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Abstract

We study Kolmogorov-Smirnov goodness of fit tests for evaluating distributional hypotheses where
unknown parameters need to be fitted. Following work of Pollard (1979), our approach uses a Cramér-
von Mises minimum distance estimator for parameter estimation. The asymptotic null distribution of
the resulting test statistic is represented by invariance principle arguments as a functional of a Brownian
bridge in a simple regression format for which asymptotic critical values are readily delivered by simu-
lations. Asymptotic power is examined under fixed and local alternatives and finite sample performance
of the test is evaluated in simulations. The test is applied to measure top income shares using Korean
income tax return data over 2007 to 2012. When the data relate to the upper 0.1% or higher tail of the
income distribution, the conventional assumption of a Pareto tail distribution cannot be rejected. But the
Pareto tail hypothesis is rejected for the top 1.0% or 0.5% incomes at the 5% significance level.
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1 Introduction

Distributional hypotheses can play a significant role in the nature and quality of inference in many different

areas of econometric work. In the quantification of inequality, for instance, interpolation methods based on

the Pareto distribution are widely used for measuring top income shares. In recent influential work involving

such exercises, Piketty and Saez (2003) follow an approach that is now quite typical by assuming that top

incomes are well modeled by a Pareto distribution, which is then used to estimate the top income shares. As

another example, the probability integral transform (PIT) is frequently used in density forecasting exercises

(see Diebold, Gunther and Tay, 1998) so that PIT transformed quantities follow a standard uniform distri-

bution, which is extremely useful in statistical testing and forecast evaluation, if the assumed distribution is

correct. In such applications, it is of considerable interest to assess whether the distributional hypotheses are

supported by the data.

Many test procedures are available to make such assessments. The most commonly used methods for

testing distributional hypotheses in practical work involve goodness-of-fit (GOF) test statistics based on the

Kolmogorov and Smirnov (KS) and Crámer-von Mises (CM) test statistics. When a particular distribution is

hypothesized, these GOF test statistics are known to converge weakly to certain functionals of a Brownian

bridge process under the null. Early fundamental work on the use of weak convergence methods for the

development of such limit theory was done by Durbin (1973).

The practical efficacy of GOF test statistics is often limited by the presence of unknown parameters

in the parent distribution. As Durbin (1973) and Henze (1996) pointed out, the KS test statistic is not

distribution free. In consequence, when unknown parameters of the hypothesized distribution are estimated,

the estimation error typically affects the asymptotic null distribution, so that different models will generate

different asymptotic critical values for the test. This limitation applies also to other GOF test statistics.

The main goal of the current paper is to introduce a methodology for improving the practical efficacy

of GOF testing. We concentrate our attention on the KS test in view of its popularity in applied work and,

for this statistic, we follow the work of Pollard (1980) and examine the use of the minimum Crámer-von

Mises distance (MCMD) estimator in dealing with parameter estimation. Bolthausen (1977) and Pollard

(1980), among others, studied the asymptotic behavior of minimum distance (MD) estimators and provided

asymptotic results for generalized GOF tests. For the purposes of the current study, we exploit the fact

that the MD estimator can be analyzed in the context of regression when the CM distance is used for MD

estimation. The MCMD estimator in turn simplifies the asymptotic null distribution of the KS test statistic:

just as for the KS test statistic when there are no unknown parameters, the limit theory is again a functional
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of a Brownian bridge process, although in the case where parameter estimation is employed, the limit theory

is not given by the same functional. The important practical implication is that asymptotic critical values can

be obtained by applying invariance principle arguments in the same way as for the original KS test statistic.

The current paper provides the form of the functional and demonstrates its implementation in a practical

application.

In prior work on this topic, the practical inefficacy of the KS test statistic has been tackled by method-

ologies that are numerically intensive. For example, Henze (1996) and Klar (1999) recommend applying

the parametric bootstrap to GOF tests, and Khmaladze (1981, 1993, 2013) modified the GOF tests by a

transformation so that the asymptotic null distribution is unaffected by parameter estimation errors under

the null. The procedure given here to obtain asymptotic critical values is not as numerically intensive as

the parametric bootstrap or the martingale transformation. Simulations show that the new methodology has

performance characteristics similar to those of the parametric bootstrap.

The KS test statistic has null and local alternative asymptotic distributions that depend upon data types.

The practical import of this feature of the test is that grouped (or discretely distributed) data and continu-

ously distributed data have different asymptotic distributions. We first examine grouped data and consider

the implications for the KS test of using MCMD parameter estimation in the construction of the test By

focusing on grouped data, the regression nature of the MCMD estimator is manifest and it becomes clear

how to simulate to obtain asymptotic critical values of the test. We next extend the discussion to include

continuously distributed data. A large group size limit distribution of the KS test statistic is derived from

the large sample size limit distribution by increasing the group size and keeping the the data range fixed.

By this process, the asymptotic null and local alternative distributions of the KS test of Bolthausen (1977)

and Pollard (1980) can be obtained in a different way. This process also enables us to identify the Gaussian

process associated with the asymptotic null distribution as another functional of the Brownian bridge, so

that the associated Gaussian process can be easily simulated.

As an empirical application of the KS test statistic presented here, we revisit the problem of estimating

top income shares of the income distribution by means of Pareto interpolation. Since Kuznets (1953, 1955)

first examined the top income shares in US income data, these quantities have been commonly used in

empirical work to assist in addressing drawbacks in Gini coefficient measures that focus more on the central

tendencies of income data. Piketty and Saez (2003), Piketty (2003), Atkinson and Leigh (2007, 2008),

Moriguchi and Saez (2010), and Kim and Kim (2014), among many others, assume a Pareto distribution

for grouped income data in the US, France, Australia, New Zealand, Japan, and Korea (respectively) and
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estimate top income shares by Pareto interpolation.1 Using our methodology and Korean income tax return

data from 2007 to 2012, we test the underlying hypothesis of a Pareto distribution and conclude that the

Pareto distributional hypothesis does not hold for top 1.0% and higher incomes, although the hypothesis is

not rejected further in the tail of the distribution for the top 0.10% and higher incomes. The income data

we use here are of very high quality and were provided by the National Tax Service of Korea. Although

they are grouped, the group intervals are narrow: out of the 6 years of data we used, the smallest and largest

group sizes were 2,760 and 4,241, respectively. With this degree of detail, we may expect to be able to test

the Pareto distributional hypothesis with some precision using the asymptotic theory.

The plan of this paper is as follows. Section 2 develops the limit theory for the MCMD estimator and

associated KS test statistic for grouped data. The asymptotic null distribution, power, and local power of the

test statistic are also derived. Section 3 examines the large sample size limit distribution for continuously

distributed data. In Section 4, we conduct Monte Carlo experiments to evaluate the adequacy of the asymp-

totic theory. Section 5 applies the KS test statistic to the Korean income tax return data from 2007 to 2012.

Conclusions are given in Section 6. Proofs, related technical material, and data explanations are provided in

the Appendix.

A brief word on notation. A function mapping f : X 7→ Y is denoted by f(·), evaluated derivatives

such as f ′(x)|x=x∗ are written simply as f ′(x∗), the vector derivative ∇θF (x,θ) = (∂/∂θ)F (x,θ), and

for i = 0, 1, ∂ijF (x,θ) := (∂i/∂θj)F (x,θ) so that, for i = 0, ∂ijF (x,θ) ≡ F (x,θ).

2 Testing Distributional Hypotheses for Grouped Data

Suppose that data is available in a group frequency format whereby some variable of interest, Xt, may be

unobserved but the numbers of times Xt lies within certain specified groups are observed. Typical income

data have this format. In such cases, ifXt is annual income earned by individual or household t, then income

data is provided in the following pairs

{(xi, xi+1],#{Xt ∈ (xi, xi+1]} : i = 0, 1, . . . , k; t = 1, 2, . . . , n} (1)

along with total group incomes. According to this scheme, n is the sample size of the number of individuals

or households, k is the number of income groups, xi and xi+1 are the lower and upper bounds of each interval

1Measuring top income shares is now a popular research topic in applied economics. Atkinson, Piketty, and Saez (2011) provide
a well-organized summary of results for many countries, including Argentina, Canada, China, Finland, German, India, Indonesia,
Ireland, Italy, the Netherlands, Norway, Portugal, Singapore, Spain, Sweden, and Switzerland.
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i, and #{A} is the frequency A is observed. The end points x0 and xk are fixed at b and u, respectively.

Using data that fit the above format, Piketty and Saez (2003), Piketty (2003), Atkinson (2005), Atkinson

and Leigh (2007, 2008), Moriguchi and Saez (2010), and Kim and Kim (2014) among others have estimated

the top income shares in the US, UK, France, Australia, New Zealand, Japan, and Korea. The data in

these studies may all be understood as continuously distributed grouped data or as collections of discretely

distributed observations.

Suppose that an applied investigator is interested in testing some distributional assumption regarding the

generating mechanism, or probability measure P with cumulative distribution function (cdf ) F , of the latent

variable Xt underlying the observed grouped data. The following hypotheses are considered:

H0 : for all xi, there is a parameter value θ∗ and cdf F such that P(Xt ≤ xi | b ≤ Xt ≤ u) = F (xi,θ∗);

H1 : there is no θ∗ or cdf F such that for all xi,P(Xt ≤ xi | b ≤ Xt ≤ u) = F (xi,θ∗).

Under these hypotheses, the parameter value θ∗ is properly defined only under the null H0. For practical

reasons in what follows we consider distributions bounded below and above by b = x0 and u = xk,

respectively. Empirical income data generally do not follow a Pareto law for low or medium income levels,

so it is natural to focus on income levels that are bounded below in investigating the suitability of a Pareto

law. It is also convenient to bound income levels by some (possibly very large) upper bound, which avoids

extreme observations adversely affecting inference.

The null hypothesis H0 is motivated by commonly used estimation procedures. For example, Piketty

and Saez (2003), Piketty (2003), Atkinson and Leigh (2007, 2008), Moriguchi and Saez (2010), and Kim

and Kim (2014) each assume an underlying Pareto law for income data and estimate top income levels by

a Pareto interpolation method. The validity of this method relies on the validity of the Pareto law, and

violations of the law lead to biased and inconsistent estimation, thereby motivating tests of the distributional

hypothesis.

The literature provides a variety of distributional test methodologies. Primary among these are Goodness-

of-fit (GOF) tests and of these the most popular in empirical work is the Kolmogorov and Smirnov (KS)

statistic. The limit theory of the traditional KS test statistic is a simple functional of a Brownian bridge

process under the null, and Smirnov (1948) provides critical values for the test when the available data are

continuously distributed. For grouped or discretely distributed data, Wood and Altavela (1978), Pettitt and

Stephens (1977) and Choulakian, Lockhart, and Stephens (1994), among others, give the asymptotic null
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distribution of the KS test statistic in terms of another functional of the same Brownian bridge limit process.

When parameters are estimated, the limit distributions are affected. In his original treatment, Durbin

(1973) pointed out that the asymptotic null distribution of the KS test statistic is not invariant to parame-

ter estimation, so the test is not distribution free. Henze (1996) observed the same property for discretely

distributed data. This limitation affects practical implementation of the KS test and has led to various nu-

merically intensive procedures. One such procedure is the parametric bootstrap, which provides effective

size control of the KS test asymptotically. A second approach, due to Khmaladze (1981, 1993), modifies

the test statistic by a martingale transformation to eliminate the effect of parameter estimation asymptot-

ically for continuously distributed observations. Khmaladze (2013) and Lee (2014) have given alternate

transformations that may be used for discretely distributed observations.

The approach pursued in the present work differs from the prior literature. Instead of leaving the para-

metric estimator undefined in the test statistic, we suggest a particular estimator that ensures the null limit

distribution of the KS test is pivotal and readily implementable for practical work. The estimator that

achieves this purpose is the minimum Crámer-von Mises distance (MCMD) estimator. As it turns out, the

MCMD estimator can be analyzed in a simple regression context which enables us to represent the asymp-

totic null distribution of the resulting KS test as a new functional of the same Brownian bridge process that

appears in the original KS limit theory where there are no unknown parameters. The regression character-

istic of the estimator is more apparent in the context of grouped data. Importantly, while the modified KS

test statistic has a limit functional form that differs from the KS test with no parameter estimation error,

the statistic is still asymptotically pivotal and depends only on the same Brownian bridge process, which is

easily simulated to obtain critical values for the test.

Before examining the MCMD estimator, we provide the following conditions to fix ideas.

Assumption A. (i) {Xt ∈ R} is independently and identically distributed (IID) with a continuous distribu-

tion and cdf F (xi,θ);

(ii) For every i = 1, 2, . . . , k, F (xi, ·) : Θ 7→ [0, 1] is in C(1)(Θ) where Θ ⊂ Rd is a compact and

convex set with k > d and such that −∞ < b = x0 < x1 < . . . < xk = u <∞;

(iii) θo := arg minθ∈ΘQ(θ) ∈ int(Θ) and is unique in Θ, where for each θ ∈ ΘQ(θ) :=
∑k

i=1{F (xi,

θ)− p(xi)}2 and for every i = 1, 2, . . . , k, p(xi) := P(Xt ≤ xi | b ≤ Xt ≤ u); and

(iv) z′z is positive definite, where z := [∇θF (x1,θo), . . . ,∇θF (xi,θo), . . . ,∇θF (xk,θo)]
′. �

Both Q(·) and z depend on the number of groups k, so it would be more appropriate to indicate this depen-

dence with the notationQ(·; k) and zk, but this additional notational complexity is suppressed for notational
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simplicity and will be implicit in what follows.

2.1 Model Estimation and Limit Theory

To estimate the unknown parameter θ∗ we first employ the empirical distribution function

p̂n(x) := n−1#{Xt ≤ x},

where x is generic notation for x1, x2, . . ., xk. Since p(x) = P(Xt ≤ x | b ≤ Xt ≤ u) is the conditional

mean of p̂n(x),we have by standard limit theory
√
n{p̂n(x)−p(x)} A∼ N [0, p(x)(1−p(x))] and

√
n(p̂n(·)−

p(·)) ⇒ Bo(·), where the limit process Bo is a Brownian bridge. To estimate the unknown parameter θ∗ in

the posited model with cdf F (·,θ) we then perform a least squares minimum distance estimation between

the nonparametric estimate p̂(·) and the parametric model F (·,θ) over the end points of the intervals of

observation, giving the MCMD estimator θ̂n := arg minθ∈ΘQn(θ), where

Qn(θ) :=

k∑
i=1

{p̂n(xi)− F (xi,θ)}2 .

