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13 Outline

We let AG1 abbreviate the main paper �Asymptotic Size of Kleibergen�s LM and Condi-

tional LR Tests for Moment Condition Models� and its Appendix. References to Sections with

Section numbers less than 13 refer to Sections of AG1. Similarly, all theorems and lemmas with

Section numbers less than 13 refer to results in AG1.

This Supplemental Material provides proofs of some of the results stated in AG1. It also provides

some complementary results to those in AG1.

Sections 14, 15, and 16 prove Lemma 8.2, Lemma 8.3, and Theorem 8.4, respectively, which

appear in Section 8 in the Appendix to AG1. Section 17 proves that the conditions in (3.9) and

(3.10) are su¢ cient for the second condition in F0j :
Section 18 proves Theorem 5.1. Section 18 also determines the asymptotic size of Kleibergen�s

(2005) CLR test with Jacobian-variance weighting that employs the Robin and Smith (2000) rank

statistic, de�ned in Section 5, for the general case of p � 1: When p = 1; the asymptotic size of

this test is correct. But, when p � 2; we cannot show that its asymptotic size is necessarily correct
(because the sample moments and the rank statistic can be asymptotically dependent under some

sequences of distributions). Section 18 provides some simulation results for this test.

Section 19 proves Theorem 7.1, which provides results for time series observations.

For notational simplicity, throughout the Supplemental Material, we often suppress the argu-

ment �0 for various quantities that depend on the null value �0: Throughout the Supplemental

Material, the quantities BF ; CF ; and (�1F ; :::; �pF ) are de�ned using the general de�nitions given

in (8.6)-(8.8), rather than the de�nitions given in Section 3, which are a special case of the former

de�nitions.

For notational simplicity, the proofs in Sections 14-16 are for the sequence fng; rather than a
subsequence fwn : n � 1g: The same proofs hold for any subsequence fwn : n � 1g: The proofs in
these three sections use the following simpli�ed notation. De�ne

Dn := EFnGi; 
n := 
Fn ; Bn := BFn ; Cn := CFn ; Bn = (Bn;q; Bn;p�q); Cn = (Cn;q; Cn;k�q);

Wn :=WFn ; W2n :=W2Fn ; Un := UFn ; and U2n := U2Fn ; (13.1)

where q = qh is de�ned in (8.16), Bn;q 2 Rp�q; Bn;p�q 2 Rp�(p�q); Cn;q 2 Rk�q; and Cn;k�q 2
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Rk�(k�q): De�ne

�n;q := Diagf�1Fn ; :::; � qFng 2 Rq�q; �n;p�q := Diagf� (q+1)Fn ; :::; �pFng 2 R
(p�q)�(p�q); and

�n :=

2664
�n;q 0q�(p�q)

0(p�q)�q �n;p�q

0(k�p)�q 0(k�p)�(p�q)

3775 2 Rk�p: (13.2)

Note that �n is the diagonal matrix of singular values of WnDnUn; see (8.8).

14 Proof of Lemma 8.2

Lemma 8.2 of AG1. Under all sequences f�n;h : n � 1g;

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A :

Under all subsequences fwng and all sequences f�wn;h : n � 1g; the same result holds with n

replaced with wn:

Proof of Lemma 8.2. We have

n1=2vec( bDn �Dn) = n�1=2
nX
i=1

vec(Gi �Dn)�

0BBB@
b�1n
...b�pn

1CCCA b
�1n n1=2bgn (14.1)

= n�1=2
nX
i=1

26664vec(Gi �Dn)�

0BBB@
EFnG`1g

0
`

...

EFnG`pg
0
`

1CCCA
�1Fngi
37775+ op(1);

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n�1
Pn

`=1

G`jg
0
` for j = 1; :::; p; n

�1Pn
`=1 vec(G`); and n

�1Pn
`=1 g`g

0
`; (ii) EFngi = 0

k; (iii) h5;g = lim
Fn is

pd, and (iv) the CLT, which implies that n1=2bgn = Op(1):

Using (14.1), the convergence result of Lemma 8.2 holds (with n in place of wn) by the Lyapunov

triangular-array multivariate CLT using the moment restrictions in F . The limiting covariance
matrix between n1=2vec( bDn �Dn) and n1=2bgn in Lemma 8.2 is a zero matrix because

EFn [Gij �Dnj � (EFnG`jg0`)
�1Fngi]g
0
i = 0

k�k; (14.2)
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where Dnj denotes the jth column of Dn; using EFngi = 0
k for j = 1; :::; p: By the CLT, the limiting

variance matrix of n1=2vec( bDn �Dn) in Lemma 8.2 equals

limV arFn(vec(Gi)� (EFnvec(G`)g0`)
�1Fngi) = lim�
vec(Gi)
Fn

= �
vec(Gi)
h ; (14.3)

see (8.15), and the limit exists because (i) the components of �vec(Gi)Fn
are comprised of �4;Fn and

submatrices of �5;Fn and (ii) �s;Fn ! hs for s = 4; 5: By the CLT, the limiting variance matrix of

n1=2bgn equals limEFngig0i = h5;g: �

15 Proof of Lemma 8.3

Lemma 8.3 of AG1. Suppose Assumption WU holds for some non-empty parameter space �� �
�2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in Lemma 8.2, (b) �h is the nonrandom function of h and Dh

de�ned in (8.17), (c) (Dh;�h) and gh are independent, (d) if Assumption WU holds with �� = �0;

WF = 

�1=2
F ; and UF = Ip; then �h has full column rank p with probability one and (e) under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above
and the results of parts (a)-(d) hold with n replaced with wn:

The proof of part (d) of Lemma 8.3 uses the following two lemmas and corollary.

Lemma 15.1 Suppose � 2 Rk�p has a multivariate normal distribution (with possibly singular

variance matrix ), k � p; and the variance matrix of �� 2 Rk has rank at least p for all nonrandom
vectors � 2 Rp with jj�jj = 1: Then, P (� has full column rank p) = 1:

Comments: (i) Let Condition � denote the condition of the lemma on the variance of ��:

A su¢ cient condition for Condition � is that vec(�) has a pd variance matrix (because �� =

(�0 
 Ik)vec(�)): The converse is not true. This is proved in Comment (iii) below.
(ii) A weaker su¢ cient condition for Condition � is that the variance matrix of �� 2 Rk has

rank k for all constant vectors � 2 Rp with jj�jj = 1: The latter condition holds i¤V ar(� 0vec(�)) > 0
for all � 2 Rpk of the form � = � 
 � for some � 2 Rp and � 2 Rk with jj�jj = 1 and jj�jj = 1

(because (�0 
 �0)vec(�) = vec(�0��) = �0��): In contrast, vec(�) has a pd variance matrix i¤

V ar(� 0vec(�)) > 0 for all � 2 Rpk with jj�jj = 1:
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(iii) For example, the following matrix � satis�es the su¢ cient condition given in Comment (ii)

for Condition � (and hence Condition � holds), but not the su¢ cient condition given in Comment

(i). Let Zj for j = 1; 2; 3 be independent standard normal random variables. De�ne

� =

0@ Z1 Z2

Z3 Z1

1A : (15.1)

Obviously, V ar(vec(�)) is not pd. On the other hand, writing � = (�1; �2)
0 and � = (�1; �2)

0; we

have

V ar(�0��) = V ar(�1[Z1�1 + Z2�2] + �2[Z3�1 + Z1�2])

= V ar((�1�1 + �2�2)Z1 + �1�2Z2 + �2�1Z3)

= (�1�1 + �2�2)
2 + (�1�2)

2 + (�2�1)
2: (15.2)

Now, (�1�2)
2 = 0 implies �1 = 0 or �2 = 0 and (�2�1)

2 = 0 implies �2 = 0 or �1 = 0: In addition,

�1 = 0 implies �2 6= 0; �2 = 0 implies �1 6= 0; etc. So, the two cases where (�1�2)2 = (�2�1)2 = 0
are: (�1; �1) = (0; 0) and (�2; �2) = (0; 0): But, (�1; �1) = (0; 0) implies (�1�1+�2�2)

2 = (�2�2)
2 > 0

and (�2; �2) = (0; 0) implies (�1�1 + �2�2)
2 = (�1�1)

2 > 0: Hence, V ar(�0��) > 0 for all � and �

with jj�jj = jj�jj = 1; V ar(��) is pd for all � 2 R2 with jj�jj2 = 1; and the su¢ cient condition given
in Comment (ii) for Condition � holds.

(iv) Condition � allows for redundant rows in �; which corresponds to redundant moment

conditions in the application of Lemma 15.1. Suppose a matrix � satis�es Condition �: Then, one

adds one or more rows to �; which consist of one or more of the existing rows of � or some linear

combinations of them. (In fact, the added rows can be arbitrary provided the resulting matrix has a

multivariate normal distribution.) Call the new matrix �+: The matrix �+ also satis�es Condition

� (because the rank of the variance of �+� is at least as large as the rank of the variance of ��;

which is p):

Corollary 15.2 Suppose �q� 2 Rk�q� is a nonrandom matrix with full column rank q� and �p�q� 2
Rk�(p�q�) has a multivariate normal distribution (with possibly singular variance matrix ) and k � p:

Let M 2 Rk�k be a nonsingular matrix such that M�q� = (e1; :::; eq�); where el denotes the l-th

coordinate vector in Rk: DecomposeM = (M 0
1;M

0
2)
0 withM1 2 Rq��k andM2 2 R(k�q�)�k: Suppose

the variance matrix of M2�p�q��2 2 Rk�q� has rank at least p � q� for all nonrandom vectors

�2 2 Rp�q� with jj�2jj = 1: Then, for � = (�q� ;�p�q�) 2 Rk�p; we have P (� has full column rank

p) = 1:
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Comment: Corollary 15.2 follows from Lemma 15.1 by the following argument. We have

M� =

0@ M1�q� M1�p�q�

M2�q� M2�p�q�

1A =

0@ Iq� M1�p�q�

0(k�q�)�q� M2�p�q�

1A : (15.3)

The matrix � has full column rank p i¤M� has full column rank p i¤M2�p�q� has full column

rank p� q�: The Corollary now follows from Lemma 15.1 applied with �; k; p; and � replaced by

M2�p�q� ; k � q�; p� q�; and �2; respectively.

The following lemma is a special case of Cauchy�s interlacing eigenvalues result, e.g., see Hwang

(2004). As above, for a symmetric matrix A; let �1(A) � �2(A) � ::: denote the eigenvalues of A:

Let A�r denote a principal submatrix of A of order r � 1: That is, A�r denotes A with some choice
of r rows and the same r columns deleted.

Proposition 15.3 Let A by a symmetric k � k matrix. Then, �k(A) � �k�1(A�1) � �k�1(A) �
::: � �2(A) � �1(A�1) � �1(A):

The following is a straightforward corollary of Proposition 15.3.

Corollary 15.4 Let A by a symmetric k � k matrix and let r 2 f1; :::; k � 1g: Then, (a) �m(A) �
�m(A�r) for m = 1; :::; k � r and (b) �m(A) � �m�r(A�r) for m = r + 1; :::; k:

Proof of Lemma 8.3. First, we prove the convergence result in Lemma 8.3. The singular value

decomposition of WnDnUn is

WnDnUn = Cn�nB
0
n; (15.4)

because Bn is a matrix of eigenvectors of U 0nD
0
nW

0
nWnDnUn; Cn is a matrix of eigenvectors of

WnDnUnU
0
nD

0
nW

0
n; and �n is the k� p matrix with the singular values f� jFn : j � pg of WnDnUn

on the diagonal (ordered so that � jFn � 0 is nonincreasing in j).
Using (15.4), we get

WnDnUnBn;q�
�1
n;q = Cn�nB

0
nBn;q�

�1
n;q = Cn�n

0@ Iq

0(p�q)�q

1A��1n;q = Cn

0@ Iq

0(k�q)�q

1A= Cn;q;

(15.5)

where the second equality uses B0nBn = Ip: Hence, we obtain

Wn
bDnUnBn;q�

�1
n;q = WnDnUnBn;q�

�1
n;q +Wnn

1=2( bDn �Dn)UnBn;q(n
1=2�n;q)

�1

= Cn;q + op(1)!p h3;q = �h;q; (15.6)

6



where the second equality uses n1=2� jFn ! 1 for all j � q (by the de�nition of q in (8.16)),

Wn = O(1) (by the condition jjWF jj �M1 <1 8F 2 FWU ; see (8.5)), n1=2( bDn�Dn) = Op(1) (by

Lemma 8.2), Un = O(1) (by the condition jjUF jj �M1 <1 8F 2 FWU ; see (8.5)), and Bn;q ! h2;q

with jjvec(h2;q)jj < 1 (by (8.12) using the de�nitions in (8.17) and (13.1)). The convergence in

(15.6) holds by (8.12), (8.17), and (13.1), and the last equality in (15.6) holds by the de�nition of

�h;q in (8.17).

