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Abstract

In this paper, we construct confidence sets for models defined by many conditional mo-

ment inequalities/equalities. The conditional moment restrictions in the models can be finite,

countably infinite, or uncountably infinite. To deal with the complication brought about by

the vast number of moment restrictions, we exploit the manageability (Pollard (1990)) of

the class of moment functions. We verify the manageability condition in five examples from

the recent partial identification literature.

The proposed confidence sets are shown to have correct asymptotic size in a uniform sense

and to exclude parameter values outside the identified set with probability approaching one.

Monte Carlo experiments for a conditional stochastic dominance example and a random-

coefficients binary-outcome example support the theoretical results.
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numbers SES-1058376 and SES-1355504. Shi gratefully acknowledges the research support of the University
of Wisconsin-Madison Graduate School with funding from the Wisconsin Alumni Research Foundation. The
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1 Introduction

In this paper, we extend the results in Andrews and Shi (2013a, b) (AS1, AS2) to

cover models defined by many conditional moment inequalities and/or equalities (“MCMI”

in short). The number of conditional moment inequalities/equalities can be countable or

uncountable. Examples of models covered by the results include (1) conditional stochas-

tic dominance, (2) random-coefficients binary-outcome models with instrumental variables,

see Chesher and Rosen (2014), (3) convex moment prediction models, see Beresteanu,

Molchanov, and Molinari (2010), (4) ordered-choice models with endogeneity and instru-

ments, see Chesher and Smolinski (2012), and (5) discrete games identified by revealed

preference, see Pakes, Porter, Ho, and Ishii (2015).

The main feature of an MCMI model is that the number of moment restrictions implied

by the model is doubly “many.” First, there are many (countable or uncountable) conditional

moment restrictions, and second each conditional moment restriction implies infinitely many

moment conditions. As in AS1 and AS2, we transform each conditional moment restriction

into infinitely many unconditional ones using instrumental functions. After the transforma-

tion, the unconditional moment functions of the model form a class that is indexed by both

the instrumental functions and the indices of the conditional moment restrictions. We exploit

a manageability assumption on the class of conditional moment functions. With this assump-

tion, we show that the class of transformed unconditional moment inequalities/equalities is

also manageable and, in consequence, can be treated similarly to those to AS1 and AS2.

Thus, the manageability assumption on the class of conditional moment functions is

crucial for our theoretical framework. This assumption is verified in the examples by deriving

upper bounds on the cover numbers of the functional classes that arise. The upper bounds

in the first two examples are derived by bounding the pseudodimensions of the functional

classes. In the third example, they are derived using the Lipschitz continuity of the moment

functions with respect to the index. These three examples are representative of cases where

there are a continuum of conditional moment inequality/equalities. In the fourth and the

fifth examples, the numbers of conditional moment inequalities/equalities are countable.

For countable functional classes, we treat their elements as sequences and impose decreasing

weights on them. The weights guarantee an appropriate bound for the covering numbers.

We note that the approach in this paper also is applicable to models defined by many un-
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conditional moment inequalities/equalities. For such models, one simply omits the step that

transforms the conditional moments restrictions into unconditional ones using instrumental

functions.

This paper belongs to the moment inequality literature, which is now quite large. The

most closely related paper is Chernozhukov, Chetverikov, and Kato (2014), which studies

models defined by many moment inequalities. Their framework is different from ours in that

(1) their number of moment restrictions increases with the sample size and is finite for each

fixed sample size, and (2) they do not assume or exploit the correlation structure between the

many moments. Regarding the mechanics of the approaches, their MB (multiplier bootstrap)

test is similar to our KS (Kolmogorov-Smirnov) test, while their SN (self-normalizing) test

and our CvM (Cramer-von Mises) test are unique to each paper. Like this paper, Delgado

and Escanciano (2013) consider tests for conditional stochastic dominance. They take a

different approach from the approach in this paper.

Papers in the literature that consider conditional moment inequalities, but not MCMI,

include Khan and Tamer (2009), Chetverikov (2012), AS1, Armstrong and Chan (2013),

Chernozhukov, Lee, and Rosen (2013), Gandhi, Lu, and Shi (2013), Lee, Song, and Whang

(2013), Andrews and Shi (2014), and Armstrong (2014a,b, 2015). Galichon and Henry

(2009) provides related results. Papers in the literature that test a continuum of uncondi-

tional moment inequalities include papers on testing stochastic dominance and stochastic

monotonicity, see Linton, Song, and Whang (2010) and references therein. Papers in the lit-

erature that test a continuum of inequalities that are not moment inequalities and, hence, to

which the tests in this paper do not apply, include tests of Lorenz dominance, see Dardanoni

and Forcina (1999) and Barrett, Donald, and Bhattacharya (2014), and tests of likelihood

ratio (or density) ordering, see Beare and Moon (2015), Beare and Shi (2015), and references

therein.

The rest of the paper is organized as follows. Section 2 specifies the model and describes

the examples. Section 3 introduces the test statistics and confidence sets. Section 4 defines

the critical values and gives a step-by-step guide for implementation. Section 5 shows the

uniform asymptotic size of the proposed tests and confidence sets in the general setup.

Section 6 gives the power results. Sections 7-9 verify the conditions imposed in Sections 5

and 6 for each of the examples. Sections 7 and 8 also provide finite-sample Monte Carlo

results for the problem of testing conditional stochastic dominance and for the random-
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coefficients binary-outcome model with instruments. Section 10 concludes.

For notational simplicity, throughout the paper, we let (ai)
n
i=1 denote the n-vector (a1, ...,

an)′ for ai ∈ R. We let A := B denote that A equals B by definition or assumption.

2 Many Conditional Moment Inequalities/Equalities

2.1 Models

The models considered in this paper are of the following general form:

EF0 [mj(Wi, θ0, τ)|Xi] ≥ 0 a.s. for j = 1, ..., p and

EF0 [mj(Wi, θ0, τ)|Xi] = 0 a.s. for j = p+ 1, ..., p+ v, ∀τ ∈ T , (2.1)

where T is a set of indices that may contain an infinite number of elements, θ0 is the

unknown true parameter value that belongs to a parameter space Θ ⊂ Rdθ , the observations

{Wi : i ≤ n} are i.i.d., F0 is the unknown true distribution of Wi, Xi is a subvector of Wi,

and m(w, θ, τ) := (m1(w, θ, τ), ...,mp+v(w, θ, τ))′ is a vector of known moment functions.

In contrast, the parameter τ ∈ T does not appear in the moment inequality/equality

models considered in AS1 and AS2.

The object of interest is θ0, which is not assumed to be point identified. The model

restricts θ0 to the identified set (which could be a singleton), which is defined by

ΘF0 := {θ ∈ Θ : (2.1) holds with θ in place of θ0}. (2.2)

We are interested in confidence sets (CS’s) that cover the true value θ0 with probability

greater than or equal to 1 − α for α ∈ (0, 1). We construct such CS’s by inverting tests of

the null hypothesis that θ is the true value for each θ ∈ Θ. Let Tn (θ) be a test statistic and

cn,1−α (θ) be a corresponding critical value for a test with nominal significance level α. Then,

a nominal level 1− α CS for the true value θ0 is

CSn := {θ ∈ Θ : Tn (θ) ≤ cn,1−α (θ)}. (2.3)

At each θ ∈ Θ, we test the validity of the moment conditions in (2.1) with θ0 replaced with
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θ. The tests are of interest in their own right when (i) there is no parameter to estimate in

the moment conditions, as in Example 1 below, or (ii) the validity of the moment conditions

at a given θ has policy implications.

2.2 Examples

Models of the form described in (2.1) arise in many empirically relevant situations. Below

are some examples.

Example 1 (Conditional Stochastic Dominance). Let W := (Y1, Y2, X) . Some eco-

nomic theories imply that the distribution of Y1 stochastically dominates that of Y2 condi-

tional on X. For an integer s ≥ 1, the sth-order conditional stochastic dominance of Y1 over

Y2 can be written as conditional moment inequalities:

EF0 [Gs(Y2, τ)−Gs(Y1, τ)|X] ≥ 0 a.s. ∀τ ∈ T , where

Gs(y, τ) := (τ − y)s−11{y ≤ τ} (2.4)

and T contains the supports of Y1 and Y2. The tests developed below are directly applicable

in this example without being inverted into a confidence set.

