,b−,d+,d−)‖≤B

|Gn(b+, b−, d+, d−)−G∞(b+, b−, d+, d−)| p→
F ,Qn

0.

Proof. Define G̃+
n (b+, d+) = 1

nhn

∑n
i=1 k

+
1 (xi/hn; b+, d+)2, and define G̃−n analogously. Also,

G̃+
∞(b+, d+) = pX,+(0)

∫∞
0
k+

1 (u; b+, d+)2 du, with G−∞ defined analogously. For each (b+, d+),

G̃n(b+, d+) → G∞(b+, d+) by Assumption G.1. To show uniform convergence, first note

that, for some constant K1, the support of k+
1 (·; b+, d+) is bounded by K1 uniformly over

‖(b+, d+)‖ ≤ B and similarly for k−1 (·; b−, d−). Thus, for any (b+, d+) and (b̄+, d̄+),

|G+
n (b+, d+)−G+

n (b̄+, d̄+)| ≤

[
1

nhn

n∑
i=1

1(|xi/hn| ≤ K1)

]
sup
|u|≤K1

|k+
1 (u; b+, d+)− k+

1 (u; b̄+, d̄+)|.

Since the term in brackets converges to a finite constant by Assumption G.1 and k+
1 is

Lipschitz continuous on any bounded set, it follows that there exists a constant K2 such

that |G+
n (b+, d+)−G+

n (b̄+, d̄+)| ≤ K2‖(b+, d+)− (b̄+, d̄+)‖ for all n. Using this and applying

pointwise convergence of G+
n (b+, d+) on a small enough grid along with uniform continuity

of G∞(b+, d+) on compact sets, it follows that

lim
n→∞

sup
‖(b+,b−,d+,d−)‖≤B

|G̃n(b+, d+)− G̃∞(b+, d+)| = 0,

and similar arguments give the same statement for G̃−n and G̃−∞. Under Assumption G.4,∣∣∣Gn(b+, b−, d+, d−)−
[
G̃n(b+, d+)σ̃2

+(0) + G̃n(b−, d−)σ̃2
−(0)

]∣∣∣ ≤
k ·

[
1

nhn

n∑
i=1

1(|xi/hn| ≤ K1)

] [
sup

0<x≤K1hn

∣∣σ̃2
+(0)− σ̃2

+(x)
∣∣+ sup

−K1hn≤x<0

∣∣σ̃2
−(0)− σ̃2

−(x)
∣∣]

where k is an upper bound for |k+
1 (x)| and |k−1 (x)|. This converges to zero by left- and right-

continuity of σ̃ at 0. The result then follows since G∞(b+, b−, d+, d−) = σ̃2
+(0)G̃+

∞(b+, d+) +

σ̃2
−(0)G̃−∞(b−, d−). Under Assumption G.3, we have Gn(b+, b−, d+, d−) = G̃+

n (b+, d+)σ̂2
+ +

G̃+
n (b−, d−)σ̂2

−, and the result follows from uniform convergence in probability of σ̂2
+ and σ̂2

−

to σ̃2
+(0) and σ̃2

−(0).

Lemma G.3. Under Assumption G.4, ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n)‖ ≤ B for some constant B

and n large enough. Under Assumption G.3, the same statement holds with probability
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approaching one uniformly over F ,Qn.

Proof. Let A(x, b, d) = b+
∑p−1

i=1 d(x/hn)j, where d = (d1, . . . , dp−1). Note Gn(b+, b−, d+, d−)

is bounded from below by 1/ sup|x|≤hn σ̃
2(x) times

1

nhn

∑
i:0<xi≤hn

(|A(xi, b+, d+)| − C)2
+ +

1

nhn

∑
i:−hn≤xi<0

(|A(xi, b−, d−)| − C)2
+

≥ 1

4nhn

∑
i:0<xi≤hn

[
A(xi, b+, d+)2 − 4C2

]
+

1

4nhn

∑
i:−hn≤xi<0

[
A(xi, b−, d−)2 − 4C2

]
(the inequality follows since, for any s ≥ 2C, (s − C)2 ≥ s2/4 ≥ s2/4 − C2 and, for