The structure of the MCMD estimator promotes analysis in terms of a nonlinear regression of p̂n(·),

which is a data-based uniformly consistent estimate of p(·), on the nonstochastic mean regressor function

F (·,θ) that equals p(·) under the null. It is convenient to maintain this regression interpretation in what

follows. Note that

Qn(θ) =
k∑
i=1

[
{p̂n(xi)− p(xi)}2 + 2 {p̂n(xi)− p(xi)} {p(xi)− F (xi,θ)}+ {p(xi)− F (xi,θ)}2

]
= Q(θ) + oa.s.(1),

where the last equality holds uniformly in θ because (i) p̂n(·) is uniformly consistent for p(·), and (ii) |p(·)−

F (·,θ)| is bounded between 0 and 2 uniformly in θ. Therefore, arg minθ Qn(θ) = arg minθ Q(θ)+oa.s.(1)

and θ̂n is consistent for θo = arg minθ Q(θ).

Theorem 1. Given Assumption A, θ̂n
a.s.→ θo. �

When the null hypothesis is correct, we have θo = θ∗ because F (·,θ∗) = p(·) under the null, whereas

θ∗ is undefined under the alternative. Correct specification under the null therefore suffices to ensure that

θ∗ = θo. The convergence rate of θ̂n is determined by that of p̂n(·) and is O (
√
n) because the empirical
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distribution function whose convergence rate is O (
√
n) is the only data-dependent component involved in

the objective function Qn(·).

To find the limit distribution of the MCMD estimator we consider the usual linear approximation based

on the expansion F (xi, θ̂n) = F (xi,θo) +∇′θF (xi,θo)(θ̂n − θo) + oP(n−1/2), which implies in view of

theorem 1 that

Qn(θ̂n) =
k∑
i=1

{p̂n(xi)− F (xi, θ̂n)}2 =
k∑
i=1

{[p̂n(xi)− F (xi,θo)]︸ ︷︷ ︸
=Yi

−∇′θF (xi,θo)︸ ︷︷ ︸
=z′i

(θ̂n − θo)}2 + oP(1).

We define (as suggested in the brace underbars of the above equation) the variables Yi = p̂n(xi)−F (xi,θo)

and zi = ∇θF (xi,θo), so that the leading term on the right side is a sum of the squared residuals in a

regression of Yi on zi with regression coefficient θ̂n − θo. Thus, the MCMD estimator is asymptotically

equivalent to the least squares regression on a linear pseudo-model involving Yi and zi, viz.,

(θ̂n − θo) = (z′z)−1z′Y +OP(n−1), (2)

where Y := [Y1, . . . , Yi, . . . , Yk]
′ and z := [z1, . . . , zi, . . . , zk]

′.

Since
√
n{p̂(·)− p(·)} ⇒ Bo(·), we also have

√
n{Y(·) − y(·)} =

√
n{p̂n(·)− p(·)} ⇒ Bo(·), (3)

where for each i = 1, 2, . . . , k, we define yi := p(xi) − F (xi,θo). Note that for i = 1, 2, . . . , k, yi = 0

under the null, whereas for some i, yi 6= 0 under the alternative. This difference ensures the consistency of

the KS test statistic that we introduce in the next subsection. The regression coefficient θ̂n−θo now satisfies

the following property:

√
n{θ̂n − θo − (z′z)−1z′y︸ ︷︷ ︸

=0

} =
√
n(z′z)−1z′(Y − y) +OP(n−1)⇒ (z′z)−1z′Bo, (4)

where y := [y1, . . . , yk]
′ and Bo := [Bo(p(x1)), . . . ,Bo(p(xi)), . . . ,Bo(p(xk))]′. The limit theory (4)

appears to indicate that the MCMD estimator has an asymptotic bias involving (z′z)−1z′y. However, this

bias is zero, as implied by the brace underbar in the first member of (4). Specifically, note that the first-order
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condition for the optimum θo of Q (θ) in Θ implies that

k∑
i=1

{F (xi,θo)− p(xi)}∇θF (xi,θo) = 0, or z′y = 0, (5)

which orthogonality ensures that (z′z)−1z′y = 0. It follows from (4) that
√
n(θ̂n − θo) ⇒ (z′z)−1z′Bo,

which leads directly to the limit distribution of the MCMD estimator.

Theorem 2. Given Assumption A,
√
n(θ̂n − θo)

A∼ N
[
0, (z′z)−1z′Σoz(z′z)−1

]
, where

Σo :=


p(x1)(1− p(x1)) p(x1)(1− p(x2)) · · · p(x1)(1− p(xk))

p(x1)(1− p(x2)) p(x2)(1− p(x2)) · · · p(x2)(1− p(xk))
...

...
. . .

...

p(x1)(1− p(xk)) p(x2)(1− p(xk)) · · · p(xk)(1− p(xk))

 .

Some remarks on this result are in order. First, note that the core of this limit theory is the simple linear

functional (z′z)−1z′Bo of Bo, implying that the asymptotic distribution of the MCMD estimator θ̂n has the

form of a functional of the Brownian bridge process that appears in the asymptotic null distribution of the

KS test statistic with no unknown parameters. Correspondingly, the KS test statistic that depends on the

use of the MCMD estimator of these unknown parameters has an asymptotic null distribution that is also a

functional of the same Brownian bridge process. This result is typically quite different from the outcome of

using other estimators of θ in the KS test.

Second, the asymptotic distribution of the MCMD estimator is related to the asymptotic results in

Bolthausen (1977) and Pollard (1980). In particular, Pollard (1980) derived the asymptotic distribution of

the MD estimator using a general functional that extends the L2-norm of Bolthausen (1977). The asymptotic

distribution in Theorem 2 can also be derived by letting the objective function Qn(θ) in our formulation be

a special case of the general functional used in Pollard (1980) and applying Pollard’s theorem 5.6 to deliver

the asymptotic distribution of this general functional. The regression framework for the MCMD estima-

tor used here enables asymptotic critical values of the limit distribution theory to be obtained by a simple

simulation calculation.
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2.2 Testing the Hypothesis

We now examine the KS test statistic

T̂n := sup
i≤k
|
√
n{p̂n(xi)− F (xi, θ̂n)}|, (6)

which has the same form as the usual KS statistic given in the literature (e.g., Durbin, 1973; Henze, 1996),

the sole difference being the use of the MCMD estimator θ̂n in (6). We distinguish T̂n from the usual

statistic with no parameter estimation error which we define as Tn := supi≤k |
√
n{p̂n(xi)− F (xi,θ∗)}|.

2.2.1 The Null Limit Distribution

We first develop asymptotic theory under the null where θo = θ∗. Hence, for each xi we have p̂n(xi) −

F (xi, θ̂n) = p̂n(xi)− F (xi,θ∗)−∇′θF (xi,θ∗)(θ̂n − θ∗) + oP(1), which implies that

sup
i≤k

√
n|p̂n(xi)− F (xi, θ̂n)| ⇒ sup

i≤k
|Bo(p(xi))− z′i(z

′z)−1z′Bo| (7)

by continuous mapping, where Bo and z are as in (4) and (2). The null limit distribution is therefore bounded

in probability as a functional of the Gaussian process Bo and the component Bo(p(xi))− z′i(z
′z)−1z′Bo in

(7) is the i-th row element of mBo where m := I− z(z′z)−1z′. Therefore,

Ŝn :=
√
n[p̂n(x1)− F (x1, θ̂n), ..., p̂n(xk)− F (xk, θ̂n)]′ ⇒mBo ∼ N(0,mΣom). (8)

The matrix m projects onto the orthogonal complement of the range of the k × d matrix z, so the rank

of mΣom is k − d. For notational simplicity, let G and Gi denote mBo and the i-th row element of G,

respectively. Then, T̂n ⇒ Zk := max[|G1|, . . . , |Gk|] under the null.

The asymptotic null distribution given by (7) differs from that of the KS test statistic with no unknown

parameters because in that case

Sn :=
√
n[p̂n(x1)− F (x1,θ∗), ..., p̂n(xk)− F (xk,θ∗)]

′ ⇒ Bo ∼ N(0,Σo), (9)

so that the KS test statistic weakly converges to max[|Bo(p(x1))|, |Bo(p(x2))|, . . . , |Bo(p(xk))|] under the

null. Hence, in the limit T̂n and Tn are constructed from different functionals of the same Brownian bridge

process Bo.

In both cases, the only stochastic component determining the null limit distribution is the Brownian
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bridge. The deterministic component m is a constant matrix that depends on the border values of the data

groups, which are known, and the parameter value θo = θ∗ under the null, which may be consistently

estimated. Thus, p̂n(·) is the only stochastic source that determines the asymptotic null distribution of T̂n,

because the MCMD estimator of θ∗ can be represented asymptotically as a linear functional of the same

Brownian bridge. If another estimator is used, the limit distribution typicaly involves a functional of another

Gaussian process with covariance kernel different from that of the Brownian bridge. The transform device

of Khmaladze’s (1981, 1993, 2013) works to remove such components (by a non-orthogonal projection) that

modifies the statistic so that the asymptotic null distribution is identical to that of Tn. Since the Brownian

bridge component Bo is the only stochastic part of our limiting KS test statistic, we do not have to eliminate

the parameter estimation error part from our test basis in order to construct an easily implemented test, as

we now discuss.

The asymptotic null distribution of the KS test statistic can be approximated simply by estimating the

covariance matrix mΣom. Both m and Σo involve θ∗ with zi = ∇θF (xi,θ∗) and p(xi) = F (xi,θ∗),

so that replacing θ∗ with θ̂n we have the consistent estimates ẑi := ∇θF (xi, θ̂n)
a.s.→ zi and F (xi, θ̂n)

a.s.→

F (xi,θ∗) since θ̂n
a.s.→ θ∗. Then ẑ := [ẑ1, . . . , ẑk]

′ a.s.→ z′, m̂ := I − ẑ(ẑ′ẑ)−1ẑ′
a.s.→ m, and Σ̂

o

n
a.s.→ Σo,

where

Σ̂
o

n :=


F (x1, θ̂n)(1− F (x1, θ̂n)) F (x1, θ̂n)(1− F (x2, θ̂n)) · · · F (x1, θ̂n)(1− F (xk, θ̂n))

F (x1, θ̂n)(1− F (x2, θ̂n)) F (x2, θ̂n)(1− F (x2, θ̂n)) · · · F (x2, θ̂n)(1− F (xk, θ̂n))
...

...
. . .

...

F (x1, θ̂n)(1− F (xk, θ̂n)) F (x2, θ̂n)(1− F (xk, θ̂n)) · · · F (xk, θ̂n)(1− F (xk, θ̂n))

 .

The distribution of Zk can be approximated by that of Ẑk := max[|Ĝ1|, |Ĝ2|, . . . , |Ĝk|], where for each i,

Ĝi is the i-th row element of Ĝ, and Ĝ ∼d N [0, m̂Σ̂
o
m̂].

10



2.2.2 Limit Behavior under Fixed Alternatives

For a fixed alternative, we necessarily have yi = p(xi) − F (xi,θo) 6= 0 for some i. It then follows that

under such an alternative,

√
n{[p̂n(xi)− F (xi, θ̂n)] =

√
n[p̂n(xi)− p(xi))] +

√
n
[
p(xi)− F (xi, θ̂n)

]
=
√
n[p̂n(xi)− p(xi))] +

√
n
[
p(xi)− F (xi,θo) +

{
F (xi,θo)− F (xi, θ̂n)

}]
=
√
n[p̂n(xi)− p(xi))] +

√
n
[
yi −

{
z′i(θ̂n − θo) + oP(n−1/2)

}]
=
√
n[p̂n(xi)− p(xi))] +

√
n
[
yi −

{
z′i(z

′z)−1z′(Y − y) + oP(n−1/2)
}]

(10)

= OP(n1/2) for some i (11)

since
√
n[p̂n(xi) − p(xi))],

√
n(Y − y) = OP(1) whereas yi − z′i(z

′z)−1z′y is the i-th element of my,

and at least one of the elements in my is different from zero under the alternative. This follows because

the first-order condition (5) for θo implies that z′y = 0, so that my = y. Therefore, the ith element of

my is necessarily yi = p(xi)− F (xi,θo) 6= 0 under the alternative. Then, T̂n =
√
nmax[|y1|, . . . , |yk|] +

OP(1) = OP(n1/2) as indicated in (11), and the KS test is consistent under any fixed alternative for which

yi = p(xi) − F (xi,θo) 6= 0 for some i. Thus, the KS test statistic that relies on the MCMD estimator has

unit power and is consistent under fixed alternatives.

Observe that, upon recentering
√
n{[p̂n(xi)− F (xi, θ̂n)] and using z′y = 0, we have from (10)

√
n{[p̂n(xi)− F (xi, θ̂n)]− [yi − z′i(z

′z)−1z′y]} =
√
n{[p̂n(xi)− F (xi, θ̂n)]− yi}

=
√
n[{p̂n(xi)− p(xi)} −

{
z′i(z

′z)−1z′(Y − y) + oP(n−1/2)
}

]⇒ Gi, (12)

which gives the limit distribution under fixed alternatives.