Using (15.4) again, we have

n1=2WnDnUnBn;p�q = n1=2Cn�nB
0
nBn;p�q = n1=2Cn�n

0@ 0q�(p�q)

Ip�q

1A

= Cn

0BB@
0q�(p�q)

n1=2�n;p�q

0(k�p)�(p�q)

1CCA! h3

0BB@
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

1CCA = h3h
�
1;p�q; (15.7)

where the second equality uses B0nBn = Ip; the convergence holds by (8.12) using the de�nitions in

(8.17) and (13.2), and the last equality holds by the de�nition of h�1;p�q in (8.17).

Using (15.7) and Lemma 8.2, we get

n1=2Wn
bDnUnBn;p�q = n1=2WnDnUnBn;p�q +Wnn

1=2( bDn �Dn)UnBn;p�q

! d h3h
�
1;p�q + h71Dhh81h2;p�q = �h;p�q; (15.8)

where Bn;p�q ! h2;p�q; Wn ! h71; and Un ! h81 by (8.3), (8.12), (8.17), and Assumption WU

using the de�nitions in (13.1) and the last equality holds by the de�nition of �h;p�q in (8.17).

Equations (15.6) and (15.8) combine to prove

n1=2Wn
bDnUnTn = n1=2Wn

bDnUnBnSn = (Wn
bDnUnBn;q�

�1
n;q; n

1=2Wn
bDnUnBn;p�q)

! d (�h;q;�h;p�q) = �h (15.9)

using the de�nition of Sn in (8.19). The convergence is joint with that in Lemma 8.2 because it

just relies on the convergence of n1=2( bDn �Dn); which is part of the former. This establishes the

convergence result of Lemma 8.3.

Properties (a) and (b) in Lemma 8.3 hold by de�nition. Property (c) in Lemma 8.3 holds by

Lemma 8.2 and property (b) in Lemma 8.3.
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Now, we prove property (d). We have

h02;p�qh2;p�q = limB
0
n;p�qBn;p�q = Ip�q and h03;qh3;q = limC

0
n;qCn;q = Iq (15.10)

because Bn and Cn are orthogonal matrices by (8.6) and (8.7). Hence, if q = p; then �h = �h;q =

h3;q; �
0
h�h = Ip; and �h has full column rank.

Hence, it su¢ ces to consider the case where q < p and �n;h 2 �0 8n � 1; which is assumed in part
(d). We prove part (d) for this case by applying Corollary 15.2 with q� = q; �q� = �h;q (= h3;q);

�p�q� = �h;p�q; M = h03; M1 = h03;q; M2 = h03;k�q; �2 2 Rp�q; and � = �h: Corollary 15.2

gives the desired result that P (�h has full column rank p) = 1: The condition in Corollary 15.2

that �M�q� = (e1; :::; eq�)�holds in this case because h
0
3�h;q = h03h3;q = (e1; :::; eq): The condition

in Corollary 15.2 that �the variance matrix of M2�p�q��2 2 Rk�q� has rank at least p � q� for

all nonrandom vectors �2 2 Rp�q� with jj�2jj = 1� in this case becomes �the variance matrix of

h03;k�q�h;p�q�2 2 Rk�q has rank at least p� q for all nonrandom vectors �2 2 Rp�q with jj�2jj = 1:�
It remains to establish the latter property, which is equivalent to

�p�q
�
V ar(h03;k�q�h;p�q�2)

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (15.11)

We have

V ar(h03;k�q�h;p�q�2) = V ar(h03;k�qh
�1=2
5;g Dhh2;p�q�2)

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))V ar(vec(Dh))((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))�

vec(Gi)
h ((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= �
h03;k�qh

�1=2
5;g Gih2;p�q�2

h ; (15.12)

where the �rst equality holds by the de�nition of �h;p�q in (8.17) and the fact that h71 = h
�1=2
5;g and

h81 = Ip by the conditions in part (d) of Lemma 8.3, the second and fourth equalities use the general

formula vec(ABC) = (C 0 
A)vec(B); the third equality holds because vec(Dh) � N(0pk;�
vec(Gi)
h )

by Lemma 8.2, and the fourth equality uses the de�nition of the variance matrix �aih in (8.15) for

an arbitrary random vector ai:

Next, we show that �
h03;k�qh

�1=2
5;g Gih2;p�q�2

h equals the expected outer-product matrix

8



lim	
C0n;k�q


�1=2
n GiBn;p�q�2

Fn
:

�
h03;k�qh

�1=2
5;g Gih2;p�q�2

h

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))�

vec(Gi)
h ((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))�

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))	

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

� lim((Bn;p�q�2)0 
 (C 0n;k�q
�1=2n ))EFnvec(Gi) � EFnvec(Gi)0((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))	

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

� limEFnvec(C 0n;k�q
�1=2n GiBn;p�q�2) � EFnvec(C 0n;k�q
�1=2n GiBn;p�q�2)
0

= lim	
C0n;k�q


�1=2
n GiBn;p�q�2

Fn
; (15.13)

where the general formula vec(ABC) = (C 0 
 A)vec(B) is used multiple times, the limits exist by

the conditions imposed on the sequence f�n;h : n � 1g; the second equality uses Bn;p�j ! h2;p�j ;

Cn;k�q ! h3;k�q; and 

�1=2
n ! h

�1=2
5;g ; the third equality uses the de�nitions of 	aiF and �aiF

given in (3.2) and (8.15), respectively, and the last equality uses EFnvec(C
0
n;k�q


�1=2
n GiBn;p�q) =

vec(C 0n;k�q

�1=2
n DnBn;p�q) = O(n�1=2) by (15.7) with Wn = 


�1=2
n :

We can write lim	vec(C
0
n


�1=2
n GiBn)

Fn
as the limit of a subsequence fnm : m � 1g of matrices

	
vec(C0nm


�1=2
nm GiBnm )

Fnm
for which Fnm 2 F0j for all m � 1 for some j = 0; :::; q: It cannot be the case

that j > q; because if j > q; then we obtain a contradiction because n1=2m � jFnm ! 1 as m ! 1
by the �rst condition of F0j and n1=2m � jFnm 91 as m!1 by the de�nition of q in (8.16).

Now, we �x an arbitrary j 2 f0; :::; qg: The continuity of the �p�j(�) function and the �p�j(�)
condition in F0j imply that, for all � 2 Rp�j with jj�jj = 1;

�p�j

�
lim	

C0nm;k�j

�1=2
nm GiBnm;p�j�

Fnm

�
= lim�p�j

�
	
C0nm;k�j


�1=2
nm GiBnm;p�j�

Fnm

�
> 0: (15.14)

For all �2 2 Rp�q with jj�2jj = 1; let � = (0q�j0; �02)0 2 Rp�j : Then, Bnm;p�j� = Bnm;p�q�2 and, by

(15.14),

�p�j

�
lim	

C0nm;k�j

�1=2
nm GiBnm;p�q�2

Fnm

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (15.15)

Next, we apply Corollary 15.4(b) with A = lim	
C0nm;k�j


�1=2
nm GiBnm;p�q�2

Fnm
and A�(q�j) = lim

	
C0nm;k�q


�1=2
nm GiBnm;p�q�2

Fnm
; m = p � j; r = q � j; where A�(q�j) equals A with its �rst q � j rows

and columns deleted in the present case and p > q implies that m = p � j � 1 for all j = 0; :::; q:

9



Corollary 15.4 and (15.15) give

�p�q

�
lim	

C0nm;k�q

�1=2
nm GiBnm;p�q�2

Fnm

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (15.16)

Equations (15.12), (15.13), and (15.16) combine to establish (15.11) and the proof of part (d)

is complete.

Part (e) of the Lemma holds by replacing n by the subsequence value wn throughout the

arguments given above. �

Proof of Lemma 15.1. It su¢ ces to show that P (�� = 0k for some � 2 Rp with jj�jj = 1) = 0:
For any constant 
 > 0; there exists a constant K
 <1 such that P (jjvec(�)jj > K
) � 
:

Given " > 0; let fB(�s; ") : s = 1; :::; N"g be a �nite cover of f� 2 Rp : jj�jj = 1g; where jj�sjj = 1
and B(�s; ") is a ball in R

p centered at �s of radius ": It is possible to choose f�s : s = 1; :::; N"g
such that the number, N"; of balls in the cover is of order "�p+1: That is, N" � C1"

�p+1 for some

constant C1 <1:
Let �r denote the rth row of � for r = 1; :::; k written as a column vector. If � 2 B(�s; "); we

have

jj�� ���sjj =
 

kX
r=1

(�0r(� � �s))2
!1=2

�
 

kX
r=1

jj�rjj2jj� � �sjj2
!1=2

= "jjvec(�)jj; (15.17)

where the inequality holds by the Cauchy-Bunyakovsky-Schwarz inequality. If � 2 B(�s; ") and

�� = 0k; this gives

jj��sjj � "jjvec(�)jj: (15.18)

Suppose Z� 2 Rp has a multivariate normal distribution with pd variance matrix. Then, for

any " > 0;

P (jjZ�jj � ") =

Z
fjjzjj�"g

fZ�(z)dz � sup
z2Rk

fZ�(z)

Z
fjjzjj�"g

dz � C2"
p (15.19)

for some constant C2 < 1; where fZ�(z) denotes the density of Z� with respect to Lebesgue
measure, which exists because the variance matrix of Z� is pd, and the inequalities hold because

the density of a multivariate normal is bounded and the volume of a sphere in Rp of radius " is

proportional to "p:

For any � 2 Rp with jj�jj = 1; let B���B0� be a spectral decomposition of V ar(��); where �� is
the diagonal k � k matrix with the eigenvalues of V ar(��) on its diagonal in nonincreasing order

and B� is an orthogonal k� k matrix whose columns are eigenvectors of V ar(��) that correspond
to the eigenvalues in ��: By assumption, the rank of V ar(��) is p or larger. In consequence,

10



the �rst p diagonal elements of �� are positive. We have jj��jj = jjB0���jj and V ar(B0���) =
B0�V ar(��)B� = ��: Let (B0���)p denote the p vector that contains the �rst p elements of the k

vector B0���: Let ��p denote the upper left p� p submatrix of ��: We have V ar((B0���)p) = ��p

and ��p is pd (because the �rst p diagonal elements of �� are positive).

Now, given any 
 > 0 and " > 0; we have

P (�� = 0k for some � 2 Rp with jj�jj = 1)

= P
�
[N"s=1 [�2B(�s;"):jj�jj=1 f�� = 0

kg
�

� P
�
[N"s=1fjj��sjj � "jjvec(�)jjg

�
� P

�
[N"s=1fjj��sjj � "jjvec(�)jjg \ fjjvec(�)jj � K
g

�
+ P (jjvec(�)jj > K
)

� P
�
[N"s=1fjj��sjj � "K
g

�
+ 


�
N"X
s=1

P (jj��sjj � "K
) + 


�
N"X
s=1

P (jj(B0�s��s)pjj � "K
) + 


� N"C2K
p

"
p + 


� C1"
�p+1C2K

p

"
p + 


! 
 as "! 0; (15.20)

where the �rst inequality holds by (15.18) using � 2 B(�s; "); the third inequality uses the de�nition
of K
 ; the third last inequality holds because jj(B0�s��s)pjj � jjB

0
�s
��sjj = jj��sjj using the de�ni-

tions in the paragraph that follows the paragraph that contains (15.19), the second last inequality

holds by (15.19) with Z� = (B0�s��s)p and the fact that the variance matrix of (B
0
�s
��s)p is pd by

the argument given in the paragraph following (15.19), and the last inequality holds by the bound

given above on N":

Because 
 > 0 is arbitrary, (15.20) implies that P (�� = 0k for some � 2 Rp with jj�jj = 1) = 0;
which completes the proof. �

16 Proof of Theorem 8.4

Theorem 8.4 of AG1. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;
(a) b�pn !p 1 if q = p;

(b) b�pn !d �min(�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q) if q < p;
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(c) b�jn !p 1 for all j � q;

(d) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q

��h;p�q 2 R(p�q)�(p�q);
(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma 8.3, and

(f) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(e) hold with n replaced with wn:

The proof of Theorem 8.4 uses the following rate of convergence lemma. This lemma is a key

technical contribution of the paper.

