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Abstract

An in�uential paper by Kleibergen (2005) introduces Lagrange multiplier (LM) and conditional

likelihood ratio-like (CLR) tests for nonlinear moment condition models. These procedures aim

to have good size performance even when the parameters are unidenti�ed or poorly identi�ed.

However, the asymptotic size and similarity (in a uniform sense) of these procedures has not been

determined in the literature. This paper does so.

This paper shows that the LM test has correct asymptotic size and is asymptotically similar

for a suitably chosen parameter space of null distributions. It shows that the CLR tests also have

these properties when the dimension p of the unknown parameter � equals 1:When p � 2; however,
the asymptotic size properties are found to depend on how the conditioning statistic, upon which

the CLR tests depend, is weighted. Two weighting methods have been suggested in the literature.

The paper shows that the CLR tests are guaranteed to have correct asymptotic size when p � 2

with one weighting method, combined with the Robin and Smith (2000) rank statistic. The paper

also determines a formula for the asymptotic size of the CLR test with the other weighting method.

However, the results of the paper do not guarantee correct asymptotic size when p � 2 with the

other weighting method, because two key sample quantities are not necessarily asymptotically

independent under some identi�cation scenarios.

Analogous results for con�dence sets are provided. Even for the special case of a linear in-

strumental variable regression model with two or more right-hand side endogenous variables, the

results of the paper are new to the literature.

Keywords: asymptotics, conditional likelihood ratio test, con�dence set, identi�cation, infer-

ence, Lagrange multiplier test, moment conditions, robust, test, weak identi�cation, weak instru-

ments.

JEL Classi�cation Numbers: C10, C12.



1 Introduction

We consider the moment condition model

EF g(Wi; �) = 0
k; (1.1)

where 0k = (0; :::; 0)0 2 Rk; the equality holds when � 2 � � Rp is the true value, fWi 2 Rm : i =
1; :::; ng are stationary and strong mixing observations with distribution F; g is a known (possibly
nonlinear) function from Rm+p to Rk with k � p; and EF (�) denotes expectation under F: This
paper is concerned with tests of the null hypothesis

H0 : � = �0 versus H1 : � 6= �0: (1.2)

We consider the Lagrange Multiplier (LM) test of Kleibergen (2005) and adaptations of Moreira�s

(2003) conditional likelihood ratio (CLR) test to the nonlinear moment condition model (1.1),

as in Kleibergen (2005, 2007), Smith (2007), Newey and Windmeijer (2009), and Guggenberger,

Ramalho, and Smith (2012). The LM and CLR tests are designed to have better overall power

than the Anderson and Rubin (1949)-type S-tests of Stock and Wright (2000) when k > p:1

These tests aim to have good size even when the parameters are unidenti�ed or weakly identi�ed.

Weak identi�cation and weak instruments (IV�s) can occur in a wide variety of empirical applica-

tions in economics with linear and nonlinear models. Examples include: new Keynesian Phillips

curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital as-

set pricing models (CCAPM), interest rate dynamics models, Berry, Levinsohn, and Pakes (1995)

(BLP) models of demand for di¤erentiated products, returns-to-schooling equations, nonlinear re-

gression, autoregressive-moving average models, GARCH models, smooth transition autoregressive

(STAR) models, parametric selection models estimated by Heckman�s two step method or maxi-

mum likelihood, mixture models, regime switching models, and all models where hypotheses testing

problems arise in which a nuisance parameter appears under the alternative hypothesis, but not

under the null. For references, see (for example) Andrews and Guggenberger (2014a) (hereafter

AG2).

The contribution of the paper is to determine the asymptotic sizes of the tests listed above,

and the con�dence sets (CS�s) that correspond to them, for suitably de�ned parameter spaces of

distributions, and to see whether their asymptotic sizes necessarily equal their nominal sizes. We

1For the special case of the linear IV model, power comparisons (some theoretical and some simulation based) are
given in Kleibergen (2002), Moreira (2003), Andrews, Moreira, and Stock (2006, 2008), Chernozhukov, Hansen, and
Jansson (2009), Hillier (2009), Mikusheva (2010), and Ploberger (2012).
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also determine whether these tests and CS�s are asymptotically similar in a uniform sense. The

strength of identi�cation of � depends on the magnitude of the singular values of the expectation

of the Jacobian

G(Wi; �) :=
@

@�0
g(Wi; �) 2 Rk�p (1.3)

of g(Wi; �): The parameter space we consider does not impose any restrictions on the magnitude

of these singular values. The results hold for arbitrary �xed k and p with k � p:

We show that Kleibergen�s LM test (and CS) has correct asymptotic size and is uniformly

asymptotically similar for a parameter space of null distributions that is fairly general. But, the

parameter space does require an eigenvalue condition on the asymptotic variance of a transformation

of the conditioning statistic (onto which the normalized sample moments are projected). This

condition guarantees that the asymptotic version of the k � p conditioning statistic (after suitable
normalization) is full rank p a.s. This condition is shown not to be redundant in Section 12 in

the Appendix to this paper. The parameter space also requires that the variance matrix of the

moment functions is nonsingular. This assumption is needed because the inverse of the sample

variance matrix is employed to make the conditioning statistic asymptotically independent of the

sample moments. This condition can be restrictive because in some models lack of identi�cation

is accompanied by singularity of the variance matrix of the moments. For example, this occurs in

models in which for some null hypothesis a nuisance parameter appears only under the alternative

hypothesis.

The nonlinear CLR tests (and CS�s) that we consider depend on a rank statistic, which mea-

sures the rank of the expectation of G(Wi; �): Following Kleibergen (2005), the rank statistics that

have been considered in the literature depend on a weighted orthogonalized version of the sam-

ple Jacobian, n�1
Pn

i=1G(Wi; �); where the orthogonalization is designed to create a conditioning

statistic that is asymptotically independent of the sample moments. Two weightings have been

considered. The �rst, proposed by Kleibergen (2005, 2007) and Smith (2007), premultiplies the

vectorized orthogonalized sample Jacobian by the negative square root of a consistent estimator of

its kp � kp variance matrix. We call this the Jacobian-variance weighting. The second, proposed

by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012), multiplies the

k � p orthogonalized sample Jacobian by the negative square root of a consistent estimator of the

k � k variance matrix of the sample moments. We call this the moment-variance weighting.
Given the weighting of the orthogonalized sample Jacobian, several functional forms for the rank

statistic have been considered in the literature, including the rank statistics of Cragg and Donald

(1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006). We provide results for

a general form of the rank statistic and verify the conditions imposed on the general form for
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the Robin and Smith (2000) rank statistic. The latter is a popular choice because it is easy to

compute. Note that when p = 1; these rank statistics all reduce to the squared Euclidean norm of

the weighted orthogonalized sample Jacobian vector.

For the case where p = 1; we show that the CLR tests (and CS�s) based on either weighting

have correct asymptotic size and are asymptotically similar in a uniform sense (for parameter spaces

that are the same as those considered for the LM test and CS, or slightly smaller, depending on

the method of weighting).

For the case where p � 2; we show that the CLR test (and CS) based on the Robin and

Smith (2000) rank statistic with the moment-variance weighting has correct asymptotic size and

is uniformly asymptotically similar for the same parameter spaces of distributions as considered

for the LM test (and CS). On the other hand, we cannot show that the CLR test (and CS) based

on the Robin and Smith (2000) rank statistic with the Jacobian-variance weighting necessarily

has correct asymptotic size. The reason is that the weighted orthogonalized sample Jacobian is

not necessarily asymptotically independent of the sample moments under some sequences of null

distributions. This occurs because the random variation of the kp� kp sample variance estimator

turns out to a¤ect the asymptotic distribution of the weighted orthogonalized sample Jacobian in

some cases. Roughly speaking, this occurs when some parameters are weakly identi�ed and some

are strongly identi�ed, or when some transformations of the parameters are weakly identi�ed and

some transformations are strongly identi�ed. (Obviously, when p = 1 these scenarios cannot occur.)

This phenomenon has not been demonstrated previously in the literature.

Simulations in a linear IV regression model with two right-hand side endogenous variables cor-

roborate the existence of the asymptotic correlations discussed in the previous paragraph. However,

for the particular model and error distributions considered, these correlations have a small e¤ect

on the asymptotic null rejection probabilities of the CLR test with Jacobian-variance weighting.

These probabilities are very close to the nominal size of the test.

The results of the paper show that weak identi�cation occurs (i.e., the test statistics have

nonstandard asymptotic distributions due to identi�cation de�ciency) when limn1=2spFn < 1;
where fsjF : j = 1; :::; pg are the singular values of the expected Jacobian, EFG(Wi; �0); ordered

to be nonincreasing in j; F denotes a null distribution, fFn : n � 1g denotes a sequence of
null distributions for which the previous limit exists, and the limit is taken as n ! 1: Strong
or semi-strong identi�cation occurs when limn1=2spFn = 1: Strong identi�cation occurs when
lim spFn > 0 and semi-strong identi�cation occurs when limn

1=2spFn =1 and lim spFn = 0: When

p = 1; s1F = jjEFG(Wi; �0)jj and weak identi�cation occurs when limn1=2jjEFG(Wi; �0)jj < 1:
However, when p � 2; weak identi�cation can take many di¤erent forms. Weak identi�cation in the
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standard sense, i.e., when all parameters are weakly identi�ed, e.g., as in Staiger and Stock (1997),

occurs when limn1=2s1Fn < 1: This is a relatively easy case to analyze asymptotically. Weak
identi�cation also occurs when limn1=2spFn < 1; but limn1=2s1Fn = 1; i.e., di¤erent singular
values behave di¤erently asymptotically. We refer to this as weak identi�cation in a nonstandard

sense. It includes the (some weak/some strong) identi�cation scenario considered in Stock and

Wright (2000) based on their Assumption C. The nonstandard weak identi�cation scenario is the

scenario in which the weighted orthogonalized sample Jacobian may not be independent of the

sample moments when the Jacobian-variance weighting is employed. This case is much more di¢ cult

to analyze asymptotically. A subset of this case, which we refer to as joint weak identi�cation, is

a case in which the previous conditions hold (i.e., limn1=2spFn < 1 and limn1=2s1Fn = 1) and
limn1=2jjEFnGj(Wi; �0)jj =1 for all j � p; where Gj(Wi; �0) denotes the jth column of G(Wi; �0):

Under joint weak identi�cation, each column of the Jacobian behaves as though the corresponding

parameter is strongly or semi-strongly identi�ed, but jointly, weak identi�cation occurs (because

limn1=2spFn <1). As discussed in Section 2 below, no results in the literature consider all of the
cases of weak identi�cation that may occur when p � 2:2

For clarity, the results of the paper are stated and derived �rst for i.i.d. observations. Then,

they are extended to cover time series observations that are stationary and strong mixing. This

way of proceeding lets us provide somewhat weaker assumptions in the i.i.d. case than if the i.i.d.

case is treated as a special case of the time series results.

All limits below are taken as n!1: The expression A := B denotes that A is de�ned to equal

B:

The paper is organized as follows. Section 2 discusses the related literature and the contribution

of this paper to the literature. Section 3 de�nes the moment condition model. Section 4 de�nes and

provides asymptotic results for Kleibergen�s (2005) LM test. Section 5 does likewise for Kleibergen�s

(2005) CLR test with Jacobian-variance weighting. Section 6 does likewise for Kleibergen�s CLR

test with moment-variance weighting, as in Newey and Windmeijer (2009) and Guggenberger,

Ramalho, and Smith (2012). Section 7 provides results for the tests with time series observations.

An Appendix provides some of the proofs of the results given in the paper. The remaining proofs

and some additional results are given in the Supplemental Material to this paper, see Andrews and

Guggenberger (2014b).

2The de�nitions of the identi�cation categories given here, which are based on fsjFn : j � p; n � 1g; where sjF is
the jth largest singular value of EFG(Wi; �0); are suitable when �min(V arF (g(Wi; �0))) is bounded away from zero
over the parameter space of distributions F:When the latter condition does not hold, but �min(V arF (g(Wi; �0))) > 0
for all distributions F; then sjF should be de�ned to be the jth largest singular value of the normalized expected
Jacobian V ar�1=2F (g(Wi; �0))EFG(Wi; �0) in order to obtain the appropriate de�nitions of the identi�cation categories.
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2 Discussion of the Literature

To date in the literature it has only been shown that Kleibergen�s LM and CLR tests control

the limiting null rejection probability under certain strong instrument and certain weak instrument

sequences. For example, concerning the validity of the LM and CLR tests, Kleibergen (2005, proofs

of Theorems 1 and 3) deals only with sequences of matrices EFnG(Wi; �) whose limits are a full

column rank matrix or a matrix of zeros.3 Kleibergen (2005) does not consider the cases where

(i) the limit of EFnG(Wi; �) exists and is nonzero, some of its columns are equal to zero,

and the remaining columns are linearly independent, and

(ii) the limit of EFnG(Wi; �) exists and is nonzero and some subset of its columns are

nonzero but less than full column rank, (2.1)

where fFn : n � 1g is a sequence of true null distributions that generates the data. Case (ii) is an
example of �joint weak identi�cation� in which several parameters individually satisfy conditions

that indicate strong identi�cation, but jointly exhibit weak identi�cation. This paper is the �rst

to investigate joint weak identi�cation. Results for cases (i) and (ii) are needed to establish the

asymptotic sizes of the LM and CLR tests.

Example. Consider as a simple example the linear IV regression model

y1i = Y 02i� + ui;

Y2i = �0Zi + V2i; (2.2)

where y1i 2 R and Y2i 2 Rp are endogenous variables, Zi 2 Rk for k � p is a vector of IV�s, and �

(= �F ) 2 Rk�p is an unknown unrestricted parameter matrix.4 The data fWi = (y1i; Y
0
2i; Z

0
i)
0 : i =

1; :::; ng are i.i.d. and EF ((ui; V 02i)0jZi) = 0p+1 a.s. Here m = 1 + p+ k and

g(Wi; �) = Zi(y1i � Y 02i�) and G(Wi; �) = �ZiY 02i: (2.3)

3See the �rst equation of the proof of Kleibergen�s (2005) Theorem 1 in which the rate of convergence of hisbDT (�0; Y ) to its limit is stated to be T�� for � = 0 (which is a typo and should be 1=2) or 1 and J�(�0) (which equals
limEFnGi(�0) in our notation) is assumed to exist and have full column rank when � = 1:

4For simplicity, no exogenous variables are included in the structural equation. See Andrews, Cheng, and Guggen-
berger (2009) and Mikusheva (2010) for asymptotic size results for the CLR test in linear IV regression models with
included exogenous variables, but with only one right-hand side endogenous variable. Due to the latter feature, cases
(i) and (ii) in (2.1) and case (iv) in (2.5) below do not arise in the aforementioned papers.
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By assumption, EF g(Wi; �) = EFZiui = 0
k when � is the true vector. In addition, we have

EFG(Wi; �) = �EFZiZ 0i�: (2.4)

The latter does not depend on � but does depend on the reduced-form coe¢ cient matrix � which

determines the strength of the IV�s. Stock and Wright (2000), Guggenberger and Smith (2005), and

Guggenberger, Ramalho, and Smith (2012) consider weak/strong IV sequences �n = (�1n; �2n) 2
Rk�(p1+p2); where �1n = n�1=2h1 for a �xed h1 and �2n = �2 is a �xed matrix (that does not

depend on n) with full column rank p2: Specialized to the linear IV setting, the goal of this paper

is to establish that the LM and CLR tests of the hypotheses in (1.2) have asymptotic sizes equal

to their nominal sizes for a parameter space that does not impose any restrictions on �:

Case (ii) identi�cation failure in (2.1) occurs in model (2.2) with p � 2 for sequences �n where a
subset of the columns of �n converge to nonzero vectors that are linearly dependent. For example,

this occurs when p = 2; �n 2 Rk�2; and the columns of �n are (1; :::; 1)0 and (1+ o(1); :::; 1+ o(1))0:
Weak identi�cation of this type has not been dealt with in the literature on LM and CLR tests in

linear IV models. We do so in this paper (for both linear and nonlinear models).

We return now to the discussion of the general moment condition model. The missing cases

in Kleibergen�s (2005) proofs of Theorems 1 and 3 are important because they are likely cases in

practice. For example, the case where some parameters are strongly identi�ed and others are weakly

identi�ed (likely) occurs in Stock and Wright�s (2000) (SW) and Kleibergen�s (2005) consumption

capital asset pricing model (CCAPM) example.

Guggenberger and Smith (2005), Otsu (2006), Inoue and Rossi (2011), Guggenberger, Ramalho,

and Smith (2012), and I. Andrews (2014) deal with a subset of case (i) for generalized empirical

likelihood (GEL) and GMM versions of the LM and CLR tests, but rule out case (ii) by assump-

tion.5 ;6 Furthermore, their results for case (i) rely on Assumption C of SW.7 ;8 This assumption

is an innovative contribution to the literature, but it has some signi�cant drawbacks as a general

high-level condition.

5Case (ii) is ruled out by Assumption ID(iii) in Guggenberger and Smith (2005) and Assumption ID�(iii) in
Guggenberger, Ramalho, and Smith (2012), which assume that the matrix M2(�) has full column rank, where M2(�)
contains the columns of EFG(Wi; �) that correspond to the strongly identi�ed parameters. Case (ii) also is ruled out
by Assumption C(ii) in Stock and Wright (2000), which is used to obtain results for GMM estimators.

6Guggenberger and Smith (2005), Otsu (2006), and Inoue and Rossi (2011) do not consider CLR tests.
7Assumption C of SW requires that the expected moment functions can be written as n�1=2m1n(�) +m2(�) for

some functions m1n and m2 and some (�; �) such that � = (�0; �0)0 and (@=@�0)m2(�0) has full column rank, where
�0 denotes the true value of �: In addition, it requires that m1n(�)! m1(�) uniformly over � 2 � for some real-valued
function m1; m2(�0) = 0

k; m2(�) 6= 0k for � 6= �0; and (@=@�0)m2(�) is continuous.
8 Inoue and Rossi (2011) and I. Andrews (2014, Appendix B) use conditions that are much like Assumption C

of SW, but they are not exactly the same. As discussed below, Guggenberger, Ramalho, and Smith (2012) impose
high-level conditions on a rank statistic when dealing with a CLR test under Assumption C of SW.
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First, while Assumption C is easy to verify or refute in linear IV models, it is hard to verify

or refute in many, or most, nonlinear models. As far as we are aware, it has only been veri�ed

in the literature for one nonlinear model and that nonlinear model is only a local approximation

to the model of interest. The model of interest is the two parameter CCAPM considered in SW

and Kleibergen (2005). SW verify Assumption C for a local approximation to this model that is a

polynomial in the parameters, see p. 1093 of their Appendix B.9 It appears to be hard to verify or

refute Assumption C in the CCAPM of interest.

Another example where Assumption C is hard to verify or refute is the following simple nonlinear

regression model with endogeneity, one weakly-identi�ed parameter, and one strongly-identi�ed

parameter: yi = f(Y1i�1 + Y2i�2) + ui; Y1i = Z 0i�1n + V1i; Y2i = Z 0i�2 + V2i; �1n = Cn�1=2 for some

constant vector C 2 Rk; �2 6= 0k; f(�) is a known function, Zi is a vector of IV�s, and � = (�1; �2)0:
The moment functions take the form (yi � f(Y1i�1 + Y2i�2))Zi: For an arbitrary function f it

is di¢ cult to determine whether Assumption C holds or not. If f is a quadratic function, or a

polynomial, then it may be possible to verify Assumption C. But, even for such functions, doing

so does not seem easy.