Stochastic dominance relationships have been used in income and welfare analysis, for

example, in Anderson (1996, 2004), Davidson and Duclos (2000), and Bishop, Zeager, and

Zheng (2011). Stochastic dominance relationships also have been used in the study of auc-

tions, e.g., in Guerre, Perrigne, and Vuong (2009). Conditional stochastic dominance implies

that the relationship holds for every subgroup of the population defined by X and is useful

in all of these applications. See Delgado and Escanciano (2013) for a different approach to

testing conditional stochastic dominance from the one considered here.

Sometimes, one may be interested in the conditional stochastic dominance relationship

among multiple distributions. For example, for W = (Y1, Y2, Y3, X), one would like to know

whether Y1 s-th order stochastically dominates Y2 and Y2 over Y3 conditional on X. The

corresponding conditional moment inequalities to be tested are as follows,

EF0 [Gs(Y2, τ)−Gs(Y1, τ)|X] ≥ 0 and

EF0 [Gs(Y3, τ)−Gs(Y2, τ)|X] ≥ 0 a.s. ∀τ ∈ T , (2.5)
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where T contains the supports of Y1, Y2, and Y3. For example, the comparison of multiple

distributions has been considered in Dardanoni and Forcina (1999) for Lorenz dominance.

Example 2 (Random-Coefficients Binary-Outcome Models with Instrumental

Variables). Consider the random-coefficients binary-outcome model with instrumental vari-

ables (IV’s) studied in Chesher and Rosen (2014) (CR):

Y1 = 1{β0 +X ′1β1 + Y ′2β2 ≥ 0}, (2.6)

where β := (β0, β
′
1, β

′
2)′ are random coefficients that belong to the space Rdβ . The covariate

vector X1 is assumed to be exogenous (i.e., independent of β), while the covariate vector

Y2 may be endogenous. Let X2 be a vector of instrumental variables that is independent

of β. Suppose the parameter of interest is the marginal distribution of β, denoted by Fβ.

Theorem 1 of CR implies that under their Assumptions A1-A3, the sharp identified set for

Fβ is defined by the following moment inequalities:

EF0 [Fβ(S)− 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ S, (2.7)

where

S(y1, y2, x1) := cl{b = (b0, b
′
1, b
′
2)′ ∈ Rdβ : y1 = 1{b0 + x′1b1 + y′2b2 ≥ 0}},

S := {cl(∪c∈CH(c)) : C ⊂ Rdβ},

H(c) := {b ∈ Rdβ : b′c ≥ 0} for c ∈ Rdβ , (2.8)

cl denotes “closure,” and H(c) is the half-space orthogonal to c ∈ Rdβ .

Often one may wish to parameterize Fβ by assuming Fβ(·) = Fβ(·; θ) for a known dis-

tribution function Fβ(·; ·) and an unknown finite-dimensional parameter θ ∈ Θ. Then, the

sharp identified set for θ is defined by the moment inequalities:

EF0 [Fβ(S, θ)− 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ S. (2.9)

This fits into the framework of (2.1) with W = (Y1, Y
′

2 , X
′
1, X

′
2)′, X = (X ′1, X

′
2)′, τ = S,

T = S, p = 1, v = 0, and m(w, θ, τ) = Fβ(S, θ)− 1{S(y1, y2, x1) ⊂ S}.

Example 3 (Convex Moment Prediction Models–Support Function Approach).
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Beresteanu, Molchanov, and Molinari (2010) (BMM) establish a framework to character-

ize the sharp identified set for a general class of incomplete models with convex moment

predictions using the random set theory. Examples of such models include static, simultane-

ous move, finite games with complete or incomplete information in the presence of multiple

equilibria, best linear prediction models with interval outcome and/or regressor data, and

random utility models of multinomial choice with interval regressor data. BMM show that

the sharp identified set for these models can be characterized by a continuum of conditional

moment inequalities using the support function of the set. For parameter inference, BMM

suggest applying the procedure in this paper and they verify the high-level assumptions

in an earlier version of this paper in two examples. Here, we describe their identification

framework briefly.

Consider a model based on an observed random vector W and an unobserved random

vector V. The model maps each value of (W,V ) to a closed set Qθ(W,V ) ⊆ Rd, where θ is

the model parameter that belongs to a parameter space Θ, and d is a positive integer. Let

X be a subvector of W with support contained in X and let q(x) : X → Rd be a known

function. Suppose (W,V ) and W take values in some sets WV and W , respectively. BMM

assume that the sharp identified set of θ implied by the model is

ΘI = {θ ∈ Θ : q(X) ∈ EF0 [Qθ(W,V )|X] a.s. [X]}, (2.10)

where EF0 [·] stands for the Aumann expectation of the random set inside the square brackets

under the true distribution F0 of (W,V ). BMM show that the event q(X) ∈ EF0 [Qθ(W,V )|X]

can be written equivalently as the following set of moment inequalities

EF0 [h(Qθ(W,V ), u)− u′q(X)|X] ≥ 0 a.s.[X], ∀u ∈ Rd s.t. ‖u‖ ≤ 1, (2.11)

where h(Q, u) is the support function of Q in the direction given by u, that is, h(Q, u) =

supq∈Q q
′u.

The inequalities (2.11) do not fall immediately into our general framework because of the

unobservable V . However, in applications, one typically has that either Qθ(W,V ) = Qθ(W )

(so that V does not appear in (2.11)) or the distribution of V given X (denoted FV |X(v|x; θ))

is known to the researcher up to an unknown parameter θ. In the former case, (2.11) fits the

6



form of (2.1). In the latter case, we write (2.11) as

EF0

[∫
h(Qθ(W, v), u)dFV |X(v|X; θ)− u′q(X)|X

]
≥ 0 a.s. [X], ∀u ∈ Rd s.t. ‖u‖ ≤ 1,

(2.12)

which fits the form of (2.1). The former case includes the best linear predictor example in

BMM, and the latter case includes the entry game example in BMM.

Example 4 (IV Ordered-Choice Models). Chesher and Smolinski (2012) show that the

sharp identified set for a nonparametric single equation instrumental variable (SEIV) model

with ordered outcome and discrete endogenous regressors can be characterized by a finite,

but potentially very large, number of moment inequalities. Consider the nonseparable model

Y = h (Z,U) , (2.13)

where Y ∈ {1, 2, ...,M} and Z ∈ {z1, ..., zK}, the error term U is normalized to be uniformly

distributed in [0, 1]. Assume that there is a vector of instrumental variables X that is

independent of U. Then, one has a SEIV model. Further, assume that h is weakly increasing

in U. Then, h has a threshold crossing representation: for m = 1, ...,M and z ∈ {z1, ..., zK}:

h (z, u) = m if u ∈ (hm−1(z), hm(z)] (2.14)

for some constants 0 = h0(z) < · · · < hM(z) = 1. Thus, estimating h (z, u) amounts to

estimating the J = (M−1)K threshold parameters γ = (γ11, ..., γ(M−1)1, ..., γ1K , ..., γ(M−1)K)′,

where

γmk = hm (zk) ∀m = 1, ...,M − 1, ∀k = 1, ..., K. (2.15)

Chesher and Smolinski (2012) show that the sharp identified set for γ can be characterized
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by the following moment inequalities

EF0

[
γ`s −

K∑
k=1

M−1∑
m=1

1{Y = m,Z = zk, γmk ≤ γ`s}

∣∣∣∣∣X
]
≥ 0 a.s. [X] and

EF0

[
K∑
k=1

M−1∑
m=1

1{Y = m,Z = zk, γ(m−1)k < γ`s} − γ`s

∣∣∣∣∣X
]
≥ 0 a.s. [X] ∀` ≤M − 1, ∀s ≤ K,

EF0 [γ`s − γms − 1{m < Y ≤ `, Z = zs}|X] ≥ 0 a.s. [X]

∀` > m, ∀`,m ≤M − 1, ∀s ≤ K.

(2.16)

We arrange the above N := 2(M−1)K+(M−2)(M−1)K/2 inequalities into a column, and

index them by τ for τ = 1, . . . , N. Let W = (Y,X,Z ′)′ and let m(W, γ, τ) be the expression

inside the conditional expectation in the τth inequality. Then, this example falls into the

framework of (2.1) with θ = γ.

One may wish to parameterize the threshold functions γ via γ = Γ (θ) . In that case, the

same set of moment inequalities as above defines the sharp identified set for θ. For example,

Chesher and Smolinski (2012) show that, for the linear ordered-probit model,

γmk := hm(zk) = Φ(cm − a1zk) ∀m = 1, . . . ,M − 1, ∀k = 1, . . . , K, (2.17)

where c1, . . . , cM−1 are the threshold values, a1 is the slope parameter, and Φ(·) is the stan-

dard normal distribution function.