Lemma 16.1 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 �� and for which q de�ned in (8.16) satis�es

q � 1; we have (a) b�jn !p 1 for j = 1; :::; q and (b) when p > q; b�jn = op((n
1=2� `Fn)

2) for all

` � q and j = q + 1; :::; p: Under all subsequences fwng and all sequences f�wn;h : n � 1g with
�wn;h 2 ��; the same result holds with n replaced with wn:

Proof of Lemma 16.1. By the de�nitions in (8.9) and (8.12), h6;j := lim � (j+1)Fn=� jFn for

j = 1; :::; p � 1: By the de�nition of q in (8.16), h6;q = 0 if q < p: If q = p; h6;q is not de�ned by

(8.9) and (8.12) and we de�ne it here to equal zero. Because � jF is nonnegative and nonincreasing

in j; h6;j 2 [0; 1]: If h6;j > 0; then f� jFn : n � 1g and f� (j+1)Fn : n � 1g are of the same order of
magnitude, i.e., 0 < lim � (j+1)Fn=� jFn � 1:50 We group the �rst q singular values into groups that
have the same order of magnitude within each group. Let Gh (2 f1; :::; qg) denote the number of
groups. (We have Gh � 1 because q � 1 is assumed in the statement of the lemma.) Note that

Gh equals the number of values in fh6;1; :::; h6;qg that equal zero. Let rg and r�g denote the indices
of the �rst and last singular values, respectively, in the gth group for g = 1; :::; Gh: Thus, r1 = 1;

r�g = rg+1�1; where rGh+1 is de�ned to equal q+1; and r�Gh = q: Note that rg and r�g depend on h:

By de�nition, the singular values in the gth group, which have the gth largest order of magnitude,

are f� rgFn : n � 1g; :::; f� r�gFn : n � 1g: By construction, h6;j > 0 for all j 2 frg; :::; r�g � 1g for
g = 1; :::; Gh: (The reason is: if h6;j is equal to zero for some j 2 frg; :::; r�g�1g; then f� r�gFn : n � 1g
is of smaller order of magnitude than f� rgFn : n � 1g; which contradicts the de�nition of r�g :) Also
by construction, lim � j0Fn=� jFn = 0 for any (j; j

0) in groups (g; g0); respectively, with g < g0: Note

that when p = 1 we have Gh = 1 and r1 = r�1 = 1:

50Note that supj�1;F2FWU
� jF < 1 by the conditions jjWF jj � M1 and jjUF jj � M1 in FWU and the moment

conditions in F : Thus, f� jFn : n � 1g does not diverge to in�nity, and the �order of magnitude�of f� jFn : n � 1g
refers to whether this sequence converges to zero, and how slowly or quickly it does, when it does converge to zero.
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The eigenvalues fb�jn : j � pg of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn are solutions to the determinantal equation

jnbU 0n bD0
n
cW 0
n
cWn

bDn
bUn��Ipj = 0: Equivalently, by multiplying this equation by ��2r1Fnn�1jB0nU 0n bU�10n j

� jbU�1n UnBnj; they are solutions to

j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � (n1=2� r1Fn)�2�B0nU 0n bU�10n
bU�1n UnBnj = 0 (16.1)

wp!1; using jA1A2j = jA1j�jA2j for any conformable square matrices A1 and A2; jBnj > 0; jUnj > 0
(by the conditions in FWU in (8.5) because �� � �2 and �2 only contains distributions in FWU );

jbU�1n j > 0 wp!1 (because bUn !p h81 by (8.2), (8.12), (8.17), and Assumption WU(b) and (c) and

h81 is pd), and � r1Fn > 0 for n large (because n
1=2� r1Fn !1 for r1 � q): (For simplicity, we omit

the quali�er wp!1 from some statements below.) Thus, f(n1=2� r1Fn)�2b�jn : j � pg solve

j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � �(Ip + bAn)j = 0 or
j(Ip + bAn)�1��2r1FnB0nU 0n bD0

n
cW 0
n
cWn

bDnUnBn � �Ipj = 0; where

bAn =
24 bA1n bA2nbA02n bA3n

35 := B0nU
0
n
bU�10n

bU�1n UnBn � Ip (16.2)

for bA1n 2 Rr�1�r�1 ; bA2n 2 Rr�1�(p�r�1); and bA3n 2 R(p�r�1)�(p�r�1) and the second line is obtained by
multiplying the �rst line by j(Ip + bAn)�1j:

We have

��1r1Fn
cWn

bDnUnBn

= ��1r1Fn(
cWnW

�1
n )WnDnUnBn � (n1=2� r1Fn)�1cWnn

1=2( bDn �Dn)UnBn

= ��1r1Fn(
cWnW

�1
n )Cn�n +Op((n

1=2� r1Fn)
�1) (16.3)

= (Ik + op(1))Cn

2664
h�6;r�1

+ o(1) 0r
�
1�(p�r�1)

0(p�r
�
1)�r�1 O(� r2Fn=� r1Fn)

(p�r�1)�(p�r�1)

0(k�p)�r
�
1 0(k�p)�(p�r

�
1)

3775+Op((n1=2� r1Fn)�1)

! p h3

24 h�6;r�1
0r

�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

35 ; where h�6;r�1 := Diagf1; h6;1; h6;1h6;2; :::;
r�1�1Y
`=1

h6;`g;

h�6;r�1
2 Rr�1�r�1 ; h�6;r�1 := 1 when r

�
1 = 1; O(� r2Fn=� r1Fn)

(p�r�1)�(p�r�1) denotes a diagonal (p�r�1)�(p�
r�1) matrix whose diagonal elements are O(� r2Fn=� r1Fn); the second equality uses (15.4), cWn !p h71

(by Assumption WU(a) and (c)), jjh71jj = jj limWnjj < 1 (by the conditions in FWU de�ned in

(8.5)), n1=2( bDn�Dn) = Op(1) (by Lemma 8.2), Un = O(1) (by the conditions in FWU ); and Bn =
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O(1) (because Bn is orthogonal), the third equality usescWnW
�1
n !p Ik (becausecWn !p h71; h71 :=

limWn; and h71 is pd by the conditions in FWU ); � jFn=� r1Fn =

j�1Y
`=1

(� (`+1)Fn=� `Fn) =

j�1Y
`=1

h6;`+ o(1)

for j = 2; :::; r�1; and � jFn=� r1Fn = O(� r2Fn=� r1Fn) for j = r2; :::; p (because f� jFn : j � pg are
nonincreasing in j); and the convergence uses Cn ! h3; � r2Fn=� r1Fn ! 0 (by the de�nition of r2);

and n1=2� r1Fn !1 (by (8.16) because r1 � q):51

Equation (16.3) yields

��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn ! p

24 h�6;r�1
0r

�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

350h03h3
24 h�6;r�1

0r
�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

35
=

24 h�26;r�1
0r

�
1�(p�r�1)

0(p�r
�
1)�r�1 0(p�r

�
1)�(p�r�1)

35 ; (16.4)

where the equality holds because h03h3 = limC
0
nCn = Ik using (8.7).

In addition, we have bAn := B0nU
0
n
bU�10n

bU�1n UnBn � Ip !p 0
p�p (16.5)

using bU�1n Un !p Ip (because bUn !p h81 by Assumption WU(b) and (c), h81 := limUn; and h81 is

pd by the conditions in FWU ); Bn ! h2; and h02h2 = Ip (because Bn is orthogonal for all n � 1):
The ordered vector of eigenvalues of a matrix is a continuous function of the matrix by Elsner�s

Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38). Hence, by the second line of (16.2), (16.4),

(16.5), and Slutsky�s Theorem, the largest r�1 eigenvalues of �
�2
r1Fn

B0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn (i.e.,

f(n1=2� r1Fn)�2b�jn : j � r�1g by the de�nition of b�jn), satisfy
((n1=2� r1Fn)

�2b�1n; :::; (n1=2� r1Fn)�2b�r�1n)!p (1; h
2
6;1; h

2
6;1h

2
6;2; :::;

r�1�1Y
`=1

h26;`) and so

b�jn !p 1 8j = 1; :::; r�1 (16.6)

because n1=2� r1Fn ! 1 (by (8.16) since r1 � q) and h6;` > 0 for all ` 2 f1; :::; r�1 � 1g (as noted
above). By the same argument, the smallest p � r�1 eigenvalues of �

�2
r1Fn

B0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn;

i.e., f(n1=2� r1Fn)�2b�jn : j = r�1 + 1; :::; pg; satisfy

(n1=2� r1Fn)
�2b�jn !p 0 8j = r�1 + 1; :::; p: (16.7)

If Gh = 1; (16.6) proves part (a) of the lemma and (16.7) proves part (b) of the lemma (because

51For matrices that are written as O(�); we sometimes provide the dimensions of the matrix as superscripts for
clarity, and sometimes we do not provide the dimensions for simplicity.
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in this case r�1 = q and � r1Fn=� `Fn = O(1) for all ` � q by the de�nitions of q and Gh): Hence, from

here on, we assume that Gh � 2:
Next, de�ne Bn;j1;j2 to be the p� (j2 � j1) matrix that consists of the j1 + 1; :::; j2 columns of

Bn for 0 � j1 < j2 � p: Note that the di¤erence between the two subscripts j1 and j2 equals the

number of columns of Bn;j1;j2 ; which is useful for keeping track of the dimensions of the Bn;j1;j2

matrices that appear below. By de�nition, Bn = (Bn;0;r�1 ; Bn;r�1 ;p):

By (16.3) (excluding the convergence part) applied once with Bn;r�1 ;p in place of Bn as the far-

right multiplicand and applied a second time with Bn;0;r�1 in place of Bn as the far-right multiplicand,

we have

%n := ��2r1FnB
0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p

=

24 h�6;r�1
+ o(1)

0(k�r
�
1)�r�1

350C 0n(Ik + op(1))Cn
24 0r

�
1�(p�r�1)

O(� r2Fn=� r1Fn)
(k�r�1)�(p�r�1)

35
+Op((n

1=2� r1Fn)
�1)

= op(� r2Fn=� r1Fn) +Op((n
1=2� r1Fn)

�1); (16.8)

where the last equality holds because (i) C 0n(Ik + op(1))Cn = Ik + op(1); (ii) when Ik appears in

place of C 0n(Ik + op(1))Cn; the �rst summand on the left-hand side (lhs) of the last equality equals

0r
�
1�(p�r�1); and (iii) when op(1) appears in place of C 0n(Ik + op(1))Cn; the �rst summand on the lhs

of the last equality equals an r�1 � (p� r�1) matrix with elements that are op(� r2Fn=� r1Fn):
De�ne

b�1n(�) := ��2r1FnB
0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;0;r�1 � �(Ir�1 + bA1n) 2 Rr�1�r�1 ;b�2n(�) := %n � � bA2n 2 Rr�1�(p�r�1); and (16.9)b�3n(�) := ��2r1FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p � �(Ip�r�1 + bA3n) 2 R(p�r�1)�(p�r�1):
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As in the �rst line of (16.2), f(n1=2� r1Fn)�2b�jn : j � pg solve

0 = j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � �(Ip + bAn)j
=

������
24 b�1n(�) b�2n(�)b�2n(�)0 b�3n(�)

35������
= jb�1n(�)j � jb�3n(�)� b�2n(�)0b��11n (�)b�2n(�)j
= jb�1n(�)j � j��2r1FnB0n;r�1 ;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�1 ;p � %
0
n
b��11n (�)%n

��(Ip�r�1 + bA3n � bA02nb��11n (�)%n � %0nb��11n (�) bA2n + � bA02nb��11n (�) bA2n)j; (16.10)

where the third equality uses the standard formula for the determinant of a partitioned matrix and

the result given in (16.11) below, which shows that b�1n(�) is nonsingular wp!1 for � equal to any
solution (n1=2� r1Fn)

�2b�jn to the �rst equality in (16.10) for j � p; and the last equality holds by

algebra.52

Now we show that, for j = r�1+1; :::; p; (n
1=2� r1Fn)

�2b�jn cannot solve the determinantal equation
jb�1n(�)j = 0; wp!1; where this determinant is the �rst multiplicand on the right-hand side (rhs)
of (16.10). This implies that f(n1=2� r1Fn)�2b�jn : j = r�1 + 1; :::; pg must solve the determinantal
equation based on the second multiplicand on the rhs of (16.10) wp!1: For j = r�1 + 1; :::; p; we

have

e�j1n := b�1n((n1=2� r1Fn)�2b�jn)
= ��2r1FnB

0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;0;r�1 � (n
1=2� r1Fn)

�2b�jn(Ir�1 + bA1n)
= h�26;r�1 + op(1)� op(1)(Ir�1 + op(1))

= h�26;r�1 + op(1); (16.11)

where the second last equality holds by (16.4), (16.5), and (16.7). Equation (16.11) and �min(h�26;r�1 ) >

0 (which follows from the de�nition of h�6;r�1 in (16.3) and the fact that h6;` > 0 for all ` 2
f1; :::; r�1 � 1g) establish the result stated in the �rst sentence of this paragraph.