Second, Assumption C is restrictive. For example, it fails to hold in a nonlinear regression model

with weak identi�cation due to the coe¢ cient on a nonlinear regressor being close to zero. Suppose

the model is yi = �h(Xi; �) + ui for i = 1; :::; n; where yi and Xi are observed, ui is an unobserved

mean zero error, and � = (�; �)0: The parameter � is weakly identi�ed when � = Cn�1=2 for some

constant C: It is shown in Appendix E of the Supplemental Material to Andrews and Cheng (2012)

that Assumption C fails in this case.

Another example where Assumption C fails is a linear IV model with joint estimation of the

right-hand side (rhs) endogenous variable parameter, which is weakly identi�ed, and the structural

equation error variance, which is strongly identi�ed: y1i = Y2i�1+ui; Y2i = Zi�n+V2i; Zi 2 R (for
simplicity), �n = Cn�1=2 for some constant C; V ar(ui) = �2 > 0; � = (�1; �2)

0; and Eui = EV2i =

EZiui = EZiV2i = 0: The moment functions are (y1i�Y2i�1)Zi and (y1i�Y2i�1)2��2: Assumption
C fails in this model.10

9The approximate model for which SW verify Assumption C is a local approximation to the model of interest
based on a Taylor series expansion about a reference parameter value 
0; in their notation. This approximation is
necessarily accurate only for 
 close to 
0: For other values of 
; the approximate model may be di¤erent from the
model of interest. Note that Assumption C is a global assumption. So, the fact that it holds for the approximate
model local to 
0 does not imply that it approximately holds for the original model.
10Assumption C of SW fails in the present example because the expected moment functions are E(y1i�Y2i�1)Zi =

�n�1=2EZ2i C(�1 � �10) and E(y1i � Y2i�1)2 � �2 = n�1EZ2i C
2(�1 � �10)2 + a(�); where a(�) := �2V (�1 � �10)2 �

2�uV (�1 � �10) + �20 � �2; �0 = (�10; �20)0 denotes the true value of �; �2V := V ar(V2i); �uV := Cov(ui; V2i); and �2V
and �uV do not depend on n: Because a(�) does not depend on n; but does depend on both �1 and �2; one must take
� = � and m2(�) = (0; a(�))

0 in Assumption C (see the footnote above which speci�es Assumption C). In this case,
(@=@�0)m2(�0) is a 2� 2 matrix with less than full rank, because its �rst row is zero, which violates Assumption C.
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The results of this paper do not impose any conditions on the functional form of the expected

moment conditions and their derivatives, like Assumption C does. The conditions given are more

general than the conditions used in the papers that rely on Assumption C.

We also point out that no papers in the literature deal with cases where p � 2 and the limit

of EFnG(Wi; �) is zero, but n1=2jjEFnGj(Wi; �)jj ! 1 for some j � p; where, as above, Gj(Wi; �)

denotes the jth column of G(Wi; �): In such situations, analogues of cases (i) and (ii) arise in which

suitably rescaled versions of the columns j for which n1=2jjEFnGj(Wi; �)jj ! 1 have limits that

are11

(iii) nonzero and linearly independent and

(iv) nonzero and linearly dependent. (2.5)

Case (iv) sequences are examples of joint weak identi�cation. Cases (iii) and (iv) sequences need

to be considered to establish the correct asymptotic sizes of the LM and CLR tests.

For CLR tests, Guggenberger, Ramalho, and Smith (2012) establish the correct asymptotic null

rejection probabilities for GEL versions of the CLR test in a subset of case (i) under Assumption C

and the assumption that the conditioning statistic, rkn(�); either diverges to in�nity or converges

in distribution to a random variable that is random only through its dependence on the limit of the

estimated Jacobian. Verifying this condition in cases (i)-(iv) is not easy. We do so in this paper

for the Robin and Smith (2000) rank statistic rkn(�) with moment-variance weighting. In sum,

Guggenberger, Ramalho, and Smith (2012) do not establish the correct asymptotic null rejection

probabilities of the CLR test under Assumption C. They do so only under an additional high level

condition on the rank statistic.

Kleibergen�s (2005, Thm. 3) results for the CLR test rely on the claim that the condition-

ing statistic rkn(�) is asymptotically independent of the LM statistic if rkn(�) is a function of a

weighting matrix, eVDn say, and the orthogonalized sample Jacobian, denoted by bDn(�) 2 Rk�p:

However, this claim does not hold in general, as shown in Theorem 5.1 below and Section 18 in

the Supplemental Material.12 Newey and Windmeijer (2009) consider the limiting null rejection

11For example, suppose p = 2: Let (Gi1; Gi2) = G(Wi; �) 2 Rk�2: An example of case (iii) occurs when Gi1 exhibits
what might be called "semi-strong identi�cation," i.e., EFnGi1 = C1nn

�s for 0 < s < 1=2 and C1n ! C1 2 Rk; where
C1 6= 0k; and Gi2 exhibits the classic features of "weak identi�cation," i.e., EFnGi2 = C2n

�1=2 for some C2 2 Rk:
Then, EFnGi1 ! 0k; EFnGi2 ! 0k; n1=2jjEFnGi1jj ! 1; and nsEFnGi1 ! C1 6= 0k:
An example of case (iv) occurs when EFnGi1 is as above and EFnGi2 = C2nn

�s2 for 0 < s2 < 1=2 and C2n !
C2 2 Rk; where C2 6= 0k; and C1 and C2 are linearly dependent. If C1 and C2 are linearly independent, then this is
another example of case (iii).
12Under sequences Fn such that n1=2EFnG(Wi; �) converges to a �nite matrix, n1=2 bDn(�) and n1=2bgn(�) (=

n�1=2
Pn

i=1 g(Wi; �)) are asymptotically independent (see Lemmas 8.2 and 8.3 in Section 8 in the Appendix). There-
fore, if r(bVn; n1=2 bDn(�)) is a continuous function of n1=2 bDn(�) and a weighting matrix bVn (that converges in probability
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probability of the CLR test under �many instrument�asymptotics. They do not analyze the e¤ects

of weak identi�cation (such as in cases (i)-(iv)). Their Assumption 2 implies global identi�cation

of �:

As a special case of the asymptotic size results of this paper for nonlinear models, this paper

provides some new results for the linear IV regression model. Speci�cally, the results of the present

paper establish the correct asymptotic size of LM and CLR tests in the linear IV model with an

arbitrary number of rhs endogenous variables, under some maintained assumptions. The results

allow for heteroskedasticity of the errors and stationary strong mixing errors and observations.

In contrast, the relevant results available in the literature for the linear IV model are as follows.

Kleibergen (2002) shows that his LM test has correct asymptotic null rejection probabilities under

�xed full-rank reduced-form matrices, as well as under standard weak IV asymptotics� that is,

under the n�1=2-local to zero sequences in Staiger and Stock (1997). Also see Moreira (2009).

Moreira (2003) proves that the limiting null rejection probability of the CLR test is correct under

standard weak IV asymptotics (i.e., of the type considered in Staiger and Stock (1997)). None of

these papers considers cases (i)-(iv) above. Mikusheva (2010) establishes the correct asymptotic size

of homoskedastic LM and CLR tests and CS�s when there is only one endogenous rhs variable, i.e.,

p = 1; and the errors are homoskedastic. Guggenberger (2012) establishes the correct asymptotic

size of heteroskedasticity-robust LM and CLR tests in a heteroskedastic model with p = 1: I.

Andrews (2014) establishes the correct asymptotic size of a class of conditional linear combination

(CLC) tests when p = 1; which he shows are equivalent to a class of CLR tests. He provides some

CLC tests that are designed to have good power under heteroskedasticity and autocorrelation.

Moreira and Moreira (2013) introduce some tests that maximize weighted average power in a linear

IV model with heteroskedasticity and autocorrelation for the case where p = 1: Note that when

p = 1; i.e., only one rhs endogenous variable appears (and the exogenous variables are projected

out), cases (i), (ii), and (iv) above do not arise (because EFG(Wi; �) has a single column). Phillips

to a positive de�nite matrix), then by the continuous mapping theorem (CMT), n1=2bgn(�) and r(bVn; n1=2 bDn(�)) are
also asymptotically independent.
However, under sequences for which a component of n1=2EFnG(Wi; �) diverges to plus or minus in�nity, the CMT

cannot be applied because n1=2 bDn(�) does not converge in distribution, but rather, some component of it diverges to
plus or minus in�nity in probability (see Lemma 8.3 in Section 8 in the Appendix when h1;j =1 for some j � p): In
this case, r(bVn; n1=2 bDn(�)) may not have an asymptotic distribution, and if it does, r(bVn; n1=2 bDn(�)) and n1=2bgn(�)
are not necessarily asymptotically independent. The following is a simple example of the latter situation when p = 2:
Let r(bVn; n1=2 bDn(�)) = bV12njjn1=2 bD1n(�)jj; where bV12n is the (1, 2) component of bVn and bD1n(�) is the �rst column
of bDn(�): Assume bVn � V !p 0 for some matrix V and n1=2(bVn � V )!d �; where � is a mean zero normal random
matrix. Assume that under Fn the �rst column EFnG1(Wi; �) of EFnG(Wi; �) is a �xed nonzero vector, Ge1 say.
Assume that the (1; 2) element of V; denoted by V12; equals zero under Fn: Then, bD1n(�)!p G

e
1 (see Lemma 8.2 in

Section 8 in the Appendix) and bV12njjn1=2 bD1n(�)jj = n1=2(bV12n � V12)jj bD1n(�)jj !d �12jjGe1jj: But, in general there
is no reason why �12 and the random limit of n1=2bgn(�) are independent. For simplicity, the previous example is
somewhat contrived, because rank statistics typically are not of the form bV12njjn1=2 bD1n(�)jj: But, components of rank
statistics may be of this form.
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(1989) and Choi and Phillips (1992) provide asymptotic and �nite sample results for estimators

and classical tests in simultaneous equations models with �xed � matrices that may be unidenti�ed

or partially identi�ed when p � 1: Their results do not cover weak identi�cation (of any type).

Hillier (2009) provides exact �nite sample results for CLR tests in the linear IV model under the

assumption of homoskedastic normal errors and known covariance matrix.

We return now to the discussion of a general moment condition model. In this paper, we show

that a minimum eigenvalue condition that appears in the parameter space F0 (de�ned below) for the
null distributions F is necessary in some sense to obtain correct asymptotic size for the LM and CLR

tests. For example, in the linear IV regression model, this eigenvalue condition rules out perfect

correlation between the structural and reduced-form errors. Without the eigenvalue condition, we

show that in some cases the LM statistic equals the AR statistic plus a op(1) term. In consequence,

the LM test (which uses a �2p critical value) over-rejects the null hypothesis asymptotically when

k > p: Furthermore, without it, we show that in other cases the LM statistic equals zero a.s. for

all n � 1 and, hence, the LM test rejects the null hypothesis with probability zero for all n � 1:

In such cases, the LM test under-rejects the null asymptotically. These properties of the LM test

have not been recognized in the literature, e.g., see Kleibergen (2005, Theorem 1).

We note that the asymptotic framework and results given here should be useful for establishing

the asymptotic size of tests (and CS�s) for moment condition and linear IV models that di¤er from

the LM and CLR tests (and CS�s) considered here, such as the tests in Moreira and Moreira (2013)

and I. Andrews (2014). For example, we provide su¢ cient conditions for a suitably renormalized

version of the moment-variance-weighted orthogonalized sample Jacobian to have full rank almost

surely asymptotically, which is needed in the latter paper when p � 2:
AG2 is a sequel to this paper. It introduces two new nonlinear singularity-robust conditional

quasi-LR (SR-CQLR) tests and a singularity-robust Anderson-Rubin (SR-AR) test. AG2 shows

that these tests (and the corresponding CS�s) have correct asymptotic size for all p � 1 under very
weak conditions. For example, in the i.i.d. case, one of the two SR-CQLR tests and the SR-AR test

only require the expected moment functions to equal zero at the true parameter and the sample

moment functions to have 2+
 moments uniformly bounded for some 
 > 0: (The other SR-CQLR

test imposes somewhat stronger moment conditions.) In particular, none of the tests in AG2 impose

any conditions on the expectation of the Jacobian matrix of the moments or any conditions on the

variance matrices of the moment functions or the conditioning statistic, which is the meaning of

�singularity-robust.�The two SR-CQLR tests are shown to be asymptotically e¢ cient in a GMM

sense under strong and semi-strong identi�cation.

The new SR-CQLR tests in AG2 have some advantages over the CLR tests considered in this

12



paper. First, they have correct asymptotic size under noticeably weaker conditions. Because they

do not require the variance matrix of the moment functions to be nonsingular, they apply to

models in which for some null hypothesis a nuisance parameter appears only under the alternative

hypothesis and not under the null hypothesis.13 In addition, they do not place any restrictions on

the eigenvalues of the expected outer product of the vectorized orthogonalized sample Jacobian,

which can be restrictive and can be di¢ cult to verify in some models.

Second, the tests reduce, or essentially reduce, asymptotically to Moreira�s (2003) CLR test in

the homoskedastic linear IV model for all p � 1: In consequence, (a) no arbitrary choice of rank

statistic is needed when p � 2; and (b) the tests have the desirable power properties of Moreira�s
(2003) CLR test in the homoskedastic normal linear IV model when p = 1; which have been

established in Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson

(2009).14 In contrast, the CLR tests considered here for p � 1 are all based on the form of Moreira�s
LR statistic when p = 1 and, in consequence, require the speci�cation of some rank statistic. The

CLR tests considered here based on the Jacobian-variance weighting reduce to Moreira�s CLR test

when p = 1; but we cannot show that they necessarily have correct asymptotic size when p � 2: On
the other hand, we show that the CLR tests considered here that are based on the moment-variance

weighting have correct asymptotic size when p � 1; but they do not reduce to Moreira�s CLR test
when p = 1 (or p � 2):

We also mention the recent paper by I. Andrews and Mikusheva (2014a) that introduces a new

conditional likelihood ratio test for moment condition models that is robust to weak identi�cation.

This test is asymptotically similar conditional on the entire sample mean process that is orthogo-

nalized to be asymptotically independent of the sample moments evaluated at the null parameter

value.

The LM and CLR tests considered in this paper are for full vector inference. To obtain subvector

inference, one can employ the Bonferroni method or the Sche¤é projection method, see Cavanagh,

Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010), Chaudhuri and Zivot

(2011), and McCloskey (2011) for Bonferroni�s method, and Dufour (1989) and Dufour and Jasiak

(2001) for the projection method. These methods are conservative, but Bonferroni�s method is

found to work well by Chaudhuri, Richardson, Robins, and Zivot (2010) and Chaudhuri and Zivot

(2011).15

13Nonsingularity of the variance matrix of the moments is needed for Kleibergen�s CLR-type tests, because the
inverse of this matrix is used to orthogonalize the sample Jacobian from the sample moments when constructing a
conditioning statistic.
14For related results, see Chamberlain (2007) and Mikusheva (2010).
15A re�nement of Bonferroni�s method that is not conservative, but is much more intensive computationally, is

provided by Cavanagh, Elliott, and Stock (1995). McCloskey (2011) also considers a re�nement of Bonferroni�s
method.
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Other methods for subvector inference include the following. Subvector inference in which nui-

sance parameters are pro�led out is possible in the linear IV regression model with homoskedastic

errors using the AR test, but not the LM or CLR tests, see Guggenberger, Kleibergen, Mavroeidis,

and Chen (2012). Andrews and Cheng (2012, 2013a,b) provide subvector tests with correct asymp-

totic size based on extremum estimator objective functions. These subvector methods depend on

the following: (a) one has knowledge of the source of the potential lack of identi�cation (i.e., which

subvectors play the roles of �; �; and � in their notation), (b) there is only one source of lack of

identi�cation, and (c) the estimator objective function does not depend on the weakly identi�ed

parameters � (in their notation) when � = 0; which rules out some weak IV�s models. Montiel

Olea (2012) provides some subvector analysis in the extremum estimator context of Andrews and

Cheng (2012). His e¢ cient conditionally similar tests apply to the subvector (�; �) of (�; �; �) (in

the notation of Andrews and Cheng (2012)), where the parameter � determines the strength of

identi�cation and is known to be strongly identi�ed. This subvector analysis is analogous to that

of Stock and Wright (2000) and Kleibergen (2004). Cheng (2014) provides subvector inference in a

nonlinear regression model with multiple nonlinear regressors and, in consequence, multiple poten-

tial sources of lack of identi�cation. I. Andrews and Mikusheva (2012) provide subvector inference

methods in a minimum distance context based on Anderson-Rubin-type statistics. I. Andrews and

Mikusheva (2014b) provide conditions under which subvector inference is possible in exponential

family models (but the requisite conditions seem to be restrictive).

3 Moment Condition Model

3.1 De�nition of the Parameter Space for the Distributions F

First we introduce some notation. For notational simplicity, we let gi(�) and Gi(�) abbreviate

g(Wi; �) andG(Wi; �); respectively. We denote the jth column ofGi(�) byGij(�) andGij = Gij(�0);

where �0 denotes the (true) null value of �; for j = 1; :::; p: Likewise, we often leave out the argument

�0 for other functions as well. For example, we write gi and Gi rather than gi(�0) and Gi(�0): We

let Ir denote the r dimensional identity matrix. For a positive semi-de�nite (psd) matrix A; we let

�j(A) denote the jth largest eigenvalue of A:

For some 
; � > 0 and M <1; de�ne

F := fF : EF gi = 0k; EF jj(g0i; vec(Gi)0)0jj2+
 �M; and �min(EF gig0i) � �g; (3.1)

where �min(�) denotes the smallest eigenvalue of a matrix, jj � jj denotes the Euclidean norm, and
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vec(�) denotes the vector obtained by stacking the columns of a matrix. The �rst condition in F
is the de�ning condition of the model. The second condition in F is a mild moment condition on

the moment functions gi and their derivatives Gi: The last condition in F rules out singularity and
near singularity of the variance matrix of the moments.16 For example, in the linear IV model it

rules out EFu2iZiZ
0
i being singular, which usually is not restrictive. Identi�cation issues arise when

EFGi has, or is close to having, less than full column rank (which occurs when one or more of its

singular values is zero or close to zero). The conditions in F place no restrictions on the singular

values or column rank of EFGi:

The condition �min(EF gig0i) � � in F can be replaced by �min(EF gig0i) > 0 without a¤ecting

the asymptotic size and similarity results given in Theorems 4.1 and 6.1 below, provided gi and Gi

are replaced with g�i and G
�
i ; respectively, in F and F0 (de�ned below), where g�i := (EF gig0i)�1=2gi

and G�i := (EF gig
0
i)
�1=2Gi:17 ;18 This allows for the variance matrix of gi to be arbitrarily close to

singular, which occurs in some cases when identi�cation is weak, but rules out singularity.

The parameter spaces for the distribution F that we consider in this paper are subsets of F :
The main parameter space that we consider is F0; which we now de�ne.

For an arbitrary square-integrable (under F ) vector ai; let

�aiF := EFaia
0
i; �

ai
F := EFaig

0
i; 
F := �

gi
F = EF gig

0
i; and 	

ai
F := �

ai
F � �

ai
F 


�1
F �

ai0
F : (3.2)

The matrix 	aiF is the expected outer product of the vector of residuals from the L2(F ) projections

of the components of ai onto the space spanned by the components of gi:

Let

(�1F ; :::; �pF ) denote the p singular values of 

�1=2
F EFGi; (3.3)

ordered so that � jF is nonincreasing in j: These singular values are nonnegative and may be zero.