Example 5 (Revealed Preference Approach in Discrete Games). Pakes, Porter, Ho,

and Ishii (2015) formalize the idea of using the revealed preference principle to estimate games

in which a finite number of players have a discrete set of actions to choose from. Observing

the players’ equilibrium play, the econometrician can write down moment inequalities that

are implied by the revealed preference principle. These moment inequalities allow one to

estimate the structural parameters without solving for the equilibrium. Here we describe a

simplified version of their framework.

Suppose that all players make decisions based on the same information set and the

econometrician observes the information set. Players make decisions based on expected

utility maximization. Suppose there are J players and each player has a feasible action set

Aj that is discrete (i.e., finite or countably infinite). Let πj (aj, a−j, Z; θ) be the utility of
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player j given her own action aj and her opponents’ actions a−j and the covariates Z. Let

X be a subvector of Z that generates the information set of the players. Let the boldfaced

aj and a−j be the observed actions of player j and her opponents. The function πj is known

up to the finite dimensional parameter θ. Then, the moment inequalities are

EF0

(
πj (aj, a−j, Z; θ)− πj

(
a′j, a−j, Z; θ

)∣∣X) ≥ 0 ∀a′j ∈ Aj, ∀j = 1, ..., J. (2.18)

When J is large or the number of elements in Aj is large, there are many (possibly countably

infinitely many) conditional moment inequalities.

2.3 Parameter Space

Let (θ, F ) denote a generic value of the parameter and the distribution of Wi. Let F
denote the parameter space for the true values (θ0, F0), which satisfy the conditional moment

inequalities and equalities. To specify F , we first introduce some additional notation. For

each distribution F, let FX denote the marginal distribution of Xi under F. Let k := p+ v.

Below, we employ a “manageability” condition that regulates the complexity of T . It

ensures a functional central limit theorem (CLT) result, which is used in the proof of the

uniform coverage probability results for the CS’s. The concept of manageability is from

Pollard (1990) and is defined in Section B.3 of the Appendix.

The test consistency results given below apply to (θ, F ) pairs that do not satisfy the

conditional moment inequalities and equalities. For this reason, we introduce a set F+ that

is a superset of F and does not impose the inequalities and equalities. Let F+ be some

collection of (θ, F ) that satisfy the following parameter space (PS) Assumptions PS1 and

PS2 for given constants δ > 0 and C1 < ∞ and given deterministic function of (θ, F ):

σF (θ) := (σF,1(θ), . . . , σF,k(θ))
′. The function σF (θ) is useful for the standardization of

certain forms of the test statistic, and is specified in greater detail in sections below.

Assumption PS1. For any (θ, F ) ∈ F+,

(a) θ ∈ Θ,

(b) {Wi : i ≥ 1} are i.i.d. under F,

(c) σF,j(θ) > 0, ∀j = 1, . . . , k,

(d) |mj(w, θ, τ)/σF,j(θ)| ≤ M(w), ∀w ∈ Rdw , ∀j = 1, ..., k, ∀τ ∈ T , for some function

M : Rdw → [0,∞), and
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(e) EFM
2+δ(Wi) ≤ C1.

Assumption PS2. For all sequences {(θn, Fn) ∈ F+ : n ≥ 1}, the triangular array of

processes {(mj(Wn,i, θn, τ)/σFn,j(θn))kj=1 : τ ∈ T , i ≤ n, n ≥ 1} is manageable with respect

to the envelopes {M(Wn,i) : i ≤ n, n ≥ 1}, where {Wn,i : i ≤ n, n ≥ 1} is a row-wise i.i.d.

triangular array with Wn,i ∼ Fn ∀i ≤ n, n ≥ 1.

The parameter space F for the conditional moment inequality model is the subset of F+

that satisfies:

Assumption PS3. (a) EF [mj(Wi, θ, τ)|Xi] ≥ 0 a.s. [FX ] for j = 1, ..., p, ∀τ ∈ T ,

(b) EF [mj(Wi, θ, τ)|Xi] = 0 a.s. [FX ] for j = p+ 1, ..., k, ∀τ ∈ T .

3 Tests and Confidence Sets

In this section, we describe the test statistic. To do so, we first transform the condi-

tional moment inequalities/equalities into equivalent unconditional ones using instrumental

functions. The unconditional moment conditions are as follows:

EF0 [mj(Wi, θ0, τ)gj(Xi)] ≥ 0 for j = 1, ..., p and

EF0 [mj(Wi, θ0, τ)gj(Xi)] = 0 for j = p+ 1, ..., k,

∀τ ∈ T and ∀g = (g1, ..., gk)
′ ∈ Gc-cube, (3.1)

where g is a vector of instruments that depends on Xi and Gc-cube is a collection of instru-

mental functions g defined below.

We construct test statistics based on (3.1). Let the sample moment functions be

mn(θ, τ, g) := n−1

n∑
i=1

m(Wi, θ, τ, g) for g ∈ Gc-cube and

m(Wi, θ, τ, g) := (m1(Wi, θ, τ)g1(Xi), ...,mk(Wi, θ, τ)gk(Xi))
′ . (3.2)

The sample variance matrix of n1/2mn(θ, g, τ) is useful for most versions of the test statistic

and for the critical values. It is defined as

Σ̂n(θ, τ, g) := n−1

n∑
i=1

(m(Wi, θ, τ, g)−mn(θ, τ, g))(m(Wi, θ, τ, g)−mn(θ, τ, g))′. (3.3)
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When the sample variance is used, we would like it to be nonsingular because it is used to

studentize the sample moment functions. However, the matrix Σ̂n(θ, τ, g) may be singular or

nearly singular with non-negligible probability for some (τ, g). Thus, we add a small positive

definite matrix to Σ̂n(θ, τ, g):

Σn(θ, τ, g) := Σ̂n(θ, τ, g) + ε ·Diag(σ̂2
n,1(θ), . . . , σ̂2

n,k(θ)) for (τ, g) ∈ T × Gc-cube and ε = 1/20,

(3.4)

where σ̂n,j(θ) is a consistent estimator of the σF,j(θ) introduced just above Assumption PS1.

In practice, if the moment functions have a natural scale (say, being a probability or

the difference of two probabilities), one can take σ̂n,j(θ) = σF,j(θ) = 1 for all j, (θ, F ),

and n. Otherwise, we recommend taking σ̂n,j(θ) and σF,j(θ) such that σ̂−1
n,j(θ)mj(Wi, θ, τ)

and σ−1
F,j(θ)mj(Wi, θ, τ) are invariant to the rescaling of the moment functions, because this

yields a test with the same property. We discuss specific choices for the examples in later

sections.

We assume that the estimators {σ̂n,j(θ) : j ≤ k} satisfy the following uniform consistency

condition.

Assumption SIG1. For all ζ > 0, sup(θ,F )∈F Pr
(
maxj≤k |σ̂2

n,j(θ)/σ
2
F,j(θ)− 1| > ζ

)
→ 0.

The functions g that we consider are hypercubes in [0, 1]dX . Hence, we transform each

element of Xi to lie in [0, 1]. (There is no loss in information in doing so.) For notational

convenience, we suppose X†i ∈ RdX denotes the nontransformed IV vector and we let Xi

denote the transformed IV vector. We transform X†i via a shift and rotation and then apply

the standard normal distribution function Φ(x). Specifically, let

Xi := Φ(Σ̂
−1/2
X,n (X†i −X

†
n)), where Φ(x) := (Φ(x1), ...,Φ(xdX ))′ for x = (x1, ..., xdX )′,

Σ̂X,n := n−1Σn
i=1(X†i −X

†
n)(X†i −X

†
n)′, and X

†
n := n−1Σn

i=1X
†
i . (3.5)

We consider the class of indicator functions of cubes with side lengths that are (2r)−1 for

11



all large positive integers r. The cubes partition [0, 1]dx for each r. This class is countable:

Gc-cube := {ga,r : ga,r(x) := 1{x ∈ Ca,r} · 1k for Ca,r ∈ Cc-cube}, where

Cc-cube :=

{
Car :=

dx∏
u=1

((au − 1)/(2r), au/(2r)] ∈ [0, 1]dx : a = (a1, ..., adx)
′

au ∈ {1, 2, ..., 2r} for u = 1, ..., dx and r = r0, r0 + 1, ...
}

(3.6)

for some positive integer r0 and 1k := (1, ..., 1)′ ∈ Rk.1 The terminology “c-cube” abbreviates

countable cubes. Note that Ca,r is a hypercube in [0, 1]dx with smallest vertex indexed by a

and side lengths equal to (2r)−1.