For j = r�1+1; :::; p; plugging (n
1=2� r1Fn)

�2b�jn into the second multiplicand on the rhs of (16.10)
52The determinant of the partitioned matrix � =

�
�1 �2
�02 �3

�
equals j�j = j�1j � j�3 � �02��11 �2j provided �1 is

nonsingular, e.g., see Rao (1973, p. 32).
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gives

0 = j��2r1FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op((� r2Fn=� r1Fn)
2) +Op((n

1=2� r1Fn)
�2)

�(n1=2� r1Fn)�2b�jn(Ip�r�1 + bAj2n)j; where (16.12)bAj2n : = bA3n � bA02ne��1j1n%n � %0ne��1j1n bA2n + (n1=2� r1Fn)�2b�jn bA02ne��1j1n bA2n 2 R(p�r�1)�(p�r�1)
using (16.8) and (16.11). Multiplying (16.12) by �2r1Fn=�

2
r2Fn

gives

0 = j��2r2FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op(1)� (n
1=2� r2Fn)

�2b�jn(Ip�r�1 + bAj2n)j (16.13)

using Op((n1=2� r2Fn)
�2) = op(1) (because r2 � q by the de�nition of r2 and n1=2� jFn ! 1 for all

j � q by the de�nition of q in (8.16)).

Thus, f(n1=2� r2Fn)�2b�jn : j = r�1 + 1; :::; pg solve

0 = j��2r2FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op(1)� �(Ip�r�1 + bAj2n)j: (16.14)

For j = r�1 + 1; :::; p; we have bAj2n = op(1); (16.15)

because bA2n = op(1) and bA3n = op(1) (by (16.5)), e��1j1n = Op(1) (by (16.11)), %n = op(1) (by (16.8)

since � r2Fn � � r1Fn and n
1=2� r1Fn ! 1); and (n1=2� r1Fn)�2b�jn = op(1) for j = r�1 + 1; :::; p (by

(16.7)).

Now, we repeat the argument from (16.2) to (16.15) with the expression in (16.14) replacing that

in the �rst line of (16.2), with (16.15) replacing (16.5), and with j = r�2+1; :::; p;
bAj2n; Bn;p�r�1 ; � r2Fn ;

� r3Fn ; r
�
2 � r�1; p� r�2; and h�6;r�2 = Diagf1; h6;r�1+1; h6;r�1+1h6;r�1+2; :::;

r�2�1Y
`=r�1+1

h6;`g 2 R(r
�
2�r�1)�(r�2�r�1)

in place of j = r�1 + 1; :::; p;
bAn; Bn; � r1Fn ; � r2Fn ; r�1; p � r�1; and h

�
6;r�1

; respectively. (The fact

that bAj2n depends on j; whereas bAn does not, does not a¤ect the argument.) In addition, Bn;0;r�1
and Bn;r�1 ;p in (16.8)-(16.10) are replaced by the matrices Bn;r�1 ;r�2 and Bn;r�2 ;p (which consist of the

r�1 + 1; :::; r
�
2 columns of Bn and the last p� r�2 columns of Bn; respectively.) This argument gives

the analogues of (16.6) and (16.7), which are

b�jn !p 1 8j = r2; :::; r
�
2 and (n

1=2� r2Fn)
�2b�jn = op(1) 8j = r�2 + 1; :::; p: (16.16)

In addition, the analogue of (16.14) is the same as (16.14) but with bAj3n in place of bAj2n; wherebAj3n is de�ned just as bAj2n is de�ned in (16.12) but with bA2j2n and bA3j2n in place of bA2n and bA3n;
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respectively, where

bAj2n =
24 bA1j2n bA2j2nbA02j2n bA3j2n

35 (16.17)

for bA1j2n 2 Rr�2�r�2 ; bA2j2n 2 Rr�2�(p�r�1�r�2); and bA3j2n 2 R(p�r�1�r�2)�(p�r�1�r�2):
Repeating the argument Gh � 2 more times yields

b�jn !p 1 8j = 1; :::; r�Gh and (n
1=2� rgFn)

�2b�jn = op(1) 8j = r�g + 1; :::; p; 8g = 1; :::; Gh: (16.18)

A formal proof of this �repetition of the argument Gh�2more times�is given below using induction.
Because r�Gh = q; the �rst result in (16.18) proves part (a) of the lemma.

The second result in (16.18) with g = Gh implies: for all j = q + 1; :::; p;

(n1=2� rGhFn)
�2b�jn = op(1) (16.19)

because r�Gh = q: Either rGh = r�Gh = q or rGh < r�Gh = q: In the former case, (n1=2� qFn)
�2b�jn =

op(1) for j = q + 1; :::; p by (16.19). In the latter case, we have

lim
� qFn
� rGhFn

= lim
� r�GhFn

� rGhFn
=

r�Gh
�1Y

j=rGh

h6;j > 0; (16.20)

where the inequality holds because h6;` > 0 for all ` 2 frGh ; :::; r�Gh � 1g; as noted at the beginning
of the proof. Hence, in this case too, (n1=2� qFn)

�2b�jn = op(1) for j = q + 1; :::; p by (16.19) and

(16.20). Because � `Fn � � qFn for all ` � q; this establishes part (b) of the lemma.

Now we establish by induction the results given in (16.18) that are obtained heuristically by

�repeating the argument Gh�2 more times.�The induction proof shows that subtleties arise when
establishing the asymptotic negligibility of certain terms.

Let ogp denote a symmetric (p � r�g�1) � (p � r�g�1) matrix whose (`;m) element for `;m =

1; :::; p�r�g�1 is op(� (r�g�1+`)Fn� (r�g�1+m)Fn=�
2
rgFn

)+Op((n
1=2� rgFn)

�1): Note that ogp = op(1) because

r�g�1 + ` � rg for ` � 1 (since � jFn are nonincreasing in j) and n1=2� rgFn !1 for g = 1; :::; Gh:

We now show by induction over g = 1; :::; Gh that wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1+1; :::; pg
solve

j��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p + ogp � �(Ip�r�g�1 + bAjgn)j = 0 (16.21)

for some (p� r�g�1)� (p� r�g�1) symmetric matrices bAjgn = op(1) and ogp (where the matrices that

are ogp may depend on j):

The initiation step of the induction proof holds because (16.21) holds with g = 1 by the �rst line
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of (16.2) with bAjgn := bAn and ogp = 0 for g = 1 (and using the fact that, for g = 1; r�g�1 = r�0 := 0

and Bn;r�g�1;p = Bn;0;p = Bn):

For the induction step of the proof, we assume that (16.21) holds for some g 2 f1; :::; Gh � 1g
and show that it then also holds for g + 1: By an argument analogous to that in (16.3), we have

��1rgFn
cWn

bDnUnBn;r�g�1;p = (Ik + op(1))Cn

2664
0r

�
g�1�(p�r�g�1)

Diagf� rgFn ; :::; �pFng=� rgFn
0(k�p)�(p�r

�
g�1)

3775+Op((n1=2� rgFn)�1)

!p h3

0BB@
2664

0r
�
g�1�(r�g�r�g�1)

h�6;r�g

0(k�r
�
g)�(r�g�r�g�1)

3775 ; 0k�(p�r�g)
1CCA ; where h�6;r�g := Diagf1; h6;rg ; :::;

r�g�1Y
j=r�g�1+1

h6;jg;

(16.22)

h�6;r�g 2 R
(r�g�r�g�1)�(r�g�r�g�1); and h�6;r�g := 1 when r

�
g = 1:

Equation (16.22) and h03h3 = limC
0
nCn = Ik yield

��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p !p

24 h�26;r�g 0(r
�
g�r�g�1)�(p�r�g)

0(p�r
�
g)�(r�g�r�g�1) 0(p�r

�
g)�(p�r�g)

35 : (16.23)

By (16.21) and ogp = op(1); we have wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1 + 1; :::; pg solve
j(Ip�r�g�1 + bAjgn)�1��2rgFnB0n;r�g�1;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g�1;p + op(1) � �Ip�r�g�1 j = 0: Hence, by

(16.23), bAjgn = op(1) (which holds by the induction assumption), and the same argument as used

to establish (16.6) and (16.7), we obtain

b�jn !p 1 8j = r�g�1 + 1; :::; r
�
g and (n

1=2� rgFn)
�2b�jn !p 0 8j = r�g + 1; :::; p: (16.24)

Let o�gp denote an (r
�
g � r�g�1)� (p� r�g) matrix whose elements in column j for j = 1; :::; p� r�g

are op(� (r�g+j)Fn=� rgFn) +Op((n
1=2� rgFn)

�1): Note that o�gp = op(1):

By (16.22) applied once with Bn;r�g ;p in place of Bn;r�g�1;p as the far-right multiplicand and
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applied a second time with Bn;r�g�1;r�g in place of Bn;r�g�1;p as the far-right multiplicand, we have

%gn

:= ��2rgFnB
0
n;r�g�1;r

�
g
U 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g ;p

=

2664
0r

�
g�1�(r�g�r�g�1)

Diagf� (r�g�1+1)Fn ; :::; � r�gFng=� rgFn
0(k�r

�
g)�(r�g�r�g�1)

3775
0

C 0n(Ik + op(1))Cn

2664
0r

�
g�(p�r�g)

Diagf� (r�g+1)Fn ; :::; �pFng=� rgFn
0(k�p)�(p�r

�
g)

3775
+Op((n

1=2� rgFn)
�1)

= o�gp; (16.25)

where %gn 2 R(r
�
g�r�g�1)�(p�r�g); Diagf� (r�g�1+1)Fn ; :::; � r�gFng=� rgFn = h�6;r�g + o(1) = O(1) and the

last equality holds because (i) C 0n(Ik + op(1))Cn = Ik + op(1); (ii) when Ik appears in place of

C 0n(Ik + op(1))Cn; then the contribution from the �rst summand on the lhs of the last equality

in (16.25) equals 0(r
�
g�r�g�1)�(p�r�g); and (iii) when op(1) appears in place of C 0n(Ik + op(1))Cn; the

contribution from the �rst summand on the lhs of the last inequality in (16.25) equals an o�gp matrix.

We partition the (p� r�g�1)� (p� r�g�1) matrices ogp and bAjgn as follows:
ogp =

0@ o1gp o2gp

o02gp o3gp

1A and bAjgn =
24 bA1jgn bA2jgnbA02jgn bA3jgn

35 ; (16.26)

where o1gp; bA1jgn 2 R(r
�
g�r�g�1)�(r�g�r�g�1); o2gp; bA2jgn 2 R(r

�
g�r�g�1)�(p�r�g); and o3gp; bA3jgn

2 R(p�r�g)�(p�r�g); for j = r�g�1 + 1; :::; p and g = 1; :::; Gh: De�ne

b�1jgn(�) := ��2rg B
0
n;r�g�1;r

�
g
U 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g�1;r�g + o1gp � �(Ir�g�r�g�1 + bA1jgn);b�2jgn(�) := %gn + o2gp � � bA2jgn; and (16.27)b�3jgn(�) := ��2rgFnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � �(Ip�r�g + bA3jgn);
where b�1jgn(�); b�2jgn(�); and b�3jgn(�) have the same dimensions as o1gp; o2gp; and o3gp; respectively.