2C ≥ s ≥ C, (s− C)2 ≥ 0 ≥ s2/4− C2). Note that, for any B > 0

inf
max{|b+|,|d+,1|,...,|d+,p−1|}≥B

1

4nhn

∑
i:0<xi≤hn

A(xi, b+, d+)2

= B2 inf
max{|b+|,|d+,1|,...,|d+,p−1|}≥1

1

4nhn

∑
i:0<xi≤hn

A(xi, b+, d+)2

→ pX,+(0)

4
B2 inf

max{|b+|,|d+,1|,...,|d+,p−1|}≥1

∫ ∞
0

(
b+ +

p−1∑
i=1

d+,ju
j

)2

du

and similarly for the term involving A(xi, b−, d−) (the convergence follows since the infi-

mum is taken on the compact set where max{|b+|, |d+,1|, . . . , |d+,p−1|} = 1). Combining

this with the previous display and the fact that 1
nh

∑
i:|xi|≤hn C

2 converges to a finite con-

stant, it follows that, for some η > 0, infmax{|b+|,|d+,1|,...,|d+,p−1|}≥B Gn(b+, b−, d+, d−) ≥ (B2η−
η−1)/ sup|x|≤hn σ̃

2(x) for large enough n. Let K be such that G∞(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) ≤
K/2 and max{σ̃2

+(0), σ̃2
−(0)} ≤ K/2. Under Assumption G.4, Gn(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) <

K and sup|x|≤hn σ̃
2(x) ≤ K for large enough n. Under Assumption G.3, Gn(b̃+,∞, b̃−,∞, d̃+,∞,

d̃−,∞) < K and sup|x|≤hn σ̃
2(x) ≤ K with probability approaching one uniformly over F ,Qn.

Let B be large enough so that (B2η−η−1)/K > K. Then, when Gn(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) ≤
K and sup|x|≤hn σ̃

2(x) ≤ K, (b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞) will give a lower value of Gn than any

(b+, b−, d+, d−) with max{|b+|, |d+,1|, . . . , |d+,p−1|, |b−|, |d−,1|, . . . , |d−,p−1|} ≥ B. The result

follows from the fact that the max norm on R2p is bounded from below by a constant times

the Euclidean norm.

Lemma G.4. If Assumption G.4 holds and b̃n → b̃∞, then (b̃+,n, b̃−,n, d̃+,n, d̃−,n) → (b̃+,∞,

b̃−,∞, d̃+,∞, d̃−,∞). If Assumption G.3 holds and b̃n
p→

F ,Qn
b̃∞ > 0, (b̃+,n, b̃−,n, d̃+,n, d̃−,n)

p→
F ,Qn
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(b̃+,∞, b̃−,∞, d̃+,∞, d̃−,∞).

Proof. By Lemma G.3, B can be chosen so that ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n)‖ ≤ B for large enough

n under Assumption G.4 and ‖(b̃+,n, b̃−,n, d̃+,n, d̃−,n) ≤ B‖ with probability one uniformly

over F ,Qn under Assumption G.3. The result follows from Lemma G.2, continuity of G∞

and the fact that G∞ has a unique minimizer.

Lemma G.5. If Assumption G.4 holds and b̃n → b̃∞ > 0, then ω−1
n (np/(2p+1)b̃n)→ ω−1

∞ (b̃∞).

If Assumption G.3 holds and b̃n
p→

F ,Qn
b∞ > 0, then ω−1

n (np/(2p+1)b̃n)
p→

F ,Qn
ω−1
∞ (b̃∞).

Proof. The result is immediate from Lemmas G.2 and G.4.

Lemma G.6. Under Assumption G.4, we have, for any δ > 0,

sup
0<δ≤δ

∣∣np/(2p+1)ωn(δ)− ω∞(δ)
∣∣→ 0.