2.2.3 Limit Theory for Local Alternatives

We next consider the limit behavior of the KS test under the following local alternative

H` : P(Xt ≤ xi | x0 ≤ Xt ≤ xk) = F (xi,θo) + h(xi)/
√
n, (13)

11



for some uniformly bounded function h(·). Under this local alternative, we have yi = p(xi)− F (xi,θo) =

h(xi)/
√
n, and y = n−1/2h where h := [h(x1), . . . , h(xi), . . . , h(xk)]

′, so that

√
n{p̂n(xi)− F (xi, θ̂n)} ⇒ hi − z′i(z

′z)−1z′h +Gi (14)

under the local alternative by (12), where hi is the ith element of h and Gi is the ith element of mBo as

above. Evidently the component hi − z′i(z
′z)−1z′h in (14) is the ith element of mh, so that in place of (8)

we have

Ŝn =
√
n[p̂n(x1)− F (x1, θ̂n), ..., p̂n(xk)− F (xk, θ̂n)]′ ⇒m(h + Bo) ∼ N(mh,mΣom), (15)

which reduces to the null limit theory when mh = 0. Similar to the null case, the limit theory when θo is

not estimated is given by

Sn :=
√
n[p̂n(x1)− F (x1,θo), ..., p̂n(xk)− F (xk,θo)]

′ ⇒ h + Bo ∼ N(h,Σo), (16)

in place of (9).

Defining ξi = h(xi)− z′i(z
′z)−1z′h and using the fact noted above that y = n−1/2h, it is apparent that

ξi = h(xi) because z′y = n−1/2z′h = 0 from first-order conditions for θo. It also trivially follows that

mh is necessarily different from 0 whenever hi 6= 0 for some i, thereby ensuring that the local alternative

differs from the null. Further, the KS test statistic has the following limit

T̂n ⇒ Zak := max[|ξ1 +G1|, . . . , |ξk +Gk|]. (17)

Thus, tests based on T̂n have non-negligible power under the local alternative H` in (13). We further note

that the weak limit of Tn under the local alternative is a functional of the same form but one that involves

(h + Bo) rather than m(h + Bo), as is apparent by comparing (15) and (16). It follows that estimation of

the parameter θ using MCMD modifies the limit distribution of Tn by scaling the components entering

(17) with the projector m = I− z(z′z)−1z′.

We summarize the key claims of this section in the following theorem.

Theorem 3. Given Assumption A,

(i) T̂n ⇒ Zk := max[|G1|, . . . , |Gk|] underH0;

(ii) T̂n =
√
nmax[|y1|, . . . , |yk|] +OP(1) underH1; and

12



(iii) if |h(·)| is uniformly bounded on {x1, . . . , xk}, T̂n ⇒ Zak := max[|h(x1) +G1|, . . . , |h(xk) +Gk|]

underH`. �

Before moving to the next section, we discuss some aspects of this test and its implementation. Two

methods are available to compute critical values of the test. The first method is to estimate the idempotent

matrix m and Σo by a plug in method using m̂ := I− ẑ(ẑ′ẑ)−1ẑ′ and Σ̂
o
, as mentioned above. This method

produces valid critical values asymptotically by virtue of the invariance principle (Donsker, 1951), consis-

tency of θ̂n under the null, and continuous mapping. In practice, the process Bo(·) can be evaluated on the

unit interval at the points F (xi; θ̂n) (i = 1, 2, . . . , k) and the functional m̂[Bo(F (x1; θ̂n)), . . . ,Bo(F (xk;

θ̂n))]′ can be used to approximate the weak limit. An alternative method is to apply a parametric bootstrap

by generating data with n number of observations from F (·, θ̂n) and computing the null distribution by

iteratively replicating the test many times. We examine these two approaches in Section 4 and compare their

performance with the KS test statistic that is based on the use of the (Q)ML estimator.

Pollard (1980) provided a general theory on the asymptotic distribution of the MD estimator and the

GOF test statistic for both of which the same norm is assumed. The results given in Theorem 3 are closely

related but differ in that the CM distance is used for parameter estimation of θ, whereas the KS distance is

used for testing goodness-of-fit. This approach offers the advantage of a regression formulation of the KS

test and convenient simulation-based calculation of asymptotic critical values for the test.

3 Hypothesis Testing using Grouped Data with Large Group Size

This section extends the analysis to the KS test statistic formed with continuously distributed data. We

exploit the large sample size weak limit theory of the KS test statistic given in Section 2 by using sequential

asymptotics in which large sample size asymptotics with n→∞ are followed by infill asymptotics in which

the data range u− b is fixed but the group interval is reduced. Then the sequential weak limit of the KS test

can be linked to the large sample size limit of the KS test for continuously distributed data.

For convenience of notation, we distinguish symptotics in which the group size k tends to infinity from

those in which the sample size n tends to infinity by affixing ‘k’ and ‘n’ to the relevant weak convergence

symbols. Thus, ‘ n⇒’ and ‘ k⇒’ denote weak convergence in which n→∞ and k→∞, respectively.

3.1 Estimation Limit Theory with Large Group Size

We develop a large group size limit theory for the MCMD estimator with the data range fixed, and proceed

by examining the corresponding limits of the components in Theorem 1. First, for technical convenience,

13



we suppose that the interval distance ck is the same for each group, so that ck · k = u− b. Next, let F̄ (·) :=

F ((1− (·))b+ (·)u;θo), which is defined on the unit interval, and for ` = 1, 2, . . . , k, j = 1, 2, . . . , d, and

i = 0, 1, define

∂ijF̄k(x) :=

 ∂ijF̄ (`/k), if x ∈ [(`− 1)/k, `/k);

∂ijF̄ (1), if x = 1.

Note that ∂ijF̄k(·) is continuous from the right with limits from the left. As k tends to infinity with the

distance between x0 and xk being constant, ∂ijF̄k(·) converges uniformly to ∂ijF̄ (·), provided that ∂ijF̄ (·) is

continuous on [0, 1]. Therefore, the large group size limit of the i-row and j-column element of k−1z′z is

obtained as follows. Observe that

1

k

k∑
`=1

∂iF (x`;θo)∂jF (x`;θo) =

∫ 1

0
∂iF̄k(x)∂jF̄k(x)dx

k→
∫ 1

0
∂iF̄ (x)∂jF̄ (x)dx, (18)

which holds by monotone convergence. As the group size k → ∞, the group interval ck → 0 when the

range u − b is held constant. Therefore, as k increases, the group interval decreases. If we further let

∇θF̄ (·) := [∂1F̄ (·), . . . , ∂dF̄ (·)]′ and ∇θF̄k(·) := [∂1F̄k(·), . . . , ∂dF̄k(·)]′, we obtain as in (18)

Ak :=
1

k
z′z =

∫ 1

0
∇θF̄k(x)∇′θF̄k(x)dx

k→ Ao :=

∫ 1

0
∇θF̄ (x)∇′θF̄ (x)dx.

Next, we examine the large group size limit of k−1z′Bo. Let p̄(·) := p((1 − (·))b + (·)u) and for ` =

1, 2, . . . , k, set

p̄k(x) :=

 p̄(`/k), if x ∈ [(`− 1)/k, `/k);

1, if x = 1.

As k → ∞, p̄k(·) converges uniformly to p̄(·), provided that p̄(·) is continuous on [0, 1]. We also let

B̄o(·) := Bo(p̄(·)) and for ` = 1, 2, . . . , k, set

B̄ok(x) :=

 B̄o(`/k), if x ∈ [(`− 1)/k, `/k);

0, if x = 1.

Since B̄o(·) is a continuous process on [0, 1] almost surely, B̄ok(·) is uniformly bounded and also uniformly

converges to B̄o(·) with probability 1. Therefore, we find that

Zk :=
1

k
z′Bo =

∫ 1

0
∇θF̄k(x)B̄ok(x)dx

k→ Z :=

∫ 1

0
∇θF̄ (x)B̄o(x)dx,
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with probability 1, which implies that Zk
k⇒ Z. The large group size weak limit is therefore a normally

distributed random variable Z ∼ N(0,Bo), with covariance matrix

Bo :=

∫ 1

0

∫ x′

0
p̄(x)(1− p̄(x′))∇θF̄ (x)∇′θF̄ (x′)dxdx′+

∫ 1

0

∫ 1

x′
p̄(x′)(1− p̄(x))∇θF̄ (x)∇′θF̄ (x′)dxdx′.

The following additional conditions are imposed to deliver the asymptotic behavior of the KS test.

Assumption B. (i) The interval size of each group is identical and equal to ck = (u − b)/k, and u − b is

constant;

(ii) For each θ ∈ Θ and j = 1, 2, . . . , d, F (·;θ) and ∂jF (·;θ) are continuous on [b, u];

(iii) p(·) is continuous on [b, u];

(iv)
∫ 1
0 ∇θF̄ (x)∇′θF̄ (x)dx is finite and positive definite; and

(v) Bo is finite and positive definite. �

The equal group interval size Assumption B(i) is technically convenient but might well be weakened and

is by no means necessary to derive the large group size limit results of the KS test statistic. Assumptions

B(ii and iii) are useful because as continuous functions defined on a bounded space they are integrable.

These conditions ensure that the stated limits Ao, Bo, and Z are all well defined as the group size k tends

to infinity. Assumption B(iii) is redundant under the null, because p(·) = F (·;θ∗) and θ∗ = θ0, so that (ii)

implies (iii). Assumptions B(iv) and (v) are standard conditions that ensure the sequential limit distribution

of the KS test statistic behaves regularly.

The stated results are collected in the following lemma.

Lemma 1. Given the Assumptions A and B,

(i) k−1z′z k→ Ao :=
∫ 1
0 ∇θF̄ (x)∇′θF̄ (x)dx; and

(ii) k−1z′Bo k⇒ Z :=
∫ 1
0 ∇θF̄ (x)B̄o(x)dx ∼ N(0,Bo). �

Some remarks are warranted. First, from the first-order condition for θo, z′y = 0 holds uniformly in k.

Furthermore, k−1z′y has the following large group size limit as k →∞

1

k
z′y =

∫ 1

0
∇θF̄k(x)[p̄k(x)− F̄k(x)]dx

k→
∫ 1

0
∇θF̄ (x)[p̄(x)− F̄ (x)]dx, (19)

therefore implying that
∫ 1
0 ∇θF̄ (x)p̄(x)dx =

∫ 1
0 ∇θF̄ (x)F̄ (x)dx. Second, Lemma 1 implies a straightfor-

ward large group size weak limit for the MCMD estimator. The following theorem trivially holds by joint

convergence.
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Theorem 4. Given Assumptions A and B,
√
n(θ̂ − θo)

n⇒ Wk := (z′z)−1z′Bo k⇒ W := A−1o Z ∼

N(0,Co) with Co := A−1o BoA
−1
o . �

This result corresponds to theorem 5.1 of Bolthausen (1977), in which the asymptotic distribution of the MD

estimator obtained using CM distance is derived. Theorem 4 shows that theorem 5.1 of Bolthausen (1977)

can also be obtained in a regression context. As we shown in the next subsection, the same mode of analysis

suggests a way to obtain symptotic critical values for the KS test.

The asymptotic results in Theorem 4 are obtained by assuming that the data range [u, b] is fixed. Data

and models with unbounded range may be similarly analyzed by transforming group border values using the

probability integral transform, so that the standard uniform distribution is set as the null distribution.

3.2 Testing Hypotheses with Large Group Size

Using the large group size weak limit result for the MCMD estimator given in Theorem 4, we examine the

large group size limit distributions of the KS test statistic under the null and local alternatives. Note that T̂n

is not bounded in probability under the alternative as shown in Section 2.

3.2.1 Null Limit Theory

We first examine the large group size null limit distribution of the KS test statistic. We start the discussion

from (7). Defining

Ḡok(·) := B̄ok(·)−∇′θF̄k(·)A−1k Zk and Ḡo(·) := B̄o(·)−∇′θF̄ (·)A−1o Z,

then Ḡok(·) k→ Ḡo(·) uniformly with probability 1, because F̄k(·)
k→ F̄ (·) and B̄ok(·)

k→ B̄o(·) uniformly on

[0, 1] with probability 1. Furthermore, for each i, Bo(p(xi)) − z′i(z
′z)−1z′Bo = Ḡok(i/k), so that Zk =

supi≤k |Ḡok(i/k)| k→ Z := supz∈[0,1] |Ḡo(z)| with probability 1, viz., the large group size null weak limit of

Zk is obtained as a functional of Ḡo(·) such that for each x, E[Ḡo(x)] = 0, and if x ≤ x̃,

E[Ḡo(x)Ḡo(x̃)] = p̄(x)(1− p̄(x̃))−∇′θF̄ (x)A−1o D(x̃)−∇′θF̄ (x̃)A−1o D(x) +∇′θF̄ (x)Co∇θF̄ (x̃),

where for each x ∈ [0, 1], D(x) := (1 − p̄(x))
∫ x
0 p̄(z)∇θF̄ (z)dz + p̄(x)

∫ 1
x (1 − p̄(z))∇θF̄ (z)dz. This

covariance kernel corresponds to that of theorem 1 of Durbin (1973). The difference is that Durbin’s Gaus-

sian process is derived as a variation of the Brownian bridge affected by the limit distribution of the ML

estimator, whereas our result arises from MCMD estimation.
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The gain from using MCMD estimation is that the distribution of Ḡo(·) is easily simulated: the distribu-

tion of Ḡo(·) can still be approximated by applying Donsker’s (1951) invariance principle. If we let

Bo
` (·) :=

1√
`

d`(·)e∑
j=1

Ut −
(·)√
`

∑̀
j=1

Ut, (20)

Bo
` (·) ⇒ Bo(·) as ` → ∞, where the ceiling function d·e gives the smallest integer greater than or equal to

its argument, and Uj ∼ IID N(0, 1). Therefore, we may approximate Ḡo(·) by

Ĝo` (·) := B̂o
` (·)−∇′θF̂`(·)Â−1o,` Ẑ`,

where for each i = 1, 2, . . . , `,

B̂o
` (i/`) := Bo

` (F ((1− i/`)b+ (i/`)u, θ̂n)); ∇θF̂`(i/`) := ∇θF ((1− i/`)b+ (i/`)u, θ̂n);

Âo,` := `−1
∑̀
i=1

∇θF̂`(i/`)∇′θF̂`(i/`); and Ẑ` := `−1
∑̀
i=1

∇θF̂`(i/`)B̂
o
` (i/`).