20



From (16.21), we have wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1 + 1; :::; pg solve

0 = j��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p + ogp � �(Ip�r�g�1 + bAjgn)j
= jb�1jgn(�)j � jb�3jgn(�)� b�2jgn(�)0b��11jgn(�)b�2jgn(�)j
= jb�1jgn(�)j � j��2rgFnB0n;r�g ;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � (%gn + o2gp)
0b��11jgn(�)(%gn + o2gp)

��[Ip�r�g + bA3jgn � bA02jgnb��11jgn(�)(%gn + o2gp)� (%gn + o2gp)0b��11jgn(�) bA2jgn
+� bA02jgnb��11jgn(�) bA2jgn]j; (16.28)

where the second equality holds by the same argument as for (16.10) and uses the result given in

(16.29) below which shows that b�1jgn(�) is nonsingular wp!1 when � equals (n1=2� rgFn)�2b�jn for
j = r�g + 1; :::; p:

Now we show that, for j = r�g+1; :::; p; (n
1=2� rgFn)

�2b�jn cannot solve the determinantal equation
jb�1jgn(�)j = 0 for n large, where this determinant is the �rst multiplicand on the rhs of (16.28)

and, hence, it must solve the determinantal equation based on the second multiplicand on the rhs

of (16.28). For j = r�g + 1; :::; p; we have

e�1jgn := b�1jgn((n1=2� rgFn)�2b�jn) = h�26;r�g + op(1); (16.29)

by the same argument as in (16.11), using o1gp = op(1) and bA1jgn = op(1) (which holds by the

de�nition of bA1jgn following (16.21)). Equation (16.29) and �min(h�26;r�g ) > 0 establish the result

stated in the �rst sentence of this paragraph.

For j = r�g+1; :::; p; plugging (n
1=2� rgFn)

�2b�jn into the second multiplicand on the rhs of (16.28)
gives

0 = j��2rgFnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � (%gn + o2gp)
0e��11jgn(%gn + o2gp)

�(n1=2� rgFn)�2b�jn(Ip�r�g + bAj(g+1)n)j; wherebAj(g+1)n : = bA3jgn � bA02jgne��11jgn(%gn + o2gp)� (%gn + o2gp)0e��11jgn bA2jgn
+(n1=2� rgFn)

�2b�jn bA02jgne��11jgn bA2jgn (16.30)

and bAj(g+1)n 2 R(p�r�g)�(p�r�g): The last two summands on the rhs of the �rst line of (16.30) satisfy
o3gp � (%gn + o2gp)0e��11jgn(%gn + o2gp) = o3gp � (o�gp + o2gp)0(h��26;r�g

+ op(1))(o
�
gp + o2gp)

= o3gp � o�0gpo�gp = (�2rg+1Fn=�
2
rgFn)o(g+1)p; (16.31)
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where (i) the �rst equality uses (16.25) and (16.29), (ii) the second equality uses o2gp = o�gp (which

holds because the (j;m) element of o2gp for j = 1; :::; r�g�r�g�1 and m = 1; :::; p�r�g is op(� (r�g�1+j)Fn
�� (r�g+m)Fn=�

2
rgFn

)+Op((n
1=2� rgFn)

�1) = op(� (r�g+m)Fn=� rgFn)+Op((n
1=2� rgFn)

�1) since r�g�1+j �
rg) and (h��26;r�g

+op(1))o
�
gp = o�gp (which holds because h

�
6;r�g

is diagonal and �min(h�26;r�g ) > 0); (iii) the

last equality uses the fact that the (j;m) element of (�2rgFn=�
2
rg+1Fn

)o�0gpo
�
gp for j;m = 1; :::; p � r�g

is the sum of a term that is op(� (r�g+j)Fn� (r�g+m)Fn=�
2
rgFn

)(�2rgFn=�
2
rg+1Fn

) = op(� (r�g+j)Fn� (r�g+m)Fn

=�2rg+1Fn) and a term that is Op((n1=2� rgFn)
�2)(�2rgFn=�

2
rg+1Fn

) = Op((n
1=2� rg+1Fn)

�2) and, hence,

(�2rgFn=�
2
rg+1Fn

)o�0gpo
�
gp is o(g+1)p (using the de�nition of o(g+1)p); and (iv) the last equality uses the

fact that the (j;m) element of (�2rgFn=�
2
rg+1Fn

)o3gp for j;m = 1; :::; p � r�g is op(� (r�g+j)Fn� (r�g+m)Fn

=�2rgFn)(�
2
rgFn

=�2rg+1Fn) + Op((n
1=2� rgFn)

�1)(�2rgFn=�
2
rg+1Fn

) = op(� (r�g+j)Fn� (r�g+m)Fn=�
2
rg+1Fn

)

+Op((n
1=2� rg+1Fn)

�1)(� rgFn=� rg+1Fn); which again is the same order as the (j;m) element of o(g+1)p

(using � rgFn=� rg+1Fn � 1):
The calculations in (16.31) are a key part of the induction proof. The de�nitions of the terms

ogp and o�gp (given preceding (16.21) and (16.25), respectively) are chosen so that the results in

(16.31) hold.

For j = r�g + 1; :::; p; we have bAj(g+1)n = op(1); (16.32)

because bA2jgn = op(1) and bA3jgn = op(1) by (16.21), e��11jgn = Op(1) (by (16.29)), %gn+ o2gp = op(1)

(by (16.25) since o�gp = op(1)); and (n1=2� rgFn)
�2b�jn = op(1) (by (16.24)).

Inserting (16.31) and (16.32) into (16.30) and multiplying by �2rgFn=�
2
rg+1Fn

gives

0 = j��2rg+1FnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o(g+1)p � (n
1=2� rg+1Fn)

�2b�jn(Ip�r�g + bAj(g+1)n)j:
(16.33)

Thus, wp!1; f(n1=2� rg+1Fn)�2b�jn : j = rg+1; :::; pg solve

0 = j��2rg+1FnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o(g+1)p � �(Ip�r�g + bAj(g+1)n)j: (16.34)

This establishes the induction step and concludes the proof that (16.21) holds for all g = 1; :::; Gh:

Finally, given that (16.21) holds for all g = 1; :::; Gh; (16.24) gives the results stated in (16.18)

and (16.18) gives the results stated in the Lemma by the argument in (16.18)-(16.20). �

Now we use the approach in Johansen (1991, pp. 1569-1571) and Robin and Smith (2000, pp.

172-173) to prove Theorem 8.4. In these papers, asymptotic results are established under a �xed

true distribution under which certain population eigenvalues are either positive or zero. Here we

need to deal with drifting sequences of distributions under which these population eigenvalues may
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be positive or zero for any given n; but the positive ones may drift to zero as n !1; possibly at
di¤erent rates. This complicates the proof. In particular, the rate of convergence result of Lemma

16.1(b) is needed in the present context, but not in the �xed distribution scenario considered in

Johansen (1991) and Robin and Smith (2000).

Proof of Theorem 8.4. Theorem 8.4(a) and (c) follow immediately from Lemma 16.1(a).

Next, we assume q < p and we prove part (b). The eigenvalues fb�jn : j � pg of nbUn bD0
n
cW 0
n
cWn

� bDn
bUn are the ordered solutions to the determinantal equation jnbUn bD0

n
cW 0
n
cWn

bDn
bUn � �Ipj = 0:

Equivalently, with probability that goes to one (wp!1), they are the solutions to

jQ�n(�)j = 0; where Q�n(�) := nSnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBnSn � �S0nB0nU 0n bU�10n
bU�1n UnBnSn;

(16.35)

because jSnj > 0; jBnj > 0; jUnj > 0; and jbUnj > 0 wp!1. Thus, �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) equals

the smallest solution, b�pn; to jQ�n(�)j = 0 wp!1. (For simplicity, we omit the quali�er wp!1 that
applies to several statements below.)

We write Q�n(�) in partitioned form using

BnSn = (Bn;qSn;q; Bn;p�q); where

Sn;q := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1g 2 Rq�q: (16.36)

The convergence result of Lemma 8.3 for n1=2Wn
bDnUnTn (= n1=2Wn

bDnUnBnSn) can be written

as

n1=2Wn
bDnUnBn;qSn;q !p �h;q := h3;q and n1=2Wn

bDnUnBn;p�q !d �h;p�q; (16.37)

where �h;q and �h;p�q are de�ned in (8.17).

We have cWnW
�1
n !p Ik and bUnU�1n !p Ip (16.38)

because cWn !p h71 := limWn (by Assumption WU(a) and (c)), bUn !p h81 := limUn (by Assump-

tion WU(b) and (c)), and h71 and h81 are pd (by the conditions in FWU ):
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By (16.35)-(16.38), we have

Q�n(�) =

24 Iq + op(1) h03;qn
1=2Wn

bDnUnBn;p�q + op(1)

n1=2B0n;p�qU
0
n
bD0
nW

0
nh3;q + op(1) n1=2B0n;p�qU

0
n
bD0
nW

0
nWnn

1=2 bDnUnBn;p�q + op(1)

35
��

24 S2n;q 0q�(p�q)

0(p�q)�q Ip�q

35� �
24 Sn;qA1nSn;q Sn;qA2n

A02nSn;q A3n

35 ; where (16.39)

bAn =
24 A1n A2n

A
0
2n A3n

35 := B0nU
0
n
bU�10n

bU�1n UnBn � Ip = op(1) for A1n 2 Rq�q; A2n 2 Rq�(p�q);

and A3n 2 R(p�q)�(p�q); bAn is de�ned in (16.39) just as in (16.5), and the �rst equality uses
�h;q := h3;q and �

0
h;q�h;q = h03;qh3;q = limC

0
n;qCn;q = Iq (by (8.7), (8.9), (8.12), and (8.17)). Note

that Ajn and bAjn (de�ned in (16.2)) are not the same in general for j = 1; 2; 3; because their

dimensions di¤er. For example, A1n 2 Rq�q; whereas bA1n 2 Rr�1�r�1 :
If q = 0 (< p); then Bn = Bn;p�q and

nB0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn

= nB0n(U
�1
n
bUn)0B�10n B0nU

0
n
bD0
nW

0
n

�cWnW
�1
n

�0 �cWnW
�1
n

�
(Wn

bDnUnBn)B
�1
n (U�1n bUn)Bn

! d �
0
h;p�q�h;p�q; (16.40)

where the convergence holds by (16.37) and (16.38) and �h;p�q is de�ned as in (8.17) with q = 0:

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner�s Theorem, see

Stewart (2001, Thm. 3.1, pp. 37�38)). Hence, the smallest eigenvalue of nB0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn

converges in distribution to the smallest eigenvalue of�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q (using h3;k�qh03;k�q =

h3h
0
3 = Ik when q = 0), which proves part (b) of Theorem 8.4 when q = 0:

In the remainder of the proof of part (b), we assume 1 � q < p; which is the remaining case

to be considered in the proof of part (b). The formula for the determinant of a partitioned matrix

and (16.39) give

jQ�n(�)j = jQ�1n(�)j � jQ�2n(�)j; where

Q�1n(�) : = Iq + op(1)� �S2n;q � �Sn;qA1nSn;q;

Q�2n(�) : = n1=2B0n;p�qU
0
n
bD0
nW

0
nWnn

1=2 bDnUnBn;p�q + op(1)� �Ip�q � �A3n

�[n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1)� �A02nSn;q](Iq + op(1)� �S2n;q � �Sn;qA1nSn;q)�1

�[h03;qn1=2Wn
bDnUnBn;p�q + op(1)� �Sn;qA2n]; (16.41)
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none of the op(1) terms depend on �; and the equation in the �rst line holds provided Q�1n(�) is

nonsingular.