Let

BF denote a p� p orthogonal matrix of eigenvectors of (EFGi)0
�1F (EFGi) (3.4)

16Note that it is not possible to avoid the assumption �min(EF gig0i) � � by replacing an estimator b
n of EF gig0i
by an eigenvalue-adjusted version, e.g., as de�ned in AG2. The reason is that the eigenvalue adjustment leads to a
nonzero asymptotic covariance between the sample moments bgn and the conditioning matrix bDn; de�ned in (4.1) and
(4.3) below, which yields a test that does not necessarily have correct asymptotic size. See Comment (ii) to Lemma
8.2 in the Appendix for more details.
17This holds because �min(EF g�i g

�0
i ) = �min(Ik) = 1 and the proofs of the results given below go through with g

�
i

and G�i in place of gi and Gi throughout.
18The matrix (EF gig0i)

�1=2 that appears in the de�nition of g�i and G
�
i can be replaced by any nonsingular k � k

matrix, say KF (�0); that yields �min(EF g�i g
�0
i ) � � > 0: For example, in somewhat related contexts, Andrews and

Cheng (2013b) and I. Andrews and Mikusheva (2014) �nd it convenient to rescale moment conditions by diagonal
matrices.
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ordered so that the corresponding eigenvalues (�1F ; :::; �pF ) are nonincreasing. Let

CF denote a k � k orthogonal matrix of eigenvectors of 
�1=2F (EFGi)(EFGi)
0

�1=2
F (3.5)

ordered so that the corresponding eigenvalues are (�1F ; :::; �pF ; 0; :::; 0)0 2 Rk: Note that �jF = �2jF

for j � p: With some abuse of notation, for an integer 0 � j � p; let BF = (BF;j ; BF;p�j) denote

the decomposition of BF into its �rst j and last p � j columns, where by de�nition, when j = p;

BF;j = BF and BF;p�j denotes a matrix with no columns and, when j = 0; BF;j denotes a matrix

with no columns and BF;p�j = BF : Analogously, for an integer 0 � j � k; let CF = (CF;j ; CF;k�j)

denote the decomposition of CF into its �rst j and last k� j columns, where, when j = 0 or j = k;

CF;j and CF;k�j are de�ned analogously to BF;j and BF;p�j :

For 0 � j � p� 1 and � 2 Rp�j ; de�ne

	jF (�) := 	
C0F;k�j


�1=2
F GiBF;p�j�

F : (3.6)

For a given �1 > 0; we de�ne the parameter space of null distributions to be

F0 : =
Sp
j=0F0j ; where (3.7)

F0j : = fF 2 F : � jF � �1 and �p�j (	jF (�)) � �1 8� 2 Rp�j with jj�jj = 1g;

�0F := �1; and �p�j (	jF (�)) := �1 for j = p:19 ;20 We assume that F0 6= ?:
The conditions in F0 are used to show that the estimator b
�1=2n

bDn 2 Rk�p; de�ned below, of
the normalized population Jacobian matrix 
�1=2F EFGi has full column rank p asymptotically with

probability one after suitable normalization (see Lemma 8.3(d) in the Appendix). This almost sure

(a.s.) full column rank p property is needed to obtain the desired asymptotic �2p null distribution

of the LM statistic (introduced below), which is used by the LM and CLR tests. The LM statistic

is a quadratic form in the sample moments with weight matrix given by the projection matrix ontob
�1=2n
bDn:

We obtain the a.s. full column rank property using conditions on both the (asymptotic) mean

and variance of b
�1=2n
bDn: The index j on F0j denotes the contribution coming from the mean and

p � j denotes the contribution coming from the variance. For j = 0 (i.e., when the parameters

19The matrices BF and CF are not necessarily uniquely de�ned. But, this is not of consequence because the �p�j(�)
condition is invariant to the choice of BF and CF :
20Note that Kleibergen (2005) does not impose any rank restrictions on the variance matrix of the limiting distrib-

ution of n�1=2
P
(g0i; vec(Gi)

0�Evec(Gi)0)0: As simple examples show, however, to derive the limiting distribution of
the LM test statistic, one needs to impose some restrictions of the type in F0: For example, the case gi(�) = 0 with
probability one for all � vectors is compatible with Kleibergen�s (2005) assumptions but violates the nonsingularity
claim in the statement of Theorem 1 in Kleibergen (2005).
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are weakly identi�ed in the standard sense), the � jF � �1 condition disappears, no restrictions

are placed on the mean 
�1=2F EFGi; and the a.s. full column rank property is obtained using the

�p�j(�) condition with j = 0: For j = p (i.e., when all parameters are strongly identi�ed), the

�p�j(�) condition disappears (because BF;p�j is a matrix with no columns when j = p) and the

a.s. full rank property is obtained using only the mean condition �pF � �1: For 0 < j < p (i.e.,

when the parameters are weakly identi�ed in the nonstandard sense), the a.s. full rank property is

obtained partly via the mean condition � jF � �1 and partly via the �p�j(�) condition.21 ;22

The �variance�(or variability) condition, �p�j (	jF (�)) � �1; can be interpreted as follows. The

(k�j)�(p�j)matrix C 0F;k�j

�1=2
F GiBF;p�j is a submatrix of the k�pmatrix C 0F


�1=2
F GiBF ; which

is just 
�1=2F Gi with its rows and columns rotated. This submatrix C 0F;k�j

�1=2
F GiBF;p�j has the

j linear combinations of the rows and columns of 
�1=2F Gi removed for which the mean component

of b
�1=2n
bDn; i.e., 


�1=2
F EFGi; provides a column rank of magnitude j: (More speci�cally, the mean

component of the j linear combinations of the rows and columns of 
�1=2F Gi that are removed equals

C 0F;j

�1=2
F EFGiBF;j = Diagf�1F ; :::; � jF g 2 Rj�j and the column rank of Diagf�1F ; :::; � jF g is j

by the de�nition of F0j :23) The �p�j (	jF (�)) � �1 condition requires that every linear combination

� (with jj�jj = 1) of the columns of the aforementioned submatrix, i.e., C 0F;k�j

�1=2
F GiBF;p�j�; has

enough variability to provide the requisite additional column rank of magnitude p� j: Speci�cally,
the (p � j)-th largest eigenvalue of 	jF (�) (:= 	

C0F;k�j

�1=2
F GiBF;p�j�

F ) is bounded away from zero.

This allows for the minimal amount of variation that still delivers the incremental p � j column

rank that is required. Note that the matrix 	jF (�) is not actually a variance matrix. It is an

expected outer-product matrix, which makes the condition slightly weaker.

We can write

	jF (�) = (�0B0F;p�j 
 C 0F;k�j

�1=2
F )	

vec(Gi)
F (BF;p�j� 
 
�1=2F CF;k�j) and

	
vec(Gi)
F = EFGFiG

0
Fi; where GFi := vec(Gi)� �vec(Gi)F 
�1F gi 2 Rpk (3.8)

(using the general formula vec(ABC) = (C 0 
 A)vec(B)): The random vector GFi consists of

the residuals from the L2(F ) projections of the components of Gi onto the space spanned by the

components of gi: The matrix 	
vec(Gi)
F is the expected outer-product of these residuals. Analogously,

21Sequences of distributions in the semi-strongly identi�ed category can come from sets F0j for any j < p:
22Linking the parameter spaces F0j for j = 0; :::; p with identi�cation categories, as is done in this paragraph,

provides a useful interpretation, but is somewhat heuristic. The reason is that the parameter spaces F0j place
conditions on individual distributions F; whereas the asymptotic identi�cation categories (i.e., strong, semi-strong,
and weak in the standard and nonstandard senses) depend on the properties of sequences of distributions fFn : n � 1g:
23The stated equality holds because (i) by (3.3)-(3.5) 
�1=2F EFGi = CFDiag(�F )B

0
F ; where Diag(�F ) is the

k � p matrix whose (m;m) element equals �mF for m = 1; :::; p and whose other elements all equal zero, (ii)
C0F


�1=2
F EFGiBF = Diag(�F ) by the orthogonality of CF and BF ; and, hence, (iii) C0F;j


�1=2
F EFGiBF;j =

Diagf�1F ; :::; � jF g:
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the matrix 	jF (�) is the expected outer-product of the residuals from the L2(F ) projections of the

elements of C 0F;k�j

�1=2
F GiBF;p�j� onto the space spanned by the components of gi:

If some element of gi does not depend on some element of �; then the corresponding element of

Gi is identically zero. For example, this occurs with simple mean-variance moment conditions of the

form gi(�) = (Yi��1; (Yi��1)2��2)0; where �1 is a mean parameter and �2 is a variance parameter
of the random variable Yi: In such cases, 	

vec(Gi)
F is singular. In consequence, it is important to

impose the weakest conditions possible on 	vec(Gi)F or 	
vec(


�1=2
F Gi)

F :

In the simple mean-variance model, k = p = 2; EFGi = �I2; both parameters are strongly
identi�ed, and F0 contains F0p = fF 2 F : �pF � �1g; where �pF is the smallest singular value of


�1=2
F (because EFGi = �I2): In this model, �pF is bounded away from zero if the fourth moment

of Yi is bounded above, which is implied by the condition in F that EF jjgijj2+
 �M:24 Hence, the

condition �pF � �1 is redundant for �1 su¢ ciently small in this model.

If the condition �p�j(	jF (�)) � �1 > 0 in F0j is weakened to �p�j(	jF (�)) > 0 and the variance
and covariance matrix estimators b
n and b�n de�ned below can be any consistent estimators (under
suitable sequences of distributions), then the LM and CLR tests do not necessarily have correct

asymptotic size. In particular, we provide an example where the asymptotic distribution of the LM

statistic is �2k in this case, rather than the desired distribution �
2
p; which leads to over-rejection

under the null when k > p; see Section 12 in the Appendix.25 Hence, the restrictions on the

parameter space F0 are not redundant.
In contrast, the SR-AR, SR-CQLR1; and SR-CQLR2 tests introduced in AG2 are shown to

have correct asymptotic size without any conditions on �p�j(	jF (�)) or �min(EF gig0i): All that is

required is the �rst two conditions in F : Hence, these tests have advantages over the LM and CLR

tests considered here in terms of the robustness of their size properties.

Let CF;p�j 2 Rk�(p�j) denote a matrix that contains p� j columns from the last k� j columns
of CF : Six alternative su¢ cient conditions for the �p�j(�) condition in F0j ; in increasing order of
24This holds because EFGi = �I2 and 
F has elements [
F ]11 = �20; [
F ]12 = [
F ]21 = EFUi(U

2
i � �20); and

[
F ]22 = EF (U
2
i � �20)2; where �20 := V arF (Yi); Ui := Yi � �10; �10 := EFYi; and �0 = (�10; �20)0 denotes the true

null value.
25This example consists of a standard linear IV regression model with one rhs endogenous variable, IV�s that are

irrelevant, i.e., � = 0k; and a correlation between the structural and reduced-form equation errors that equals one
or converges to one as n ! 1: The example also can be extended to cover weak IV cases (where � = �n 6= 0k; but
�n ! 0k su¢ ciently quickly as n!1); rather than the irrelevant IV case.
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strength, are:

(i) �min

�
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

�
� �1 for some matrix CF;p�j ;

(ii) �min

�
	
vec(


�1=2
F GiBF;p�j)

F

�
� �1;

(iii) �min

�
	
vec(


�1=2
F Gi)

F

�
� �1;

(iv) �min
�
	
vec(Gi)
F

�
� �2 := �1M

2=(2+
);

(v) �min(�
fi
F ) � �2; where �

fi
F := EF fif

0
i and fi :=

0@ gi

vec(Gi)

1A ; and

(vi) �min(V arF (fi)) � �2; (3.9)

where M and 
 are as in (3.1) and �1 is as in (3.7).26 See Section 17 in the Supplemental Material

for a proof of the su¢ ciency of these conditions. None of these conditions depend on �: Another

su¢ cient condition for the �p�j(�) condition in F0j is

�p

�
	


�1=2
F GiBF;p�j�

F

�
� �1 8� 2 Rp�j with jj�jj = 1: (3.10)

For the linear IV model in (2.2), we have 
F = EFu
2
iZiZ

0
i; �

vec(Gi)
F = EF vec(ZiY

0
2i)vec(ZiY

0
2i)
0;

�
vec(Gi)
F = �EF vec(ZiY 02i)Z 0iui; and EF jj(g0i; vec(Gi)0)0jj2+
 = EF jj(uiZ 0i; vec(ZiY 02i)0)0jj2+
 : Su¢ -
cient conditions for condition (vi) in (3.9) (and, hence, for the �p�j(�) condition in F0j) in the
linear IV regression model are as follows. We have

�fiF = EF ((ui;�Y 02i)0 
 Zi)((ui;�Y 02i)0 
 Zi)0

= EF ("i 
 Zi)("i 
 Zi)0 + EF si(�)si(�)0 and

V arF (fi) = EF ("i 
 Zi)("i 
 Zi)0 + EF si(�)si(�)0 � EF si(�)EF si(�)0

� EF ("i"
0
i 
 ZiZ 0i); where

"i := (ui;�V 02i)0; si(�) := (0k0;�(ZiZ 0i�1)0; :::;�(ZiZ 0i�p)0)0; (3.11)

� = (�1; :::; �p) for �j 2 Rk for j = 1; :::; p; and the inequality holds in a psd sense. Hence,

�min(V arF (fi)) � �2 holds if �min(EF ("i"0i 
 ZiZ 0i)) � �2: When "i is conditionally homoskedastic,

i.e., �";F := V arF ("i) = EF ("i"
0
ijZi) a.s., we have EF ("i"0i 
 ZiZ

0
i) = �";F 
 EFZiZ

0
i: Hence,

for example, �min(V arF (fi)) � �2 holds if �";F and EFZiZ 0i have minimum eigenvalues that are

26Condition (i) holds if it holds for any CF;p�j matrix corresponding to any CF matrix that satis�es the condition
in F0j : Conditions (i) and (ii) are invariant to the choice of the matrix BF in cases where BF is not uniquely de�ned.

19



bounded away from zero by �1=22 :

3.2 De�nition of G(Wi;�)

The k � p matrix G(Wi; �) does not need to equal (@=@�0)g(Wi; �); as de�ned in (1.3). Rather,

the asymptotic size results given below hold for any matrix G(Wi; �) that satis�es the conditions

in F0: For example, G(Wi; �) can be the derivative of g(Wi; �) almost surely, rather than for all

Wi; which allows g(Wi; �) to have kinks. Alternatively, the function G(Wi; �) can be a numerical

derivative, such as ((g(Wi; �+ "e1)� g(Wi; �))="; :::; (g(Wi; �+ "ep)� g(Wi; �))=") 2 Rk�p for some
" > 0; where ej is the jth unit vector, e.g., e1 = (1; 0; :::; 0)0 2 Rp: This choice of G(Wi; �) matrix

may be useful for models with quite complicated Jacobian matrices (@=@�0)g(Wi; �):

3.3 De�nitions of Asymptotic Size and Asymptotic Similarity

Now, we de�ne asymptotic size and asymptotic similarity of a test of H0 : � = �0 for some

given parameter space F(�0) of null distributions F: Let RPn(�0; F; �) denote the null rejection
probability of a nominal size � test with sample size n when the distribution of the data is F: The

asymptotic size of the test for the parameter space F(�0) is de�ned by

AsySz := lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (3.12)

The test is asymptotically similar (in a uniform sense) for the parameter space F(�0) if

lim inf
n!1

inf
F2F(�0)

RPn(�0; F; �) = lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (3.13)

Next, we consider a CS that is obtained by inverting tests of H0 : � = �0 for all �0 2 �: The
asymptotic size of the CS for the parameter space F� := f(F; �0) : F 2 F(�0); �0 2 �g is AsySz :=
lim inf
n!1

inf(F;�0)2F�(1�RPn(�0; F; �)): The CS is asymptotically similar (in a uniform sense) for the
parameter space F� if lim inf

n!1
inf(F;�0)2F�(1�RPn(�0; F; �)) = lim supn!1

sup(F;�0)2F�(1�RPn(�0; F; �)):
As de�ned, asymptotic size and similarity of a CS require uniformity over the null values �0 2 �; as
well as uniformity over null distributions F for each null value �0: This additional level of uniformity

does not play a signi�cant role in this paper. The same proofs for tests give results for CS�s with

only minor changes.

The dependence of the parameter space F0; de�ned in (3.7), on �0 is suppressed for notational
simplicity. When dealing with CS�s, rather than tests, we make the dependence explicit and write

it as F0(�0): The asymptotic size and similarity of CS�s is considered for the parameter space F�;0
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de�ned by

F�;0 := f(F; �0) : F 2 F0(�0); �0 2 �g: (3.14)

4 Kleibergen�s Nonlinear LM Test

Here, we de�ne and analyze Kleibergen�s (2005) nonlinear LM test for the nonlinear moment

condition model in (1.1). Let

bgn(�) := n�1
nP
i=1

gi(�); bGn(�) := n�1
nP
i=1

Gi(�); and b
n(�) := n�1
nP
i=1

gi(�)gi(�)
0 � bgn(�)bgn(�)0:27

(4.1)

For any matrix A with r rows, we de�ne the projection matrices

PA := A(A
0
A)�A0 and MA := Ir � PA; (4.2)

where (�)� denotes any g-inverse.28 If A has zero columns, we set MA = Ir:

De�ne the (nonlinear) Anderson and Rubin (1949) (AR) statistic of Stock and Wright (2000),

and the Lagrange Multiplier statistic of Kleibergen (2005) as follows:

ARn(�) := nbgn(�)0b
�1n (�)bgn(�) and
LMn(�) := nbgn(�)0b
�1=2n (�)Pb
�1=2n (�) bDn(�)b
�1=2n (�)bgn(�); wherebDn(�) := ( bD1n(�); :::; bDpn(�)) 2 Rk�p;bDjn(�) := bGjn(�)� b�jn(�)b
�1n (�)bgn(�) 2 Rk for j = 1; :::; p;bGn(�) := ( bG1n(�); :::; bGpn(�)) 2 Rk�p; andb�jn(�) := n�1

nP
i=1
(Gij(�)� bGjn(�))gi(�)0 2 Rk�k for j = 1; :::; p: (4.3)

We refer to bDn(�) as the orthogonalized sample Jacobian because it equals the sample JacobianbGn(�) adjusted to be asymptotically independent of the sample moments bgn(�):
The nominal size � LM test rejects the null hypothesis in (1.2) when LMn(�0) exceeds the 1��

quantile of a �2p distribution, denoted by �
2
p;1��: The nominal size 1� � LM CS is de�ned by

CSLM;n := f�0 2 � : LMn(�0) � �2p;1��g: (4.4)

27Any estimator b
n(�) that is consistent for Egi(�)gi(�)0 under the drifting subsequences of distributions considered
in Section 8 in the Appendix can be used, such as n�1

Pn
i=1 gi(�)gi(�)

0; without changing the asymptotic size results
given below. However, we recommend the de�nition in (4.1).
28Projection matrices are invariant to the choice of g-inverse.
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The following result establishes the correct asymptotic size and asymptotic similarity of Kleiber-

gen�s (2005) LM test and CS for the parameter spaces F0 and F�;0; respectively.