Under Assumption G.3, we have, for any δ > 0,

sup
0<δ≤δ

∣∣np/(2p+1)ωn(δ)− ω∞(δ)
∣∣ p→
F ,Qn

0.

Proof. The first statement is immediate from Lemma G.5 and Lemma F.1 (with np/(2p+1)ωn

playing the role of ωn in that lemma). For the second claim, note that, if |σ̂+ − σ+(0)| ≤ η

and |σ̂− − σ−(0)| ≤ η, ωn,σ(·)(δ) ≤ ωσ̃(·),n(δ) ≤ ωn,σ(·)(δ), where σ(x) = (σ+(0) − η)1(x >

0) + (σ−(0) − η)1(x < 0) and σ(x) is defined similarly. Applying the first statement in the

lemma and the fact that |σ̂+−σ+(0)| ≤ η and |σ̂−−σ−(0)| ≤ η with probability approaching

one uniformly over F ,Qn, it follows that, for any ε > 0, we will have

ωσ+(0),σ−(0),∞(δ)− ε ≤ np/(2p+1)ωn(δ) ≤ ωσ+(0),σ−(0),∞(δ) + ε

for all 0 < δ < δ with probability approaching one uniformly over F ,Qn. By making η and

ε small, both sides can be made arbitrarily close to ω∞(δ) = ω∞,σ+(0),σ−(0)(δ).

Lemma G.7. Let r denote
√
ρA or χA,α. Under Assumption G.4,

sup
δ>0

np/(2p+1)ωn(δ)r(δ/2)/δ → sup
δ>0

ω∞(δ)r(δ/2)/δ.

Let δn minimize the left hand side of the above display, and let δ∗ minimize the right hand

side. Then δn → δ∗ under Assumption G.4 and δn
p→

F ,Qn
δ∗ under Assumption G.3. In
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addition, for any 0 < α < 1 and Z a standard normal variable,

lim
n→∞

(1− α)E[np/(2p+1)ωn(2(z1−α − Z))|Z ≤ z1−α] = (1− α)E[ω∞(2(z1−α − Z))|Z ≤ z1−α].

Proof. All of the statements are immediate from Lemmas G.6 and F.2 except for the state-

ment that δn
p→

F ,Qn
δ∗ under Assumption G.3. The statement that δn

p→
F ,Qn

δ∗ under Assump-

tion G.3 follows by using Lemma G.6 and analogous arguments to those in Lemma F.2 to

show that that there exist 0 < δ < δ such that δn ∈ [δ, δ] with probability approaching on

uniformly in F ,Qn, and that supδ∈[δ,δ]

∣∣np/(2p+1)ωn(δ)r(δ/2)/δ − ω(δ)r(δ/2)/δ
∣∣ p→
F ,Qn

0.

Lemma G.8. Under Assumptions G.1 and G.2, the following hold. If Assumption G.4 holds

and b̃n is a deterministic sequence with b̃n → b̃∞ > 0, then

sup
x
|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| → 0,

sup
x
|k−σ̃(·)(x; b̃−,n, d̃−,n)− k−σ̃−(0)(x; b̃−,∞, d̃−,∞)| → 0.

If Assumption G.3 holds and b̃n is a random sequence with b̃n
p→

F ,Qn
b̃∞ > 0, then

sup
x
|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| p→
F ,Qn

0,

sup
x
|k−σ̃(·)(x; b̃−,n, d̃−,n)− k−σ̃−(0)(x; b̃−,∞, d̃−,∞)| p→

F ,Qn
0

Proof. Note that

|k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)| ≤ |k+
σ̃(·)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,n, d̃+,n)|

+ |k+
σ̃+(0)(x; b̃+,n, d̃+,n)− k+

σ̃+(0)(x; b̃+,∞, d̃+,∞)|.