By Lemma 16.1(b) (which applies for 1 � q < p); for j = q + 1; :::; p; we have b�jnS2n;q = op(1)

and b�jnSn;qA1nSn;q = op(1): Thus,

Q�1n(b�jn) = Iq + op(1)� b�jnS2n;q � b�jnSn;qA1nSn;q = Iq + op(1): (16.42)

By (16.35) and (16.41), jQ�n(b�jn)j = jQ�1n(b�jn)j � jQ�2n(b�jn)j = 0 for j = 1; :::; p: By (16.42),

jQ�1n(b�jn)j 6= 0 for j = q + 1; :::; p wp!1. Hence, wp!1,

jQ�2n(b�jn)j = 0 for j = q + 1; :::; p: (16.43)

Now we plug in b�jn for j = q + 1; :::; p into Q�2n(�) in (16.41) and use (16.42). We have

Q�2n(b�jn) = nB0n;p�qU
0
n
bD0
nW

0
nWn

bDnUnBn;p�q + op(1)

�[n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1)](Iq + op(1))[h

0
3;qn

1=2Wn
bDnUnBn;p�q + op(1)]

�b�jn[Ip�q +A3n � (n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1))(Iq + op(1))Sn;qA2n

�A02nSn;q(Iq + op(1))(h03;qn1=2Wn
bDnUnBn;p�q + op(1))

+b�jnA02nSn;q(Iq + op(1))Sn;qA2n]: (16.44)

The term in square brackets on the last three lines of (16.44) that multiplies b�jn equals
Ip�q + op(1); (16.45)

because A3n = op(1) (by (16.39)), n1=2Wn
bDnUnBn;p�q = Op(1) (by (16.37)), Sn;q = o(1) (by the

de�nitions of q and Sn;q in (8.16) and (16.36), respectively, and h1;j := limn1=2� jFn); A2n = op(1)

(by (16.39)), and b�jnA02nSn;q(Iq+op(1))Sn;qA2n = A02nb�jnS2n;qA2n+A02nb�jnSn;qop(1)Sn;qA2n = op(1)

(using b�jnS2n;q = op(1) and A2n = op(1)):

Equations (16.44) and (16.45) give

Q�2n(b�jn) = n1=2B0n;p�qU
0
n
bD0
nW

0
n[Ik � h3;qh03;q]n1=2Wn

bDnUnBn;p�q + op(1)� b�jn[Ip�q + op(1)]
= n1=2B0n;p�qU

0
n
bD0
nW

0
nh3;k�qh

0
3;k�qn

1=2Wn
bDnUnBn;p�q + op(1)� b�jn[Ip�q + op(1)]

:= Mn;p�q � b�jn[Ip�q + op(1)]; (16.46)

where the second equality uses Ik = h3h
0
3 = h3;qh

0
3;q + h3;k�qh

0
3;k�q (because h3 = limCn is an
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orthogonal matrix) and the last line de�nes the (p� q)� (p� q) matrix Mn;p�q:

Equations (16.43) and (16.46) imply that fb�jn : j = q+1; :::; pg are the p� q eigenvalues of the
matrix

M�
n;p�q := [Ip�q + op(1)]

�1=2Mn;p�q[Ip�q + op(1)]
�1=2 (16.47)

by pre- and post-multiplying the quantities in (16.46) by the rhs quantity [Ip�q + op(1)]
�1=2 in

(16.46). By (16.37),

M�
n;p�q !d �

0
h;p�qh3;k�qh

0
3;k�q�h;p�q: (16.48)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by

Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)). By (16.48), the matrix M�
n;p�q

converges in distribution. In consequence, by the CMT, the vector of eigenvalues of M�
n;p�q; viz.,

fb�jn : j = q + 1; :::; pg; converges in distribution to the vector of eigenvalues of the limit matrix
�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q; which proves part (d) of Theorem 8.4. In addition, �min(nbU 0n bD0

n
cW 0
n

�cWn
bDn
bUn); which equals the smallest eigenvalue, b�pn; converges in distribution to the smallest

eigenvalue of �
0
h;p�qh3;k�qh

0
3;k�q�h;p�q; which completes the proof of part (b) of Theorem 8.4.

The convergence in parts (a)-(d) of Theorem 8.4 is joint with that in Lemma 8.3 because it

just relies on the convergence in distribution of n1=2Wn
bDnUnTn; which is part of the former. This

establishes part (e) of Theorem 8.4.

Part (f) of Theorem 8.4 holds by the same proof as used for parts (a)-(e) with n replaced by

wn: �

17 Proofs of Su¢ ciency of Several Conditions for the �p�j(�)
Condition in F0j

In this section, we show that the conditions in (3.9) and (3.10) are su¢ cient for the second

condition in F0j ; which is �p�j(	
C0F;k�j


�1=2
F GiBF;p�j�

F ) � �1 8� 2 Rp�j with jj�jj = 1:
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Condition (i) in (3.9) is su¢ cient by the following argument:

�p�j

�
	
C0F;k�j


�1=2
F GiBF;p�j�

F

�
� �p�j

�
	
C
0
F;p�j


�1=2
F GiBF;p�j�

F

�
= �min

�
(�0 
 Ip�j)	

vec(C
0
F;p�j


�1=2
F GiBF;p�j)

F (� 
 Ip�j)
�

= min
�2Rp�j :jj�jj=1

�
(� 
 Ip�j)�
jj(� 
 Ip�j)�jj

�0
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

(� 
 Ip�j)�
jj(� 
 Ip�j)�jj

� jj(� 
 Ip�j)�jj2

� min
�2R(p�j)2 :jj�jj=1

�0	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F � � min
�2Rp�j :jj�jj=1

jj(� 
 Ip�j)�jj2

= �min

�
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

�
; (17.1)

where the �rst inequality holds by Corollary 15.4(a) with m = p � j and r = k � p (because

	
C
0
F;p�j


�1=2
F GiBF;p�j�

F is a submatrix of 	
C0F;k�j


�1=2
F GiBF;p�j�

F ; since 	
C0F;k�j


�1=2
F GiBF;p�j�

F =

C 0F;k�j	


�1=2
F GiBF;p�j�

F CF;k�j ; likewise with C 0F;k�j replaced by C
0
F;p�j ; and by de�nition the rows of

C
0
F;p�j are a collection of p�j rows of C 0F;k�j); the �rst equality holds because the (p�j)-th largest

eigenvalue of a (p� j)� (p� j) matrix equals its minimum eigenvalue and by the general formula

vec(ABC) = (C 0
A)vec(B); and the last equality holds because jj(�
Ip�j)�jj2 = �0(�0�
Ip�j)� =
�0� = 1 using jj�jj = jj�jj = 1:

Condition (ii) in (3.9) is su¢ cient by su¢ cient condition (i) in (3.9) and the following:

�min

�
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

�
= min

�2R(p�j)2 :jj�jj=1

�
(Ip�j 
 CF;p�j)�
jj(Ip�j 
 CF;p�j)�jj

�0
	
vec(


�1=2
F GiBF;p�j)

F

(Ip�j 
 CF;p�j)�
jj(Ip�j 
 CF;p�j)�jj

�jj(Ip�j 
 CF;p�j)�jj2

� min
�2R(p�j)k:jj�jj=1

� 0	
vec(


�1=2
F GiBF;p�j)

F � � min
�2R(p�j)2 :jj�jj=1

jj(Ip�j 
 CF;p�j)�jj2

= �min

�
	
vec(


�1=2
F GiBF;p�j)

F

�
; (17.2)

where the last equality uses jj(Ip�j 
CF;p�j)�jj2 = �0(Ip�j 
C
0
F;p�jCF;p�j)� = 1 because the rows

of C
0
F;p�j are orthonormal and jj�jj = 1:
Condition (iii) in (3.9) is su¢ cient by su¢ cient condition (ii) in (3.9) and a similar argument to

that given in (17.2) using the fact that min 2Rpk:jj jj=1 jj(B0F;p�j 
 Ik) jj2 = 1 because the columns
of BF;p�j are orthonormal.
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Condition (iv) in (3.9) is su¢ cient by su¢ cient condition (iii) in (3.9) and a similar argument to

that given in (17.2) using min�2Rpk:jj�jj=1 jj(Ip 


�1=2
F )�jj2 �M�2=(2+
) for M as in the de�nition

of F in place of min
�2R(p�j)2 :jj�jj=1 jj(Ip�j 
 CF;p�j)�jj2 = 1: The latter inequality holds by the

following calculations:

�0(Ip 
 
�1F )� =
pX
j=1

(�j=jj�j jj)0
�1F (�j=jj�j jj)� jj�j jj
2

�
pX
j=1

�min(

�1
F )� jj�j jj

2 = 1=�max(
F ) �M�2=(2+
); (17.3)

where � = (�01; :::; �
0
p)
0 for �j 2 Rk 8j � p; the sums are over j for which �j 6= 0k; the second equal-

ity uses jj�jj = 1; and the last inequality holds because �max(
F ) = max�2Rk:jj�jj=1EF (�
0gi)2 �

EF jjgijj2 = ((EF jjgijj2)1=2)2 � ((EF jjgijj2+
)1=(2+
))2 � M2=(2+
) by successively applying the

Cauchy-Bunyakovsky-Schwarz inequality, Lyapunov�s inequality, and the moment bound EF jjgijj2+


�M in F :
Conditions (v) and (vi) in (3.9) are su¢ cient by the following argument. Write

	
vec(Gi)
F = (MF ; Ipk)�

fi
F (MF ; Ipk)

0; where MF = �(EF vec(Gi)g0i)(EF gig0i)�1 2 Rpk�k: (17.4)

We have

�min(	
vec(Gi)
F ) = min

�2Rpk:jj�jj=1
�0(MF ; Ipk)�

fi
F (MF ; Ipk)

0�

= min
�2Rpk:jj�jj=1

�
(MF ; Ipk)

0�

jj(MF ; Ipk)0�jj

�0
�fiF

�
(MF ; Ipk)

0�

jj(MF ; Ipk)0�jj

�
� jj(MF ; Ipk)

0�jj2

� min
�2R(p+1)k:jj�jj=1

�0�fiF �

= �min(�
fi
F ); (17.5)

where the inequality uses jj(MF ; Ipk)
0�jj2 = �0� + �0M 0

FMF� � 1 for � 2 Rpk with jj�jj = 1: This
shows that condition (v) is su¢ cient for su¢ cient condition (iv) in (3.9). Since �fiF = V arF (fi) +

EF fiEF f
0
i ; condition (vi) is su¢ cient for su¢ cient condition (v) in (3.9).

The condition in (3.10) is su¢ cient by the following argument:

�p�j

�
	
C0F;k�j


�1=2
F GiBF;p�j�

F

�
� �p

�
	
C0F


�1=2
F GiBF;p�j�

F

�
= �p

�
	


�1=2
F GiBF;p�j�

F

�
; (17.6)

where the �rst inequality holds by Corollary 15.4(b) with m = p and r = j and the equality holds
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because 	
C0F


�1=2
F GiBF;p�j�

F = C 0F	


�1=2
F GiBF;p�j�

F CF and CF is orthogonal.

18 Asymptotic Size of Kleibergen�s CLR Test with Jacobian-

Variance Weighting and the Proof of Theorem 5.1

In this section, we establish the asymptotic size of Kleibergen�s CLR test with Jacobian-variance

weighting when the Robin and Smith (2000) rank statistic (de�ned in (5.5)) is employed. This rank

statistic depends on a variance matrix estimator eVDn: See Section 5 for the de�nition of the test.
We provide a formula for the asymptotic size of the test that depends on the speci�cs of the moment

conditions considered and does not necessarily equal its nominal size �: First, in Section 18.1, we

provide an example that illustrates the results in Theorem 5.1 and Comment (v) to Theorem 5.1.

In Section 18.2, we establish the asymptotic size of the test based on eVDn de�ned as in (5.3). In
Section 18.3, we report some simulation results for a linear instrumental variable (IV) model with

two rhs endogenous variables. In Section 18.4, we establish the asymptotic size of Kleibergen�s CLR

test with Jacobian-variance weighting under a general assumption that allows for other de�nitions

of eVDn:
In Section 18.5, we show that equally-weighted versions of Kleibergen�s CLR test have correct

asymptotic size when the Robin and Smith (2000) rank statistic is employed and a general equal-

weighting matrix fWn is employed. This result extends the result given in Theorem 6.1 in Section

6, which applies to the speci�c case where fWn = b
�1=2n ; as in (6.2). The results of Section 18.5 are

a relatively simple by-product of the results in Section 18.4.

Proofs of the results stated in this section are given in Section 18.6.

Theorem 5.1 follows from Lemma 18.2 and Theorem 18.3, which are stated in Section 18.4.