By iteratively generating supi≤` |Ĝo` (i/`)| many times, an approximate distribution for T̂n can be derived,

with improvements in the approximation occurring as ` becomes large. This simulation method is effective

in practice because the parameter estimation error is linked to the same Brownian bridge as that obtained

for the empirical process. For other estimators, this type of linkage in the limit theory is not obvious and so

cannot be relied upon in simulations.

3.2.2 Local Alternative Limit Theory

We next examine the large group size local alternative limit distribution of T̂n. For this purpose, suppose

h(·) is a continuous function on [b, u], let h̄(·) := h((1− (·))b+ (·)u), and for ` = 1, 2, . . . , k, define

h̄k(x) :=

 h̄(`/k), if x ∈ [(`− 1)/k, `/k);

h̄(1), if x = 1.

As k →∞, h̄k(·) converges uniformly to h̄(·) and is uniformly bounded on [0, 1], because h̄(·) is a contin-

uous function on a compact interval. Hence,

Qk :=
1

k
z′h =

1

k

∫ 1

0
∇θF̄k(x)h̄k(x)

k→ Q :=

∫ 1

0
∇θF̄ (x)h̄(x)dx.
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Note that (19) implies that the right side is 0 from the local alternative that p̄(·)− F̄ (·) = h(·)/
√
n. There-

fore, if we let

ξ̄k(·) := h̄k(·)−∇′θF̄k(·)A−1k Qk,

for each i = 1, 2, . . . , k, ξi = h̄k(i/k)−∇′θF̄k(i/k)A−1k Qk and ξ̄k(·)
k→ ξ̄(·) := h̄(·)−∇′θF̄ (·)A−1Q ≡

h̄(·) uniformly on [0, 1], so that ξ̄k(·) + Ḡok(·) k→ ξ̄(·) + Ḡo(·) = h̄(·) + Ḡo(·) uniformly on [0, 1] with

probability 1. Hence, letting Zak := supi≤k |ξ̄k(i/k) + Ḡok(i/k)| and Za := supz∈[0,1], |ξ̄(z) + Ḡo(z)|, the

sequential weak limit of T̂n is obtained as Zak
k→ Za with probability 1, which implies that Zak

k⇒ Za.

Thus the localizing parameter of the limit Gaussian process shifts from zero under the null to ξ̄(·) under the

local alternative, which is identical to h̄(·). It is therefore apparent that, if h(·) 6= 0, the KS test statistic has

non-negligible local power asymptotically.

Thes results are summarized in the following theorem.

Theorem 5. Given Assumptions A and B,

(i) T̂n
n⇒ Zk := supi≤k |Ḡok(i/k)| k⇒ Z := supz∈[0,1] |Ḡo(z)| underH0; and

(ii) if h(·) is continuous on [b, u], T̂n
n⇒ Zak := supi≤k |h̄k(i/k) + Ḡok(i/k)| k⇒ Za := supz∈[0,1]

|h̄(z) + Ḡo(z)| underH`. �

4 Simulations

This section reports simulations conducted to assess the relevance of the asymptotic theory in finite samples.

For this purpose, we suppose that a Pareto distribution is hypothesized for positively valued grouped data.

Specifically, the hypothetical data distribution for Xt is given by

P(Xt ≤ x) = 1− (xmin/x)θ,

where xmin is the minimal value of Xt, and θ is the shape parameter.

Given this model assumption, we further suppose that data are grouped in the format of (1) such that b

is greater than or equal to xmin, and u is finite. This framework implies that the unconditional distribution

is modified to the conditional distribution

P(Xt ≤ xi | b ≤ Xt ≤ u) = 1− (u/xi)
θ − 1

(u/b)θ − 1
.

We denote this distribution as Pareto(θ) and let the right side of the equation be the model for the grouped
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data. That is, for i = 1, 2, . . . , k,

F (xi, θ) = 1− (u/xi)
θ − 1

(u/b)θ − 1
. (21)

In our simulations, we use the following parameter settings: the bounds are b = 1.0, and u = 10.0; for every

i = 1, 2, . . . , k, the interval length is xi− xi−1 = ck and we consider four cases for ck ∈ [0.1, 0.2, 0.5, 1.0].

For data generated according to this schematic, we examine the finite sample properties of the KS test

statistic under the null, alternative, and local alternative hypotheses.

4.1 Testing under the Null Hypothesis

We implement the following procedures for examining the KS test statistic under the null. First, we let θ∗ =

2.0 and generate n observations with conditional distribution as in (21). Six sample sizes are considered:

100, 200, 400, 600, 800, and 1,000. Second, we consider three approaches to assess the adequacy of the

limit theory in Theorem 3(i), and we call these methods A, B, and C, respectively. Method A first generates

the asymptotic null distribution in Theorem 3(i) by the simulation method in Section 3. Specifically, m =

Ik − z(z′z)−1z, and z is a vector with ith element

zi =
(u
b

)θ∗
log
(u
b

)[( u
xi

)θ∗
− 1

]
−
(
u

xi

)θ∗
log

(
u

xi

)[(u
b

)θ∗
− 1

]
.

Next, the Brownian bridge Bo(·) is generated by the invariance principle (Donsker, 1951) with ` = 10, 000

of (20), and we compute mBo, where Bo is a k×1 vector with ith elementBo
` (F (xi, θ∗)) (i = 1, 2, . . . , k).

Finally, we iterate this process 200 times and compare the distribution obtained by this process with the test

statistic value. The whole process is iterated 5,000 times, and we compute the average rejection rate. Note

that method A generates the asymptotic null distribution by assuming that θ∗ is known, so that it cannot be

used in practical work with empirical data. Nonetheless, method A is useful in corroborating Theorem 3(i).

Method B estimates m and Bo using the MCMD estimator. Instead of θ∗, we iterate the same process using

θ̂n. Specifically, for each i = 1, 2, . . . , k, we let

ẑi =
(u
b

)θ̂n
log
(u
b

)[( u
xi

)θ̂n
− 1

]
−
(
u

xi

)θ̂n
log

(
u

xi

)[(u
b

)θ̂n
− 1

]

be the ith element of ẑ and estimate m by m̂ := Ik − ẑ(ẑ′ẑ)−1ẑ′. We also estimate Bo by B̂o :=

[. . . , Bo
` (F (xi, θ̂n)), . . .]′, and compare T̂n with the asymptotic critical values implied by m̂B̂o. The null

distribution is obtained by independently generating m̂B̂o 200 times, and we compute the empirical rejec-
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tion rate of the KS test by iterating the whole process 5,000 times. Method C implements the parametric

bootstrap. The bootstrap iteration number is 200, and the entire number of replications is again 5,000.

In addition to our KS test statistic, we also apply the (Q)ML estimator to the same data and compare its

performance with our KS test statistic. For the (Q)ML procedure the following KS test statistic is computed:

T̃n := sup
i≤k
|
√
n{p̂n(xi)− F (xi, θ̃n)}|,

where θ̃n denotes the (Q)ML estimator. For method A, we suppose that parameter estimation error is absent

and obtain the empirical rejection rates by iteratively simulating

max[|Bo
` (p(x1))|, |Bo

` (p(x2))|, . . . , |Bo
` (p(xk))|]

200 times. This method is conducted to explore how use of the ML estimator affects the asymptotic null

distribution. Next, we also apply method B to the KS test statistic when it is computed using the (Q)ML

estimator. In this case, we iteratively simulate

max[|Bo
` (F (x1, θ̃n))|, |Bo

` (F (x2, θ̃n))|, . . . , |Bo
` (F (xk, θ̃n))|]

200 times and obtain the corresponding critical values. Third, we apply the parametric bootstrap. Finally,

Khmaladze’s (2013) distribution-free test is applied. Specifically, θ∗ is estimated by (Q)ML, and the follow-

ing KS test statistic is computed based upon the transformation:

T̈n := max
s≤k

∣∣∣∣∣∣
s∑
j=1

Z̃n,j

∣∣∣∣∣∣ ,
where Z̃n,j is the jth-row element of Z̃n := Ỹn − Ỹ′na3(a3 − b3) − Ỹ′na4(a4 − b4) with Ỹn :=

[Ỹn,1, Ỹn,2, . . . , Ỹn,k]
′,

Ỹn,j :=
#{Xt ∈ (xi, xi+1]} − nc̃j√

nc̃j
,

and c̃j := F (xi, θ̃n)−F (xi−1, θ̃n); a3 := ã3/(ã
′
3ã3)

1/2 with ã3 := r−(r′q̃)q̃−(r′q̂)q̂, r := [1, 0, . . . , 0]′,

q̃ := [
√
c̃1,
√
c̃2, . . . ,

√
c̃k]
′, and q̂ := q̈/(q̈′q̈)1/2 with q̈ := [d̃1/

√
c̃1, d̃2/

√
c̃2, . . . , d̃k/

√
c̃k]
′ and d̃i :=

(∂/∂θ)F (xi, θ̃n) − (∂/∂θ)F (xi−1, θ̃n); a4 := ã4/(ã
′
4ã4)

1/2 with ã4 := r̂ − (r̂′q̃)q̃ − (r̂′q̂)q̂ − (r̂′a3)a3

and r̂ := [0, 1, 0, . . . , 0]′; b3 := b̃3/(b̃
′
3b̃3)

1/2 with b̃3 := q̃ − (q̃′r)r − (q̃′r̂)r̂; and b4 := b̃4/(b̃
′
4b̃4)

1/2

with b̃4 := q̂− (q̂′r)r− (q̂′r̂)r̂− (q̂b3)b3. Then, T̈n weakly converges to Z̃ := maxs≤k |
∑s

j=3 Zj | under
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the null by Khmaladze’s (2013) corollary 4, where Zj ∼ IID N(0, 1). The asymptotic critical values are

obtained by simulating the limit random variable 1 million times. We call this approach method D.

Tables 1 and 2 contain the empirical rejection rates of T̂n and T̃n, respectively. The simulation results

can be summarized as follows.

1. The simulation results in Table 1 generally well support the theory given in Theorem 3(i). The nominal

rejection rates in Table 1 are consistently well estimated by the empirical rejection rates, and more

precise empirical rejection rates are obtained as the sample size increases. In particular, the simulation

results using methods A and B reveal that the test statistic computed via first computing the MCMD

estimator is almost identical to that computed with no parameter estimation error.

2. Table 2 shows results that are very different. As pointed out by Durbin (1973), Henze (1996), and

Khmaladze (2013), the KS test statistic with a plug in ML estimator has significant level distortions

that persist even when the sample size is large. These distortions occur mainly because T̃n has an

asymptotic distribution that is affected by the ML estimator. Methods A and B therefore yield sub-

stantial level distortions in this case. These distortions are relieved by using the parametric bootstrap

method C, which accommodates the parameter estimation error and has the same asymptotic null

distribution as that of T̃n. Khmaladze’s (2013) transformation method D removes the parameter esti-

mation error from the test basis, and T̈n becomes distribution free.

3. Looking at Table 1 again, we note that there is a tendency for the empirical rejection rates to be closer

to the nominal levels when ck is small.

4. Comparing methods B and C in Table 1 we find that applying the asymptotic null distribution directly

to the test yields more precise empirical rejection rates than applying the parametric bootstrap and

Khmaladze’s (2013) transformation. These results indicate that the T̂n test performs best under the

null when it is constructed by data observations grouped into small intervals and compared with the

asymptotic null distribution.

4.2 Testing under the Alternative

We now examine test power. For this purpose, we change the distribution ofXt from Pareto to the following

exponential distribution as the generating mechanism:

P(Xt ≤ x|b ≤ Xt ≤ u) =
1− exp(−λ∗(x− b))
1− exp(−λ∗(u− b))

.
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We denote this distribution Exp(λ∗). We group the observations from Exp(1.2) in the same way as in

Section 4.1 and test the Pareto distributional assumption using methods B and C for T̂n and T̃n. In this case,

the parameter θ∗ is not defined under the alternative hypothesis, so that method A is infeasible.

The empirical rejection rates of T̂n and (T̃n, T̈n) are contained in Tables 3 and 4, respectively. The

results can be summarized as follows.

1. First, T̂n, T̃n, and T̈n are consistent. As the sample size increases, the rejection rates approach unity

for methods B, C, and D.

2. The empirical rejection rates of T̃n using method B are uniformly dominated by T̂n using methods B

and C. This is mainly because the asymptotic critical values of T̃n implemented by method B are too

large, as evidenced in the substantial level distortions under the null seen in Table 2.

3. The overall power of T̃n when the test is implemented by method C is similar to that of T̂n imple-

mented by methods B or C and always dominate that of T̈n implemented by method D.

4. The empirical rejection rates of T̂n implemented by method B are close to those of method C. Even

when the sample size is as small as 100, the empirical rejection rates are similar. So, the asymptotic

null distribution based critical values yield performances similar to those based upon the parametric

bootstrap.

5. When the sample size is small, the power of T̃n implemented by method C is slightly higher than that

of T̂n implemented by methods B or C, but the differences are very small.

4.3 Testing under the Local Alternative

To examine the local power of the test statistic we construct a mixed distribution of the null and alternative

distributions using draws from both. Specifically, when Zt ∼ Exp(1.2) and Wt ∼ Pareto(2.0), we let

Xt =
5√
n
Zt +

(
1− 5√

n

)
Wt,

so that Xt is a mixture of Pareto and exponential random variables for which the mixture distribution of Xt

converges to the Pareto distribution at an n−1/2 convergence rate. For this generating mechanism, we test

the Pareto distributional assumption using methods B, C, and D.

The simulation results of T̂n and (T̃n, T̈n) are contained in Tables 5 and 6, respectively. We summarize

the results as follows.

22



1. As the sample size increases, the empirical rejection rates converge to levels that exceed nominal size

except for the test T̃n implemented by method B for which power is less than size. Hence, the test

T̂n (resp. T̈n) has nontrivial power under local alternatives when method B or C (resp. method D) is

applied, but T̃n has nontrivial powers only when method C is applied.

2. Local power of T̃n is not given for method B in many cases because the critical values of T̃n exceed

the upper bound and test size is zero as noted in the discussion of Table 2.

3. Methods B and C have similar power patterns for the test T̂n. Although method C yields more precise

results than method B in the sense that the empirical rejection rates from the smaller sample sizes are

closer to those for the large sample size, the differences are slight. We deduce from these results that

the performance of methods B and C are similar under local alternatives.