Under Assumption G.4, the first term is, for large enough n, bounded by a constant times

sup0<x<hnK |σ̃−2(x)− σ̃−2
+ (0)|, where K is bound on the support of k+

1 (·; b+, d+) over b+, d+ in

a neighborhood of b̃+,∞, d̃+,∞. This converges to zero by Assumption G.4. The second term

converges to zero by Lipschitz continuity of k+
σ̃+(0). Under Assumption G.3, the first term is

bounded by a constant times |σ̂−2
+ − σ̃+(0)|, which converges in probability to zero uniformly

over F ,Qn by assumption. The second term converges in probability to zero uniformly over

F ,Qn by Lipschitz continuity of k+
σ̃+(0). Similar arguments apply to k−σ̃(·) in both cases.
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Lemma G.9. Under Assumptions G.1 and G.2, the following holds. Let L̂ denote the

estimator L̂δn,σ̃(·) where σ̃(·) satisfies Assumption G.4 and δn = ω−1
σ̃(·),n(2n−p/(2p+1)b̃n) where

b̃n is a deterministic sequence with b̃n → b̃∞. Let biasn and ṽn denote the corresponding

worst-case bias and variance formulas. Let L̂∗ denote the estimator L̂δ∗n,σ̃(·) where σ̃∗(·) =

σ̂+1(x > 0) + σ̂−1(x < 0) satisfies Assumption G.3 with the same value of σ̃+(0) and σ̃−(0)

and δ∗n = ω−1
σ̃(·),n(2n−p/(2p+1)b̃∗n) where b̃∗n

p→
F ,Qn

b̃∞. Let bias
∗
n and ṽ∗n denote the corresponding

worst-case bias and variance formulas. Then

np/(2p+1)
(
L̂− L̂∗

)
p→

F ,Qn
0, np/(2p+1)

(
biasn − bias

∗
n

)
p→

F ,Qn
0,

ṽn
ṽ∗n

p→
F ,Qn

1.

Proof. We have

L̂ =
1

nhn

n∑
i=1

wn(xi/hn)yi =
1

nhn

n∑
i=1

wn(xi/hn)f(xi) +
1

nhn

n∑
i=1

wn(xi/hn)ui

where wn(u) =
k+
σ̃(·)(u;b̃+,n,d̃+,n)

1
nhn

∑n
j=1 k

+
σ̃(·)(xj/hn;b̃+,n,d̃+,n)

for u > 0 and similarly with k+
σ̃(·) replaced by k−σ̃(·)

for u < 0 (here, d̃+,n, d̃−,n, b̃+,n and b̃−,n are the coefficients in the solution to the inverse

modulus problem defined above). Similarly, L̂∗ takes the same form with wn replaced by

w∗n(u) =
k+
σ̃∗(·)(u;b̃∗n,d̃

∗
n)

1
nhn

∑n
j=1 k

+
σ̃∗(·)(xj/hn;b̃∗n,d̃

∗
n)

for u > 0 and similarly for u < 0 (with d̃∗+,n, d̃∗−,n, b̃∗+,n

and b̃∗−,n the coefficients in the solution to the corresponding inverse modulus problem). Let

w∞(u) =
k+
σ̃(·)(u;b̃∗n,d̃

∗
n)

pX,+(0)
∫
k+
σ̃(·)(u;b̃∞,d̃∞) du

Note that, by Lemma G.8, supu |wn(u) − w∞(u)| → 0 and

supu |w∗n(u)− w∞(u)| p→
F ,Qn

0.