18.1 An Example

Here we provide a simple example that illustrates the result of Theorem 5.1. In this example, the

true distribution F does not depend on n: Suppose p = 2; EFGi = (1k; 0k); where ck = (c; :::; c)0 2
Rk for c = 0; 1; n1=2( bDn�EFGi)!d Dh under F for some random matrixDh = (D1h; D2h) 2 Rk�2:
Suppose for fMn = eV �1=2Dn andMF = I2k; we have n1=2(fMn�MF )!d Mh under F for some random

matrix Mh 2 R2k�2k:53 We have

bDy
n = vec�1k;p(

eV �1=2Dn vec( bDn)) =
�fM11n

bD1n + fM12n
bD2n;fM21n

bD1n + fM22n
bD2n� ; (18.1)

53The convergence results n1=2( bDn � EFGi) !d Dh and n1=2(fMn �MF ) !d Mh are established in Lemmas 8.2
and 18.2, respectively, in Section 8 of AG1 and Section 18 in this Supplemental Material under general conditions.
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where bDn = ( bD1n; bD2n); fMj`n for j; ` = 1; 2 are the four k � k submatrices of fMn; and likewise

for Mj`F for j; ` = 1; 2: Let M j`h for j; ` = 1; 2 denote the four k � k submatrices of Mh: We let

T yn = Diagfn�1=2; 1g: Then, we have

n1=2 bDy
nT

y
n =

�fM11n
bD1n + fM12n

bD2n; n1=2fM21n
bD1n + fM22nn

1=2 bD2n�
! d

�
Ik1

k + 0k�k0k; M21h1
k + IkD2h

�
=
�
1k;M21h1

k +D2h

�
; (18.2)

where the convergence uses n1=2fM21n !d M21h (because M21F = 0k�k) and n1=2 bD2n !d D2h

(because EFGi2 = 0k): Equation (18.2) shows that the asymptotic distribution of n1=2 bDy
nT

y
n depends

on the randomness of the variance estimator eVDn through M21h:

It may appear that this example is quite special and the asymptotic behavior in (18.2) only

arises in special circumstances, because EFGi = (1k; 0k); M21F = 0k�k; and MF = I2k in this

example. But this is not true. The asymptotic behavior in (18.2) arises quite generally, as shown

in Theorem 5.1, whenever p � 2:54

If one replaces eV �1=2Dn by its probability limit, MF ; in the de�nition of bDy
n; then the calculations

in (18.2) hold but with n1=2fM21n replaced by n1=2M21F = 0
k�k in the �rst line and, hence, M21h

replaced by 0k�k in the second line. Hence, in this case, the asymptotic distribution only depends

on Dh: Hence, Comment (iv) to Theorem 5.1 holds in this example.

Suppose one de�nes bDy
n by fWn

bDn as in Comment (v) to Theorem 5.1. This yields equal

weighting of each column of bDn: This is equivalent to replacing eV �1=2Dn by I2
fWn in the de�nition

of bDy
n in (18.1). In this case, the o¤-diagonal k � k blocks of I2 
fWn are 0k�k and, hence, fM21n

in the �rst line of (18.2) equals 0k�k; which implies that M21h = 0
k�k in the second line of (18.2).

Thus, the asymptotic distribution of bDy
n does not depend on the asymptotic distribution of the

(normalized) weight matrix estimator fWn: It only depends on the probability limit of fWn; as stated

in Comment (v) to Theorem 5.1.

18.2 Asymptotic Size of Kleibergen�s CLR Test with Jacobian-Variance

Weighting

In this subsection, we determine the asymptotic size of Kleibergen�s CLR test when bDn is

weighted by eVDn; de�ned in (5.3), which yields what we call Jacobian-variance weighting, and the
Robin and Smith (2000) rank statistic is employed. This rank statistic is de�ned in (5.5) with

54When the matrix M21F 6= 0k�k; the argument in (18.2) does not go through because n1=2fM21n does not converge
in distribution (since n1=2(fM21n�M21F )!d M21h by assumption). In this case, one has to alter the de�nition of T yn
so that it rotates the columns of bDn before rescaling them. The rotation required depends on both MF and EFGi:
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� = �0: For convenience, we restate the de�nition here:

rkn = rkyn := �min(n( bDy
n)
0 bDy

n); where bDy
n := vec�1k;p(

eV �1=2Dn vec( bDn)) (18.3)

(so bDy
n is as in (5.4) with � = �0):

55 Let

b�yjn denote the jth eigenvalue of n( bDy
n)
0 bDy

n; for j = 1; :::; p; (18.4)

ordered to be nonincreasing in j: By de�nition, �min(n( bDy
n)0 bDy

n) = b�ypn: Also, the jth singular value
of n1=2 bDy

n equals (b�yjn)1=2:
De�ne the parameter space FKCLR for the distribution F by

FKCLR := fF 2 F : �min(V arF ((g0i; vec(Gi)0)0)) � �2; EF jj(g0i; vec(Gi)0)0jj4+
 �Mg; (18.5)

where �2 > 0 and 
 > 0 and M <1 are as in the de�nition of F in (3.1). Note that FKCLR � F0
when �1 in F0 satis�es �1 � M�2=(2+
)�2; by condition (vi) in (3.9). Let vech(�) denote the half
vectorization operator that vectorizes the nonredundant elements in the columns of a symmetric

matrix (that is, the elements on or below the main diagonal). The moment condition in FKCLR is
imposed because the asymptotic distribution of the rank statistic rkyn depends on a triangular array

CLT for vech(f�i f
�0
i ); which employs 4 + 
 moments for f�i ; where f

�
i := (g0i; vec(Gi � EFnGi)

0)0

as in (5.6). The �min(�) condition in FKCLR ensures that eVDn is positive de�nite wp!1; which is
needed because eVDn enters the rank statistic rkyn via eV �1=2Dn ; see (18.3).

For a �xed distribution F; eVDn estimates �vec(Gi)F de�ned in (8.15), where �vec(Gi)F is pd by its

de�nition in (8.15) and the �min(�) condition in FKCLR:56 Let

MF =

26664
M11F � � � M1pF

...
. . .

...

Mp1F � � � MppF

37775 := (�vec(Gi)F )�1=2 and (18.6)

Dy
F :=

pX
j=1

(M1jFEFGij ; :::;MpjFEFGij) 2 Rk�p; where Gi = (Gi1; :::; Gip) 2 Rk�p:

55As in Section 5, the function vec�1k;p(�) is the inverse of the vec(�) function for k � p matrices. Thus, the domain
of vec�1k;p(�) consists of kp-vectors and its range consists of k � p matrices.
56More speci�cally, �vec(Gi)F is pd because by (8.15) �

vec(Gi)
F := V arF (vec(Gi) � (EF vec(G`)g

0
`)


�1
F gi)

= (�(EF vec(G`)g0`)
�1F ; Ipk)V arF ((g
0
i; vec(Gi)

0)0)(�(EF vec(G`)g0`)
�1F ; Ipk)
0; where (�(EF vec(G`)g0`)
�1F ; Ipk) 2

Rpk�(p+1)k has full row rank pk and V arF ((g0i; vec(Gi)
0)0) is pd by the �min(�) condition in FKCLR:
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Let (� y1F ; :::; �
y
pF ) denote the singular values of D

y
F : De�ne

ByF 2 Rp�p to be an orthogonal matrix of eigenvectors of Dy0
FD

y
F and

CyF 2 Rk�k to be an orthogonal matrix of eigenvectors of Dy
FD

y0
F (18.7)

ordered so that the corresponding eigenvalues (�y1F ; :::; �
y
pF ) and (�

y
1F ; :::; �

y
pF ; 0; :::; 0) 2 Rk; respec-

tively, are nonincreasing. We have �yjF = (�
y
jF )

2 for j = 1; :::; p: Note that (18.7) gives de�nitions

of BF and CF that are similar to the de�nitions in (8.6) and (8.7), but di¤er because D
y
F replaces

WF (EFGi)UF in the de�nitions.

De�ne (�1;F ; :::; �9;F ) as in (8.9) with �7;F =WF = 

�1=2
F ; �8;F = Ip; andW1(�) and U1(�) equal

to identity functions. De�ne

�10;F = V arF

0@ f�i

vech (f�i f
�0
i )

1A 2 Rd��d� ; (18.8)

where d� := (p+1)k+(p+1)k((p+1)k+1)=2: De�ne (�y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ) as (�1;F ; �2;F ; �3;F ; �6;F )

are de�ned in (8.9) but with f� yjF : j � pg; ByF ; and C
y
F in place of f� jF : j � pg; BF ; and CF ;

respectively.

De�ne

� = �F := (�1;F ; :::; �10;F ; �
y
1;F ; �

y
2;F ; �

y
3;F ; �

y
6;F ); (18.9)

�KCLR := f� : � = (�1;F ; :::; �10;F ; �y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ) for some F 2 FKCLRg; and

hn(�) := (n
1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ; �10;F ; n

1=2�y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ):

Let f�n;h 2 �KCLR : n � 1g denote a sequence f�n 2 �KCLR : n � 1g for which hn(�n)! h 2 H;
for H as in (8.1). The asymptotic variance of n1=2vec( bDn � EFnGi) is �

vec(Gi)
h under f�n;h 2

�KCLR : n � 1g by Lemma 8.2.
De�ne h1;j for j � p and hs for s = 2; :::; 8 as in (8.12), q = qh as in (8.16), h2;q; h2;p�q; h3;q;

h3;p�q; and h�1;p�q as in (8.17), and �n; �n;q; and �n;p�q as in (13.2). Note that h7 = h
�1=2
5;g and

h8 = Ip due to the de�nitions of �7;F and �8;F given above, where h5;g (= limEFngig
0
i) denotes the

upper left k � k submatrix of h5; as in Section 8.
For a sequence f�n;h 2 �KCLR : n � 1g; we have

h10 =

24 h10;f� h10;f�f�2

h10;f�2f� h10;f�2f�2

35 := limV arFn
0@ f�i

vech (f�i f
�0
i )

1A 2 Rd��d� : (18.10)

32



Note that h10;f� 2 R(p+1)k�(p+1)k is pd by the de�nition of FKCLR in (18.5).
With � yjF ; B

y
F ; and C

y
F in place of � jF ; BF ; and CF ; respectively, de�ne h

y
1;j for j � p and hys

for s = 2; 3; 6 as in (8.12) as analogues to the quantities without the y superscript, de�ne qy = qyh

as in (8.16), de�ne hy
2;qy

; hy
2;p�qy ; h

y
3;qy

; hy
3;k�qy ; and h

y�
1;p�qy as in (8.17), and de�ne �

y
n; �

y
n;qy

; and

�y
n;p�qy as in (13.2). The quantity q

y determines the asymptotic behavior of rkyn: By de�nition, qy

is the largest value j (� p) for which limn1=2� yjFn =1 under f�n;h 2 �KCLR : n � 1g: It is shown
below that if qy = p; then rkyn !p 1; whereas if qy < p; then rkyn converges in distribution to a

nondegenerate random variable, see Lemma 18.4.

By the CLT, for any sequence f�n;h 2 �KCLR : n � 1g;

n�1=2
nX
i=1

0@ f�i

vech (f�i f
�0
i � EFnf�i f�0i )

1A!d Lh � N(0d
�
; h10); where

Lh = (L
0
h;1; L

0
h;2; L

0
h;3)

0 for Lh;1 2 Rk; Lh;2 2 Rkp; and Lh;3 2 R(p+1)k((p+1)k+1)=2(18.11)

and the CLT holds using the moment conditions in FKCLR: Note that by the de�nitions of h4 :=
limEFnGi and h5 := limEFn(g

0
i; vec(Gi)

0)0(g0i; vec(Gi)
0); we have

h10;f� =

24 h5;g h5;gG

h5;Gg h5;G � vec(h4)vec(h4)0

35 ; where h5 =
24 h5;g h5;gG

h5;Gg h5;G

35 (18.12)

for h5;g 2 Rk�k; h5;Gg 2 Rkp�k; and h5;G 2 Rkp�kp:
We now provide new, but distributionally equivalent, de�nitions of gh and Dh:

gh := Lh;1 and vec(Dh) := Lh;2 � h5;Ggh�15;gLh;1: (18.13)

These de�nitions are distributionally equivalent to the previous de�nitions of gh and Dh given

in Lemma 8.2, because by either set of de�nitions gh and vec(Dh) are independent mean zero

random vectors with variance matrices h5;g and �
vec(Gi)
h (= h5;G�vec(h4)vec(h4)0�h5;Ggh�15;gh05;Gg);

respectively, where �vec(Gi)h is de�ned in (8.15) and is pd (because �vec(Gi)h = lim�
vec(Gi)
Fn

and

�min(�
vec(Gi)
Fn

) is bounded away from zero by its de�nition in (8.15) and the �min(�) condition in
FKCLR):
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De�ne

D
y
h :=

pX
j=1

(M1jhDjh; :::;MpjhDjh) 2 Rk�p; where

26664
M11h � � � M1ph

...
. . .