The test statistic T n,r1,n(θ) is either a Cramér-von-Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

T n,r1,n(θ) := sup
τ∈T

r1,n∑
r=1

(r2 + 100)−1
∑

a∈{1,...,2r}dX

(2r)−dxS(n1/2mn(θ, τ, ga,r),Σn(θ, τ, ga,r)), (3.7)

where S = S1, S2, S3, or S4 as defined in (3.9) below, (r2 + 100)−1 is a weight function,

and r1,n is a truncation parameter. The asymptotic size and consistency results for the CS’s

and tests based on T n,r1,n(θ) allow for more general forms of the weight function and hold

whether r1,n = ∞ or r1,n < ∞ and r1,n → ∞ as n → ∞. (No rate at which r1,n → ∞ is

needed for these results.) For computational tractability, we typically take r1,n <∞.
The Kolmogorov-Smirnov-type (KS) statistic is

T n,r1,n(θ) := sup
τ∈T

sup
ga,r∈Gc-cube,r1,n

S(n1/2mn(θ, τ, ga,r),Σn(θ, τ, ga,r)), (3.8)

where Gc-cube,r1,n = {ga,r ∈ Gc-cube : r ≤ r1,n}. For brevity, the discussion in this paper focusses

on CvM statistics and all results stated concern CvM statistics. Similar results hold for KS

statistics.2

1When au = 1, the left endpoint of the interval (0, 1/(2r)] is included in the interval.
2Such results can be established by extending the results given in Section 13.1 of Appendix B of AS2 and

proved in Section 15.1 of Appendix D of AS2.
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The functions S1-S4 are defined by

S1 (m,Σ) :=

p∑
j=1

[mj/σj]
2
− +

p+v∑
j=p+1

[mj/σj]
2 ,

S2 (m,Σ) := inf
t=(t′1,0

′
v)′:t1∈Rp+,∞

(m− t)′Σ−1 (m− t) ,

S3(m,Σ) := max{[m1/σ1]2−, ..., [mp/σp]
2
−, (mp+1/σp+1)2, ..., (mp+v/σp+v)

2}, and

S4 (m,Σ) := inf
t=(t′1,0

′
v)′:t1∈Rp+,∞

(m− t)′ (m− t) =

p∑
j=1

[mj]
2
− +

p+v∑
j=p+1

m2
j , (3.9)

where mj is the jth element of the vector m, σ2
j is the jth diagonal element of the matrix

Σ, and [x]− := −x if x < 0 and [x]− := 0 if x ≥ 0, R+,∞ := {x ∈ R : x ≥ 0} ∪ {+∞},
and Rp

+,∞ := R+,∞ × ... × R+,∞ with p copies. The functions S1, S2, and S3 are referred

to as the modified method of moments (MMM) or Sum function, the quasi-likelihood ratio

(QLR) function, and the Max function, respectively. The function S4 is referred to as the

identity-weighted MMM function. The test statistic based on S4 is not invariant to scale

changes of the moment functions, which may be a disadvantage in some examples. But,

in other examples (e.g., Examples 2 and 4 above and the s = 1 case of Example 1), the

moment functions are naturally on a probability scale (i.e., they take values in [−1, 1]) and

scale invariance is not an issue. In such cases, S4 is a desirable choice for its simplicity.

4 Critical Values

4.1 GMS Critical Values

In this section we define GMS critical values based on bootstrap simulations. The critical

value is obtained via the following steps.

Step 1. Compute ϕn(θ, τ, ga,r) for (τ, ga,r) ∈ T × Gc-cube,r1,n , where ϕn(θ, ga,r) is defined as

follows. For g = ga,r, let

ξn(θ, τ, g) := κ−1
n n1/2D

−1/2

n (θ, τ, g)mn(θ, τ, g), where

Dn(θ, τ, g) := Diag(Σn(θ, τ, g)), κn := (0.3 ln(n))1/2, (4.1)

and Σn(θ, τ, g) is defined in (3.4). The jth element of ξn(θ, τ, g), denoted ξn,j(θ, τ, g), mea-
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sures the slackness of the moment inequality EFmj(Wi, θ, τ, g) ≥ 0 for j = 1, ..., p. It is

shrunk towards zero via κ−1
n to ensure that one does not over-estimate the slackness.

Define ϕn(θ, τ, g) := (ϕn,1(θ, τ, g), ..., ϕn,p(θ, τ, g), 0, ..., 0)′ ∈ Rk by

ϕn,j(θ, τ, g) := Σ
1/2

n,j (θ, τ, g)Bn1{ξn,j(θ, τ, g) > 1} for j ≤ p and

Bn := (0.4 ln(n)/ ln ln(n))1/2, (4.2)

where Σn,j(θ, τ, g) denotes the (j, j) element of Σn(θ, τ, g).

Step 2. Generate B bootstrap samples {W ∗
i,s : i = 1, ..., n} for s = 1, ..., B using the

standard nonparametric i.i.d. bootstrap. That is, draw W ∗
i,s randomly with replacement

from {W` : ` = 1, ..., n} for i = 1, ..., n and s = 1, ..., B.

Step 3. For each bootstrap sample, transform the regressors as in (3.5) (using the bootstrap

sample in place of the original sample) and compute m∗n,s(θ, τ, ga,r) and Σ
∗
n,s(θ, τ, ga,r) just

as mn(θ, τ, ga,r) and Σn(θ, τ, ga,r) are computed, but with the bootstrap sample in place of

the original sample.3

Step 4. For each bootstrap sample, compute the bootstrap test statistic T
∗
n,r1,n,s

(θ) as

T
CvM

n,r1,n
(θ) (or T

KS

n,r1,n
(θ)) is computed in (3.7) (or (3.8)) but with n1/2mn(θ, τ, ga,r) replaced

by n1/2(m∗n,s(θ, τ, ga,r) − mn(θ, τ, ga,r)) + ϕn(θ, τ, ga,r) and with Σn(θ, τ, ga,r) replaced by

Σ
∗
n,s(θ, τ, ga,r).

4

Step 5. Take the bootstrap GMS critical value cGMS,∗
n,1−α (θ) to be the 1−α+η sample quantile

of the bootstrap test statistics {T ∗n,r1,n,s(θ) : s = 1, ..., B} plus η, where η = 10−6.

The CvM (or KS) GMS CS is defined in (2.3) with Tn(θ) = T
CvM

n,r1,n
(θ) (or T

KS

n,r1,n
(θ))

and cn,1−α(θ) = cGMS,∗
n,1−α (θ). The CvM GMS test of H0 : θ = θ∗ rejects H0 if T

CvM

n,r1,n
(θ∗) >

cGMS,∗
n,1−α (θ∗). The KS GMS test is defined likewise using T

KS

n,r1,n
(θ∗) and the KS GMS critical

value.

The choices of ε, κn, Bn, and η above are based on some experimentation (in the simu-

lation results reported in AS1 and AS2). The asymptotic results reported in the Appendix

allow for other choices.

The number of cubes with side-edge length indexed by r is (2r)dX , where dX denotes the

dimension of the covariate Xi. The computation time is approximately linear in the number

3If the test statistic uses function S4 defined above, Σ
∗
n(θ, τ, ga,r) does need to be computed.

4If the function S4 is used, Σn(θ, τ, ga,r) does not appear in the test statistic, and thus Σ
∗
n(θ, τ, ga,r) does

not enter the calculation of the bootstrap statistic.
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of cubes. Hence, it is linear in Ng :=
∑r1,n

r=1(2r)dX .

When there are discrete variables in Xi, the sets Ca,r can be formed by taking interactions

of each value of the discrete variable(s) with cubes based on the other variable(s).

4.2 Plug-in Asymptotic Critical Values

Next, for comparative purposes, we define bootstrap plug-in asymptotic (PA) critical

values. Subsampling critical values also can be considered, see Appendix B of AS2 for details.

We strongly recommend GMS critical values over PA and subsampling critical values for the

same reasons as given in AS1 plus the fact that the finite-sample simulations in Sections 7.2

and 8.2 show better performance by GMS critical values than PA critical values, and better

or equal performance by GMS critical values comparing to subsampling ones.

Bootstrap PA critical values (denoted by cPA,∗n,1−α(θ)) are based on the least-favorable

asymptotic null distribution with an estimator of the unknown covariance kernel plugged-in.