We have

L̂− L̂∗ =
1

nhn

n∑
i=1

[wn(xi/hn)− w∗n(xi/hn)]r(xi) +
1

nhn

n∑
i=1

[wn(xi/hn)− w∗n(xi/hn)]ui

where f(x) =
∑p−1

j=0 f
(j)
+ (0)xj1(x > 0)/j! +

∑p−1
j=0 f

(j)
− (0)xj1(x < 0)/j! + r(x) and we use the

fact that
∑n

i=1wn(xi/hn)xji =
∑n

i=1w
∗
n(xi/hn)xji for j = 0, . . . , p − 1. Let B be such that,

with probability approaching one, wn(x) = w∗n(x) = 0 for all x with |x| ≥ B. The first term

is bounded by

C

nhn

n∑
i=1

|wn(xi/hn)− w∗n(xi/hn)| · |xi|p ≤ sup
x
|wn(x)− w∗n(x)|Bhpn

C

nhn

n∑
i=1

1(|xi/hn| ≤ B).
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It follows from Lemma G.8 that supx |wn(x)− w∗n(x)| p→
F ,Qn

0. Also, 1
nhn

∑n
i=11(|xi/hn| ≤

B) converges to a finite constant by Assumption G.1. Thus, the above display converges

uniformly in probability to zero when scaled by np/(2p+1) = h−pn .

For the last term in L̂− L̂∗, scaling by np/(2p+1) gives

1√
nh

n∑
i=1

[wn(xi/hn)− w∞(xi/hn)]ui −
1√
nh

n∑
i=1

[w∗n(xi/hn)− w∞(xi/hn)]ui.

The first term has mean zero and variance 1
nh

∑n
i=1[wn(xi/hn) − w∞(xi/hn)]2σ2(xi) which

is bounded by {supu[wn(u)− w∞(u)]2}
[
sup|x|≤Bhn σ

2(x)
]

1
nh

∑n
i=11(|xi/hn| ≤ B) → 0. Let

cn,+ =
σ̂2
+

nhn

∑n
i=1 kσ̃∗(·)(xi/hn; b̃∗+,n, d̃

∗
+,n) and c∞,+ = σ̃2

+(0)pX,+(0)
∫
kσ̃∗(·)(u; b̃∞, d̃∞) so that

cn,+
p→

F ,Qn
c∞,+, and define cn,− and c∞,− analogously. With this notation, we have, for xi > 0,

w∗n(xi/hn) = c−1
n,+σ̂

2
+kσ̃∗(·)(xi/hn; b̃∗+,n, d̃

∗
+,n) = c−1

n,+h+(xi/hn; b̃∗+,n, d̃
∗
+,n)

and w∞(u) = c−1
∞,+h+(xi/hn; b̃+,∞, d̃+,∞) where

h+(u; b+, d+) =
(
b+ +

p−1∑
j=1

d+,ju
j − C|u|p

)
+
−
(
b+ +

p−1∑
j=1

d+,ju
j + C|u|p

)
−
.

Thus,

1√
nh

n∑
i=1

[w∗n(xi/hn)− w∞(xi/hn)]1(xi > 0)ui

=
c−1
n,+√
nh

n∑
i=1

[h+(u; b̃+,n, d̃+,n)− h+(u; b̃+,∞, d̃+,∞)]1(xi > 0)ui

+
(c−1
n,+ − c−1

n,∞)
√
nh

n∑
i=1

h+(u; b̃+,∞, d̃+,∞)1(xi > 0)ui.

The last term converges to zero uniformly in probability by Slutsky’s Theorem. The first
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term can be written as c−1
n,+ times the sum of

1√
nh

n∑
i=1

(b̃∗+,n +

p−1∑
j=1

d̃∗+,n,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

+

−

(
b̃+,∞ +

p−1∑
j=1

d̃+,∞,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

+

ui
and a corresponding term with (·)+ replaced by (·)−, which can be dealt with using similar

arguments. Letting A(b+, d+) = {u : b+ +
∑p−1

j=1 d+,ju
j − C|u|p ≥ 0}, the above display is

equal to

1√
nh

n∑
i=1

(
b̃∗+,n − b̃+,∞ +

p−1∑
j=1

(d̃∗+,n,j − d̃+,∞,j)

(
xi
hn

)j)
1(xi/hn ∈ A(b̃+,∞, d̃+,∞))ui

+
1√
nh

n∑
i=1

(
b̃∗+,n +

p−1∑
j=1

d∗+,n,j

(
xi
hn

)j
− C

∣∣∣∣ xihn
∣∣∣∣p
)

·
[
1(xi/hn ∈ A(b̃∗+,n, d̃

∗
+,n))− 1(xi/hn ∈ A(b̃+,∞, d̃+,∞))

]
ui.