Theorem 4.1 The asymptotic size of the LM test equals its nominal size � 2 (0; 1) for the para-
meter space F0 (de�ned in (3.7)). Furthermore, the LM test is asymptotically similar (in a uniform

sense). Analogous results hold for the LM CS for the parameter space F�;0; de�ned in (3.14).

Comments: (i) Theorem 4.1 provides a more complete set of asymptotic results under the null

hypothesis for the LM statistic than in Kleibergen (2005). See Section 2 for a detailed discussion.

(ii) In contrast to results in Kleibergen (2005), we impose regularity conditions in the speci�-

cation of F0 in order to establish our asymptotic results for the LM test. We show in Section 12 in

the Appendix that these regularity conditions are not redundant. Without the �p�j(�) condition in
F0j ; we show that, for some models, some sequences of distributions, and some (consistent) choices
of variance and covariance estimators, the LM statistic has a �2k asymptotic distribution. This

leads to over-rejection of the null when the standard �2p critical value is used and the parameters

are over-identi�ed (i.e., k > p):

(iii) Kleibergen�s LM test is asymptotically e¢ cient in a GMM sense under strong IV�s because

it is asymptotically equivalent under n�1=2 local alternatives to t and/or Wald tests based on

asymptotically e¢ cient GMM estimators, e.g., see Newey and West (1987b).

We now provide a brief description of how we obtain the asymptotic distribution of the projec-

tion matrix onto b
�1=2n
bDn; which appears in the LM statistic, using the conditions in F0: Projection

matrices are invariant to multiplication by scalars, such as n1=2; and post-multiplication by nonsin-

gular p� p matrices. We use this invariance when normalizing b
�1=2n
bDn to obtain a nondegenerate

limit of the projection matrix under a sequence of distributions fFn 2 F0 : n � 1g: The appropriate
normalization depends on the identi�cation strength under fFn : n � 1g: For sequences of distribu-
tions where all parameters are strongly identi�ed, such as distributions in F0p; no normalization is
needed and b
�1=2n

bDn converges in probability to a nonstochastic matrix that has full column rank

p:

For sequences of distributions that are weakly identi�ed in the standard sense (i.e., for which all

parameters are weakly identi�ed), such as suitable sequences of distributions in F00; the expected
Jacobian EFnGi is O(n

�1=2); we normalize b
�1=2n
bDn by n1=2; the vector vec(n1=2b
�1=2n

bDn) has an

asymptotic normal distribution with possibly nonzero mean, and we obtain the desired a.s. full

column rank property of the asymptotic version of n1=2b
�1=2n
bDn using the �p�j(�) condition in F00

for j = 0:
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Sequences of distributions fFn : n � 1g that are weakly identi�ed in the nonstandard sense are
noticeably more complicated to analyze. For such sequences, we multiply b
�1=2n

bDn by n1=2 and

post-multiply n1=2b
�1=2n
bDn by a nonstochastic nonsingular p�pmatrix that rotates its columns and

then di¤erentially downweights (by suitable functions of n) the q rotated columns that are strongly

or semi-strongly identi�ed for q 2 f1; :::; pg; as determined by the magnitude of the singular values
f� jFn : j � pg of 
�1=2Fn

EFnGi for n � 1: This eliminates the otherwise explosive behavior of these
columns. Such sequences of distributions come from [qj=0F0j : For such sequences, the asymptotic
version of the normalized b
�1=2n

bDn matrix has full column rank a.s. because, for all j � q; (i) the

�rst j nonstochastic (rotated) columns have full column rank by the choice of rotation and (ii) the

expected outer-product matrix of every linear combination of the remaining p � j asymptotically

normal (rotated) rows and columns, i.e., 	
C0F;k�j


�1=2
F GiBF;p�j�

F ; satis�es the �p�j(�) lower bound
condition in F0j :

5 Kleibergen�s CLR Test with Jacobian-Variance Weighting

In this section, we consider Kleibergen�s (2005, Sec. 5.1) nonlinear CLR test that employs the

Jacobian-variance weighting. This test utilizes a rank statistic, rkn(�); that is suitable for testing

the hypothesis rank[EFGi] � p � 1 against rank[EFGi] = p: For example, the rank statistics

of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006)

have been suggested for this purpose. Given rkn(�) and any p � 1; Kleibergen (2005) de�nes the
nonlinear CLR test statistic as

CLRn(�) :=
1

2

�
ARn(�)� rkn(�) +

p
(ARn(�)� rkn(�))2 + 4LMn(�) � rkn(�)

�
: (5.1)

This de�nition mimics the de�nition of the likelihood ratio (LR) statistic in the homoskedastic

normal linear IV regression model with �xed regressors when p = 1; see Moreira (2003, eqn. (3)).

However, it di¤ers from the LR statistic in the latter model when p � 2: Smith (2007), Newey and
Windmeijer (2009), and Guggenberger, Ramalho, and Smith (2012) consider GEL versions of the

CLR statistic in (5.1).

The critical value of the CLR test is c(1� �; rkn(�)); where c(1� �; r) is the 1� � quantile of
the distribution of

clr(r) :=
1

2

�
�2p + �

2
k�p � r +

q
(�2p + �

2
k�p � r)2 + 4�2pr

�
(5.2)

for 0 � r < 1 and the chi-square random variables �2p and �
2
k�p in (5.2) are independent. The
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CLR test rejects the null hypothesis H0 : � = �0 if CLRn(�0) > c(1� �; rkn(�0)):
Kleibergen (2005, p. 1114) recommends using a rank statistic that is a function of bDn(�) and

a consistent estimator of the covariance matrix of the asymptotic distribution of vec( bDn(�)) (after

suitable normalization), denoted eVDn(�) 2 Rkp�kp: (Also, see (37) of Kleibergen (2007).) In the

i.i.d. case considered here, eVDn(�) is de�ned by
eVDn(�) := n�1

nX
i=1

vec(Gi(�)� bGn(�))vec(Gi(�)� bGn(�))0 � b�n(�)b
�1n (�)b�n(�)0; where
b�n(�) := (b�1n(�)0; :::; b�pn(�)0)0 2 Rpk�k: (5.3)

The Jacobian-variance weighted version of bDn(�) upon which the rank statistic depends is

bDy
n(�) := vec�1k;p(

eV �1=2Dn (�)vec( bDn(�))) =

pX
j=1

(fM1jn(�) bDjn(�); :::;fMpjn(�) bDjn(�)); where

fMn(�) =

26664
fM11n(�) � � � fM1pn(�)

...
. . .

...fMp1n(�) � � � fMppn(�)

37775:= eV �1=2Dn (�) 2Rkp�kp and fMj`n(�)2Rk�k for j; ` � p:

(5.4)

The function vec�1k;p(�) is the inverse of the vec(�) function for k � p matrices.29 Similarly, Smith�s

(2007) nonlinear CLR test relies on a rank statistic that is a function of bDy
n(�): We refer to bDy

n(�)

as the Jacobian-variance-weighted orthogonalized sample Jacobian.

For example, Kleibergen�s (2005, 2007) rank statistic based on the Robin and Smith (2000)

statistic is

rkn(�) := �min(n( bDy
n(�))

0 bDy
n(�)): (5.5)

The asymptotic null distribution of n1=2 bDy
nT

y
n is given in the following theorem.30 Here T

y
n is a

nonstochastic p�p matrix that rotates bDy
n by an orthogonal matrix and then rescales the resulting

columns so that n1=2 bDy
nT

y
n has a non-degenerate asymptotic distribution. We let f�n;h : n � 1g

index a sequence of distributions fFn : n � 1g that has certain properties, including convergence of

EFnGi and V arFn

0@ f�i

vech(f�i f
�0
i )

1A ; where f�i :=

0@ gi

vec(Gi � EFnGi)

1A ; (5.6)

29Thus, the domain of vec�1k;p(�) consists of kp-vectors and its range consists of k � p matrices.
30As mentioned above, for notational simplicity, we often drop the dependence on �0 for statistics that are computed

under the null hypothesis value � = �0: Thus, bDy
n and T

y
n denote bDy

n(�0) and T
y
n(�0); respectively.
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and convergence (possibly to in�nity) of certain functions of n1=2EFnGi: In (5.6), vech(�) denotes
the half vectorization operator that vectorizes the elements in the columns of a symmetric matrix

that are on and below the main diagonal. We de�ne T yn and f�n;h : n � 1g precisely in Section
18 in the Supplemental Material, see (18.9) and (18.28), rather than here. The reason is that it

takes several pages to de�ne these quantities precisely, and the exact form of these quantities is

not important. What is important is the general form of the asymptotic distribution of n1=2 bDy
nT

y
n;

which can be speci�ed without these de�nitions.

The following theorem is a key ingredient in determining the asymptotic size of Kleibergen�s

CLR test with Jacobian-variance weighting when p � 2: For this CLR test based on the Robin and
Smith (2000) rank statistic (de�ned in (5.5)), the asymptotic size is determined and a formula for

it is stated in Section 18 in the Supplemental Material. The formula for asymptotic size is given

by the supremum of the asymptotic null rejection probabilities over sequences of distributions

with di¤erent identi�cation strengths. For some sequences, the asymptotic versions of the sample

moments and the (suitably normalized) Jacobian-variance weighted orthogonalized sample Jacobian

are independent, and the asymptotic null rejection probabilities are necessarily equal to the nominal

size �:

However, when p � 2; for some sequences, these asymptotic quantities are not necessarily

independent, and the asymptotic null rejection probabilities are not necessarily equal to the nominal

size �: (The problematic sequences of distributions are of the nonstandard weak identi�cation type,

which requires p � 2:) The asymptotic null rejection probabilities could be larger or smaller than
� (or both) depending on the model. If they are larger (or larger and smaller), the test does not

have correct asymptotic size and is not asymptotically similar. If they are smaller, the test has

correct asymptotic size, but is not asymptotically similar. The outcome that obtains depends on

the speci�c model and moment conditions. Hence, when p � 2; we cannot say that, under general
conditions, the Jacobian-variance weighted CLR test has correct asymptotic size.

Although the asymptotic size formula for the Jacobian-variance weighted CLR test is an im-

portant result of this paper, it is stated in the Supplemental Material because the notation and

de�nitions needed to state it are extremely lengthy. Instead, we state the following result here,

which shows why we cannot show that this CLR test necessarily has correct asymptotic size when

p � 2:

Theorem 5.1 Under the null hypothesis H0 : � = �0 and under all sequences f�n;h : n � 1g with
�n;h 2 �KCLR 8n � 1 (as de�ned in Section 18.2 in the Supplemental Material), n1=2(bgn; bDy

nT
y
n)!d

(gh;�
y
h+M

y
h); where (gh;�

y
h;M

y
h) has a multivariate normal distribution whose mean and variance

matrix depend on limV arFn((f
�0
i ; vech (f

�
i f

�0
i )

0)0) and on the limits of certain functions of EFnGi
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and gh and �
y
h are independent.

Comments: (i) The quantities gh; �
y
h; and M

y
h; which appear in Theorem 5.1, are complicated

nonrandom linear functions of a mean zero multivariate normal random vector Lh whose variance

matrix equals the limit of the variance that appears in (5.6). These linear functions are given

explicitly in (18.13), (18.15), and (18.19) in Section 18 in the Supplemental Material.

(ii)When trying to show that Kleibergen�s (2005, 2007) and Smith�s (2007) CLR tests have cor-

rect asymptotic size, one needs the conditional asymptotic distributions of the LM statistic and the

statistic Jn(�0) := ARn(�0)� LMn(�0) given the asymptotic rank statistic, which is a nonrandom

function of �
y
h+M

y
h; to be �

2
p and �

2
k�p distributions, respectively.

31 The asymptotic distributions

of LMn(�0) and Jn(�0) are quadratic forms in gh with random idempotent weight matrices that

depend on �
y
h +M

y
h: If M

y
h = 0k�p a.s., then conditional on �

y
h; these asymptotic distributions

are �2p and �
2
k�p distributions, as desired, because gh and �

y
h are independent. Alternatively, if

(M
y
h;�

y
h) is independent of gh; one obtains the desired conditional asymptotic distributions given

(M
y
h;�

y
h): However, when M

y
h 6= 0k�p with positive probability, one typically does not get the

desired conditional asymptotic distributions, because M
y
h and gh typically are correlated in this

case.

(iii) In some scenarios, M y
h = 0k�p a.s. This always occurs if p = 1:32 If p � 2; it occurs if

EFnGi ! 0k�p; which covers the cases where all of the parameters are weakly identi�ed in the

standard sense or semi-strongly identi�ed. If p � 2; it also occurs if the smallest singular value of
n1=2EFnGi diverges to in�nity, which covers the case where all of the parameters are strongly or

semi-strongly identi�ed.

In addition, (M
y
h;�

y
h) is independent of gh; if gi and f

�
i f

�0
i are uncorrelated (for all F in the

parameter space of interest), which holds in some special cases. For example, in a homoskedastic

linear IV model with p rhs endogenous variables and �xed IV�s, it holds if (i) the reduced-form

equation error vector V2i is of the form V2i = K1ui+K2�i; where ui is the structural equation error,

K1 is some constant p vector, K2 is some constant p� p matrix, and �i is some mean zero random
p vector, (ii) ui is independent of �i; and (iii) ui is symmetrically distributed about zero with three

moments �nite. These conditions hold if (ui; V 02i)
0 has a multivariate normal distribution, but fail

for most joint distributions of (ui; V 02i)
0:33 ;34

31See the proof of Theorem 10.1 for details.
32The proof of this is given in Comment (ii) to Theorem 18.3 in the Supplemental Material.
33The correlation between gi and f�i f

�0
i is zero in this case by the following: y1i = Y 0

2i� + ui; Y2i = Z0i� + V2i;
gi = Ziui; Gi = �ZiY2i; and f�i = (ui;�V 0

2i)
0
Zi: In consequence, the product of any element of gi and any element

of f�i f
�0
i is of the form of a constant times ZisZitZi` times a linear combination (with constant coe¢ cients) of u3i ;

ui�
2
ij ; ui�ij�im; and u

2
i �ij for some s; t; `; j;m � 1; where Zis and �ij denote the sth element of Zi and the jth element

of �i; respectively. The expectations of these terms are all zero under conditions (i)-(iii).
34 In addition, lack of correlation between gi and f�i f

�0
i typically does not hold if the IV�s are random and independent
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Typically, M
y
h is non-zero (with positive probability) and correlated with gh whenever some

parameters are strongly identi�ed and others are weakly identi�ed in either the standard sense or

in a jointly weakly-identi�ed sense. In consequence, in general, when p � 2; one cannot verify

that Kleibergen�s (2005, 2007) and Smith�s (2007) CLR tests have correct asymptotic size using

the standard proof. Depending upon the particular sequence of distributions considered and the

particular moment functions considered, the correlation between gh and �
y
h +M

y
h could increase

or decrease the asymptotic null rejection probability from the nominal probability �:

(iv) Numerical simulations of a linear IV model (with p = 2; one parameter strongly identi�ed,

one parameter weakly identi�ed, and a particular distribution of the errors) corroborate the �nding

that M
y
h and gh can be correlated asymptotically, see Section 18.3 in the Supplemental Material

for details. In the model considered, the simulated asymptotic null rejection probabilities are found

to be in [4:95; 5:01]; which are very close to the test�s nominal size of 5:00: Whether this occurs for

a wide range of error distributions and for other moment condition models is an open question. It

appears that this question needs to be answered on a case by case basis.

(v) If the random weight matrix eV �1=2Dn (�) is replaced in the de�nition of bDy
n(�) by the non-

random quantity that it is estimating, call it V �1=2Dn (�); then the asymptotic distribution of the

quantities in Theorem 5.1 is given by (gh;�
y
h); where gh and �

y
h are independent. Thus, the ap-

pearance ofM
y
h in Theorem 5.1 is due to the estimation of the weight matrix. If V

�1=2
Dn (�) is known

(which almost never occurs in practice) and is used to de�ne bDy
n(�); then the Kleibergen (2005,

2007) and Smith (2007) CLR tests can be shown to have correct asymptotic size even when p � 2:
(vi) The reason that the estimator eV �1=2Dn a¤ects the limit distribution of n1=2 bDy

nT
y
n is because

it weights the columns of bDn di¤erently. If one bases the rank statistic on fWn
bDn; where fWn

(= fWn(�0)) is some random k � k matrix that converges in probability to a nonsingular matrix,

then the nondegenerate asymptotic distribution of fWn (after suitable normalization) does not a¤ect

the asymptotic distribution of fWn
bDn; only the plim of fWn does (and the corresponding CLR test

has correct asymptotic size). The proof is given in Section 18.5 in the Supplemental Material.

(vii) In Section 18.1 in the Supplemental Material, we provide an example that illustrates the

results of Theorem 5.1 and Comments (iv) and (v) to Theorem 5.1.

(viii) Given the result of Theorem 5.1, we do not recommend using a rank statistic that depends

on an estimator of the asymptotic variance matrix of vec( bDn(�)) (after suitable normalization) when

p � 2:
(ix) The CLR test with Jacobian-variance weighting (in the rank statistic) is asymptotically

e¢ cient in a GMM sense under strong IV�s provided rkn(�)!p 1 under strong IV�s, which is the

of (ui; V 0
2i)

0: This is a consequence of the de�nition of EFGi being di¤erent between the �xed and random IV cases.
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case for all of the rank tests considered in the literature.35

As indicated in Comment (iii) to Theorem 5.1, when p = 1; M
y
h = 0k�p a.s. In consequence,

Kleibergen�s (2005) CLR test has correct asymptotic size when p = 1 for a suitable parameter space

of distributions F and a suitable rank statistic, such as that in (5.5). We consider the parameter

space

FJVW;p=1 := fF 2 F : �min(	GiF � EFGiEFG0i) � �3g (5.7)

for some �3 > 0: For the corresponding CS, we consider the parameter space F�;JV W;p=1 :=
f(F; �0) : F 2 FJVW;p=1(�0); �0 2 �g; where FJVW;p=1(�0) denotes the set FJVW;p=1 de�ned in
(5.7) with its dependence on �0 made explicit.

We have FJVW;p=1 � F00 (� F0) when �3 = �2 (by (3.7) and condition (iv) in (3.9)), where

F00 = F0j with j = 0 (for F0j de�ned in (3.7)) and F0 is the parameter space for which the moment-
variance weighted CLR test has correct asymptotic size, see Theorem 6.1 below. When p = 1;

F0 = F00[F01 and the set F01 places no restrictions on the variance matrix or outer-product matrix
of the orthogonalized sample Jacobian (i.e., 	1F (�)): The parameter space FJVW;p=1 cannot be
enlarged to include a set like F01; because the condition on the variance matrix of the orthogonalized
sample Jacobian 	GiF � EFGiEFG

0
i in FJVW;p=1 is needed to obtain the nonsingularity of the

probability limit of the weight matrix eVDn:
When p = 1; the Robin and Smith (2000) rank statistic given in (5.5) (with � = �0); which is

based on Kleibergen�s (2005, 2007) recommended Jacobian-variance weight matrix eV �1=2Dn ; reduces

to

rkn := n bDn
0 eV �1Dn

bDn: (5.8)

Theorem 5.2 Suppose p = 1: The asymptotic size of the CLR test with Jacobian-variance weight-

ing, de�ned by (5.1), (5.2), and (5.8), equals its nominal size � 2 (0; 1) for the parameter space
FJVW;p=1: Furthermore, this CLR test is asymptotically similar (in a uniform sense) for this pa-

rameter space. Analogous results hold for the CLR CS with Jacobian-variance weighting for the

parameter space F�;JV W;p=1:

Comment: Correct asymptotic size holds for Kleibergen�s CLR test with Jacobian-variance

weighting when p = 1 because bDn has only one column in this case, so it is impossible to have

unequal column weights.