4. The overall empirical rejection rates of T̂n are similar to those of T̃n when that test is implemented

by method C, implying that we can expect similar local power from T̂n and T̃n when using paramet-

ric bootstrap methods. Furthermore, the local power of T̈n implemented by method D is uniformly

dominated by that of T̂n implemented by method B.

5 Empirical Applications

We now proceed to apply these distributional tests in measuring top income shares. Estimating top income

shares has been a longstanding topic of interest in the inequality literature since Kuznets (1953,1955), who

calculated upper income shares for the US over the period 1913 to 1948. The widely used Gini coefficient is

an alternative inequality measure but has been found to be insensitive to variations in upper income levels.

In view of this limitation of the Gini coefficient, upper x% income shares have become commonly used as

an additional, easily interpreted measure of income inequality.

The conventional approach to measuring upper income levels is to continuously interpolate the top x%

income levels by relying on estimates from a Pareto distribution. Most income data are available in a group

frequency format, making interpolation necessary for implementing this approach.

In spite of its popularity, the Pareto distribution for income data is restrictive and may be a misleading

representation for top incomes in some cases. Feenberg and Poterba (1993) test the validity of the top

income share estimates obtained by the Pareto interpolation method with those obtained by using micro-

data. For the top 0.50% US income data from 1979 to 1989, they found that the results from these two

different methodologies yielded almost identical results. This outcome is suggestive, indicating that the
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Pareto distribution condition may be a reasonable assumption for these US data. On the other hand, Atkinson

(2005) introduced a nonparametric method called the mean-split histogram method that estimates the top

income shares under certain underlying conditions on the income distributions. Thus, both parametric and

nonparametric methods have been used in past work on inequality measurement, and empirical tests have

been used to assess the adequacy of the parametric assumptions in upper income share estimation.

With the same motivation as Feenberg and Poterba (1993), we apply our KS test statistic to Korean

income tax return data from 2007 to 2012. Our empirical goal is to calculate estimates of upper income

shares for Korea using our new methodology and compare findings with those available in the prior literature.

5.1 Korean Income Data from 2007 to 2012

Top income shares are estimated by comparing income tax return data of Korea with population data. The

source and nature of the data are briefly discussed in what follows in this subsection. More detailed expla-

nations on data constructions are given in the Appendix.

The Statistical Yearbook of National Tax published by the National Tax Service (NTS) contains annual

Korean income tax statistics for each year, and the data therein were used for measuring the top income

shares by Kim and Kim (2014). The number of income groups in The Statistical Yearbook of National

Tax differ from year to year, and there are at most around 10 income groups. Although the NTS provides

income tabulations for a long period2, tests of the Pareto distributional assumption are better suited to the

methodology when the group size is much bigger.

We, therefore, use another set of income tax return data that are also provided by the NTS for the years

from 2007 to 2012. These data have a different format from those in The Statistical Yearbook of National

Tax. Table 7 provides summary statistics of the income tax return data used herein. Several features stand

out. The most noticeable feature of the data for our purposes is group size. For example, our 2010 data

have 3988 groups, whereas the conventional data in the Statistical Yearbook of National Tax have only 10

groups for the same year. This large group size is obtained by making the group interval much smaller

than those in the conventional income data. The first and the last group intervals for the year 2010 are

(0.0,KRW50 mil.] and (KRW39, 910 mil.,∞]. For the other groups, the data are provided in the same for-

mat with each group interval width being KRW10 mil. For example, the second smallest income group is

(KRW 50 mil.,KRW 60 mil.]. By contrast the conventional income tax data have irregular group patterns.

Out of the 10 income groups, the first and last groups are (0.0,KRW21 mil.] and (KRW536 mil.,∞], respec-

2Kim and Kim (2014) measure top income shares only from 1979 using the information in the Statistical Yearbook of National
Tax.
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tively. For the other 8 groups, the smallest income group interval has width KRW12 mil., and the largest

group interval width is KRW211 mil. A second important feature of the data is that there is no double

counting from the same income source, a phenomenon that arises with some data, such as the Japanese data

examined by Moriguchi and Saez (2010). A third feature of interest is the time period covered by our data.

The time span includes the global financial crisis, which opens up the possibility of studying the impact of

the global financial crisis on the distribution of income in Korea with these data.

We also obtain total income for each year to compute upper x% income shares. For this calculation,

we follow the approach in Pikety and Saez (2003) and Moriguchi and Saez (2010), where total income is

derived from the national accounts for personal income by adjusting non-taxable income. This adjustment

is a commonly used process in the literature for obtaining total income, as detailed in the Appendix.

Finally, we obtain population data in Korea. Various population data have been used in the prior litera-

ture. For example, Picketty and Saez (2003) and Atkinson (2005) employ US family data and UK individual

unit data, respectively, accordingly to the country tax units available. For Korea, the tax unit is the individual

unit, and a significant number of men serve mandatory military service in their 20s. So we calculate popula-

tion in terms of the working-age population of age 20 and above by excluding conscripted personnel such as

soldiers and call this measure employment. In addition to this definition of population, we construct another

measure to assist in making comparisons of top income shares with other studies. This measure includes

the working-age population aged 15 and over, so that conscripted individuals are included in the population,

and we call this measure the labor force. These two populations measures for Korea aged 15 and above and

aged 20 and above correspond with population measures used in studies of other countries such as the UK

and Japan in Atkinson (2005) and Moriguchi and Saez (2008). The population data are reported in Table 7.

5.2 Empirical Analysis

Using the income tax return data described above, we estimate the top income shares in Korea from 2007 to

2012. The specific procedures are as follows:

1. We first identify the income group for the top x% income level to ensure inclusion. The size of top

x% income population is computed using the population data, and we let (x]−1, x]] denote this group.

Note that x] − x]−1 is KRW 10 million for our data sets.

2. We test the Pareto distributional assumption for the grouped data. We choose b and u so that b ≤ x]−1
and u ≥ x] and estimate θ∗ by the MCMD estimator to test the Pareto distributional hypothesis. The

asymptotic critical values are estimated and applied. Readers are referred to our discussion below on
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how b and u are determined.

3. We estimate the top x% income level and denote this level x̂n. This procedure involves first estimating

the preliminary top x% income level by choosing it as x† := F−1(q; θ̂n), where

q :=
top x% income population size− population size with incomes greater than u

population size with incomes ∈ (b, u]
.

If x† ∈ (x]−1, x]], we let x̂n be x†; if x† > x], let x̂n be the upper bound x] of the interval; otherwise,

let x̂n be x]−1. This additional restriction is imposed because x̂n must lie between x]−1 and x] by

virtue of the first-step requirement.

4. We finally compute the top x% share of incomes. We first estimate the total income greater than x̂n

by

m̂n :=

(
F (x]; θ̂n)− F (x̂n; θ̂n)

F (x]; θ̂n)− F (x]−1; θ̂n)

)
× I] +

k∑
i=]+1

Ii,

where Ii denotes the total income in the group of (xi−1, xi], and k is the group size as before. The top

x-% share of income is computed by dividing m̂n with total income from the national account.

Several remarks on this process are in order. First, the Pareto distribution condition is tested in Step 2.

Even if the null hypothesis is rejected, we proceed to Step 3 by assuming that the Pareto distribution is a

good approximation to the top income distribution and then examine how the Pareto assumption affects the

estimation of the top income shares. Below we compare the top x% income shares estimated by the Pareto

interpolation method with those obtained by the mean-split histogram method.3 Second, when implementing

Step 2, the bottom and top border values (b and u) have to be selected in such a way that the interval

(x]−1, x]] is a subgroup of the grouped data. In principle, this selection may affect inference - that is, when

the initial bottom and top border values are modified, test results from using T̂n may also be modified.

However, for our data, if the top x% income level is high enough, the test results turn out to be insensitive

to the selection of b and u.

The top x% income levels are estimated and contained in Tables 8 and 9. Table 8 contains the findings

from 2007 to 2009, and Table 8 contains results from 2010 to 2012. We summarize the key properties of

our estimates as follows.
3Atkinson’s (2005) mean-split histogram method estimates top income shares by a piecewise linear interpolation method that is

constructed by upper and lower bounds for income density function under the assumption that income density is not an increasing
function around the region of interest. Atkinson, Piketty, and Saez (2011) survey that top income shares are estimated by this
method for many countries such as Australia, Finland, Netherlands, New Zealand, Norway, Singapore, and UK.
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1. When the top 1.0% income level is estimated, the Pareto assumption does not hold for every year

from 2007 to 2012. For example, for 2007, the p-value of T̂n is zero regardless of the population data.

As mentioned above, the value of T̂n is dependent on the selection of (b, u]. In fact, we tried many

selections of (b, u] and had to reject the null hypothesis for every selection. The reported interval is

one of these trials. This test outcome shows that the Pareto distribution assumption is hard to accept

as holding for the 1.0% and higher incomes.

2. Although the results are not reported in the tables, even for the top 0.5% of incomes, the Pareto

distribution assumption does not hold for every year in the sample data.

3. When the top 0.10%, 0.05%, or 0.01% and higher incomes are estimated, we could not reject the

Pareto distribution assumption. More precisely, for every year, we could find intervals (b, u] such that

the null hypothesis cannot be rejected. Finding such an interval was not difficult. When an interval

was arbitrarily selected, the Pareto hypothesis could not be rejected at the first stage for most cases. If

the null hypothesis was rejected at the first trial, we searched for bottom and top values of the interval

(b and u) until the Pareto hypothesis could not be rejected. Sequential testing in this way is justified

asymptotically, thereby avoiding the data snooping problem that arises when hypotheses are tested

iteratively. These findings imply that for the Pareto distribution assumption to hold, at least the top

0.10% and higher incomes need to be considered.

4. The estimated x% top income levels (x̂n) are between (x]−1, x]] for most cases. Sometimes, the

preliminary estimates of the top income levels (x†) are greater than the presumed border value x].

For such cases, we let x̂n be x] as required in Step 3. For example, when the top 1.00% income

level is estimated using 2007 data and the population involves ages 20 or older, x̂n = 0.9000 for

x]−1 = 0.8900 and x] = 0.9000. We added the superscript ‘]’ to the figures to indicate such an

occurence. The preliminary estimates of the top income levels (x†) are not substantially different

from the boundary values (x]) for every case, and this happens because the data set has a narrow

interval width of KRW 10 million.

Using the estimated top income levels, we next implement Step 4 and estimate the top x% income

shares. For each population data set and each year, we compute the shares and provide the estimates in

Table 10. We summarize the findings given in these Tables as follows.

1. Table 10 compares our top income shares with those obtained by Atkinson’s (2005) mean-split his-

togram method which does not impose a particular parametric distributional assumption for income.
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Under the condition that the population density function is not an increasing function of income

around the region of interest, the mean-split histogram method estimates top income shares by esti-

mating tight lower and upper bounds for the income density function. Instead of obtaining top income

shares by linearly interpolating histogram points, the method interpolates points by using a piecewise

linear function that is derived by using lower and upper bounds for the income distribution under the

condition that the income density is a non-increasing function around the region to which the top x%

income level belongs. Figures in round parentheses in Table 10 are the income shares estimated by the

mean-split histogram method that were computed by Park and Jeon (2014). The estimated top income

shares from this method are generally very close to our own estimates, but show greater differences at

the 1.00% top income level, the level for which the Pareto hypothesis is rejected and non parametric

estimates may be preferred.

2. We also compare our findings with those of Kim and Kim (2014; KK) who estimated the top income

shares using the income tax table from 1933 to 2010. These authors used population data for adults

aged 20 or older and income data from the Statistical Yearbook of National Tax. Both data sets differ

from those used here and have certain limitations, as discussed earlier. In spite of these differences,

the KK estimates are similar to our own, with the greatest difference being 0.69%, which occurs

for the top 1.00% income shares in year 2010. For higher income shares, the differences are small.

We therefore conclude that our findings concerning upper income shares in Korea corroborate those

obtained by KK over the period 2007 to 2010.

3. The top income shares have a general tendency to rise over time. In year 2009 the income shares went

down, most probably due to the global financial crisis, but began to rise again and maintain a rising

tendency thereafter, concomitant with the slow recovery in the global economy from the financial

crisis. These results indicate that the top income shares can usefully supplement the Gini coefficient,

because income inequality as measured by the Gini coefficient has declined since 2009 according to

official Korean statistics. The results also match earlier findings in the literature. For instance, Piketty

and Saez (2003), Atkinson (2005), Piketty (2003), Atkinson and Leigh (2007, 2008) Moriguchi and

Saez (2010), and Kim and Kim (2014), among others, observe that the top income shares of the US,

UK, and France, Australia, New Zealand, Japan, and Korea all increased over time between 2000 to

2010, respectively.

4. Despite the general rising tendency of the top income shares over 2007 to 2012, the patterns are not

monotonic and have a noticeable blip around 2010 and 2011. We note that jumps are observed from
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top x% income levels over 2010 and 2011. For example, the growth rates of the top 1% income levels

in 2010 and 2011 are about 11.79% and 10.34%, whereas the growth rates of 2008, 2009, and 2012

are 2.71, 2.39, and 3.44%, respectively. On the other hand, total income derived from the national

accounts does not exhibit such big jumps in 2010 and 2011, although it does jump to 8.25% in 2012

from 5.94%, which partly explains the noticeable blips in income shares in 2010 and 2011. In terms of

international comparisons, the top income shares of most other countries do not show definitely rising

tendencies since 2007, based on available estimates,4 although they do show an overall increasing

pattern from 2000. On the other hand, some countries such as Germany, US, and Korea maintain a

rising tendency over the same period. The upper income earners of these countries have apparently

overcome the effects of the global financial crisis more rapidly than other countries that manifest

declining top income shares.