The first term converges to zero uniformly in probability by Slutsky’s Theorem. The second

term can be written as a sum of terms of the form

1√
nhn

n∑
i=1

(xi/hn)j
[
1(xi/hn ∈ A(b̃∗+,n, d̃

∗
+,n))− 1(xi/hn ∈ A(b̃+,∞, d̃+,∞))

]
ui

times sequences that converge uniformly in probability to finite constants. To show that this

converges in probability to zero uniformly over F ,Qn, note that, letting u∗1, . . . , u
∗
k be the

positive zeros of the polynomial b̃+,∞ +
∑p−1

j=1 d̃+,j,∞u
j + Cup, the following statement will

hold with probability approaching one uniformly over F ,Qn for any η > 0: for all u with

1(u ∈ A(b̃∗+,n, d̃
∗
+,n)) − 1(u ∈ A(b̃+,∞, d̃+,∞)) 6= 0, there exists ` such that |u − u∗` | ≤ η. It

follows that the above display is, with probability approaching one uniformly over F ,Qn,

bounded by a constant times the sum over j = 0, . . . , p and ` = 1, . . . , k of

max
−1≤t≤1

∣∣∣∣∣∣ 1√
nhn

∑
i : u`−η≤xi/hn≤u`+tη

(xi/hn)jui

∣∣∣∣∣∣ .
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By Kolmogorov’s inequality (see pp. 62-63 in Durrett, 1996), the probability of this quantity

being greater than a given δ > 0 under a given f,Q is bounded by

1

δ2

1

nhn

∑
i : u`−η≤xi/hn≤u`+η

varQ
[
(xi/hn)jui

]
=

1

δ2

1

nhn

∑
i : u`−η≤xi/hn≤u`+η

(xi/hn)2jσ2(xi)

→
pX,+(0)σ2

+(0)

δ2

∫ u∗`+η

u∗`−η
u2j du

which can be made arbitrarily small by making η small.

For the bias formulas, we have

∣∣∣biasn − bias
∗
n

∣∣∣ =
C

nhn

∣∣∣∣∣
n∑
i=1

|wn(xi/hn)xpi | −
n∑
i=1

|w∗n(xi/hn)xpi |

∣∣∣∣∣
≤ C

nhn

n∑
i=1

|wn(xi/hn)− w∗n(xi/hn)| · |xi|p.

This converges to zero when scaled by np/(2p+1) by arguments given above.

For the variance formulas, we have

|ṽn − ṽ∗n| =
1

(nhn)2

∣∣∣∣∣
n∑
i=1

wn(xi/hn)2σ̃2(xi)−
n∑
i=1

w∗n(xi/hn)2σ̃∗2(xi)

∣∣∣∣∣
≤ 1

(nhn)2

n∑
i=1

∣∣wn(xi/hn)2σ̃2(xi)− w∗n(xi/hn)2σ̃∗2(xi)
∣∣

≤ 1

nhn
max
|x|≤B

∣∣wn(x)2σ̃2(x)− w∗n(x)2σ̃∗2(x)
∣∣ · 1

nhn

n∑
i=1

1(|xi/hn| ≤ B)

with probability approaching one where B is a bound on the support of wn(x) and w∗n(x)

that holds with probability approaching one. Since 1
nhn

∑n
i=11(|xi/hn| ≤ B) converges to

a constant by Assumption G.1 and ṽn = n−2p/(2p+1)v∞(1 + o(1)) = (nhn)−1v∞(1 + o(1)),

dividing the above display by ṽn gives an expression that is bounded by a constant times

max|x|≤Bhn |wn(x)2σ̃2(x)− w∗n(x)2σ̃∗2(x)|, which converges uniformly in probability to zero.