35This holds because all CLR tests of the form in (5.1) and (5.2) are asymptotically equivalent to the LM test in
(4.3) under the null and n�1=2 local alternatives under strong IV�s, by (10.3) and (10.4) in the proof of Theorem
10.1 in Section 10 in the Appendix, and, as noted above, the LM test is asymptotically e¢ cient in a GMM sense
under strong IV�s. Note that, by de�nition in (4.3), the LM statistic uses moment-variance weighting of bDn(�) in its
projection matrix.
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6 Kleibergen�s CLR Test with Moment-Variance Weighting

Newey andWindmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) consider a version

of Kleibergen�s (2005) CLR test that uses a rank statistic that depends on

b
�1=2n (�) bDn(�); (6.1)

rather than bDy
n(�): We refer to b
�1=2n (�) bDn(�) as the moment-variance-weighted orthogonalized

sample Jacobian. This choice gives equal weight to each of the columns of bDn: In this section, we

show that this choice combined with the Robin and Smith (2000) rank statistic yields a nonlinear

CLR test that has correct asymptotic size for the parameter space F0: In this case, the rank statistic
is

rkn(�) := �min(n bDn(�)
0b
�1n (�) bDn(�)): (6.2)

Theorem 6.1 The asymptotic size of the CLR test with moment-variance weighting, de�ned by

(5.1), (5.2), and (6.2), equals its nominal size � 2 (0; 1) for the parameter space F0 (de�ned in
(3.7)). Furthermore, this CLR test is asymptotically similar (in a uniform sense) for this parameter

space. Analogous results hold for the CLR CS with moment-variance weighting for the parameter

space F�;0; de�ned in (3.14).

Comments: (i) Neither Newey and Windmeijer (2009) nor Guggenberger, Ramalho, and Smith

(2012) provide an asymptotic size result like that in Theorem 6.1. Guggenberger, Ramalho, and

Smith (2012) provide asymptotic null rejection probabilities only under Stock and Wright�s (2000)

Assumption C, plus a high-level condition that involves the asymptotic behavior of the rank sta-

tistic. Verifying this high-level assumption under parameter sequences that satisfy Assumption C

turns out to be very challenging. We do so in this paper, also see Comment (ii). But note that the

proof of Theorem 6.1, given in Section 10 in the Appendix, involves much more than this. It is com-

plicated because it needs to consider a broad array of di¤erent types of identi�cation ranging from

standard weak identi�cation, to joint weak identi�cation, to semi-strong and strong identi�cation.

(ii) The proof of Theorem 6.1 actually allows for the use of any rank statistic that satis�es an

assumption called Assumption R, which is stated in Section 10, not just the rank statistic rkn(�) in

(6.2). Assumption R is veri�ed using Theorem 8.4 below for the rank statistic in (6.2). With some

changes, Assumption R can be veri�ed using Theorem 8.4 when the rank statistic is of an �equally-

weighted�Robin-Smith form, but with a di¤erent weight matrix than in (6.2). That is, Assumption

R can be veri�ed when rkn(�) is as in (6.2) but with b
�1=2n (�) bDn(�) replaced by fWn(�) bDn(�) for

some k � k weight matrix fWn(�) that is positive de�nite (pd) asymptotically. (This is what we
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mean by equally-weighted.) This is done in Section 18.5 in the Supplemental Material. In contrast,

by Theorem 5.1, when p � 2; Assumption R typically does not hold for any rank statistic that

depends on the Jacobian-variance weighted statistic bDy
n(�):

(iii) The CLR test considered in Theorem 6.1 is asymptotically e¢ cient in a GMM sense under

strong IV�s provided rkn(�) !p 1 under strong IV�s, see Comment (iii) to Theorem 4.1 for more

details.

(iv) Assumption R likely holds for the Cragg and Donald (1996, 1997) and Kleibergen and Paap

(2006) rank statistics when they are based on an equally-weighted function of bDn(�): However,

showing this is not easy. We do not do so here.

Although the rank statistic in (6.2) yields a test with correct asymptotic size, it has some

drawbacks. The use of the pre-multiplication weight matrix b
�1=2n (�) and no post-multiplication

weight matrix for bDn(�) is arbitrary. The choice of these weight matrices is important for power

purposes because it is a major determinant of the magnitude of rkn(�) and the latter enters both

the test statistic and the data-dependent critical value function. We show in Section 14 in the

Supplemental Material to AG2 that the rank statistic in (6.2) does not reduce to the rank statistic

in Moreira�s (2003) CLR test in the homoskedastic normal linear IV regression model with �xed

regressors even when p = 1: Speci�cally, the rkn(�) statistic in (6.2) di¤ers asymptotically from the

rank statistic in Moreira�s CLR test by a scale factor that can range between 0 and 1 depending

on the scenario considered. This is undesirable because Moreira�s CLR test has been shown to have

some approximate optimal power properties in the aforementioned model when p = 1:

In addition, the CLR test with moment-variance weighting, which is considered in this section,

has correct asymptotic size for the parameter space F0; but not necessarily for the larger parameter
space F :

These disadvantages motivate interest in the SR-CQLR1 and SR-CQLR2 tests considered in

AG2.

7 Time Series Observations

In this section, we generalize the results of Theorems 4.1, 5.2, and 6.1 from i.i.d. observations to

strictly stationary strong mixing observations. In the time series case, F denotes the distribution

of the stationary in�nite sequence fWi : i = :::; 0; 1; :::g:36 Let ai be a random vector that depends

on Wi; such as vec(Gi) or C 0F;k�j

�1=2
F GiBF;p�j�: In the time series case, we de�ne 
F and 	

ai
F

36Asymptotics under drifting sequences of true distributions fFn : n � 1g are used to establish the correct as-
ymptotic size of the LM and CLR tests. Under such sequences, the observations form a triangular array of row-wise
strictly stationary observations.
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di¤erently from their de�nitions in (3.2) for the i.i.d. case. For the time series case, we de�ne �aiF ;

�aiF ; 
F ; and 	
ai
F as follows:37

�aiF :=

1X
m=�1

EF (ai � EFai)(ai�m � EFai�m)0; �aiF :=
1X

m=�1
EFaig

0
i�m;


F :=
1X

m=�1
EF gig

0
i�m; and 	

ai
F := �

ai
F � �

ai
F 


�1
F �

ai0
F : (7.1)

Note that 	aiF = limV arF (n
�1=2Pn

i=1(ai � �
ai
F 


�1
F gi)):

38

The time series analogue FTS of the space of distributions F ; de�ned in (3.1), is

FTS := fF : fWi : i = :::; 0; 1; :::g are stationary and strong mixing under F with

strong mixing numbers f�F (m) : m � 1g that satisfy �F (m) � Cm�d;

EF gi = 0
k; EF jj(g0i; vec(Gi)0)0jj2+
 �M; and �min(
F ) � �g (7.2)

for some 
; � > 0; d > (2 + 
)=
; and C;M <1; where 
F is de�ned in (7.1).
We de�ne the time series parameter spaces of distributions FTS;0 and fFTS;0j : 0 � j � pg as F0

and fF0j : 0 � j � pg are de�ned in (3.7), but with FTS in place of F , with 	aiF de�ned as in (7.1),
and with the de�nitions of (�1F ; :::; �pF ); BF ; and CF in (3.3)-(3.5) employing the de�nition of 
F in

(7.1). We de�ne the time series parameter space of distributions FTS;JV W;p=1 as FJVW;p=1 is de�ned
in (5.7), but with FTS in place of F ; with 	GiF de�ned as in (7.1), and with EFGiEFG0i deleted

(because 	GiF := �GiF ��
Gi
F 


�1
F �

Gi0
F and �GiF is de�ned to be EF (Gi�EFGi)(Gi�EFGi)0 in the time

series case, rather than EFGiG0i). That is, FTS;JV W;p=1 := fF 2 FTS : �min(	
Gi
F ) � �3g for some

�3 > 0: For CS�s, we use the parameter spaces F�;TS;0 := f(F; �0) : F 2 FTS;0(�0); �0 2 �g and
F�;TS;JV W;p=1 := f(F; �0) : F 2 FTS;JV W;p=1(�0); �0 2 �g; where FTS;0(�0) and FTS;JV W;p=1(�0)
denote FTS;0 and FTS;JV W;p=1 with their dependence on �0 made explicit.

The su¢ cient conditions for the �p�j(�) condition in F0j provided in (3.9) and (3.10) also hold
in the time series setting with 	aiF and �aiF de�ned as in (7.1).

37Note that the de�nition of �aiF in (7.1) di¤ers from its de�nition in (3.2) in two ways. First, there are the lag
m 6= 0 terms. Second, there is the re-centering of ai by its mean EF ai: Re-centering is needed in the time series
context to ensure that �aiF is a convergent sum. In the i.i.d. case, we avoid re-centering because without it the
restriction in F0; de�ned in (3.7), is weaker.
38This follows by calculations analogous to those in (19.3) and (19.4) in the proof of Theorem 7.1 below.
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Now, we de�ne the LM and CLR test statistics in the time series context. To do so, we let

VF := limV arF

0@n�1=2 nX
i=1

0@ gi

vec(Gi)

1A1A
=

1X
m=�1

EF

0@ gi

vec(Gi � EFGi)

1A0@ gi�m

vec(Gi�m � EFGi�m)

1A0 : (7.3)

The second equality holds for all F 2 FTS (as shown in the proof of Lemma 19.1 in Section 19 in
the Supplemental Material).

The test statistics depend on an estimator bVn(�0) of VF : This estimator is (typically) a het-
eroskedasticity and autocorrelation consistent (HAC) variance estimator based on the observations

ffi � bfn : i � ng; where fi := (g0i; vec(Gi)
0)0 and bfn(�) := (bg0n; vec( bGn)0)0: There are a number of

HAC estimators available in the literature, e.g., see Newey and West (1987a) and Andrews (1991).

The asymptotic size and similarity properties of the tests are the same for any consistent HAC

estimator. Hence, for generality, we do not specify a particular estimator bVn(�0): Rather, we state
results that hold for any estimator bVn(�0) that satis�es the following consistency condition when
the null value �0 is the true value.

Assumption V: bVn(�0)�VFn !p 0
(p+1)k�(p+1)k under fFn : n � 1g for any sequence fFn 2 FTS :

n � 1g for which VFn ! V for some pd matrix V:

We write the (p+ 1)k � (p+ 1)k matrix bVn(�) in terms of its k � k submatrices:

bVn(�) =
26666664
b
n(�) b�1n(�)0 � � � b�pn(�)0b�1n(�) bVG11n(�) � � � bV 0Gp1n(�)
...

...
. . .

...b�pn(�) bVGp1n(�) � � � bVGppn(�)

37777775 : (7.4)

Under Assumption V, b
n(�0) !p 
F under F and b�n(�0) = (b�1n(�0)0; :::; b�pn(�0)0)0 !p �
vec(Gi)
F

under F:

In the time series case, for the LM test, the CLR test with moment-variance weighting, and

when p = 1 the CLR test with Jacobian-variance weighting, the de�nitions of the statistics bgn(�);bGn(�); ARn(�); LMn(�); bDn(�); CLRn(�); and rkn(�) are the same as in (4.1)-(5.1), but with b
n(�)
and b�jn(�) for j = 1; :::; p de�ned as in Assumption V and (7.4) rather than as in Sections 4 and
5. In addition, when p = 1; for the CLR test with Jacobian-variance weighting, in the de�nition ofeVDn in (5.3), the matrix n�1Pn

i=1 vec(Gi(�)� bGn(�))vec(Gi(�)� bGn(�))0 is replaced by the lower
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right pk � pk submatrix of bVn(�) in (7.4) (and b
n(�) and b�jn(�) for j = 1; :::; p are de�ned as in

(7.4)). With these changes, the critical values for the time series case are de�ned in the same way

as in the i.i.d. case.

For the time series case, the asymptotic size and similarity results for the tests described above

are as follows.

Theorem 7.1 Suppose the LM test, the CLR test with moment-variance weighting, and when

p = 1 the CLR test with Jacobian-variance weighting are de�ned as in this section, the parameter

space for F is FTS;0 for the �rst two tests and FTS;JV W;p=1 for the third test, and Assumption
V holds. Then, these tests have asymptotic sizes equal to their nominal size � 2 (0; 1) and are
asymptotically similar (in a uniform sense). Analogous results hold for the corresponding CS�s for

the parameter spaces F�;TS;0 and F�;TS;JV W;p=1:
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Appendix

This Appendix provides proofs of some of the results stated in the paper and shows that

the eigenvalue condition in F0 is not redundant. For brevity, other proofs are provided in the
Supplemental Material to this paper given in Andrews and Guggenberger (2014b). Section 8 in

this Appendix states some basic results that are used in all of the proofs. For brevity, these results

are proved in Sections 14-16 in the Supplemental Material. These results also are used in Andrews

and Guggenberger (2014a) and should be useful for establishing the asymptotic sizes of other tests

for moment condition models when strong identi�cation is not assumed. Given the results in Section

8, Section 9 proves Theorem 4.1, Section 10 proves Theorem 6.1, and Section 11 proves Theorem

5.2. Theorem 5.1 is proved in Section 18 in the Supplemental Material. Section 12 shows that the

eigenvalue condition in F0; de�ned in (3.7), is not redundant in Theorems 4.1, 5.2, and 6.1.
For notational simplicity, throughout the Appendix, we often suppress the argument �0 for

various quantities that depend on the null value �0:

8 Basic Framework and Results for the Proofs

8.1 Uniformity

The proofs of Theorems 4.1, 5.2, and 6.1 use Corollary 2.1(c) in Andrews, Cheng, and Guggen-

berger (2009) (ACG). The latter result provides general su¢ cient conditions for the correct asymp-

totic size and (uniform) asymptotic similarity of a sequence of tests.

We now state Corollary 2.1(c) of ACG. Let f�n : n � 1g be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter � with parameter space �: Let

RPn(�) denote the null rejection probability of �n under �: For a �nite nonnegative integer J; let

fhn(�) = (h1n(�); :::; hJn(�))0 2 RJ : n � 1g be a sequence of functions on �: De�ne

H := fh 2 (R [ f�1g)J : hwn(�wn)! h for some subsequence fwng

of fng and some sequence f�wn 2 � : n � 1gg: (8.1)

Assumption B�: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! � for some � 2 (0; 1):

Proposition 8.1 (ACG, Corollary 2.1(c)) Under Assumption B�; the tests f�n : n � 1g have
asymptotic size � and are asymptotically similar (in a uniform sense). That is, AsySz := lim sup

n!1
sup�2�RPn(�) = � and lim inf

n!1
inf�2�RPn(�) = lim sup

n!1
sup�2�RPn(�):
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Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 8.1 provides asymptotic size

and similarity results for nominal 1�� CS�s, rather than tests, by de�ning � as one would for a test,
but having it depend also on the parameter that is restricted by the null hypothesis, by enlarging

the parameter space � correspondingly (so it includes all possible values of the parameter that is

restricted by the null hypothesis), and by replacing (i) �n by a CS based on a sample of size n;

(ii) � by 1� �; (iii) RPn(�) by CPn(�); where CPn(�) denotes the coverage probability of the CS
under � when the sample size is n; and (iv) the �rst lim sup

n!1
sup�2� that appears by lim infn!1

inf�2� :

In the present case, where the null hypotheses are of the form H0 : � = �0 for � 2 �; for CS�s, �0
is taken to be a subvector of � and � is speci�ed so that the value of this subvector ranges over �:

(ii) In the application of Proposition 8.1 to prove Theorems 4.1 and 6.1, one takes � to be a

one-to-one transformation of F0 for tests, and one takes � to be a one-to-one transformation of
F�;0 for CS�s. With these changes, the proofs for tests and CS�s are the same. In consequence, we
provide explicit proofs for tests only and obtain the proofs for CS�s by analogous applications of

Proposition 8.1. In the application of Proposition 8.1 to prove Theorem 5.2, the same is done but

with FJVW;p=1 in place of F0:
(iii) We prove the test results in Theorems 4.1, 5.2, and 6.1 using Proposition 8.1 by verifying

Assumption B� for suitable choices of � and hn(�):

8.2 Random Weight Matrices cWn and bUn

We prove results for statistics that depend on random weight matrices cWn 2 Rk�k and bUn 2
Rp�p: In particular, we consider statistics of the formcWn

bDn
bUn and functions of this statistic, wherebDn is de�ned in (4.3). The de�nitions of the random weight matrices cWn and bUn depend upon the

statistic that is of interest. They are taken to be of the form

cWn :=W1(cW2n) 2 Rk�k and bUn := U1(bU2n) 2 Rp�p; (8.2)

where cW2n and bU2n are random �nite-dimensional quantities, such as matrices, andW1(�) and U1(�)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimatorscW2n and bU2n have corresponding population quantities W2F and U2F ; respectively. For examples,

see Examples 1-3 immediately below. Thus, the population quantities corresponding to cWn andbUn are
WF :=W1(W2F ) and UF := U1(U2F ); (8.3)

respectively.

Example 1: With Kleibergen�s (2005) LM test and the CLR test with moment-variance weighting,
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which are considered in Sections 4 and 6, respectively, we take

cWn = b
�1=2n and bUn = Ip: (8.4)

In this case, the functions W1(�) and U1(�) are the identity functions, and the corresponding popu-
lation quantities are WF =W2F = 


�1=2
F ; where 
F := EF gig

0
i; see (3.2), and UF = U2F = Ip:

Example 2: For a CLR test based on an equally-weighted statistic other than b
�1=2n
bDn; such asfWn

bDn; as in Comment (ii) to Theorem 6.1, one de�nes a pd matrix fWn as desired and one takescWn = fWn and bUn = UF = U2F = Ip:

Example 3: With Kleibergen�s (2005) CLR test with Jacobian-variance weighting and p = 1;

which is considered in Section 5, we determine the asymptotic distribution of the rank statistic

in (5.8) by taking cWn = eV �1=2Dn and bUn = Ip: In this case, the functions W1(�) and U1(�) are as
in Example 1, and the corresponding population quantities are WF = W2F = (V arF (vec(Gi)) �
�
vec(Gi)
F 
�1F �

vec(Gi)0
F )�1=2 = (	

vec(Gi)
F �EFGiEFG0i)�1=2; and UF = U2F = Ip: For this test, we need

the asymptotic distribution of the LM statistic. In consequence, for this test, we also establish

some asymptotic results with cWn and bUn de�ned as in Example 1.
Examples 4 & 5: The results of this section are used in AG2 when the asymptotic sizes of two

new SR-CQLR tests are determined. For the SR-CQLR tests, cWn = b
�1=2n and it is convenient to

take W1(�) = (�)�1=2 and cW2n = b
n; and the matrix bUn is a nonlinear transformation U1(�) of a
matrix estimator, which is di¤erent for the two tests. For brevity, we do not de�ne the nonlinear

transformation or the two matrix estimators here.