6 Conclusion

Issues of income inequality now attract considerable attention at both national and international levels. Of

growing interest in the assessment of income inequality is the share of upper incomes within the income

distribution and whether and by how much such shares may be growing over time. Analysis of such issues

requires quantification of suitable inequality measures and is frequently conducted empirically using explicit

distributional assumptions, such as the Pareto, to characterize upper tail shape, as in the research of Piketty

and Saez (2003). The tests given in the present work enable applied researchers to evaluate the adequacy of

such distributional assumptions in practical empirical studies where, as is most frequently the case, unknown

parameters need to be estimated. Our test criteria integrate the Kolmogorov and Smirnov (KS) test criteria

with a minimum distance parameter estimation procedure that leads to a convenient limit theory for the test

statistic under the null. The test is easily implemented and is shown to perform well under both null and

local alternative hypotheses.

Our application of this KS test statistic to Korean income data over 2007 to 2012 shows that the Pareto

distribution is supported only for very high income levels. The Pareto tail shape is rejected for the top 1.0%

or 0.5% and higher incomes for every year in the data; but for tail observations lying in the top 0.10%,

0.05%, or 0.01% and higher incomes, the Pareto shape is much harder to reject. These empirical findings

suggest the use of care in applying Pareto interpolation techniques for measuring top 0.50% or lower income

shares. Our results also generally support the observation that upper income shares have been increasing

4The world top income database reports the top income shares of 27 countries that are reported in the literature. For example,
countries such as Canada, Netherlands, and UK show declining patterns, and this is believed to be due to the global financial crisis.
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over time in Korea, in line with more global observations on income shares.

7 Appendix: Proofs and Data Description

7.1 Proofs

Proof of Theorem 1: For each iwe have p̂n(xi)
a.s.→ p(xi), so that the uniform strong law supθ∈Θ |

∑k
i=1{F

(xi,θ)− p̂(xi)}2−
∑k

i=1{F (xi,θ)−p(xi)}2|
a.s.→ 0 holds, which implies that θ̂n

a.s.→ arg minθ∈Θ
∑k

i=1{F

(xi,θ)− p(xi)}2. By Assumption A(iii). θo is unique in Θ. Therefore, θ̂n
a.s.→ θo as desired. �

Proof of Theorem 2: By Taylor expansion: F (xi,θ) = F (xi,θo)+∇′θF (xi,θo)(θ−θo)+O((θ−θo)2), so

thatQn(θ) =
∑k

i=1{Yi−z′i(θ−θo)[1+O(θ−θo)]}2. Therefore, (θ̂n−θo)[1+O(θ̂n−θo)] = (z′z)−1z′Y

using least squares, which in turn implies

(θ̂n − θo)[1 +OP(θ̂n − θo)]− (z′z)−1z′y = (z′z)−1z′(Y − y).

Note that
√
n(Y − y)⇒ Bo and z′y = 0 from the first-order condition for θo, implying that

√
n(θ̂n − θo) =

√
n(z′z)−1z′(Y − y) +OP(n−1/2)⇒ (z′z)−1z′Bo, (22)

completing the proof. �

Proof of Theorem 3: (i) Since, for each i = 1, . . . , k, F (xi, θ̂n) = F (xi,θ∗) +∇′θF (xi,θ∗)(θ̂n − θ∗) +

OP(n−1), it follows that

√
n(p̂n(xi)− F (xi, θ̂n)) =

√
n(p̂n(xi)− F (xi,θ∗))−∇′θF (xi,θ∗)

√
n(θ̂n − θ∗) +OP(n−1/2)

=
√
n(p̂n(xi)− F (xi,θ∗))− z′i(z

′z)−1z′
√
n(Y − y) +OP(n−1/2)

⇒ Bo(p(xi))− z′i(z
′z)−1z′Bo,

where the last equality and the weak convergence follows from (22). The result holds for every i and jointly,

so it follows that Ŝn ⇒ Bo − z(z′z)−1z′Bo = mBo = G. Therefore, continuous mapping delivers the

limit result for the test statistic T̂n ⇒ Zk := max[|G1|, . . . , |Gk|].

(ii) Since for each i = 1, . . . , k, F (xi, θ̂n) = F (xi,θo) +∇′θF (xi,θo)(θ̂n−θo) +OP(n−1), it follows

30



that

p̂n(xi)− F (xi, θ̂n)− (p(xi)− F (xi,θo)) = p̂n(xi)− p(xi)−∇′θF (xi,θo)(θ̂n − θo) +OP(n−1). (23)

Given the definition of yi := p(xi)− F (xi,θo), it follows that

√
n{p̂n(xi)− F (xi, θ̂n)− yi} =

√
n(p̂n(xi)− p(xi))−∇′θF (xi,θo)

√
n(θ̂n − θo) +OP(n−1/2)

=
√
n(p̂n(xi)− p(xi))− z′i(z

′z)−1z′
√
n(Y − y) +OP(n−1/2)

⇒ Bo(p(xi))− z′i(z
′z)−1z′Bo,

where the last equality and the weak convergence hold by (22). The result holds for all i and jointly, so that
√
n(Ŝn − y)⇒ G, and the desired result follows.

(iii) As in the proof of Theorem 1, we note that, for each i, F (xi, θ̂n) = F (xi,θo) + z′i(θ̂n − θo) +

oP(n−1/2), implying that

p̂n(xi)− F (xi, θ̂n) = p̂n(xi)− p(xi) + p(xi)− F (xi,θo)− z′i(θ̂n − θo) + oP(n−1/2)

= p̂n(xi)− p(xi) + yi − z′i(z
′z)−1z′y − z′i(z

′z)−1z′(Y − y) + oP(n−1/2)

= p̂n(xi)− p(xi) + n−1/2ξi − z′i(z
′z)−1z′(Y − y) + oP(n−1/2),

where the second equality holds by the definition of yi := p(xi)− F (xi,θo) and the fact that (θ̂n − θo) =

(z′z)−1z′y + (z′z)−1z′(Y − y) +OP(n−1), and the third equality holds by virture of the local alternative

H` and the definition of ξi := yi − z′i(z
′z)−1z′y. Therefore,

√
n{p̂n(xi) − F (xi, θ̂n)} ⇒ ξi + Gi, which

holds for every i and jointly. Therefore, Ŝn ⇒ m(h + Bo) ∼ N(mh,mΣom), so that the test statistic

T̂n ⇒ Zak := max[|ξ1 +G1|, . . . , |ξk +Gk|], as desired. �

Proof of Lemma 1: (i) We note that ∂iFk(·,θo)∂j and F (·,θo) are piecewise continuous on [x0, xk].

Therefore, for each i and j,
∫ 1
0 ∂iF̄k(x)∂jF̄k(x)dx is well defined. Similarly, for each i and j, ∂iF̄ (·) and

∂jF̄ (·) are continuous on [0, 1] by Assumption B(i), implying that ∂iF̄ (·)∂jF̄ (·) is also continuous on [0, 1]

and that
∫ 1
0 ∂iF̄ (x)∂jF̄ (x)dx is also well defined. Furthermore, ∂iF̄k(·)∂jF̄k(·) converges uniformly to

∂iF̄ (·)∂jF̄ (·), and |∂iF̄k(·)∂jF̄k(·)| is uniformly bounded by supx∈[0,1] |∂iF̄ (x)∂jF̄ (x)| by Theorem B(ii).

Thus, dominated convergence implies that

∫ 1

0
∂iF̄k(x)∂jF̄k(x)dx

k→
∫ 1

0
∂iF̄ (x)∂jF̄ (x)dx.
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As this limit holds for every combination of i and j, the desired result follows.

(ii) By definition B̄ok(·) is piecewise continuous on [0, 1], so that for every j,
∫ 1
0 ∂jF̄k(x)B̄ok(x)dx is well

defined as before. Furthermore, B̄o(·) is continuous with probability 1, implying that ∂jF̄ (·)B̄o(·) is also

continuous on [0, 1] with probability 1. Therefore, for each j,
∫ 1
0 ∂jF̄ (x)B̄o(x)dx is also well defined with

probability 1. Furthermore, note that |∂jF̄k(·)B̄ok(·)| is uniformly bounded by supx∈[0,1] |∂jF̄ (x)B̄o(x)|with

probability 1 by Assumption B(ii). Therefore, dominated convergence implies that for each j,

∫ 1

0
∂jF̄k(x)B̄ok(x)dx

k→
∫ 1

0
∂jF̄ (x)B̄o(x)dx,

with probability 1. As this result holds for every j and jointly, Zk
k⇒ Z. We also note that Assumptions

B(iv and v) imply that A−1o exists and E[
∫ 1
0

∫ 1
0 ∇θF̄ (x)∇′θF̄ (x′)B̄o(x)B̄o(x′)dxdx′] = Bo by Fubini and

Tonelli, respectively. This completes the proof. �

Proof of Theorem 4: The desired result simply follows by combining results in Lemma 1(i and ii) using

joint convergence. �

Proof of Theorem 5: (i) Weak convergence as n → ∞ is already provided in the proof of Theorem 3(i)

and so we need only show weak convergence with respect to k. Note that B̄ok(·)
k→ B̄o(·) uniformly on [0, 1]

with probability 1, and ∇θF̄k(·)
k→ ∇θF̄ (·) by Assumption B(ii). Finally, A−1k Zk

k⇒ A−1o Z by Lemma 1.

It follows that B̄ok(·)−∇
′
θF̄k(·)A

−1
k Zk

k⇒ B̄o(·)−∇′θF̄ (·)A−1o Z by joint convergence. Now simply apply

the definitions of Ḡok(·) and Ḡo(·) to the left and right side of this large group size weak convergence result.

(ii) Weak convergence as n→∞ is again provided in the proof of Theorem 3(ii). The proof of Theorem

5(i) shows that Ḡok(·) k⇒ Ḡo(·), and ξ̄k(·) = h̄k(·)
k→ h̄(·) uniformly on [0, 1] by virtue of the structure of

h̄k(·). The desired result follows directly. �

7.2 Data Description: Korean Income Data from 2007 to 2012

We provide more detailed source and nature of the data in this subsection.

7.2.1 Grouped Income Data

The income tax return data are formed from several different income sources. The following items are

included in the data: business income, interests and dividends (above KRW40 million), pension benefits,

wage income, and other income. All these are taxable income sources. Interests and dividends (below

KRW40 million), retirement income, and capital gains are not included in our data. As our main focus
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of here is in the distribution of high income groups, the exclusion of interest and dividend income below

KRW40 million is unlikely to affect inferences. High income groups with more than KRW40 million in

interest and dividend income are included in our data. Consistent with other countries, the high income

groups in our data are mostly determined by wage income, business income, and interest and dividend

income.

On the other hand, our data do not include all types of non-taxable income. Most non-taxable income

data are not easy to verify and some income is not voluntarily reported especially that relating to financial

income for high income groups. This aspect of income data produces multiple sources of measurement error

and difficulties in correcting income data to include all types of non-taxable incomes. Therefore, we delimit

attention to taxable income, as is commonly done for other countries, in order to maintain a consistent

income definition throughout the time period studied and to minimize the effects of measurement error in

the data.

7.2.2 Total Income Calculation

The way total income is derived from the national accounts for personal income differs depending on which

of the two income tax systems is in use: negative and positive income tax systems. The negative income

tax system includes almost all types of income earned by personnel and uses these to construct income tax

statistics. The positive income tax system additionally includes non-taxable personal income, so that the

income total corresponds to household income data information retrieved from the national accounts.

The Korean income tax system is built upon the positive income tax system, so that we estimate total

income using personal income information in the national accounts. There are three types of personal

income in the accounts that need to be adjusted: imputed employers’ social contributions that are the part

of the compensation for employees, imputed rents on taxpayers’ owned houses that are part of operating

surpluses, and indirectly measured financial intermediary services (IMFIS) that are part of property incomes.

These three sources of income are not included in tax base although they are attributed to households in the

national accounts.

For the exclusion, we follow these procedures. First, employers’ social contributions are simply sub-

tracted from employee compensation. The national accounts separately report compensation under three

headings: wages, benefits, and social contributions made by employers. The last item is again divided into

actual and imputed contributions. The final item is excluded. Second, imputed rents on taxpayers’ owner

occupied houses are estimated in two steps: we compute the ratio of houses owned by taxpayers using the

yearly national census data and multiply the ratio to housing service operating surpluses that are given by
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the input-output tables each year. The amount of imputed rents on taxpayers’ owner occupied houses is

estimated by this product. Finally, instead of estimating the amount of IMFIS, we use the information in the

Statistical Yearbook of National Tax each year that reports household interest and dividend income earned

from financial institutions. Using this information for our household property income, there is no need to

estimate the IMFIS.

7.2.3 Population Calculation

Some further remarks on the Korean population data are in order. First, some of the data for those aged

15 or 20 and above involve projections. Statistics Korea conduct a national census every five years which

is used to project population over the next five-year period and to correct the prior five-year projections.