They are computed just as the (bootstrap) GMS critical values are, but with ϕn(θ, τ, ga,r) =

0k (∈ Rk).

The nominal 1 − α PA CS is given by (2.3) with Tn(θ) = T
CvM

n,r1,n
(θ) (or T

KS

n,r1,n
(θ)) and

the critical value cn,1−α(θ) equal to the PA critical value. The CvM (or KS) PA test of

H0 : θ = θ∗ rejects H0 if T
CvM

n,r1,n
(θ∗) (or T

KS

n,r1,n
(θ∗)) exceeds the CvM (or KS) PA critical

value evaluated at θ = θ∗.

PA critical values are greater than or equal to GMS critical values for all n (because

ϕn,j(θ, τ, g) ≥ 0 for all (τ, g) ∈ T × G for j ≤ p and S`(m,Σ) is non-increasing in mI ∈ Rp,

where m := (m′I ,m
′
II)
′), for ` = 1, 2, 3, 4). Hence, the asymptotic local power of a GMS test is

greater than or equal to that of a PA test for all local alternatives. Strict inequality typically

occurs whenever the conditional moment inequality EFn(mj(Wi, θ∗, τ)|Xi) is bounded away

from zero as n→∞ with positive Xi probability for some j = 1, ..., p and some τ ∈ T .

5 Correct Asymptotic Size

In this section, we show that GMS and PA CS’s have correct asymptotic size (in a uniform

sense).

First, we introduce some additional notation. We define the asymptotic covariance kernel,

{h2,F (θ, τ, g, τ †, g†) : (τ, g), (τ †, g†) ∈ T × Gc-cube}, of n1/2mn(θ, τ, g) after normalization via
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a diagonal matrix D
−1/2
F (θ). That is, we define

h2,F (θ, τ, g, τ †, g†) := D
−1/2
F (θ)ΣF (θ, τ, g, τ †, g†)D

−1/2
F (θ), where

ΣF (θ, τ, g, τ †, g†) := CovF ((m(Wi, θ, τ, g),m(Wi, θ, τ
†, g†)), (5.1)

DF (θ) := Diag(σ2
F,1(θ), . . . , σ2

F,k(θ)),

and {σF,j(θ) : j = 1, . . . , k} are specified just before Assumption PS1. For simplicity, let

h2,F (θ) abbreviate {h2,F (θ, τ, g, τ †, g†) : (τ, g), (τ †, g†) ∈ T × Gc-cube}.
Define

H2 := {h2,F (θ) : (θ, F ) ∈ F}, (5.2)

where, as defined at the end of Section 2, F is the subset of F+ that satisfies Assumption

PS3. On the space of k × k matrix-valued covariance kernels on (T × Gc-cube)
2, which is a

superset of H2, we use the uniform metric d defined by

d(h
(1)
2 , h

(2)
2 ) := sup

(τ,g),(τ†,g†)∈T ×Gc-cube
‖h(1)

2 (τ, g, τ †, g†)− h(2)
2 (τ, g, τ †, g†)‖. (5.3)

Correct asymptotic size is established in the following theorem.

Theorem 5.1 Suppose Assumption SIG1 holds. For any compact subset H2,cpt of H2, the

GMS and PA confidence sets CSn satisfy

lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) ≥ 1− α.

Comments. 1. Theorem 5.1 shows that GMS and PA CS’s have correct uniform asymptotic

size over compact sets of covariance kernels. The uniformity results hold whether the moment

conditions involve “weak” or “strong” IV’s Xi. That is, weak identification of the parameter

θ due to a low correlation between Xi and the functions mj(Wi, θ, τ) does not affect the

uniformity results.

2. The proofs in the Appendix take the transformation of the IV’s to be non-data

dependent. One could extend the results to allow for data-dependence by considering random

hypercubes as in Pollard (1979) and Andrews (1988). These results show that one obtains

the same asymptotic results with random hypercubes as with nonrandom hypercubes that
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converge in probability to nonrandom hypercubes (in an L2 sense). For brevity, we do not

do so.

6 Power Against Fixed Alternatives

We now show that the powers of GMS and PA tests converge to one as n → ∞ for

all fixed alternatives (for which Assumptions PS1 and PS2 hold). Thus, both tests are

consistent tests. This implies that for any fixed distribution F0 and any parameter value θ∗

not in the identified set ΘF0 , the GMS and PA CS’s exclude θ∗ with probability approaching

one. In this sense, GMS and PA CS’s based on Tn(θ) fully exploit the infinite number of

conditional moment inequalities/equalities. CS’s based on a finite number of unconditional

moment inequalities/equalities do not have this property.5

The null hypothesis is

H0 : EF0 [mj(Wi, θ∗, τ)|Xi] ≥ 0 a.s. [FX,0] for j = 1, ..., p and

EF0 [mj(Wi, θ∗, τ)|Xi] = 0 a.s. [FX,0] for j = p+ 1, ..., k, ∀τ ∈ T , (6.1)

where θ∗ denotes the null parameter value and F0 denotes the fixed true distribution of

the data. The alternative hypothesis is H1 : H0 does not hold. The following assumption

specifies the properties of fixed alternatives (FA).

Let F+ be as defined in Section 2.3. Note that F+ includes (θ, F ) pairs for which θ lies

outside of the identified set ΘF as well as all values in the identified set.

The set XF (θ, τ) of values x for which the moment inequalities or equalities evaluated

at θ are violated under F is defined as follows. For any θ ∈ Θ and any distribution F with

EF [‖m(Wi, θ, τ)‖] <∞, let

XF (θ, τ) := {x ∈ Rdx : EF [mj (Wi, θ, τ) |Xi = x] < 0 for some j ≤ p or

EF [mj (Wi, θ, τ) |Xi = x] 6= 0 for some j = p+ 1, ..., k}. (6.2)

5This holds because the identified set based on a finite number of moment inequalities typically is larger
than the identifed set based on all the conditional moment inequalities. In consequence, CI’s based on a
finite number of inequalities include points in the difference between these two identified sets with probability
whose limit infimum as n→∞ is 1−α or larger even though these points are not in the identified set based
on the conditional moment inequalities.
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The next assumption, Assumption MFA, states that violations of the conditional moment

inequalities or equalities occur for the null parameter θ∗ for Xi values in a set with positive

probability under F0 for some τ ∈ T . Thus, under Assumption MFA, the moment conditions

specified in (6.1) do not hold.

Assumption MFA. The null value θ∗ ∈ Θ and the true distribution F0 satisfy: (a) for

some τ∗ ∈ T , PF0(Xi ∈ XF0(θ∗, τ∗)) > 0 and (b) (θ∗, F0) ∈ F+.

We employ the following assumption on the weights {σ̂2
n,j(θ) : j ≤ k, n ≥ 1}.

Assumption SIG2. For all ζ > 0, PrF0

(
maxj≤k |σ̂2

n,j(θ∗)/σ
2
F0,j

(θ∗)− 1| > ζ
)
→ 0.

Note that Assumption SIG2 is not implied by Assumption SIG1 because (θ∗, F0) does

not belong to F .

The following Theorem shows that GMS and PA tests are consistent against all fixed

alternatives that satisfy Assumption MFA.

Theorem 6.1 Suppose Assumptions MFA and SIG2 hold. Then,

(a) limn→∞ PF0(Tn(θ∗) > cGMS,∗
n,1−α (θ∗)) = 1 and

(b) limn→∞ PF0(Tn(θ∗) > cPA,∗n,1−α(θ∗)) = 1.

7 Example 1: Conditional Stochastic Dominance

In this section, we apply the general theory developed above to Example 1. We first

establish primitive sufficient conditions for Assumptions PS1 and PS2 for this example, and

then carry out a simple Monte Carlo experiment for testing first-order stochastic dominance.

7.1 Verification of Assumptions

We treat the first-order stochastic dominance case separately in our discussion from the

higher-order stochastic dominance case because it allows for weaker assumptions on the

distributions of Y1 and Y2.
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7.1.1 First-Order Stochastic Dominance

Recall that the conditional moment inequalities implied by first-order conditional stochas-

tic dominance are

EF0 [1{Y2 ≤ τ} − 1{Y1 ≤ τ}|X] ≥ 0 a.s. ∀τ ∈ T . (7.1)

The moment conditions for this model do not depend on a parameter θ. Hence, to fit the

notation with that of the general theory, we set Θ = {0} (without loss of generality). Also

observe that p = k = 1 in this example.

For this example, we use σF,1(0) = σ̂n,1(0) = 1 for all F because the moment function

has a natural scale. Hence, Assumptions SIG1 and SIG2 hold.