We provide results for distributions F in the following set of null distributions:

FWU := fF 2 F : �min(WF ) � �WU ; �min(UF ) � �WU ; jjWF jj �MWU ; and jjUF jj �MWUg (8.5)

for some constants �WU > 0 and MWU < 1; where F is de�ned in (3.1). The set FWU \ F0 is
used to establish results for Kleibergen�s LM and the CLR test with moment-variance weighting,

considered in Section 6, using the fact that F0 = FWU \ F0 for �WU > 0 su¢ ciently small and

MWU < 1 su¢ ciently large. This holds because for all F 2 F0; �min(WF ) = �min(

�1=2
F ) =

�
�1=2
max (
F ) � jj
F jj�1=2 � M

�1=2
� for some M� < 1 (because jj
F jj = jjEF gig0ijj � M� for some

M� < 1 by the moment conditions in F); jjWF jj = jj
�1=2F jj � �
�1=2
min (
F ) � ��1=2 (using the

�min(EF gig
0
i) � � condition in F), where � > 0; �min(UF ) = �min(Ip) = 1; and jjUF jj = jjIpjj = p:
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8.3 Reparametrization

To apply Proposition 8.1, we reparametrize the null distribution F to a vector �: The vector �

is chosen such that for a subvector of � convergence of a drifting subsequence of the subvector (after

suitable renormalization) yields convergence in distribution of the test statistic and convergence in

distribution of the critical value in the case of the CLR tests.

To be consistent with the use of general weight matrices cWn and bUn in this section, we provide
more general de�nitions of � jF ; BF ; and CF here than are given in Section 3. These general

de�nitions reduce to the de�nitions given in Section 3 when WF = 

�1=2
F and UF = Ip:

The vector � depends on the following quantities. Let

BF denote a p� p orthogonal matrix of eigenvectors of U 0F (EFGi)0W 0
FWF (EFGi)UF (8.6)

ordered so that the corresponding eigenvalues (�1F ; :::; �pF ) are nonincreasing. The matrix BF is

such that the columns of WF (EFGi)UFBF are orthogonal. Let

CF denote a k � k orthogonal matrix of eigenvectors of WF (EFGi)UFU
0
F (EFGi)

0W 0
F
39 (8.7)

ordered so that the corresponding eigenvalues are (�1F ; :::; �pF ; 0; :::; 0) 2 Rk: Let

(�1F ; :::; �pF ) denote the p singular values of WF (EFGi)UF ; (8.8)

which are nonnegative, ordered so that � jF is nonincreasing. (Some of these singular values may

be zero.) As is well-known, the squares of the p singular values of a k � p matrix A with k � p

equal the p eigenvalues of A0A and the largest p eigenvalues of AA0: In consequence, �jF = �2jF for

j = 1; :::; p:

39The matrices BF and CF are not uniquely de�ned. We let BF denote one choice of the matrix of eigenvectors of
U 0F (EFGi)

0W 0
FWF (EFGi)UF and analogously for CF :
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De�ne the elements of � to be40 ;41 ;42

�1;F := (�1F ; :::; �pF )
0 2 Rp;

�2;F := BF 2 Rp�p;

�3;F := CF 2 Rk�k;

�4;F := (EFGi1; :::; EFGip) 2 Rk�p;

�5;F := EF

0@ gi

vec(Gi)

1A0@ gi

vec(Gi)

1A0 2 R(p+1)k�(p+1)k;
�6;F = (�6;1F ; :::; �6;(p�1)F )

0 := (
�2F
�1F

; :::;
�pF

� (p�1)F
)0 2 Rp�1; where 0=0 := 0;

�7;F := W2F ;

�8;F := U2F ;

�9;F := F; and

� = �F := (�1;F ; :::; �9;F ): (8.9)

The dimensions of W2F and U2F depend on the choices of cWn = W1(cW2n) and bUn = U1(bU2n): We
let �5;gF denote the upper left k � k submatrix of �5;F: Thus, �5;gF = EF gig

0
i = 
F :

We consider the parameter space �0 for �; which corresponds to FWU \ F0; where FWU and

F0 are de�ned in (8.5) and (3.7), respectively. The parameter space �0 and the function hn(�) are
de�ned by

�0 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ F0g and

hn(�) := (n1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ): (8.10)

By the de�nition of F ; �0 indexes distributions that satisfy the null hypothesis H0 : � = �0: The

dimension J of hn(�) equals the number of elements in (�1;F ; :::; �8;F ): Redundant elements in

(�1;F ; :::; �8;F ); such as the redundant o¤-diagonal elements of the symmetric matrix �5;F ; are not

needed, but do not cause any problem. Note that two parameter spaces denoted by �1 and �2;

which are larger than �0; are considered for the two SR-CQLR tests analyzed in AG2. (We also

use �2 in this paper, see (8.11) below.)

We de�ne � and hn(�) as in (8.9) and (8.10) because, as shown below, the asymptotic dis-

40For simplicity, when writing � = (�1;F ; :::; �9;F ); we allow the elements to be scalars, vectors, matrices, and
distributions and likewise in similar expressions.
41 If p = 1; no vector �6;F appears in � because �1;F only contains a single element.
42The vector �6;F is only used in the proofs for CLR tests. It could be deleted when considering only an LM test.
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tributions of the test statistics under a sequence fFn : n � 1g for which hn(�Fn) ! h 2 H

depend on the behavior of limn1=2�1;Fn ; as well as lim�m;Fn for m = 2; :::; 8: For example, the

LM statistic in (4.3) depends on b
�1=2n
bDn; or equivalently, on n1=2b
�1=2n

bDnBFnSn (because pro-

jections are invariant to rescaling and rhs transformations by nonsingular matrices), where Sn is

a pd diagonal matrix that is designed to make this quantity Op(1) and not op(1): We show that

this quantity is asymptotically equivalent to n1=2
�1=2Fn
bDnBFnSn: In turn, the latter quantity de-

pends on n1=2
�1=2Fn
bGnBFn = n1=2


�1=2
Fn

( bGnBFn�EFnGiBFn)+n1=2
�1=2Fn
EFnGiBFn : The quantity

vec(n1=2

�1=2
Fn

( bGnBFn � EFnGiBFn)) has a nondegenerate asymptotic normal distribution by the

central limit theorem (CLT), using the behavior of lim�s;Fn for s = 2; 4; 5; the fact that BFn is an or-

thogonal matrix, and the restriction in F0: Hence, the asymptotic behavior of vec(n1=2
�1=2Fn
bGnBFn)

depends on that of n1=2
�1=2Fn
EFnGiBFn : Using the SVD of 


�1=2
Fn

EFnGi; the latter is shown below

to equal �3;FnDiagfn1=2�1;Fng; where Diagfn1=2�1;Fng denotes the k� p matrix with n1=2�1;Fn on
the main diagonal and zeros elsewhere.

In Example 1 of Section 8.2 applied to the linear model (2.2), we haveWF = 

�1=2
F and � jF is the

jth singular value of �
�1=2F EFZiY
0
2i = �
�1=2F EFZiZ

0
i�; where 
F = EFu

2
iZiZ

0
i for j = 1; :::; p:

As is well known, if � is close to zero, weak instrument problems occur. But, as we show, matrices

� that are close to being singular, without their columns being close to zero, also lead to weak

IV problems. This is captured in the present set-up by �pF being close to zero in the sense that

limn1=2�pFn <1: If this occurs, then weak identi�cation problems arise.
For notational convenience,

f�n;h : n � 1g denotes a sequence f�n 2 �2 : n � 1g for which hn(�n)! h 2 H; where

�2 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWUg (8.11)

and H is de�ned in (8.1) with � replaced by �2:43 By de�nition, �0 � �2: We use the parameter
space �2 in many places in the paper, rather than �0; for two reasons. First, this makes it clear

where the conditions speci�ed in F0 (and �0) are really needed. Second, some of the results

given here are used in AG2, which does not employ the smaller set �0; but does use �2: By the

de�nitions of �2 and FWU ; f�n;h : n � 1g is a sequence of distributions that satis�es the null
hypothesis H0 : � = �0:

We decompose h (de�ned by (8.1), (8.9), and (8.10)) analogously to the decomposition of the

�rst eight components of �: h = (h1; :::; h8); where �m;F and hm have the same dimensions for

m = 1; :::; 8: We further decompose the vector h1 as h1 = (h1;1; :::; h1;p)
0; where the elements of

43Analogously, for any subsequence fwn : n � 1g; f�wn;h : n � 1g denotes a sequence f�wn 2 �2 : n � 1g for
which hwn(�wn)! h 2 H:
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h1 could equal 1: We decompose h6 as h6 = (h6;1; :::; h6;p�1)0: In addition, we let h5;g denote the
upper left k � k submatrix of h5: In consequence, under a sequence f�n;h : n � 1g; we have

n1=2� jFn ! h1;j � 0 8j � p; �m;Fn ! hm 8m = 2; :::; 8;

�5;gFn = 
Fn = EFngig
0
i ! h5;g; and �6;jFn ! h6;j 8j = 1; :::; p� 1: (8.12)

By the conditions in F ; de�ned in (3.1), h5;g is pd.
The smallest and largest singular values of WF (EFGi)UF (i.e., �pF and �1F ) can be related to

those of EFGi (i.e., spF and s1F ) for F 2 FWU via

c1sjF � � jF � c2sjF for j = 1 and j = p for some constants 0 < c1 < c2 <1 (8.13)

that do not depend on F: As shown below, the parameter � is strongly or semi-strongly identi�ed

under f�n;h : n � 1g if limn1=2�pFn = 1: In consequence of (8.13), this holds i¤ limn1=2spFn =
1: The parameters are weakly identi�ed in the standard sense if limn1=2� jFn < 1 8j � p or,

equivalently, if limn1=2�1Fn < 1; which holds by (8.13) i¤ limn1=2s1Fn < 1: The parameters are
weakly identi�ed in the non-standard sense if limn1=2�1Fn =1 and limn1=2�pFn <1; which holds
by (8.13) i¤ limn1=2s1Fn =1 and limn1=2spFn <1:

The proof of (8.13) is as follows. For notational simplicity, we drop the subscript F in some of

the calculations. We have

�min(U
0EG0iW

0WEGiU)

= min
�:jj�jj=1

(U�=jjU�jj)0EG0iW 0WEGi(U�=jjU�jj) � jjU�jj2

� min
�:jj�jj=1

�0EG0iW
0WEGi� � �max(U 0U)

= min
�:jj�jj=1

(EGi�=jjEGi�jj)0W 0W (EGi�=jjEGi�jj) � jjEGi�jj2 � �max(U 0U)

� �max(W
0W )�min(EG

0
iEGi)�max(U

0U)

� c22�min(EG
0
iEGi); where

c2 := sup
F2FWU

[�max(W
0
FWF )�max(U

0
FUF )]

1=2 <1 (8.14)

and the last inequality holds by the conditions in FWU (de�ned in (8.5)). Because the smallest

eigenvalues of U 0EG0iW
0WEGiU and EG0iEGi equal the squares of the smallest singular values

of WEGiU and EGi; respectively, (8.14) establishes the second inequality in (8.13) for j = p:

Analogous calculations establish the lower bound in (8.14) for j = p and the bounds for j = 1

by replacing min and � by max and �; respectively, in the appropriate places and taking c1 :=
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infF2FWU
[�min(W

0
FWF )�min(U

0
FUF )]

1=2 > 0:

8.4 Assumption WU

We assume that the random weight matrices cWn =W1(cW2n) and bUn = U1(bU2n) de�ned in (8.2)
satisfy the following assumption that depends on a suitably chosen parameter space �� (� �2);

such as �2; �0; or �1:

Assumption WU for the parameter space �� � �2: Under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��;

(a) cW2wn !p h7 (:= limW2Fwn );

(b) bU2wn !p h8 (:= limU2Fwn ); and

(c) W1(�) is a continuous function at h7 on some set W2 that contains f�7;F (= W2F ) : � =

(�1;F ; :::; �9;F ) 2 ��g and contains cW2wn wp!1 and U1(�) is a continuous function at h8 on some
set U2 that contains f�8;F (= U2F ) : � = (�1;F ; :::; �9;F ) 2 ��g and contains bU2wn wp!1:

In Assumption WU and elsewhere below, �all sequences f�wn;h : n � 1g�means �all sequences
f�wn;h : n � 1g for any h 2 H� and likewise with n in place of wn: Note that, by de�nition, a

sequence f�wn;h : n � 1g determines a sequence of distributions fFwn : n � 1g; see (8.9).
Assumption WU for the parameter space �0 is veri�ed in Comment (ii) to Theorem 10.1 given

below for the CLR test with moment-variance weighting, which is considered in Section 6. It also

holds for Kleibergen�s LM test (for the same parameter space �0) by the same argument (becausecW2n; bU2n; W1(�); and U1(�) are the same for these two tests, see (8.4)).

8.5 Basic Results

For any square-integrable random vector ai and F; Fn 2 F ; de�ne

�aiF := V arF (ai � (EFa`g0`)
�1F gi) and �
ai
h := lim�

ai
Fwn

(8.15)

whenever the limit exists, where the distributions fFwn : n � 1g correspond to f�wn;h : n � 1g
for any subsequence fwn : n � 1g: Note that �aiF = 	aiF � EFaiEFa

0
i (because 	

ai
F = EF bib

0
i for

bi = ai � (EFa`g0`)

�1
F gi and EF gi = 0k):

A basic result that is used in the proofs of results for all of the tests considered in this paper

and AG2 is the following.
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Lemma 8.2 Under all sequences f�n;h : n � 1g;

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A :

Under all subsequences fwng and all sequences f�wn;h : n � 1g; the same result holds with n replaced
with wn:

Comments: (i) The variance matrix �vec(Gi)h depends on h only through h4 and h5: The assump-

tions allow �vec(Gi)h to be singular.

(ii) Suppose one eliminates the �min(EF gig0i) � � condition in F and one de�nes bDn in (4.3)

with b
n replaced by an eigenvalue-adjusted matrix, denoted by b
"n; which is constructed to have
its smallest eigenvalue greater than or equal to " > 0 multiplied by its largest eigenvalue, see AG2

for the details of such a construction. In this case, the result of Lemma 8.2 still holds and all of

the other asymptotic results following from Lemma 8.2 still hold, except the independence of gh

and Dh: However, this independence is key because it is used in the conditioning argument that

establishes the correct asymptotic size of all of the tests that are shown to have correct asymptotic

size. Without it, these tests do not necessarily have correct asymptotic size. In consequence, we

de�ne bDn in (4.3) using b
n; not b
"n:
The reason that independence does not necessarily hold when bDn is de�ned using b
"n; rather

than b
n; is that the covariance term EFn [Gij�EFnGij� (EFnG`jg0`)(
"Fn)
�1gi]g0i typically does not

equal 0k�k when 
"Fn 6= 
Fn ; whereas EFn [Gij � EFnGij � (EFnG`jg0`)

�1
Fn
gi]g

0
i necessarily equals

0k�k; see the proof of Lemma 8.2 in Section 14 in the Supplementary Material for more details.

(iii) The proofs of Lemma 8.2 and other results in this section are given in Sections 14-16 in

the Supplemental Appendix.

The following is a key de�nition. Consider a sequence f�n;h : n � 1g: Let q = qh (2 f0; :::; pg)
be such that

h1;j =1 for 1 � j � qh and h1;j <1 for qh + 1 � j � p; (8.16)

where h1;j := limn1=2� jFn � 0 for j = 1; :::; p by (8.12) and the distributions fFn : n � 1g corre-
spond to f�n;h : n � 1g de�ned in (8.11). Such a q exists because fh1;j : j � pg are nonincreasing
in j (since f� jF : j � pg are the ordered singular values of WF (EFGi)UF ; as de�ned in (8.8)). As

de�ned, q is the number of singular values of WFn(EFnGi)UFn that diverge to in�nity when multi-

plied by n1=2: Roughly speaking, q is the number of parameters, or one-to-one transformations of

the parameters, that are strongly or semi-strongly identi�ed.

The following quantities appear in Lemma 8.3 below, which gives the asymptotic distribution
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of bDn after suitable rotations and rescaling, but without the recentering (by subtracting EFnGi)

that appears in Lemma 8.2. We partition h2 and h3 and de�ne �h as follows:

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q); h
�
1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q);
�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; �h;p�q := h3h

�
1;p�q + h71Dhh81h2;p�q;

h71 := W1(h7); and h81 := U1(h8); (8.17)

where h2;q 2 Rp�q; h2;p�q 2 Rp�(p�q); h3;q 2 Rk�q; h3;k�q 2 Rk�(k�q); �h;q 2 Rk�q; �h;p�q 2
Rk�(p�q); h71 2 Rk�k; h81 2 Rp�p; and Dh is de�ned in Lemma 8.2.44 Note that when Assumption

WU holds h71 = limWFn = limW1(W2Fn) and h81 = limUFn = limU1(U2Fn) under f�n;h : n � 1g:
The case where q = p (i.e., n1=2� jFn !1 for all j � p) is the strong or semi-strong identi�cation

case. In this case, no h2;p�q; h�1;p�q; and �h;p�q matrices appear in (8.17), �h = h3;q = h3;p; and �h

is non-random. In consequence, the limit in distribution (or probability) of the normalized matrix

n1=2WFn
bDnUFnTn; where Tn 2 Rp�p is de�ned below, is non-random, see Lemma 8.3 below. When

q < p; identi�cation is weak and the limit of this matrix is random.

Now we provide some motivation for Lemma 8.3, which is stated below. To show that the LM

statistic has a �2p asymptotic distribution we need to determine the asymptotic behavior of bDn

without the recentering by EFnGi that occurs in Lemma 8.2. In addition, to determine the asymp-

totic distribution of the rkn statistic in (6.2), we need to determine the asymptotic distribution of

WFn
bDnUFn without recentering by EFnGi:

45 To do so, we post-multiply WFn
bDnUFn �rst by BFn

and then by a nonrandom diagonal matrix Sn 2 Rp�p (which may depend on Fn and h). The

matrix Sn rescales the columns of WFn
bDnUFnBFn to ensure that n

1=2WFn
bDnUFnBFnSn converges

in distribution to a (possibly) random matrix that is �nite a.s. and not almost surely zero. For

F 2 FWU \F0; it ensures that the (possibly) random limit matrix has full column rank with prob-

ability one. For example, in the case of the LM statistic, these transformations are applied with

WFn = 

�1=2
Fn

and UFn = Ip:

For the LM statistic and the CLR statistics that employ it, we need the full column rank

property of the limit random matrix in order to apply the continuous mapping theorem (CMT).

For the LM statistic, the full rank property ensures that the quantity bD0
n
b
�1n bDn (whose inverse

44For simplicity, there is some abuse of notation here, e.g., h2;q and h2;p�q denote di¤erent matrices even if p� q
happens to equal q:
45Furthermore, to determine the asymptotic distributions of the two SR-CQLR test statistics and conditional critical

values considered in AG2, we need to determine the asymptotic distribution of WFn
bDnUFn without recentering by

EFnGi:
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appears in the expression for LMn; see (4.3)), is nonsingular asymptotically with probability one

after bDn has been transformed and rescaled to yield n1=2

�1=2
Fn

bDnBFnSn: Note that Pb
�1=2n
bDn ; which

appears in the de�nition of LMn in (4.3), can be written as

Pb
�1=2n
bDn := b
�1=2n

bDn( bD0
n
b
�1n bDn)

�1 bD0
n
b
�1=2n

= (b
�1=2n 
1=2n )(n1=2
�1=2n
bDnTn)

h
(n1=2
�1=2n

bDnTn)
0(b
�1=2n 
1=2n )0(b
�1=2n 
1=2n )

� (n1=2
�1=2n
bDnTn)

i�1
(n1=2
�1=2n

bDnTn)
0(
1=2n

b
�1=2n ); where

Tn := BFnSn 2 Rp�p and 
n := 
Fn (= EFngig
0
i); (8.18)

provided Tn has full rank and 
n is pd. In consequence, these transformations do not a¤ect the

value or distribution of the LM statistic.