Currently, the Korean census population data aged 15 or 20 and above for the years 2011 and 2012 are not

yet available. We therefore use data projections for these years. Second, the employment and labor force

data are based on population bases that are collected monthly by Statistics Korea. The population bases are

constructed to include individuals who are capable of working and who are not soldiers, individuals who

are required to work in social services (including the police force), and individuals who are incarcerated and

serving fixed sentences. Statistics Korea announces the population bases every month and provides detailed

statistics segregated by gender, age, and other characteristics. The labor force and employment are estimated

by adding to these population bases as required by the definitions of these populations.
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b Methods Levels \ n 100 200 400 600 800 1,000
1% 0.58 0.72 0.74 0.92 0.92 1.10

A 5% 4.24 4.62 4.52 4.40 4.74 4.78
10% 9.24 9.56 9.78 9.50 10.14 10.06
1% 1.46 1.18 1.76 1.66 1.44 1.36

0.10 B 5% 5.56 5.38 6.40 5.70 5.24 5.56
10% 10.64 10.12 11.56 10.66 10.06 10.64
1% 1.52 1.34 1.72 1.48 1.40 1.44

C 5% 5.44 5.12 6.28 5.86 5.44 5.96
10% 10.42 9.90 11.36 10.84 10.54 10.52
1% 0.70 0.72 0.74 0.90 0.86 0.82

A 5% 5.36 5.42 5.22 5.00 4.54 4.80
10% 10.24 10.26 9.86 9.94 9.20 9.86
1% 1.64 1.48 1.40 1.74 1.80 1.58

0.20 B 5% 5.62 5.00 5.72 5.54 5.30 5.90
10% 10.60 10.06 10.52 10.88 9.84 10.72
1% 1.72 1.48 1.44 1.44 1.68 1.66

C 5% 5.64 4.98 5.46 5.72 5.52 5.84
10% 10.64 9.88 10.56 10.46 10.00 10.60
1% 1.26 1.00 0.86 0.90 0.84 0.86

A 5% 5.44 4.90 4.76 4.68 4.98 4.78
10% 10.72 9.80 9.84 9.68 9.64 9.96
1% 1.58 1.48 1.14 1.50 1.60 1.26

0.50 B 5% 5.54 5.78 4.76 5.64 5.82 5.16
10% 10.92 10.84 10.16 10.74 10.34 10.32
1% 1.34 1.50 1.30 1.62 1.66 1.18

C 5% 5.68 5.78 4.92 5.64 5.68 5.12
10% 10.64 10.98 10.66 10.34 10.78 10.12
1% 1.00 1.04 1.16 0.96 1.02 0.96

A 5% 4.90 5.02 4.76 4.94 4.74 4.26
10% 9.42 9.30 9.46 9.28 9.40 9.08
1% 1.14 1.16 1.14 1.56 1.46 1.30

1.00 B 5% 5.56 4.90 5.10 5.22 5.84 5.66
10% 10.06 9.32 10.00 10.08 11.18 10.48
1% 1.18 1.08 1.06 1.32 1.56 1.80

C 5% 5.04 4.76 4.98 5.00 5.68 5.44
10% 9.98 9.38 9.76 10.02 10.96 10.56

Table 1: EMPIRICAL LEVELS OF THE TEST STATISTIC USING THE MCMD ESTIMATOR. Repetitions:
5,000. Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ Pareto(θ∗); (θ∗) = (2.0); Bottom
Value of Data Range (b): 1.00; Top Value of Data Range (u): 10.00; n observations are grouped into
(u−b)/d number of intervals such that for each i = 1, . . . , k, xi−xi−1 = d. Model: for each i = 1, 2, . . . , k,
F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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b Methods Levels \ n 100 200 400 600 800 1,000

0.10

1% 0.06 0.06 0.06 0.04 0.06 0.06
A 5% 0.32 0.28 0.40 0.54 0.28 0.42

10% 1.34 1.06 1.24 1.24 1.20 1.04
1% 0.02 0.04 0.04 0.02 0.02 0.06

B 5% 0.18 0.30 0.48 0.32 0.28 0.32
10% 0.78 1.00 1.06 0.98 1.16 1.08
1% 1.14 1.42 1.50 1.34 1.58 1.52

C 5% 5.62 5.20 5.50 5.24 5.94 5.58
10% 10.54 10.80 10.96 10.10 10.92 10.80
1% 1.56 1.34 1.18 1.42 1.54 1.34

D 5% 6.14 5.60 5.80 6.36 6.44 6.24
10% 11.00 10.76 10.60 11.76 11.96 11.64

0.20

1% 0.06 0.04 0.02 0.02 0.04 0.06
A 5% 0.32 0.36 0.30 0.30 0.26 0.34

10% 0.98 0.90 0.80 1.06 0.88 0.94
1% 0.04 0.04 0.04 0.08 0.04 0.06

B 5% 0.30 0.32 0.22 0.34 0.36 0.28
10% 0.76 0.98 0.98 1.26 1.04 1.20
1% 1.34 1.60 1.34 1.58 1.38 1.62

C 5% 5.64 5.72 5.52 5.86 5.18 5.78
10% 10.36 10.84 10.96 10.96 10.50 10.92
1% 1.20 1.20 1.24 1.34 1.26 1.30

D 5% 5.04 5.62 5.78 5.70 5.70 5.62
10% 10.70 10.42 11.00 10.98 11.12 11.08

0.50

1% 0.00 0.00 0.00 0.00 0.00 0.00
A 5% 0.04 0.10 0.12 0.10 0.00 0.04

10% 0.36 0.42 0.48 0.26 0.22 0.36
1% 0.02 0.00 0.02 0.00 0.00 0.00

B 5% 0.10 0.08 0.08 0.06 0.08 0.08
10% 0.38 0.40 0.40 0.34 0.28 0.42
1% 1.74 1.54 1.52 1.62 1.28 1.78

C 5% 5.54 5.58 6.00 5.54 5.34 5.68
10% 10.06 10.02 10.84 9.98 10.30 10.94
1% 1.10 1.24 1.32 1.24 1.00 1.10

D 5% 5.04 5.82 5.60 5.44 5.30 5.78
10% 9.84 10.72 10.82 10.64 10.22 11.02

1.00

1% 0.00 0.00 0.00 0.00 0.00 0.00
A 5% 0.00 0.00 0.00 0.00 0.00 0.00

10% 0.00 0.00 0.00 0.00 0.02 0.00
1% 0.00 0.00 0.00 0.00 0.00 0.00

B 5% 0.00 0.02 0.00 0.00 0.00 0.00
10% 0.00 0.02 0.02 0.00 0.00 0.00
1% 1.46 1.66 1.48 1.42 1.52 1.48

C 5% 5.24 5.42 5.26 5.38 5.70 5.30
10% 10.00 10.80 10.04 10.20 10.22 10.30
1% 0.86 1.00 1.18 0.92 1.06 1.02

D 5% 5.06 5.52 5.24 5.42 4.86 5.08
10% 10.18 10.86 10.30 11.04 9.56 10.42

Table 2: EMPIRICAL LEVELS OF THE TEST STATISTIC USING THE ML ESTIMATOR. Repetitions: 5,000.
Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ Pareto(θ∗); (θ∗) = (2.0); Bottom Value
of Data Range (b): 1.00; Top Value of Data Range (u): 10.00; n observations are grouped into (u − b)/d
number of intervals such that for each i = 1, . . . , k, xi − xi−1 = d. Model: for each i = 1, 2, . . . , k,
F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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b Methods Levels \ n 100 200 400 600 800 1,000

0.10

1% 43.56 77.84 98.88 99.90 100.0 100.0
B 5% 68.24 93.18 99.84 100.0 100.0 100.0

10% 81.24 97.50 99.94 100.0 100.0 100.0
1% 44.80 78.32 98.94 99.82 100.0 100.0

C 5% 69.74 93.66 99.80 100.0 100.0 100.0
10% 81.28 97.46 99.94 100.0 100.0 100.0

0.20

1% 41.54 79.08 98.64 99.94 100.0 100.0
B 5% 67.26 93.26 99.72 100.0 100.0 100.0

10% 78.90 97.34 99.96 100.0 100.0 100.0
1% 41.40 79.70 98.74 99.94 100.0 100.0

C 5% 66.04 93.40 99.78 100.0 100.0 100.0
10% 79.70 97.42 99.96 100.0 100.0 100.0

0.50

1% 47.60 83.18 99.02 99.94 100.0 100.0
B 5% 69.36 94.80 99.82 100.0 100.0 100.0

10% 80.32 97.60 99.96 100.0 100.0 100.0
1% 45.78 82.58 98.76 99.90 100.0 100.0

C 5% 70.20 94.70 99.86 100.0 100.0 100.0
10% 80.76 97.76 99.90 100.0 100.0 100.0

1.00

1% 40.06 75.76 98.46 99.94 100.0 100.0
B 5% 61.06 90.10 99.86 100.0 100.0 100.0

10% 71.10 95.12 99.96 100.0 100.0 100.0
1% 37.10 74.46 98.34 99.94 100.0 100.0

C 5% 59.04 90.34 99.82 100.0 100.0 100.0
10% 71.56 95.02 99.96 100.0 100.0 100.0

Table 3: EMPIRICAL POWERS OF THE TEST STATISTIC USING THE MCMD ESTIMATOR. Repetitions:
5,000. Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ Exp(λ∗); λ∗ = 1.2; Bottom Value
of Data Range (b): 1.00; Top Value of Data Range (u): 10.00; n observations are grouped into (u − b)/d
number of intervals such that for each i = 1, . . . , k, xi − xi−1 = d. Model: for each i = 1, 2, . . . , k,
F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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b Methods Levels \ n 100 20 0 400 600 800 1,000

0.10

1% 6.00 27.02 78.38 99.96 99.72 100.0
B 5% 20.22 57.46 95.70 99.90 100.0 100.0

10% 35.26 75.18 98.68 100.0 100.0 100.0
1% 41.56 79.02 99.08 100.0 100.0 100.0

C 5% 66.96 93.32 99.92 100.0 100.0 100.0
10% 78.30 97.24 99.98 100.0 100.0 100.0
1% 2.26 5.68 13.16 22.80 35.10 47.30

D 5% 8.00 14.60 29.46 45.40 59.04 70.82
10% 13.62 22.72 41.08 58.10 71.60 82.94

0.20

1% 5.62 26.04 78.48 97.14 99.68 100.0
B 5% 19.46 57.42 95.60 99.88 100.0 100.0

10% 34.30 75.44 98.84 99.98 100.0 100.0
1% 42.14 79.80 99.26 99.98 100.0 100.0

C 5% 67.20 93.62 99.94 100.0 100.0 100.0
10% 79.42 97.28 100.0 100.0 100.0 100.0
1% 4.08 7.14 17.26 30.70 45.84 58.70

D 5% 11.48 19.26 38.22 58.64 75.60 89.70
10% 18.54 29.76 53.10 76.12 91.36 98.28

0.50

1% 5.68 26.72 78.74 96.82 99.72 99.96
B 5% 19.40 56.46 95.04 99.72 99.96 100.0

10% 34.12 73.00 98.22 99.92 100.0 100.0
1% 51.04 84.20 99.42 99.98 100.0 100.0

C 5% 73.40 95.58 99.98 100.0 100.0 100.0
10% 83.26 97.96 99.98 100.0 100.0 100.0
1% 15.60 34.70 75.42 93.40 98.96 99.94

D 5% 34.40 62.90 93.08 99.14 99.92 100.0
10% 47.22 76.30 96.94 99.80 100.0 100.0

1.00

1% 0.04 1.36 16.78 51.26 82.06 95.40
B 5% 1.58 11.48 59.42 90.18 99.12 99.78

10% 5.82 28.12 82.24 97.66 99.94 99.94
1% 38.90 78.32 98.82 99.94 100.0 100.0

C 5% 62.22 92.16 99.86 100.0 100.0 100.0
10% 73.46 95.96 100.0 100.0 100.0 100.0
1% 28.62 57.62 92.28 99.04 99.94 100.0

D 5% 50.30 80.20 98.58 99.96 100.0 100.0
10% 63.20 88.82 99.46 100.0 100.0 100.0

Table 4: EMPIRICAL POWERS OF THE TEST STATISTIC USING THE ML ESTIMATOR. Repetitions: 5,000.
Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ Exp(λ∗); λ∗ = 1.2; Bottom Value of
Data Range (b): 1.00; Top Value of Data Range (u): 10.00; n observations are grouped into (u − b)/d
number of intervals such that for each i = 1, . . . , k, xi − xi−1 = d. Model: for each i = 1, 2, . . . , k,
F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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b Methods Levels \ n 100 200 400 600 800 1,000

0.10

1% 10.88 11.32 11.54 11.32 11.36 11.94
B 5% 24.16 26.00 25.94 25.68 25.12 26.78

10% 35.26 36.82 37.68 37.06 35.82 37.56
1% 11.18 11.46 11.52 11.34 11.88 12.38

C 5% 24.14 26.42 25.98 25.76 25.60 26.70
10% 35.48 37.14 38.08 36.68 36.18 38.26

0.20

1% 10.96 11.18 10.86 11.72 11.58 11.44
B 5% 25.20 24.90 25.28 25.88 26.46 26.18

10% 36.54 35.94 36.80 36.38 37.36 37.02
1% 10.86 11.18 10.72 11.56 11.20 11.48

C 5% 25.28 24.90 25.38 25.66 26.08 26.30
10% 36.78 36.18 37.02 36.56 37.68 37.14

0.50

1% 11.52 11.46 11.90 10.72 11.78 10.94
B 5% 25.14 24.70 24.12 23.64 24.36 24.20

10% 35.56 34.78 34.60 34.10 34.16 34.30
1% 11.62 11.48 11.58 11.00 11.34 10.86

C 5% 24.78 24.26 24.82 23.86 24.70 23.72
10% 35.54 34.74 34.42 34.02 34.36 34.56

1.00

1% 6.80 7.06 5.94 6.20 5.84 5.72
B 5% 16.24 16.54 14.84 15.06 14.82 14.32

10% 25.46 25.14 23.00 23.20 23.32 21.98
1% 6.34 6.56 5.68 6.34 5.72 5.46

C 5% 15.60 16.30 14.88 14.92 14.38 14.50
10% 25.18 24.70 23.06 22.52 23.44 22.24

Table 5: EMPIRICAL LOCAL POWERS OF THE TEST STATISTIC USING THE MCMD ESTIMATOR. Rep-
etitions: 5,000. Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ (1 − 5/

√
n)Pareto(θ∗) +

(5/
√
n)Exp(λ∗); (θ∗, λ∗) = (2.0, 1.2); Bottom Value of Data Range (b): 1.00; Top Value of Data Range

(u): 10.00; n observations are grouped into (u − b)/d number of intervals such that for each i = 1, . . . , k,
xi − xi−1 = d. Model: for each i = 1, 2, . . . , k, F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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b Methods Levels \ n 100 200 400 600 800 1,000