Lemma 7.1 Let F+ be the set of (0, F ) such that {(Y1,i, Y2,i, X
′
i)
′ : i ≥ 1} are i.i.d. under

F . Then, F+ satisfies Assumptions PS1 and PS2 with M(w) = 1, δ > 0, and C1 = 1.

7.1.2 Higher-Order Stochastic Dominance

The conditional moment inequalities implied by sth-order conditional stochastic domi-

nance for s > 1 are

EF0 [(τ − Y2)s−11{Y2 ≤ τ} − (τ − Y1)s−11{Y1 ≤ τ}|X] ≥ 0 a.s. ∀τ ∈ T . (7.2)

As above, we set Θ = {0}. In this example, p = k = 1.

For this example, we use σ2
F,1(0) = EF [(Y1 −E(Y1))2] +EF [(Y2 −E(Y2))2] and σ̂2

n,1(0) =

n−1
∑n

i=1[(Y1,i − Y 1,n)2 + (Y2,i − Y 2,n)2], where Y j,n = n−1
∑n

i=1 Yj,n for j = 1, 2.

Lemma 7.2 Suppose s > 1. Let σ > 0 and B ∈ (0,∞) be constants. Let F+ be the set of

(θ, F ) for which (i) θ ∈ Θ, (ii) {(Y1,i, Y2,i, X
′
i)
′ : i ≥ 1} are i.i.d. under F, (iii) σ2

F,1(0) ≥ σ2,

and (iv) T ⊂ [−B,B]. Then,

(a) F+ satisfies Assumptions PS1 and PS2 with M(w) = [(B−y2)s−1+(B−y1)s−1]/σF,1(0),

δ > 0, and C1 = 2s(2+δ)B(s−1)(2+δ)σ−(2+δ), and

(b) Assumptions SIG1 and SIG2 hold.
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7.2 Monte Carlo Results

In this subsection, we report Monte Carlo results for testing the first-order conditional

stochastic dominance between the conditional distributions of Y1 and Y2 given X. We con-

sider the tests proposed above based on the CvM and KS test statistics combined with the

GMS and PA critical values. For comparative purposes, we also consider the CvM and KS

test statistics combined with subsampling critical values.

In this example, we take the instrument X to have the uniform [0, 1] distribution and

take Y1 and Y2 to have log-normal distributions given X:

Y1 = exp(σ1(X)Z1 + µ1(X)) and

Y2 = exp(σ2(X)Z2 + µ2(X), (7.3)

where σ1(X), µ1(X), σ2(X), and µ2(X) determine whether and how the null hypothesis that

Y1 first-order stochastically dominates Y2 given X is violated.

To generate the simulated data, we let µ1(X) = c1X+c3, σ1(X) = c2X+c4, µ2(X) = 0.85,

and σ2(X) = 0.6. These data-generating processes (DGPs) are adapted from Barrett and

Donald (2003). Four values of c := (c1, c2, c3, c4) are considered: cA = (0, 0, 0.85, 0.6),

cB = (0.15, 0, 0.85, 0.6), cC = (−0.25, 0.2, 0.85, 0.6), and cD = (0.35, 0, 0.85, 0.23). With cA

and cB, the null that Y1 first-order stochastically dominate Y2 conditional on X holds, while

with cC and cD, the null hypothesis is violated. To visualize the nature of the DGPs, we

draw in Figure 1 the conditional cdf’s of Y1 and Y2 given X = 1 at these four c values.

Note that with cA, Y1 and Y2 have identical distributions conditional on X. In this case,

all of the moment inequalities are binding. The test should ideally have rejection probability

equal to its nominal level in this boundary case. For this reason, we use this DGP to

size-correct the rejection probabilities under the two alternative DGP’s cC and cD.

In the implementation of the tests, we compute the supremum over T by discretization.

Specifically, we approximate T by Nτ points in T for a positive integer Nτ . The Nτ points

on T are chosen as follows: first pool the n observations of Y1 and those of Y2 to get a sample

of size 2n. Then use as grid points the 1/(Nτ + 1), 2/(Nτ + 1), . . . , Nτ/(Nτ + 1) percentiles

of this 2n sample.

For the sample size and the tuning parameters of the test, we consider a base case with

the sample size n = 250, the hypercube parameter r1,n = 3, and Nτ = 10. Then, for
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Figure 1: Conditional CDF’s of Y1 (dashed blue) and Y2 (solid red) given X = 1. In all
graphs, Y2 ∼ Log Normal (0.85, 0.6).

comparison, we also consider three variations of the base case where each differs from the

base case in only one dimension.

Simulated rejection probabilities based on 1000 simulation repetitions are reported in

Tables 1 and 2. Table 1 reports the rejection probabilities under the two null DGP’s and

Table 2 reports the size-corrected rejection probabilities under the two alternative DGP’s.

As the tables show, the CvM/GMS test performs the best overall in that it has the

most accurate size and relatively high power. The KS/GMS test has somewhat worse power

perhaps due to the DGP designs. The tests based on PA critical values do not perform as

well in terms of power in the second alternative. The CvM/Subsampling test has slightly

greater over-rejection than, and comparable power to, the CvM/GMS test. On the other

hand, the KS/Subsampling test exhibits substantial over-rejection in an absolute sense and

noticeably lower power than the KS/GMS test.
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Table 1: Null Rejection Probabilities for Nominal .05 First-Order Stochastic Dominance Tests

CvM/GMS KS/GMS CvM/PA KS/PA CvM/Sub KS/Sub

Null 1: (c1, c2, c3, c4) = (0, 0, 0.85, 0.6)
Basecase:

(n = 250, r1,n = 3, Nτ = 10) .059 .070 .052 .059 .072 .198

n = 500 .040 .047 .037 .043 .066 .176

r1,n = 4 .062 .068 .054 .057 .080 .243

Nτ = 15 .065 .066 .058 .055 .069 .205

Null 2: (c1, c2, c3, c4) = (0.15, 0, 0.85, 0.6)
Base case:

(n = 250, r1,n = 3, Nτ = 10) .018 .020 .011 .014 .027 .107

n = 500 .005 .010 .002 .006 .014 .079

r1,n = 4 .019 .022 .012 .014 .030 .141

Nτ = 15 .016 .020 .012 .014 .023 .120

Note: The subsampling critical values use a subsample size of 20 and, for computation reasons, not all
subsamples are used. The bootstrap and subsampling critical values both use 1000 repetitions to simulate
the critical values.
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Table 2: Size-corrected Alternative Rejection Probabilities for Nominal .05 First-Order Stochastic
Dominance Tests

CvM/GMS KS/GMS CvM/PA KS/PA CvM/Sub KS/Sub

Alternative 1: (c1, c2, c3, c4) = (−0.25, 0.2, 0.85, 0.6)
Basecase:

(n = 250, r1,n = 3, Nτ = 10) .482 .349 .497 .363 .450 .280

n = 500 .803 .673 .798 .671 .799 .581

r1,n = 4 .490 .354 .507 .367 .450 .267

Nτ = 15 .487 .384 .502 .395 .456 .316

Alternative 2: (c1, c2, c3, c4) = (0.35, 0, 0.85, 0.23)
Base case:

(n = 250, r1,n = 3, Nτ = 10) .482 .244 .280 .128 .525 .311

n = 500 .866 .707 .717 .539 .879 .718

r1,n = 4 .478 .232 .269 .109 .516 .300

Nτ = 15 .512 .300 .299 .141 .599 .354

Note: The subsampling critical values use a subsample size of 20. The bootstrap and subsampling criti-
cal values use 1000 repetitions to simulate the critical values. Size correction is carried out using the null
DGP with (c1, c2, c3, c4) = (0, 0, 0.85, 0.6).
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8 Example 2: Random-Coefficients Binary-Outcome

Models with Instrumental Variables

We focus on the parametrized version of the model given in (2.9).

8.1 Verification of Assumptions

Let d1 and d2 denote the dimensions of the exogenous covariate X1 and the endogenous

covariate Y2, respectively. We treat the case where d1 + d2 = 1 separately because it allows

for simpler arguments than the general case.

8.1.1 Single Covariate Model

Suppose d1 +d2 = 1. That is, there is only one covariate in the binary choice model. This

covariate could be either exogenous or endogenous. There is no restriction on the instrument

vector X. This case includes Example 1 in CR.