Note that the two SR-CQLR test statistics considered in AG2 do not depend on an LM statistic

and do not require the asymptotic distribution of n1=2WFn
bDnUFnBFnSn to have full column rank

a.s.

De�ne

Sn := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1; 1; :::; 1g 2 Rp�p; (8.19)

where q = qh is de�ned in (8.16).46

The proof of Theorem 9.1 for the LM test, the proofs of Theorems 8.4 and 10.1 for the CLR

test with moment-variance weighting, and the proofs for the two SR-CQLR tests in AG2 use the

following lemma. The p� p matrix Tn is de�ned in (8.18).

Lemma 8.3 Suppose Assumption WU holds for some non-empty parameter space �� � �2: Under
all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in Lemma 8.2, (b) �h is the nonrandom function of h and Dh

de�ned in (8.17), (c) (Dh;�h) and gh are independent, (d) if Assumption WU holds with �� = �0;

WF = 

�1=2
F ; and UF = Ip; then �h has full column rank p with probability one, and (e) under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above
and the results of parts (a)-(d) hold with n replaced with wn:

Comments: (i) Lemma 8.3(c)-(d) are key properties of the asymptotic distribution of n1=2(bgn;
46Note that � jFn > 0 for n large for j � q and, hence, Sn is well de�ned for n large, because n1=2� jFn !1 for all

j � q:
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WFn
bDnUFnTn) that lead to the LM statistic having a �2p asymptotic distribution and the CLR test

with moment-variance weighting having correct asymptotic size. Lemma 8.3(c) is a key property

that leads to the correct asymptotic size of the two SR-CQLR tests in AG2. Lemma 8.3(d) is not

needed for these tests because they do not rely on an LM statistic.

(ii) The conditions in F0 are used in the proofs to obtain the result of Lemma 8.3(d) and are
not used elsewhere in the proofs, except where Lemma 8.3(d) is used.

The following theorems are used only for the CLR tests. For the proof of Theorem 4.1 concerning

Kleibergen�s (2005) LM test, one can go from here to Section 9.

Let b�jn denote the jth eigenvalue of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; 8j = 1; :::; p; (8.20)

ordered to be nonincreasing in j: By de�nition, �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) = b�pn: Also, the jth

singular value of n1=2cWn
bDn
bUn equals b�1=2jn :

Theorem 8.4 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;
(a) b�pn !p 1 if q = p;

(b) b�pn !d �min(�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q) if q < p;

(c) b�jn !p 1 for all j � q;

(d) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q

��h;p�q 2 R(p�q)�(p�q);
(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma 8.3, and

(f) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(e) hold with n replaced with wn:

Comments: (i) The statistic b�pn = �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) in Theorem 8.4(a) and (b) is a

Robin and Smith (2000)-type rank statistic.

(ii) Theorem 8.4(a) and (b) is used to determine the asymptotic behavior of the statistic

rkn de�ned in (6.2) (which is employed by the CLR test with moment-variance weighting that is

considered in Section 6). More speci�cally, Theorem 8.4(a) and (b) is used to verify Assumption

R in Section 10 below.

(iii) Theorem 8.4(c) and (d) is used to determine the asymptotic behavior of the critical value

functions for the two SR-CQLR tests considered in AG2 (withcWn and bUn de�ned suitably). Because
Theorem 8.4(c) and (d) are immediate by-products of the proofs of Theorem 8.4(a) and (b), they

are stated and proved here, rather than in AG2.
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(iv) The statement of Theorem 3 in Kleibergen (2005) is di¢ cult to interpret because the ex-

pression given for the conditional asymptotic distribution of the CLR statistic involves Kleibergen�s

(2005) statistic rk(�0); which is a �nite-sample object. Based on Theorem 8.4, (10.7) below provides

the asymptotic distribution of a class of CLR statistics in terms of an asymptotic version of the

rank statistic employed, which is necessary for a precise statement of the asymptotic distribution.

The class of CLR statistics considered are those de�ned in (5.1) and based on the rank statistic in

Theorem 8.4 for some choices of cWn and bUn; which is a Robin and Smith (2000)-type rank statistic.
In particular, taking cWn = b
�1=2n and bUn = Ip gives the rank statistic de�ned in (6.2).

9 Asymptotic Size of the Nonlinear LM Test

In this section, we prove Theorem 4.1 for the LM test.

We state a theorem that veri�es Assumption B� of ACG (stated in Section 8) for the LM

test. The following theorem applies with cWn = b
�1=2n ; WF = 

�1=2
F ; and bUn = UF = Ip: (These

de�nitions a¤ect the de�nition of �n;h; which appears in the theorem).

Theorem 9.1 The asymptotic null rejection probabilities of the nominal size � 2 (0; 1) LM test

equal � under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 �0 8n � 1:

Comments: (i) The requirement that �wn;h 2 �0 (de�ned in (8.10)) implies that the parameter
space for F is F0 (de�ned in (3.7)) for the results given in Theorems 4.1 and 9.1 (because the
restrictions in FWU are not binding, see the discussion in the paragraph containing (8.5)).

(ii) Proposition 8.1 and Theorem 9.1 prove Theorem 4.1 for the LM test. The proof of Theorem

4.1 for the LM CS is analogous, see Comments (i) and (ii) to Proposition 8.1.

For notational simplicity, we prove Theorem 9.1 for the sequence fng; rather than a subsequence
fwn : n � 1g: We note here that the same proof holds for any subsequence fwn : n � 1g:

Proof of Theorem 9.1. Let 
n := 
Fn : We derive the limiting distribution of the statistic

LMn using the CMT applied to 

�1=2
n n1=2bgn; b
�1=2n 


1=2
n ; and n1=2
�1=2n

bDnTn; where the latter two

quantities appear in the expression on the rhs of (8.18). Note that b
n !p h5;g by the WLLN, 
n !
h5;g; and h5;g is pd. Thus, b
�1=2n 


1=2
n !p Ik: By Lemma 8.3 applied withWF = 


�1=2
F and UF = Ip

(which results from taking cWn = b
�1=2n and bUn = Ip), we get (

�1=2
n n1=2bgn; n1=2
�1=2n

bDnTn) !d

(h
�1=2
5;g gh;�h): For the CMT to apply, it is enough to show that the function f : Rk�p ! Rk�k

de�ned by f(D) := D(D0D)�1D0 for D 2 Rk�p is continuous on a set C � Rk�p with P (�h 2
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C) = 1:47 Note that f is continuous at each D that has full column rank. And, by Lemma 8.3(d),

�h has full column rank a.s. because �n;h 2 �0; Fn 2 F0; WF = 

�1=2
F ; and UF = Ip: Hence, f is

continuous a.s. By b
�1=2n 

1=2
n !p Ik; the convergence result in Lemma 8.3, and the CMT, we have

PD�
n
b
�1=2n n1=2bgn = D�

n(D
�0
nD

�
n)
�1D�0

n
b
�1=2n n1=2bgn !d vh := P�hh

�1=2
5;g gh; (9.1)

where D�
n := (b
�1=2n 


1=2
n )n1=2


�1=2
n

bDnTn:

Conditional on �h; v
0
hvh is distributed as �

2
p because (i) �h and gh are independent by property

(c) in Lemma 8.3, (ii) h�1=25;g gh is conditionally distributed as N(0
k; Ik) by gh � N(0k; h5;g) and

(i), and (iii) P�h is �xed given �h and projects onto a space of dimension p a.s. by property

(d) in Lemma 8.3. Because the �2p distribution does not depend on �h; v
0
hvh is unconditionally

distributed as �2p as well. In consequence, using the CMT again, we have

LMn !d LMh := v0hvh � �2p: (9.2)

Given this result and the use of the �2p;1�� critical value by the LM test, we obtain the conclusion

of Theorem 9.1 for the LM test: limPFn(LMn > �2p;1��) = �: �

10 Asymptotic Size of the CLR Test with Moment-Variance

Weighting

In this section, we prove Theorem 6.1, which concerns the CLR test (and CS) with moment-

variance weighting based on the Robin-Smith rank statistic. In fact, for the CLR test de�ned by

(5.1)-(5.2), we prove a stronger result than that given in Theorem 6.1. We establish Theorem 6.1

for a CLR test that is based on any rank statistic rkn that satis�es a high-level assumption, denoted

Assumption R, not just the rank statistic rkn(�0) de�ned in (6.2). Then, we verify Assumption R for

the moment-variance-weighted Robin-Smith rank statistic rkn(�0) in (6.2). Note that Assumption

R does not hold for the rank statistic in (5.5) when p � 2:
Section 18.5 in the Supplemental Material provides additional asymptotic size results for equally-

weighted CLR tests (and CS�s), which are CLR tests that are based on rkn statistics that depend

on bDn only through fWn
bDn for some k � k weighting matrix fWn: These results show that equally-

weighted CLR tests (and CS�s) based on the Robin and Smith (2000) rank statistic with a general

weight matrix fWn (2 Rk�k) have correct asymptotic size under suitable conditions on fWn: One can

47This holds because the function f2(D;L) := LD((LD)0(LD))�1D0L0 for a nonsingular k�k matrix L is continuous
at (D; Ik) if f(D) is continuous at D:
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view these results as verifying Assumption R for a broad class of rkn statistics. In contrast, the

results in the present section establish the correct asymptotic size of CLR tests (and CS�s) under

the high-level condition Assumption R and for the Robin and Smith (2000) rank statistic when fWn

is the moment-variance weighting matrix b
�1=2n ; see Comment (ii) to Theorem 10.1 below.

The high-level condition on the rank statistic rkn is the following.

Assumption R: For any subsequence fwng and any sequence f�wn;h : n � 1g with �wn;h 2 �0
8n � 1 either (a) rkwn !p rh = 1 or (b) rkwn !d rh(Dh) for some nonrandom function rh :

Rk�p ! R; where Dh is de�ned in Lemma 8.2, and the convergence is joint with that in Lemma

8.2.48

The following theorem applies when the LM statistic is de�ned as in (4.3) with projection ontob
�1=2n
bDn: In consequence, the quantities in (8.2) in the present case are cWn = b
�1=2n ; WF = 


�1=2
F ;

and bUn = UF = Ip: (These de�nitions a¤ect the de�nition of �n;h; which appears in the theorem).

Theorem 10.1 For any statistic rkn that satis�es Assumption R, the asymptotic null rejection

probabilities of the nominal size � 2 (0; 1) CLR test de�ned in (4.3)-(5.2) based on rkn equal �

under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 �0 8n � 1:

Comments: (i) Theorem 10.1 and Proposition 8.1 imply that a nominal size � CLR test based on

any rank statistic that satis�es Assumption R has asymptotic size � and is asymptotically similar.

Analogous CS results (to the test results stated in Theorem 10.1) hold for a parameter space ��;0

that is a reparametrization of F�;0 and is de�ned as �0 is de�ned, but with the adjustments outlined
in Comments (i) and (ii) to Proposition 8.1.

(ii) Theorems 8.4 and 10.1 and Proposition 8.1 establish the test results of Theorem 6.1.

This holds because Theorem 8.4(a), (b), (e), and (f) with cWn = b
�1=2n and bUn = Ip imply that

Assumption R holds for the CLR test with moment-variance weighting, that is considered in Section

6, which uses the Robin and Smith (2000) rkn statistic de�ned in (6.2). (In the present context,

Theorem 8.4 requires that Assumption WU holds for the parameter space �0: It holds with cWn =cW2n; W1(w) = w for w 2 Rk�k; W2 = Rk�k; bUn = bU2n; U1(u) = u for u 2 Rp�p; and U2 = Rp�p;

because cWn = b
�1=2n !p h
�1=2
5;g under all sequences f�n;h : n � 1g with �n;h 2 �0 and bUn = Ip for

all n � 1:) In particular, Assumption R holds with rh = 1 if q = p and with rh(Dh) equal to the

smallest eigenvalue of �
0
h;p�qh3;k�qh

0
3;k�q�h;p�q if q < p (where �h;p�q and h3;k�q are de�ned in

(8.17) based on WF = 

�1=2
F and UF = Ip): The CS results of Theorem 6.1 hold by Theorem 8.4,

Comment (i) to Theorem 10.1, and Comment (i) to Proposition 8.1.

48By rk!n !p 1; we mean that for every K < 1 we have P�0;�!n (rk!n > K) ! 1; where P�0;�!n (�) denotes
probability under �!n when the true parameter vector equals �0:
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(iii) Theorem 5.1 shows that Assumption R does not hold in general for rank statistics based

on eVDn and bDy
n; de�ned in (5.3)-(5.4), when p � 2: The reason is that for some sequences of

distributions the asymptotic distribution of bDy
n and, hence, the rank statistic rkn depends on Dh

and M
y
h 6= 0k�p; not just on Dh alone.

For notational simplicity, the following proof is for the sequence fng; rather than a subsequence
fwn : n � 1g: The same proof holds for any subsequence fwn : n � 1g:

Proof of Theorem 10.1. Let

Jn := nbg0nb
�1=2n Mb
�1=2n
bDn b
�1=2n bgn: (10.1)

It follows from (4.3) that

ARn = LMn + Jn: (10.2)

We now distinguish two cases. First, suppose Assumption R(a) holds: rkn !p 1: By (10.2) and
some algebra, we have (ARn � rkn)2 + 4LMn � rkn = (LMn � Jn + rkn)2 + 4LMn � Jn: Therefore,

CLRn =
1

2

�
LMn + Jn � rkn +

p
(LMn � Jn + rkn)2 + 4LMn � Jn

�
: (10.3)

Using a mean-value expansion of the square-root expression in (10.3) about (LMn�Jn+ rkn)2; we
have

p
(LMn � Jn + rkn)2 + 4LMn � Jn = LMn � Jn + rkn + (2

p
�n)

�14LMn � Jn (10.4)

for an intermediate value �n between (LMn � Jn + rkn)
2 and (LMn � Jn + rkn)

2 + 4LMn � Jn: It
follows that CLRn = LMn + op(1) !d �

2
p using (9.2) and (

p
�n)

�1 = op(1) (which holds because

rkn !p 1; LMn = Op(1); and Jn = Op(1) by (10.6) below). Analogously, it can be shown that the

critical value c(1��; rkn); de�ned above (5.2), of the CLR test converges in probability to �2p;1��:
The result of Theorem 10.1 then follows by the de�nition of convergence in distribution.

Second, suppose Assumption R(b) holds. Then, using Lemma 8.2, we have (n1=2bgn; n1=2( bDn �
EFnGi); rkn) !d (gh; Dh; rh(Dh)): By the proof of Lemma 8.3 applied with WF = 


�1=2
F and

UF = Ip (which correspond to cWn = b
�1=2n and bUn = Ip); using the former result in place of

(n1=2bgn; n1=2( bDn � EFnGi))!d (gh; Dh) gives

(n1=2bgn; n1=2( bDn � EFnGi); n1=2
�1=2n
bDnTn; rkn)!d (gh; Dh;�h; rh(Dh)); (10.5)

where 
n := 
Fn ; (Dh;�h) and gh are independent, and �h has full column rank p with probability
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one by Lemma 8.3(d) (because we are considering sequences f�wn;h : n � 1g with �wn;h 2 �0

8n � 1; WF = 

�1=2
F ; and UF = Ip): In addition, b
n !p h5;g; h5;g is pd, and Mb
�1=2n

bDn =
M�b
�1=2n 


1=2
n

�
n1=2


�1=2
n

bDnTn because Tn (de�ned in (8.18)) and 
�1=2n are nonsingular. These results

and the CMT imply that

Jn !d Jh := g0hh
�1=2
5;g M�h

h
�1=2
5;g gh: (10.6)

The convergence results in (9.2) and (10.6) and rkn !d rh(Dh) hold jointly by (10.5) and the

de�nitions of LMn and Jn in (4.3) and (10.1).

Note that LMh = g0hh
�1=2
5;g P�hh

�1=2
5;g gh by (9.1) and (9.2). Conditional on �h; P�hh

�1=2
5;g gh and

M�h
h
�1=2
5;g gh have a joint normal distribution with zero covariance (because V ar(h

�1=2
5;g gh) = Ik and

P�hM�h
= 0k�k) and, hence, are independent. The same holds true conditional on Dh; because

�h is a nonrandom function of Dh and Dh is independent of gh: In consequence, conditional on

Dh; LMh and Jh are independent and distributed as �2p and �
2
k�p; respectively.

Using the convergence results in (10.5) and (10.6), the de�nition of CLRn in (5.1) with ARn =

LMn + Jn substituted in, and the CMT, we obtain

CLRn !d CLRh :=
1

2

�
LMh + Jh � rh +

q
(LMh + Jh � rh)2 + 4LMrh

�
; (10.7)

where rh := rh(Dh):

The function c(1��; r) (de�ned in (5.2)) is continuous in r on R+ by the absolute continuity of
the distributions of �2p and �

2
k�p; which appear in clr(r) (also de�ned in (5.2)), and the continuity

of clr(r) in r a.s. This, rkn !d rh; and (10.7) yield

CLRn � c(1� �; rkn)!d CLRh � c(1� �; rh): (10.8)

Therefore, by the de�nition of convergence in distribution, we have

P�0;�n(CLRn > c(1� �; rkn))! P (CLRh > c(1� �; rh)) (10.9)

provided P (CLRh = c(1 � �; rh)) = 0; which holds because P (CLRh = c(1 � �; rh)jDh) = 0 a.s.

The latter holds because conditional on Dh; CLRh is absolutely continuous (by (10.7) since LMh

and Jh are independent and distributed as �2p and �
2
k�p and rh is a nonrandom function of Dh)

and c(1� �; rh) is a constant.
From above, conditional on Dh; LMh and Jh are independent and distributed as �2p and �

2
k�p;

respectively, and rh is a constant. Thus, conditional on Dh; CLRh and clr(rh) have the same

distribution. By de�nition, c(1� �; rh) is the 1� � quantile of the absolutely continuous random
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variable clr(rh) for any constant rh: Hence,

P (CLRh > c(1� �; rh)jDh) = � a.s. (10.10)

Because the left-hand side conditional probability equals � a.s. and � does not depend on Dh; the

unconditional probability P (CLRh > c(1 � �; rh)) equals � as well. Combined with (10.9), this

gives the desired result. �

11 Asymptotic Size of the CLR Test with Jacobian-Variance

Weighting when p = 1

In this section, we prove the test results of Theorem 5.2, which concerns Kleibergen�s CLR test

(and CS) with Jacobian-variance weighting when p = 1: The CS results of Theorem 5.2 hold by an

analogous argument, see Comments (i) and (ii) to Proposition 8.1.

Proof of Theorem 5.2. We prove the test results of Theorem 5.2 using Proposition 8.1 and

results (or variants of results) in Lemma 8.3 and Theorems 8.4, 9.1, and 10.1. The proof is made

more complicated by the fact that we need to use two di¤erent de�nitions of cWn: To obtain the

asymptotic distribution of the LM statistic (which is a component of the CLR statistic), we need

to take cWn = b
�1=2n and bUn = 1; because the LM statistic (de�ned in (4.3)) depends on b
�1=2n
bDn:

But, to obtain the asymptotic distribution of the rank statistic rkn := n bDn
0 eV �1Dn

bDn (de�ned in

(5.8)), we need to take cWn = eV �1=2Dn and bUn = 1; because rkn depends on eV �1=2Dn
bDn:

For notational simplicity, we establish results below for sequences fng; rather than subsequences
fwng of fng: Subsequence results hold by replacing n by wn in the proofs.