0.10

1% 0.46 0.72 1.08 0.92 0.90 0.72
B 5% 3.42 4.44 4.20 4.34 4.76 4.58

10% 7.66 9.46 10.08 9.66 10.00 9.80
1% 10.14 11.22 11.32 11.28 11.86 11.20

C 5% 23.70 25.22 25.42 25.58 26.42 25.98
10% 34.18 36.82 35.78 36.56 37.26 37.60
1% 1.26 1.70 1.80 1.90 2.04 1.96

D 5% 5.14 6.30 6.96 7.06 7.46 7.48
10% 8.90 11.24 12.00 12.70 13.14 13.30

0.20

1% 0.64 0.96 0.74 0.98 0.74 0.88
B 5% 3.86 4.40 4.14 4.58 4.00 4.24

10% 8.68 9.02 8.80 9.72 9.06 9.46
1% 11.66 11.72 11.22 11.82 11.28 11.52

C 5% 25.80 26.52 25.26 25.86 25.20 26.52
10% 36.60 36.80 36.00 36.92 35.86 37.16
1% 2.10 2.24 2.14 2.44 2.72 2.68

D 5% 6.96 7.88 7.80 8.54 8.92 8.56
10% 12.04 13.62 14.40 14.68 15.88 15.46

0.50

1% 0.34 0.28 0.38 0.26 0.32 0.30
B 5% 2.28 2.22 2.66 2.06 2.42 2.20

10% 5.44 5.74 5.96 5.60 5.76 5.22
1% 11.94 12.00 12.18 12.32 12.78 12.24

C 5% 26.12 25.48 25.42 24.60 26.48 25.10
10% 35.74 35.76 35.52 34.88 36.72 34.60
1% 4.58 5.28 4.72 4.74 4.96 4.70

D 5% 14.30 14.18 14.06 13.62 13.78 14.36
10% 21.08 21.82 22.34 21.70 22.02 23.82

1.00

1% 0.00 0.00 0.00 0.02 0.00 0.00
B 5% 0.00 0.00 0.04 0.06 0.06 0.02

10% 0.20 0.18 0.30 0.30 0.24 0.20
1% 6.12 6.28 6.76 6.02 6.08 5.68

C 5% 15.62 15.94 16.48 15.84 15.20 14.92
10% 25.24 23.94 24.42 23.86 24.00 23.84
1% 5.56 5.26 4.50 4.52 3.94 3.90

D 5% 15.44 14.38 12.80 13.16 13.18 13.14
10% 22.82 22.10 21.00 20.64 21.62 21.60

Table 6: EMPIRICAL LOCAL POWERS OF THE TEST STATISTIC USING THE ML ESTIMATOR. Repeti-
tions: 5,000. Bootstrap and Null Distribution Repetitions: 200. DGP: Xt ∼ (1 − 5/

√
n)Pareto(θ∗) +

(5/
√
n)Exp(λ∗); (θ∗, λ∗) = (2.0, 1.2); Bottom Value of Data Range (b): 1.00; Top Value of Data Range

(u): 10.00; n observations are grouped into (u − b)/d number of intervals such that for each i = 1, . . . , k,
xi − xi−1 = d. Model: for each i = 1, 2, . . . , k, F (xi, θ) = 1− [(u/xi)

θ − 1]/[(u/b)θ − 1].
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Statistics\ Years 2007 2008 2009 2010 2011 2012
Sample Size 10,464,206 11,066,599 11,590178 12,448,203 13,265,840 14,104,742

Total Group Size 2,761 3,352 3,418 3,988 3,553 4,241
First Group (0.0, 0.5] (0.0, 0.5] (0.0, 0.5] (0.0, 0.5] (0.0, 0.6] (0.0, 0.6]
Last Group (276.40∞] (335.50,∞] (342.10,∞] (399.10,∞] (355.70,∞] (424.50,∞]

Sample Average1 0.3325 0.3361 0.3331 0.3456 0.3582 0.3640
Sample Average2 0.8434 0.8443 0.8443 0.8723 1.0428 1.0334
Sample Variance 2.2668 2.2194 2.1780 2.5191 3.6052 3.4154
Sample Skewness 59.823 67.084 70.287 73.061 59.930 68.368
Sample Kurtosis 6369.6 8075.6 8937.7 9378.1 6498.4 8807.1
Sample Median 138.45 168.00 171.30 199.80 178.10 212.50

Sample Mode Group (0.5, 0.6] (0.5, 0.6] (0.5, 0.6] (0.5, 0.6] (0.6, 0.7] (0.6, 0.7]
Populations ≥ 15 39,873,045 40,459,969 40,949,973 41,434,992 42,008,528 42,445,378
Populations ≥ 20 36,640,987 37,133,082 37,536,274 37,967,813 38,540,049 39,021,687

Labor Forces 39,170,000 39,598,000 40,092,000 40,590,000 41,052,000 41,582,000
Employments 23,433,000 23,577,000 23,506,000 23,829,000 24,244,000 24,681,000

Table 7: DESCRIPTIVE STATISTICS OF INCOME TABULATIONS AND POPULATIONS OF KOREA (2007–
2012) All other groups from the second to the second to last have the same group interval size: KRW 10
mil. All income figures are measured in KRW 100 mil. Sample Average1 is the average of sample incomes
computed by the National Tax Service of Korea using all individual observations. Sample average2, sample
variance, sample skewness, sample kurtosis, sample mode group, and sample median group are the statistics
obtained by using the group median values and their frequencies from the second to the second to last
groups.
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Years Top x-% Statistics \ Populations ≥ 15 year old ≥ 20 year old
measured by measured by
Labor Forces Employments

2007

1.00%

b 0.5000 0.5000 0.5000 0.5000
u 2.5000 2.8000 2.5000 2.5000
x̂n 0.8802 0.9000] 0.8860 1.0735

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.1000 2.1000 2.1000 2.1000
u 4.1000 4.1000 4.1000 4.1000
x̂n 2.3370 2.4484 2.3599 3.1541

p-value of T̂n 45.500 45.500 45.500 45.000

0.05%

b 2.1000 2.1000 2.1000 3.5000
u 4.1000 4.1000 4.1000 6.1000
x̂n 3.4698 3.6512 3.5070 4.8222

p-value of T̂n 45.500 45.500 45.500 94.000

0.01%

b 8.5000 8.5000 8.5000 12.000
u 10.500 11.500 10.500 14.000
x̂n 9.5534 10.072 9.6618 13.206

p-value of T̂n 97.500 99.500 97.500 78.500

2008

1.00%

b 0.5000 0.5000 0.5000 0.5000
u 2.5000 2.5000 2.5000 2.5000
x̂n 0.9286 0.9593 0.9362 1.1000]

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.4000 2.4000 2.4000 2.4000
u 4.4000 4.4000 4.4000 4.4000
x̂n 2.4325 2.5497 2.4614 3.2908

p-value of T̂n 100.00 100.00 100.00 100.00

0.05%

b 2.4000 2.4000 2.4000 4.3000
u 4.4000 4.4000 4.4000 6.5000
x̂n 3.5975 3.7852 3.6435 4.9975

p-value of T̂n 100.00 100.00 100.00 37.000

0.01%

b 9.0000 9.0000 9.0000 12.200
u 11.000 11.000 11.000 14.200
x̂n 9.5740 10.117 9.7095 13.291

p-value of T̂n 72.500 72.500 72.500 52.500

2009

1.00%

b 0.5000 0.5000 0.5000 0.5000
u 2.5000 2.5000 2.5000 2.5000
x̂n 0.9382 0.9692 0.9458 1.1609

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.4000 2.5000 2.5000 2.5000
u 4.4000 5.8000 5.8000 4.8000
x̂n 2.4943 2.6136 2.5191 3.3987

p-value of T̂n 100.00 14.000 14.000 100.00

0.05%

b 2.5000 2.5000 2.5000 2.5000
u 5.8000 5.8000 5.8000 5.8000
x̂n 3.6794 3.8672 3.7241 5.0761

p-value of T̂n 14.000 14.000 14.000 14.000

0.01%

b 8.4000 8.4000 8.4000 12.000
u 11.000 11.000 11.000 14.200
x̂n 9.4237 9.9125 9.5404 12.946

p-value of T̂n 100.00 100.00 100.00 19.000

Table 8: EMPIRICAL TESTING AND TOP INCOME ESTIMATION OF KOREA (2007–2009). Notes: b and
u are the lower and upper border values of the grouped data; x̂n is the estimated top x-% income out of the
given population; superscript ] indicates that the estimated top x-% income is identical to x]. The units of
b, u, and x̂n are KRW 100 mil., and p-values are in %.
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Years Top x-% Statistics \ Populations ≥ 15 year old ≥ 20 year old
measured by measured by
Labor Forces Employments

2010

1.00%

b 0.5000 0.5000 0.5000 0.5000
u 2.5000 2.5000 2.5000 2.5000
x̂n 1.0000] 1.0686 1.0400 1.2923

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.2000 2.2000 2.2000 2.2000
u 6.1000 6.1000 6.1000 6.1000
x̂n 2.7646 2.8973 2.7953 3.7364

p-value of T̂n 22.000 22.000 22.000 22.000

0.05%

b 2.2000 2.2000 2.2000 2.2000
u 6.1000 6.1000 6.1000 6.1000
x̂n 4.0410 4.2463 4.0883 5.5887

p-value of T̂n 22.000 22.000 22.000 22.000

0.01%

b 8.0000 10.000 9.0000 10.000
u 12.000 15.000 12.000 15.000
x̂n 10.392 10.981 10.500] 14.626

p-value of T̂n 35.500 58.500 36.000 58.500

2011

1.00%

b 0.6000 0.6000 0.6000 0.6000
u 2.6000 2.6000 2.6000 2.6000
x̂n 1.0739 1.1000] 1.0836 1.3000]

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.8000 2.8000 2.8000 2.8000
u 6.9000 6.9000 6.9000 6.9000
x̂n 3.0855 3.2428 3.1268 4.2407

p-value of T̂n 29.000 29.000 29.000 29.000

0.05%

b 2.8000 2.8000 2.8000 2.8000
u 6.9000 6.9000 6.9000 6.9000
x̂n 4.6096 4.8471 4.6719 6.3624

p-value of T̂n 29.000 29.000 29.000 29.000

0.01%

b 10.000 11.000 10.000 15.000
u 13.000 13.100 13.000 17.000
x̂n 11.825 12.396 11.980 16.248

p-value of T̂n 17.500 100.00 17.500 57.000

2012

1.00%

b 0.6000 0.6000 0.6000 0.6000
u 2.6000 2.6000 2.6000 2.6000
x̂n 1.1000] 1.1521 1.1239 1.3817

p-value of T̂n 0.0000 0.0000 0.0000 0.0000

0.10%

b 2.0000 2.0000 2.0000 2.0000
u 7.0000 7.0000 7.0000 7.0000
x̂n 3.1511 3.2980 3.1863 4.2427

p-value of T̂n 100.00 100.00 100.00 100.00

0.05%

b 2.0000 2.0000 2.0000 2.0000
u 7.0000 7.0000 7.0000 7.0000
x̂n 4.6182 4.8442 4.6723 6.3367

p-value of T̂n 100.00 100.00 100.00 100.00

0.01%

b 9.7000 10.500 11.000 15.700
u 12.000 13.500 13.000 17.900
x̂n 11.789 12.381 11.931 16.161

p-value of T̂n 66.500 34.000 78.500 100.00

Table 9: EMPIRICAL TESTING AND TOP INCOME ESTIMATION OF KOREA (2010–2012). Notes: b and
u are the lower and upper border values of the grouped data; x̂n is the estimated top x-% income out of the
given population; superscript ] indicates that the estimated top x-% income is identical to x]. The units of
b, u, and x̂n are KRW 100 mil., and p-values are in %.
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Top x-% Years \ Populations ≥ 15 year old ≥ 20 year old measured by measured by
Labor Forces Employments

1.00%

2007 11.45 (11.70) 11.06 (11.19) 11.33 (11.59) 8.63 (8.93)
2008 11.37 (11.79) 10.80 (11.26) 11.23 (11.65) 8.79 (8.94)
2009 11.21 (11.69) 10.64 (11.17) 11.07 (11.56) 8.24 (8.82)
2010 12.25 (12.38) 11.09 (11.83) 11.56 (12.24) 8.57 (9.38)
2011 12.55 (12.89) 12.07 (12.33) 12.37 (12.74) 9.53 (9.84)
2012 12.22 (12.29) 11.37 (11.77) 11.82 (12.16) 8.86 (9.40)

0.10%

2007 4.10 (4.10) 3.96 (3.96) 4.07 (4.07) 3.32 (3.31)
2008 4.10 (4.11) 3.96 (3.96) 4.07 (4.02) 3.32 (3.30)
2009 4.05 (4.05) 3.90 (3.91) 4.01 (4.02) 3.22 (3.22)
2010 4.34 (4.34) 4.19 (4.19) 4.30 (4.31) 3.46 (3.46)
2011 4.50 (4.61) 4.33 (4.45) 4.45 (4.57) 3.56 (3.67)
2012 4.31 (4.32) 4.16 (4.17) 4.27 (4.28) 3.44 (3.44)

0.05%

2007 3.11 (3.11) 3.01 (3.00) 3.09 (3.08) 2.51 (2.51)
2008 3.10 (3.10) 3.00 (3.00) 3.07 (3.07) 2.49 (2.49)
2009 3.04 (3.04) 2.93 (2.93) 3.01 (3.01) 2.42 (2.42)
2010 3.28 (3.27) 3.17 (3.16) 3.25 (3.25) 2.62 (2.62)
2011 3.35 (3.45) 3.23 (3.33) 3.32 (3.42) 2.64 (2.75)
2012 3.24 (3.23) 3.13 (3.12) 3.21 (3.20) 2.58 (2.57)

0.01%

2007 1.61 (1.62) 1.56 (1.56) 1.60 (1.60) 1.28 (1.29)
2008 1.61 (1.61) 1.56 (1.56) 1.60 (1.60) 1.29 (1.29)
2009 1.57 (1.57) 1.52 (1.52) 1.56 (1.56) 1.26 (1.26)
2010 1.72 (1.72) 1.66 (1.66) 1.71 (1.71) 1.38 (1.38)
2011 1.65 (1.76) 1.59 (1.70) 1.63 (1.74) 1.29 (1.40)
2012 1.64 (1.64) 1.58 (1.59) 1.63 (1.63) 1.31 (1.31)

Table 10: TOP INCOME SHARES OF KOREA(2007–2012, IN %). The figures show the share of the top
x-% income out of total income of each year. The figures are the same shares measured by Atkinson’s (
2005) mean-split histogram method computed by Park and Jeon (2014).
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