For notational simplicity, let the single covariate be denoted by Z (with a generic realiza-

tion denoted by z) and its coefficient be denoted by βz (with a generic realization denoted

by bz). Then, the set S(y1, y2, x1) simplifies to

S(y1, z) = cl{b = (b0, bz)
′ ∈ R2 : y1 = 1{b0 + bzz ≥ 0}}. (8.1)

In fact, S(y1, z) can be rewritten as a half-space:

S(y1, z) = {b ∈ R2 : (y1 − 1/2)b0 + (y1 − 1/2)zbz ≥ 0} = H(y1 − 1/2, (y1 − 1/2)z). (8.2)

The following lemma gives a convenient representation for H(c).

Lemma 8.1 For any c ∈ R2\{02},

H(c) = {(ρ cos(a), ρ sin(a)) : ρ ≥ 0, a ∈ [φ(c), φ(c) + π]},

where φ(c) : R2\{02} → [0, 2π) is defined by φ(c) := arctan(−c1/c2) for c1 ≤ 0, c2 > 0;

φ(c) := π/2 for c1 < 0, c2 = 0; φ(c) := arctan(−c1/c2) + π for c2 < 0; φ(c) := 3π/2 for

c1 > 0, c2 = 0; and φ(c) := arctan(−c1/c2) + 2π for c1 > 0, c2 > 0.
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The following is an immediate corollary of (8.2) and Lemma 8.1.

Corollary 8.2 For any subset C of R2\{02}, we have

(a) cl(∪c∈CH(c)) = {(ρ cos(a), ρ sin(a)) : ρ ≥ 0, a ∈ [infc∈C φ(c), supc∈C φ(c) + π]}, and

(b) 1{S(Y1, Z) ⊂ cl(∪c∈CH(c))} = 1 {A ∈ [infc∈C φ(c), supc∈C φ(c)]}, where A := φ((Y1 −
1/2)(1, Z)′).

As a result, any S ∈ S can be written as S(τ) for some τ ∈ T , where T = {(τ1, τ2)′ ∈
[0, 2π)2 : τ1 ≤ τ2} and

S(τ) = {(ρ cos(a), ρ sin(a)) : ρ ≥ 0, a ∈ [τ1, τ2 + π]}. (8.3)

Thus, the moment inequality model (2.9) can be written as

EF0 [Fβ(S(τ), θ)− 1{A ∈ [τ1, τ2]}|X] ≥ 0 a.s. ∀τ = (τ1, τ2)′ ∈ T . (8.4)

Now we are ready to verify Assumptions PS1 and PS2 for this model.

Observe that p = k = 1 in this example. For this example, we use σF,1(θ) = σ̂n,1(θ) = 1

for all (θ, F ) because the moment function has a natural scale. Hence, Assumptions SIG1

and SIG2 hold.

Lemma 8.3 Let F+ be the set of (θ, F ) such that θ ∈ Θ and {(Y1,i, Y2,i, X
′
i)
′ : i ≥ 1} are

i.i.d. under F . Then F+ satisfies Assumptions PS1 and PS2 with M(w) = 1, δ > 0, and

C1 = 1.

8.1.2 Multi-Covariate Model

Now we consider the case without the restriction that d1 + d2 = 1. When d1 + d2 > 1,

Assumption PS2 does not hold in general because the Vapnik-Chervonenkis (VC) dimension

of the set {(1{S(Y1,i, Y2,i, X1,i) ⊂ S})ni=1 : S ∈ S} typically diverges to infinity as n → ∞,
which violates the manageability condition. Thus, we need to restrict attention to a subset

of S. Fortunately, in many applications, restriction to an appropriate subset of S (specified

below) does not affect the set identification power of the model. We apply our general theory

to such applications.
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For a positive integer m, we consider subsets of S of the form: Sm := {∪mj=1H(cj) :

cj ∈ Rdβ\{0dβ}}. That is, Sm is the collection of at most m unions of half-spaces in Rdβ

through the origin. Let ΘF (Sm) := {θ ∈ Θ : EF [Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥
0 a.s. ∀S ∈ Sm}. Define ΘF (S) analogously. The applications we consider are required to

satisfy the following assumption. This assumption is satisfied in Example 2 of CR with m = 2

and Example 3 of CR with m = 4. This assumption is always satisfied when d1 + d2 = 1

because in that case Sm = S for m = 2.

Assumption V1. ΘF0(Sm) = ΘF0(S).

Under this assumption, we can base inference on the conditional moment inequality

model:

EF [Fβ(S, θ)− 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ Sm. (8.5)

As in the single covariate case, we first write S(y1, y2, x1) in the canonical form of a

half-space:

S(y1, y2, x1) = cl{b = (b0, b
′
1, b
′
2)′ ∈ Rdβ : y1 = 1{b0 + b′1x1 + b′2y2 ≥ 0}}

= H((y1 − 1/2)(1, x′1, y
′
2)′). (8.6)

The following lemma yields a convenient representation of the event {S(Y1, Y2, X1) ⊂ S} for

S ∈ Sm.

Lemma 8.4 For any c1, ..., cm ∈ Rdβ\{0dβ} (not necessarily distinct from each other), there

exists a dβ ×M real matrix B(c1, ..., cm) with M = maxj∈{1,...,dβ}

[(
m

min{j,m}−1

)
+ 2(dβ − j)

]
such that, for any c̄ ∈ Rdβ\{0dβ}, the following statements are equivalent :

(a) H(c̄) ⊂ ∪mj=1H(cj),

(b) c̄ =
∑m

j=1 λjcj for some λ1, ..., λm ≥ 0, and

(c) B(c1, ..., cm)′c̄ ≥ 0M .

The lemma implies that the conditional moment inequality model (8.5) has the following

equivalent representation:

EF [Fβ(S(τ), θ)− 1{(Y1 − 1/2)B(τ)′(1, X ′1, Y
′

2)′ ≥ 0}|X1, X2] ≥ 0 a.s. ∀τ ∈ T , (8.7)
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where T = {τ = (c1, ..., cm) : c1, ..., cm ∈ Rdβ\{0dβ}}, B(τ) := B(c1, ..., cm), and S(τ) =

∪mj=1H(cj).

Because the VC dimension of the set {(1{(Y1,i − 1/2)(1, X ′1,i, Y
′

2,i)B ≥ 0})ni=1 : B =

[b1, · · · , bM ] for bj ∈ Rdβ} is bounded (≤ M), we can verify Assumption PS2 for the model

(8.5) through the equivalent representation in (8.7).6 As in the single covariate case, p =

k = 1 and we use σF,1(θ) = σ̂n,1(θ) = 1 for all (θ, F ) because the moment function has a

natural scale. Hence, Assumptions SIG1 and SIG2 hold.

Lemma 8.5 For the model in (8.5), let F+ be the set of (θ, F ) such that θ ∈ Θ and

{(Y1,i, Y
′

2,i, X
′
i)
′ : i ≥ 1} are i.i.d. under F . Then F+ satisfies Assumptions PS1 and PS2

with M(w) = 1, δ > 0, and C1 = 1.

8.2 Monte Carlo Results

In this subsection, we report Monte Carlo results for a binary choice model similar to

the numerical example in CR. The model has one endogenous regressor (Y2), one instrument

variable (X), and no exogenous regressors. That is,

Y1 = 1{β0 + β1Y2 < 0} with (β0, β1) ⊥ X.

Further assume that β0 and β1 are jointly normal: β0 = α0 + U0 and β1 = α1 + U1, whereU0

U1

 ∼ N

0

0

 ,

 1 γ0

γ0 γ1 + γ0

 .

Thus, the model contains the unknown parameter θ = (α0, α1, γ0, γ1)′.

For the data generating processes, we consider

Y2 = δ1X + δ2U0 + δ3U1 + δ4V, (8.8)

where X ∼ N(0, 1) is independent of (U0, U1) and V ∼ N(0, 1) is independent of (X,U0, U1).

6Note that the representation (8.7) is simply a technical device useful for the theory and for intuitive
understanding, and is not needed in practice. Thus, we do not need to know the form of the mapping B(·).
This is important because its form is typically complicated. Mathematically, each column of B is the polar
of a facet of the convex (pointed) polyhedral cone spanned by c1, ..., cm. Algebraic representations of facets
of convex polyhedral cones are complicated.
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Let θ = (0,−1,−1, 1)′, and δ := (δ1, δ2, δ3, δ4)′ = (1, 0.577,−0.577, 0.577)′.7

We consider the test proposed above based on the CvM and KS test statistics and the

GMS, PA, and subsampling critical values. In the implementation of the tests, we choose

r1,n = 3 and approximate T by grid points.8 In the implementation of the subsampling test,

we set the subsample size to 20. We use 1001 repetitions to simulate the bootstrap and

the subsampling critical values, and carry out 1000 Monte Carlo repetitions to obtain the

simulated coverage probabilities of given points of θ.