We proceed as follows. First, we apply Lemma 8.3 exactly as in the proof of Theorem 9.1 withcWn = b
�1=2n ; bUn = 1; WF = 

�1=2
F ; and UF = 1: This yields n1=2(bgn; bDn�EFnGi;WFn

bDnUFnTn)!d

(gh; Dh;�h) for sequences f�n;h : n � 1g that correspond to distributions F in FWU \F0 based on
these de�nitions of WF and UF : As discussed in the paragraph containing (8.5), F0 = FWU \ F0
for �WU su¢ ciently small and MWU su¢ ciently large. We employ constants �WU and MWU for

which this holds. The joint convergence result above yields the asymptotic distributions of the

ARn; LMn; and Jn statistics via the calculations in (9.1), (9.2), (10.1), (10.2), and (10.6).

Next, we takecWn = eV �1=2Dn ; bUn = 1; WF =W2F = (V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2; where �GiF and


F are de�ned in (3.2),W1(�) equals the identity function onW2 := Rk�k; UF = U2F = 1; and U1(�)
equals the identity function on U2 := R: We consider distributions in FJVW;p=1 (which is a subset
of F0 when �3 = �2 by the paragraph following (5.7)). We obtain the asymptotic distribution of rkn
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under the corresponding sequences f�n;h : n � 1g (which di¤er from the sequences f�n;h : n � 1g in
the previous paragraph due to the di¤erence between the two de�nitions of WF ): More speci�cally,

we verify the convergence results in Assumption R for rkn := n bD0
n
eV �1Dn

bDn (de�ned in (5.8)) for the

f�n;h : n � 1g sequences of this paragraph. The result of Theorem 8.4(a), (b), (e), and (f) veri�es

the convergence results in Assumption R for sequences f�n;h : n � 1g for which Fn 2 FJVW;p=1
8n � 1 provided Assumption WU holds for such sequences with cW2n = cWn = eV �1=2Dn ; W1(�) equal
to the identity function, bU2n = bUn = 1; U1(�) equal to the identity function, and the parameter
space �� being equal to �JVW;p=1 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ FJVW;p=1g:
Here FWU is de�ned in (8.5) with WF = (V arF (Gi) � �GiF 


�1
F �

Gi0
F )�1=2 and UF = 1: Note that

FJVW;p=1 = FWU \ FJVW;p=1 for �WU > 0 su¢ ciently small and MWU < 1 su¢ ciently large

(and we employ constants �WU and MWU that satisfy these conditions). This holds because for all

F 2 FJVW;p=1; �min(WF ) = �min((V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2) = �

�1=2
max (V arF (Gi)��GiF 


�1
F �

Gi0
F )

� �
�1=2
max (EFGiG

0
i) � M

�1=2
+ for some M+ < 1 (because EFGiG0i � (V arF (Gi) � �

Gi
F 


�1
F �

Gi0
F ) =

EFGiEFG
0
i+�

Gi
F 


�1
F �

Gi0
F is psd and jjEFGiG0ijj �M+ for someM+ <1 by the moment conditions

in F); jjWF jj = jj(V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2jj � �

�1=2
min (V arF (Gi)��

Gi
F 


�1
F �

Gi0
F ) � �

�1=2
3 (using

the condition in FJVW;p=1 and the fact that V arF (Gi) � �GiF 

�1
F �

Gi0
F = 	GiF � EFGiEFG

0
i using

the de�nition of 	GiF in (3.2)), where �3 > 0; and jjUF jj = �min(UF ) = 1:

Assumption WU(b) holds automatically with h8 = 1 because bU2n := 1: The requirement of

Assumption WU(c) that W1(�) is continuous at h7 and U1(�) is continuous at h8 also holds auto-
matically because W1(�) and U1(�) are identity functions.

Assumption WU(a) for the parameter space �JVW;p=1 requires that cW2n !p h7 (:= limW2Fn):

For sequences f�n;h : n � 1g; we have

eVDn : = n�1
nX
i=1

(Gi � bGn)(Gi � bGn)0 � b�nb
�1n b�0n
= EFn(Gi � EFnGi)(Gi � EFnGi)0 � �GiFn


�1
Fn
�Gi0Fn

+ op(1)

= W�2
2Fn

+ op(1)

! p h
�2
7 ; (11.1)

where the �rst equality holds by (5.3), the second equality holds by the WLLN�s applied multiple

times and Slutsky�s Theorem using the conditions in F ; the third equality holds by the de�nition
of W2F ; and the convergence holds because W2Fn = �7;Fn ! h7 by the de�nition of the sequence

f�n;h : n � 1g and h7 is pd (since h7 = limW2Fn and the eigenvalues of W
�2
2F are bounded above

for F 2 F): Equation (11.1) and Slutsky�s Theorem give eV �1=2Dn !p h7 because h�27 is pd using
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the condition in FJVW;p=1 that �min(	GiF � EFGiEFG
0
i) � �: In consequence, Assumption WU(a)

holds.

This completes the veri�cation of Assumption WU for the parameter space �JVW;p=1 and, in

consequence, the veri�cation of the convergence results of Assumption R for rkn for sequences

f�n;h : n � 1g de�ned in the fourth paragraph of this proof.
Now we consider sequences f�n;h : n � 1g that satisfy the conditions on f�n;h : n � 1g given in

both the third and fourth paragraphs of this proof. These sequences correspond to distributions F

in FJVW;p=1: These sequences satisfy the convergence conditions in (8.11) using the de�nitions in
(8.9) and (8.10) with � jF ; BF ; CF ; andW2F de�ned based onWF = 


�1=2
F and with these quantities

based on WF = (V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2: In consequence, for these sequences of distributions

f�n;h : n � 1g; the results above establish the asymptotic distributions of the ARn; LMn; Jn; and

rkn statistics and the convergence is joint because all of the convergence results are based on the

underlying CLT result in Lemma 8.2. Given this joint convergence, by the same arguments as given

in the proof of Theorem 10.1, we obtain that the CLR test with Jacobian-variance weighting has

asymptotic null rejection probabilities equal to � under all such sequences f�n;h : n � 1g (and all
subsequences of such sequences).

Finally, we apply Proposition 8.1 with � and hn(�) given by the concatenation of the � vectors

and hn(�) functions used in the third and fourth paragraphs above and with � given by the product

space of the � spaces used in these paragraphs. (Redundant elements of � and hn(�) do not cause

any problems.) The result of the previous paragraph veri�es Assumption B� for this choice �;

hn(�); and �: In consequence, Proposition 8.1 implies that the Jacobian-variance weighted CLR

test has correct asymptotic size and is asymptotically similar when p = 1: �

12 The Eigenvalue Condition in F0

In this section, we show that the restriction �p�j(	jF (�)) � �1 > 0 in F0j ; de�ned in (3.7),
is not redundant. If this restriction is weakened to �p�j(	jF (�)) > 0; we show that, for some

models, some sequences of distributions, and some (consistent) choices of variance and covariance

estimators, the LM statistic in (4.3) has a �2k asymptotic distribution. This leads to over-rejection

of the null when the standard �2p critical value is used and the parameters are over-identi�ed (i.e.,

k > p): On the other hand, we show that the LM statistic equals zero a.s. for some models and

some distributions F if the condition �p�j(	jF (�)) � �1 > 0 is removed entirely. This implies that

the LM test also under-rejects the null hypothesis and is nonsimilar in both �nite samples and

asymptotically for some F:
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All of the CLR tests considered in Sections 5 and 6, except that of Smith (2007), are functions

of the LM statistic in (4.3) (and other statistics). In consequence, the aberrant behavior of the LM

statistic and test demonstrated in this section, when the restriction �p�j(	jF (�)) � �1 > 0 in F0
is weakened or eliminated, carries over to the CLR statistics and tests in Sections 5 and 6.49

12.1 Eigenvalue Condition Counter-Examples

For simplicity, we consider the case p = 1 in this section. As above, the null hypothesis is

H0 : � = �0:

Lemma 12.1 (a) Suppose F0 is de�ned with the condition �p�j(	jF (�)) > 0 in place of

�p�j(	jF (�)) � �1 > 0 in F0j for all j 2 f0; :::; pg; where p = 1: Suppose b
n(�) is de�ned in
(4.1) and b�1n(�) = n�1

Pn
i=1Gi(�)gi(�)

0 (which di¤ers from its de�nition in (4.3)). Then, there

exist moment functions g(Wi; �) and a sequence of null distributions fFn 2 F0 : n � 1g for whichb
n = b
n(�0) and b�1n = b�1n(�0) are well-behaved (in the sense that b
n � EFngig
0
i !p 0

k�k andb�1n � EFnGig0i !p 0
k�k) and LMn(�0) = ARn(�0) + op(1)!d �

2
k:

(b) Suppose F0 is de�ned with the condition �p�j(	jF (�)) � �1 > 0 deleted in F0j for all
j 2 f0; :::; pg; where p = 1: Suppose b
n(�) and b�1n(�) are de�ned in (4.1) and (4.3), respectively.
Then, there exists moment functions and a null distribution F 2 F0 for which LMn(�0) = 0 a:s:

for all n � 1:

Comments: (i) The model we use to prove Lemma 12.1(a) is the linear IV regression model with

one endogenous rhs variable and (for simplicity) no exogenous variables. Speci�cally, the model is

y1i = y2i� + ui and y2i = Z 0i� + v2i; (12.1)

where y1i; �; y2i; v2i 2 R; Zi; � 2 Rk; v2i = �ui + ��i for some random variable �i; � = (1 � �2)1=2;

and the observations are i.i.d. across i for any given n: The parameter space F� for the distribution
F of the random vector Wi = (y1i; y2i; Z

0
i)
0 is

F� := fF : (12:1) holds with � = �0; � = �F 2 Rk; � = �F 2 (�1; 1);

Zi; ui; and �i are mutually independent, EFui = EF �i = 0;

EFu
2
i = EF �

2
i = 1; EF jj(ui; �i; Z 0iZi)jj2+
 �M; and �min(EFZiZ 0i) � �g (12.2)

for some 
; � > 0 and M <1: As de�ned, � is the correlation between ui and v2i:
49Smith�s (2007) CLR test is a function of the LM statistic in (4.3) but with b
�1=2n

bDn replaced by bDy
n:
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The moment functions are g(Wi; �) = Zi(y1i � y2i�): When the null value �0 is the true value,

this gives gi = gi(�0) = Ziui and Gi = Gi(�0) = �Ziy2i: The set F� is a subset of F0 when the
latter is de�ned with the condition �p�j(	jF (�)) > 0 in place of �p�j(	jF (�)) � �1 > 0: This holds

because (i) for all F 2 F�; �min(	vec(Gi)F ) > 0 (by the argument in the paragraph that contains

(3.11) because �min(EFZiZ 0i) > 0 and �min(EF "i"
0
i) > 0; where "i = (ui;��ui � ��i)

0 for � 2

(�1; 1)); (ii) �min(EF gig0i) = EFu
2
i�min(EFZiZ

0
i) � � > 0; and (iii) �p�j(	

C0F;k�j

�1=2
F GiBF;p�j�

F ) �
�min(	

vec(Gi)
F )M�2=(2+
) for all � 2 Rp�j with jj�jj = 1 and all j 2 f0; :::; pg (by the results and

arguments in the paragraphs that contain (17.1)-(17.3), which verify that condition (iv), stated

in (3.9), is a su¢ cient condition for the �p�j(�) condition in F0j): The quantity �min(	vec(Gi)F ) is

arbitrarily close to zero for � arbitrarily close to one.

We consider a sequence of distributions fFn 2 F� : n � 1g for which �Fn = 0k for all n � 1; �n
(= �Fn)! 1; and EFnZiZ

0
i does not depend on n: For these distributions,

Gi = ��ngi + �nG�i ; where G�i := �Zi�i and �n := (1� �2n)1=2: (12.3)

In this case, the IV�s are irrelevant and the degree of endogeneity is close to perfect for n large.

(ii) The model we consider in Lemma 12.1(b) is the same as that in part (a) except that F�

allows for � = �F 2 (�1; 1] and we consider a single distribution F with � = 0k and � = 1; rather

than a drifting sequence of distributions. For this distribution, �min(	
vec(Gi)
F ) = 0:

(iii) The intuition for the results in Lemma 12.1(a) and (b) is as follows. As (12.3) shows, Gi

is close to being proportional to gi when �Fn = 0
k and �n is close to one. And, when �Fn = 0

k and

�n = 1; they are exactly proportional. By averaging over i = 1; :::; n and by taking expectations, the

same properties are seen to hold for bGn and bgn and their population counterparts. In consequence,bDn (:= bGn � b�nb
�1n bgn when p = 1) is close to 0k (because it is a sample version of the L2(F )

projection of Gi on gi) and the same is true of the population counterpart of bDn (because it is the

L2(F ) projection of Gi on gi). The latter implies that the direction of the k-vector bDn is primarily

random. In consequence, this direction turns out to be sensitive to the speci�cation of the sample

matrices b�n and b
n even within the class of consistent estimators of their population counterparts.
One consistent choice of b�n and b
n (used in Lemma 12.1(a)) yields bDn to be very close to

being proportional to bgn: In this case, the projection of b
�1=2n bgn onto b
�1=2n
bDn is asymptotically

equivalent to b
�1=2n bgn itself. The LM statistic is a quadratic form in this projection k-vector

(i.e., Pb
�1=2n
bDn b
�1=2n bgn) multiplied by n: Hence, it behaves asymptotically like a quadratic form inb
�1=2n bgn multiplied by n; which is just the AR statistic. This explains the result in Lemma 12.1(a).
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On the other hand, when �n = 1 (which implies that bGn = �bgn by (12.3)), another consistent
choice of b�n and b
n (used in Lemma 12.1(b)) yields bDn = 0k a.s. In this case, the projection ofb
�1=2n bgn onto b
�1=2n

bDn equals 0k a.s. Hence, the LM statistic (which is a quadratic form in this

projection times n) equals zero a.s. This explains the result in Lemma 12.1(b).

(iv) The result of Lemma 12.1(a) also holds for the model described in Comment (ii). Hence,

drifting sequences of distributions are not required to show the result of Lemma 12.1(a) if one

removes the condition �p�j(	jF (�)) � �1 > 0 entirely from F0j : Furthermore, the result of Lemma
12.1(a) can be extended to cover weak IV cases (in which � = �n 6= 0k; but �n ! 0k su¢ ciently

quickly as n!1); rather than the irrelevant IV case (in which � = 0k):
(v) Finite sample simulations corroborate the asymptotic result given in Lemma 12.1(a). For

the model and LM test described in Comment (i) with k = 5; � = 0k; � = 1; Zi � N(05; I5);

(ui; �i) � N(02; I2); and Zi independent of (ui; �i); the null rejection rate of the nominal 5% LM

test is 59:4% when n = 200 and 57:6% when n = 1000: However, when � deviates from 1 even by

a small amount, the magnitude of over-rejection drops very quickly. The null rejection rate of this

nominal 5% LM test is 10:1% when � = 0:99 and n = 200 and 12:9% when � = 0:998 and n = 1000:

(These simulation results are based on 50; 000 simulation repetitions.)

(vi) The conditions of Lemma 12.1(a) and (b) are consistent with those of Theorem 1 of

Kleibergen (2005). This implies that the �2p asymptotic distribution of the LM statistic obtained

in the latter only holds under additional conditions, such as those in F0:

12.2 Proof of Lemma 12.1

Proof of Lemma 12.1. To prove part (a), we use the model de�ned in (12.1)-(12.3). We have

bGn = ��nbgn + �n bG�n; where bG�n := n�1
nP
i=1

G�i ; and

b�1n = n�1
nP
i=1

Gig
0
i = n�1

nP
i=1
(��ngi + �nG�i )g0i = ��nb
n � �nbgnbg0n + �nb��1n; where

b��1n := n�1
nP
i=1

G�i g
0
i: (12.4)

We choose f�n : n � 1g to converge to one su¢ ciently fast that n�n ! 0; where �n = (1��2n)1=2

by (12.3). For example, we can take �n = (1� n�3)1=2: Using the results above, we obtain

bDn = bGn � b�1nb
�1n bgn
= ��nbgn + �n bG�n � [��nb
n � �nbgnbg0n + �nb��1n]b
�1n bgn
= �n(bg0nb
�1n bgn)bgn + �n( bG�n � b��1nb
�1n bgn): (12.5)
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This gives

egn := bgn + n�n�n = bDn=(�nbg0nb
�1n bgn); where
�n := ( bG�n � b��1nb
�1n bgn)=(�nnbg0nb
�1n bgn) = Op(n

�1=2) and egn = bgn + op(n�1=2); (12.6)

where �n = Op(n
�1=2) because �n ! 1; bG�n = Op(n

�1=2) by the CLT since EFnG
�
i = �EFnZi �

EFn�i = 0
k; b��1nb
�1n = Op(1) by the WLLN applied twice and �min(EFngig

0
i) = �min(EFnZiZ

0
i) �

� > 0; bgn = Op(n
�1=2) by the CLT, and (nbg0nb
�1n bgn)�1 = Op(1); which holds by the CMT because

ARn = nbg0nb
�1n bgn !d �
2
k (by the CLT, WLLN, and CMT) and �

2
k > 0 a.s., and lastly the result

for egn in the second line of (12.6) holds by �n = Op(n
�1=2) and n�n = o(1):

Projections are invariant to nonzero scalar multiplications of the matrix that de�nes the pro-

jection. That is, PA = PcA for any matrix A and any scalar c 6= 0: We have �nbg0nb
�1n bgn 6= 0 wp!1
because (nbg0nb
�1n bgn)�1 = Op(1) and �n ! 1: So, the LM statistic is unchanged wp!1 when bDn is

replaced by bDn=(�nbg0nb
�1n bgn) = egn = bgn + op(n�1=2) using (12.6). Thus, we have
LMn := nbg0nb
�1=2n Pb
�1=2n

bDn b
�1=2n bgn
= nbg0nb
�1=2n Pb
�1=2n egn b
�1=2n bgn + op(1)
= nbg0nb
�1n egn(eg0nb
�1n egn)�1eg0nb
�1n bgn + op(1)
= nbg0nb
�1n bgn + op(1) = ARn + op(1)!d �

2
k; (12.7)

which completes the proof of part (a).

Next, we prove part (b). In this case, we use the model in (12.1)-(12.3) with �n = 1 and �n = 0

for all n � 1: In consequence, Gi = �gi and bGn = �bgn: Given the de�nitions of b
n and b�1n in
(4.1) and (4.3), this yields

b�1n = n�1
nP
i=1

Gig
0
i � bGnbg0n = �n�1 nP

i=1
gig

0
i + bgnbg0n = �b
n;bDn = bGn � b�1nb
�1n bgn = 0k; and

LMn := nbg0nb
�1=2n Pb
�1=2n
bDn b
�1=2n bgn = nbg0nb
�1=2n P0k b
�1=2n bgn = 0 (12.8)

for all n � 1; where the projection matrix, P0k ; onto 0k equals 0k�k: �
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