We are now ready to prove Theorem G.3. First, consider the case with σ̃(·) is deterministic

and Assumption G.4 holding. By Lemma G.7, δn → δ∞. By Lemma G.6, it then follows that,

under Assumption G.4, np/(2p+1)wn(δn)→ ω∞(δ∞) so that Lemma G.8 applies to show that
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Assumption G.5 holds with k+(x) = k+
σ̃+(0)(x; b̃+,∞, d̃+,∞) and k−(x) = k−σ̃−(0)(x; b̃−,∞, d̃−,∞),

where (b̃+,∞, d̃+,∞, b̃−,∞, d̃−,∞) minimize G∞(b̃+,∞, d̃+,∞, b̃−,∞, d̃−,∞) subject to b̃+,∞+ b̃−,∞ =

ω∞(δ∞)/2. The coverage statements and convergence of np/(2p+1)χ̂ then follow from Theo-

rem G.1 and by calculating bias∞ and v∞ in terms of the limiting modulus.

We now prove the optimality statements (under which the assumption was made that,

for each n, there exists a Q ∈ Qn such that the errors are normally distributed). In this

case, for any η > 0, if a linear estimator L̃ and constant χ satisfy

inf
f∈F ,Q∈Qn

P
(
Lf ∈ {L̃± n−p/(2p+1)χ}

)
≥ 1− α− η,

we must have χ ≥ supδ>0
np/(2p+1)ωσ(·),n(δ)

δ
χA,α+η(δ/2) by the results of Donoho (1994) (using

the characterization of optimal half-length at the beginning of Supplemental Appendix F).

This converges to supδ>0
ω∞(δ)
δ
χA,α+η(δ/2) by Lemma G.7. If lim infn inff∈F ,Q∈Qn P (Lf ∈

{L̃ ± n−p/(2p+1)χ}) ≥ 1 − α, then, for any η > 0, the above display must hold for large

enough n, so that χ ≥ limη↓0 supδ>0
ω∞(δ)
δ
χA,α+η(δ/2) = supδ>0

ω∞(δ)
δ
χA,α(δ/2) (the limit

with respect to η follows since there exist 0 < δ < δ <∞ such that the supremum over δ is

taken [δ, δ] for η in a neighborhood of zero, and since χA,α(δ/2) is continuous with respect

to α uniformly over δ in compact sets).

For the asymptotic efficiency bound regarding expected length among all confidence

intervals, note that, for any η > 0, any CI satisfying the asymptotic coverage requirement

must be a 1−α− η CI for large enough n, which means that, since the CI is valid under the

Qn ∈ Qn where the errors are normal, the expected length of the CI at f = 0 and this Qn

scaled by np/(2p+1) is at least

(1− α− η)E
[
np/(2p+1)ωσ(·),n(2(z1−α−η − Z))|Z ≤ z1−α−η

]
by Corollary 3.3. This converges to (1 − α − η)E [ω∞(2(z1−α−η − Z)) | Z ≤ z1−α−η] by

Lemma G.7. The result follows from taking η → 0 and using the dominated convergence the-

orem, and using the fact that ω∞(δ) = ω∞(1)δ2p/(2p+1). The asymptotic efficiency bounds for

the feasible one-sided CI follow from similar arguments, using Theorem 3.1 and Corollary 3.2

along with Theorem G.1 and Lemma F.3.

In the case where Assumption G.3 holds rather than Assumption G.4, it follows from

Lemma G.7 that δn
p→

F ,Qn
δ∞. Then, by Lemma G.9, the conditions of Theorem E.2 hold

with L̂δn,σ̃(·) playing the role of L̂∗ and L̂δn,σ(·) playing the role of L̂. The results then follow
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from Theorem E.2 and the arguments above applied to the CIs based on L̂δn,σ(·).
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