To choose the points to cover, we fix α0, γ0, γ1 at their true values, and shift α1 up to

obtain a boundary point of the identified set. There is no analytical solution to the boundary

for this example, and thus we computed the boundary point numerically. Computation shows

that the upper boundary of the identified set for α1 (when the rest of the parameters are

fixed at the true value) is approximately −0.8274.9

Figure 2 provides coverage probability graphs for sample sizes n = 250 and n = 500. As

the figure shows, the coverage probabilities of the CS’s equal one not only at the boundary of

the identified set, but also for points to the right of the boundary and outside the identified

set. This is probably because the boundary of the identified set is determined by X values in

a set with Lebesgue measure zero. The coverage probabilities of the CS’s for points outside

the identified set decrease with the sample size, as expected. The best performing CS’s are

the KS/GMS and the KS/subsampling CS’s. (In the figure for n = 500, the graphs for these

two CS’s are on top of each other and form the left-most curve in the figure.) The CvM/GMS

CS performs better than the subsampling CvM CS. The PA CS’s perform uniformly worse

than the GMS and the subsampling CS’s in terms of coverage probabilities for points outside

the identified set.

7This δ value is the weak-identification specification in CR. Since identification strength is irrelevant for
evaluating the property of our test, we focus on this weak-identification specification and do not consider
the other specification.

8Because T is the collection of unions of two half-spaces through the origin, the elements in T correspond
one-to-one to {(t1, t2) ∈ [0, 2π] : t1 ≤ t2]}, where t1 and t2 are the polar angles of the coefficient vector of the
half-spaces forming the union. We consider Nt2 equally-spaced grid points for t2 in [0, 2π], and grid points for
t1 in [0, t2] with the same spacing. We set Nt2 = 10, which results in 55 points on {(t1, t2) ∈ [0, 2π] : t1 ≤ t2]}.

9Specifically, the way we compute the boundary is as follows. First we construct the criterion function
Q(θ) = minx∈Xnx minτ∈Tnτ Fβ(S(τ), θ)− Ê[1{A ∈ [τ1, τ2]}|X = x], where XNx is the set of Nx = 20 equally-
spaced grid points in the interval [−4, 4], TNτ is the approximation of T described in the previous footnote,

Fβ(Sτ , θ) is computed using the bivariate-normal cdf function in Aptech Gauss, and Ê[1{A ∈ [τ1, τ2]}|X = x]
is computed using i.i.d. Monte Carlo simulations with 107 simulation repetitions. Then we fix α0, γ0, γ1 at
their true values, and search for a1 > −1 that makes Q(α0, a1, γ0, γ1) zero. The function Q(α0, ·, γ0, γ1)
appears to be monotonically decreasing in the range [−1, 2] and changes signs from one end point to the
other.
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Figure 2: Coverage Probabilities in the IV Random-Coefficients Binary-Outcome Model.
(Solid lines: CvM statistic; dashed lines: KS statistic; red: GMS critical value; blue: PA
critical value; cyan: subsampling critical value. Nominal size = .95. (α0, γ0, γ1) = (0,−1, 1).)

9 Examples 3-5

In this section, we verify the high-level assumptions for Examples 3, 4, and 5.

9.1 Example 3: Convex Moment Prediction Models–Support

Function Approach

As mentioned above, Beresteanu, Molchanov, and Molinari (2010) verify a version of the

high-level conditions given in an earlier version of our paper for the best linear predictor and

entry-game applications of this example. In this subsection, we verify our current high-level

conditions for the general BMM framework in (2.12).

We focus on the moment inequality model in (2.12) because it includes the case where

Qθ(W,V ) = Qθ(W ) as a special case. For this model, p = k = 1. For simplicity, we take

σ̂n,1(θ) = σF,1(θ) = 1 for all (θ, F ) and all n, and hence Assumptions SIG1 and SIG2 hold.

Alternatively, one could choose σF,1(θ) and σ̂n,1(θ) that are scale equivariant in the spirit of

those in Section 7.1.2.

Lemma 9.1 For the model in (2.12), let F+ be the set of (θ, F ) such that (i) θ ∈ Θ, (ii)

{Wi : i ≥ 1} are i.i.d. under F , (iii) Qθ(w, v) ⊆ {q ∈ Rd : ‖q‖ ≤ M(w)/2} for some

measurable function M(w) ∀(w, v) ∈ WV, (iv) ‖q(x)‖ ≤ M(w)/2 ∀x ∈ X , ∀w ∈ W, and
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(v) EF [M(W )2+δ] ≤ C1 for some δ > 0 and C1 < ∞. Then, F+ satisfies Assumptions PS1

and PS2 with M(w), δ, and C1 as defined immediately above.

9.2 Examples 4 and 5: Countable Conditional Moment

Inequalities

In this subsection, we verify the high-level assumptions for models with countably many

conditional moment inequalities. Examples 4 and 5 are of this type.

Suppose that the identification theory implies the following moment inequality model:

EF0 [m̃(W, θ, τ)|X] ≥ 0, for τ = 1, 2, 3, . . . , (9.1)

where m̃(W, θ, τ) is a real-valued moment function. For example, these moment conditions

could be the ones in (2.16) or (2.18).

In general, the raw moment functions m̃(W, θ, τ) may not satisfy Assumption PS2. Thus,

we rescale them with weights that decrease with τ. Let wT (τ) : [1,∞)→ (0, 1] be a strictly

decreasing, positive, weight function with inverse function λT (ξ) : (0, 1] → [1,∞) that

satisfies
∫ 1

0

√
log(λT (ξ))dξ <∞. Then, we let

m(W, θ, τ) = wT (τ)m̃(W, θ, τ) ∀τ = 1, 2, . . . . (9.2)

In consequence, the moment inequality model (9.1) is equivalent to

EF0 [m(W, θ, τ)|X] ≥ 0 ∀τ = 1, 2, . . . . (9.3)

We verify the high-level assumptions given above for this rescaled form of the moment

inequalities.

For example, if wT (τ) = τ−b for some b > 0, then λT (ξ) = ξ−1/b and

∫ 1

0

√
log(ξ−1/b)dξ =

√
1/b

∫ 1

0

√
log(ξ−1)dξ = b−1/2

∫ ∞
0

2x2e−x
2

dx <∞, (9.4)

where the last equality holds by change of variables with x =
√

log(ξ−1) (or, equivalently,

ξ = e−x
2
). For general purposes, we recommend b = 1/2.
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For this model, p = k = 1, and we use σ2
F,1(θ) = V arF (m(W, θ, 1)) and σ̂2

n,1(θ) =

n−1
∑n

i=1[m(Wi, θ, 1)−mn(θ, 1)]2, where mn(θ, 1) = n−1
∑n

i=1 m(Wi, θ, 1).

Lemma 9.2 For the model in (9.3), let F+ be the set of (θ, F ) such that (i) θ ∈ Θ, (ii)

{Wi : i ≥ 1} are i.i.d. under F , (iii) σ2
F,1(θ) ≥ σ2 for some constant σ2 > 0, (iv)

|m̃(w, θ, τ)| ≤ B(w) ∀w ∈ W , ∀τ ∈ T , ∀τ ∈ Θ, for some measurable function B(w),

and (v) E[(B(W )/σ)2+δ] ≤ C1 for some δ > 0 and C1 <∞. Let wT (τ) be a weight function

that satisfies the definition above. Then,

(a) F+ satisfies Assumptions PS1 and PS2 with M(w) = B(w)/σ and with C1 and δ

defined immediately above, and

(b) Assumptions SIG1 and SIG2 hold.

10 Conclusion

In this paper, we construct confidence sets for models defined by many conditional mo-

ment inequalities/equalities. The conditional moment restrictions in the models can be finite,

countably infinite, or uncountably infinite. To deal with the complication brought about by

the vast number of moment restrictions, we exploit the manageability (Pollard (1990)) of

the class of moment functions. We verify the manageability condition in five examples from

the recent partial-identification literature.

The proposed confidence sets are constructed by inverting joint tests that employ all of

the moment restrictions. The confidence sets are shown to have correct asymptotic size in

a uniform sense and to exclude parameter values outside the identified set with probability

approaching one. Monte Carlo experiments for a conditional stochastic dominance example

and a random-coefficients binary-outcome example support the theoretical results.
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