...

Mp1h � � � Mpph

37775 := (�vec(Gi)h )�1=2;

(18.14)

Dh = (D1h; :::; Dph); and Dh is de�ned in (18.13). De�ne

�
y
h = (�

y
h;qy ;�

y
h;p�qy) 2 R

k�p; �
y
h;qy := hy

3;qy
2 Rk�qy ; and

�
y
h;p�qy := hy3h

y�
1;p�qy +D

y
hh
y
2;p�qy 2 R

k�(p�qy): (18.15)

Let a(�) be the function from Rd
�
to Rkp(kp+1)=2 that maps

n�1
nX
i=1

0@ f�i

vech (f�i f
�0
i )

1A into (18.16)

An := vech

0@ n�1 nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0 � e�ne
�1n e�0n
!�1=21A ; where

e
n := n�1
nX
i=1

gig
0
i 2 Rk�k and e�n := n�1

nX
i=1

vec(Gi � EFnGi)g0i 2 Rpk�k:

Note that a(�) does not depend on the n�1
Pn

i=1 f
�
i part of its argument. Also, a(�) is well de�ned

and continuously partially di¤erentiable at any value of its argument for which n�1
Pn

i=1 f
�
i f

�0
i is

pd.57 We de�ne Ah as follows:

Ah denotes the (kp)(kp+ 1)=2� d� matrix of partial derivatives of a(�)

evaluated at (0(p+1)k0; vech(h10;f�)
0)0; (18.17)

where the latter vector is the limit of the mean vector of (f�0i ; vech (f
�
i f

�0
i )

0)0 under f�n;h 2 �KCLR :
n � 1g:

De�ne

Mh := vech�1kp;kp(AhLh) 2 R
kp�kp; (18.18)

where vech�1kp;kp(�) denotes the inverse of the vech(�) operator applied to symmetric kp�kp matrices.

57The function a(�) is well de�ned in this case because n�1
Pn

i=1 vec(Gi � EFnGi)vec(Gi � EFnGi)
0 � e�ne
�1n e�0n

= (�e�ne
�1n ; Ipk)n
�1Pn

i=1 f
�
i f

�0
i (�e�ne
�1n ; Ipk)

0 and (�e�ne
�1n ; Ipk) 2 Rpk�(p+1)k has full row rank pk:
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De�ne

M
y
h := (M

y
h;qy ;M

y
h;p�qy) := (0

k�qy ;M
y
h;p�qy) 2 R

k�p; where (18.19)

M
y
h;p�qy :=

pX
j=1

(M1jhh4;j ; :::;Mpjhh4;j)h
y
2;p�qy 2 R

k�(p�qy); Mh =

26664
M11h � � � M1ph

...
. . .

...

Mp1h � � � Mpph

37775 ;

and h4 = (h4;1; :::; h4;p) 2 Rk�p:
Below (in Lemma 18.4), we show that the asymptotic distribution of rkyn under sequences

f�n;h 2 �KCLR : n � 1g with qy < p is given by

rh(Dh;Mh) := �min((�
y
h;p�qy +M

y
h;p�qy)

0hy
3;k�qyh

y0
3;k�qy(�

y
h;p�qy +M

y
h;p�qy)); (18.20)

where �
y
h;p�qy is a nonrandom function of Dh by (18.14) and (18.15) and M

y
h;p�qy is a nonrandom

function of Mh by (18.19). For sequences f�n;h 2 �KCLR : n � 1g with qy = p; we show that

rkn !p rh :=1:
We de�ne �h; as in (8.17), as follows:

�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; and �h;p�q := h3h
�
1;p�q + h7Dhh8h2;p�q; where

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q); h
�
1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q): (18.21)

In the present case, h7 = h
�1=2
5;g and h8 = Ip because the CLRn statistic depends on bDn throughb
�1=2n

bDn; which appears in the LMn statistic.58 This means that AssumptionWU for the parameter

space �KCLR (de�ned in Section 8.4) holds with cWn = b
�1=2n ; bUn = Ip; h7 = h
�1=2
5;g ; and h8 = Ip:

Thus, the distribution of �h depends on Dh; q; and hs for s = 1; 2; 3; 5:

Below (in Lemma 18.5), we show that the asymptotic distribution of the CLRn statistic under

58The CLRn statistic also depends on bDn through the rank statistic.
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sequences f�n;h 2 �KCLR : n � 1g with qy < p is given by59

CLRh :=
1

2

�
LMh + Jh � rh +

q
(LMh + Jh � rh)2 + 4LMrh

�
; where

LMh := v0hvh � �2p; vh := P�hh
�1=2
5;g gh; Jh := g0hh

�1=2
5;g M�h

h
�1=2
5;g gh � �2k�p; and

rh := rh(Dh;Mh): (18.22)

The quantities (gh; Dh;Mh) are speci�ed in (18.13) and (18.18) (and (gh; Dh) are the same as in

Lemma 8.2). Conditional on Dh; LMh and Jh are independent and distributed as �2p and �
2
k�p;

respectively (see the paragraph following (10.6)). For sequences f�n;h 2 �KCLR : n � 1g with qy =
p; we show that the asymptotic distribution of the CLRn statistic is CLRh := LMh := v0hvh � �2p;

where vh := P�hh
�1=2
5;g gh:

The critical value function c(1 � �; r) is de�ned in (5.2) for 0 � r < 1: For r = 1; we de�ne
c(1� �; r) to be the 1� � quantile of the �2p distribution.

Now we state the asymptotic size of Kleibergen�s CLR test based on Robin and Smith (2000)

statistic with eVDn de�ned in (5.3).
Theorem 18.1 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (18.3)) is de�ned by (5.3). Then, the asymptotic
size of Kleibergen�s CLR test based on the rank statistic rkyn is

AsySz = maxf�; sup
h2H

P (CLRh > c(1� �; rh))g

provided P (CLRh = c(1� �; rh)) = 0 for all h 2 H:

Comments: (i) The proviso in Theorem 18.1 is a continuity condition on the distribution function

of CLRh � c(1 � �; rh) at zero. If the proviso in Theorem 18.1 does not hold, then the following

weaker conclusion holds:

AsySz (18.23)

2 [maxf�; sup
h2H

P (CLRh > c(1� �; rh))g;maxf�; sup
h2H

lim
x"0

P (CLRh > c(1� �; rh) + x)g]:

(ii) Conditional on (Dh;Mh); gh has a multivariate normal distribution a.s. (because (gh; Dh;

Mh) has a multivariate normal distribution unconditionally).60 The proviso in Theorem 18.1 holds

59The de�nitions of vh; LMh; Jh; and CLRh in (18.22) are the same as in (9.1), (9.2), (10.6), and (10.7), respec-
tively.
60Note that gh is independent of Dh:
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whenever gh has a non-zero variance matrix conditional on (Dh;Mh) a.s. for all h 2 H: This

holds because (a) P (CLRh = c(1� �; rh)) = E(Dh;Mh)
P (CLRh = c(1� �; rh)jDh;Mh) by the law

of iterated expectations, (b) some calculations show that CLRh = c(1 � �; rh) i¤

(rh + c)LMh = �cJh + c2 + crh i¤ X
0
hXh = c2 + crh; where c := c(1 � �; rh) and Xh := ((rh +

c)1=2(P�hh
�1=2
5;g gh)

0; c1=2(M�h
h
�1=2
5;g gh)

0)0 using (18.22), (c) P�h +M�h
= Ik and P�hM�h

= 0k�k;

and (d) conditional on (Dh;Mh); rh; c; and �h are constants.

(iii) When p = 1; the formula for AsySz in Theorem 18.1 reduces to � and the proviso holds

automatically. That is, Kleibergen�s CLR test has correct asymptotic size when p = 1: This holds

because when p = 1 the quantity M
y
h in (18.19) equals 0

k�p by Comment (ii) to Theorem 18.3

below. This implies that rh(Dh;Mh) in (18.20) does not depend on Mh: Given this, the proof that

P (CLRh > c(1��; rh) = � for all h 2 H and that the proviso holds is the same as in (10.9)-(10.10)

in the proof of Theorem 10.1.

(iv) Theorem 18.1 is proved by showing that it is a special case of Theorem 18.6 below, which is

similar but applies not to eVDn de�ned in (5.3), but to an arbitrary estimator eVDn (of the asymptotic
variance �vec(Gi)h of n1=2vec( bDn�EFnGi)) that satis�es an Assumption VD (which is stated below).
Lemma 18.2 below shows that the estimator eVDn de�ned in (5.3) satis�es Assumption VD.

(v) A CS version of Theorem 18.1 holds with the parameter space F�;KCLR in place of FKCLR;
where F�;KCLR := f(F; �0) : F 2 FKCLR(�0); �0 2 �g and FKCLR(�0) is the set FKCLR de�ned
in (18.5) with its dependence on �0 made explicit. The proof of this CS result is as outlined in

the Comment to Proposition 8.1. For the CS result, the h index and its parameter space H are as

de�ned above, but h also includes �0 as a subvector, and H allows this subvector to range over �:

18.3 Simulation Results

In this section, for a particular linear IV regression model, we simulate (i) the correlations

between M
y
h;p�qy (de�ned in (18.19)) and gh and (ii) some asymptotic null rejection probabilities

(NRP�s) of Kleibergen�s CLR test that uses Jacobian-variance weighting and employs the Robin

and Smith (2000) rank statistic. The model has p = 2 rhs endogenous variables, k = 5 IV�s, and

an error structure that yields simpli�ed asymptotic formulae for some key quantities. The model is

y1i = Y 02i�0 + ui and Y2i = �0Zi + V2i; (18.24)

where y1i; ui 2 R; Y2i; V2i = (V21i; V22i)
0; � 2 R2; Zi = (Zi1; :::; Zi5)

0 2 R5; and � 2 R5�2: We

take Zij � N(:05; (:05)2) for j = 1; :::; 5; ui � N(0; 1); V1i � N(0; 1); and V2i = uiV21i: The

random variables Zi1; :::; Zi5; ui; and V1i are taken to be mutually independent. We take � =
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�n = (e1; e2cn
�1=2); where e1 = (1; 0; :::; 0)0 2 R5 and e2 = (0; 1; 0; :::; 0)0 2 R5: We consider 26

values of the constant c lying between 0 and 60:1 (viz., 0:0; 0:1; :::; 1:0; 1:1; :::; 10:1; 20:1; :::; 60:1);

as well as 707:1; 1414:2; and 1; 000; 000: Given these de�nitions, h1;1 = 1; h1;2 = c; and M
y
h =

(05;M
y
h;p�qy) 2 R5�2; see (18.19).

In this model, we have gi = �Ziui and Gi = �ZiY 02i: The speci�ed error distribution leads to
EFGig

0
i = 0k�k: In consequence, the matrix �vec(Gi)h (de�ned in (8.15)), which is the asymptotic

variance of the Jacobian-variance matrix estimator eVDn (de�ned in (5.3)), simpli�es as follows:
�
vec(Gi)
h = limV arFn

�
vec(Di � EFnDi)vec(Di � EFnDi)

0�
= limV arFn

�
vec(Gi � EFnGi)vec(Gi � EFnGi)0

�
; where (18.25)

Di : =
�
Gi1 � �1F
�1F gi; Gi2 � �2F
�1F gi

�
; �jF = EFGijg

0
i for j = 1; 2; and 
F = EF gig

0
i:

In addition, in the present model, Gi1 and Gi2 are uncorrelated, where Gi = (Gi1; Gi2): In con-

sequence, �vec(Gi)h is block diagonal. In turn, this implies that limMFn := (�
vec(Gi)
h )�1=2 is block

diagonal with o¤-diagonal block limM12Fn = 0
5�5:

The quantities hy1;j for j = 1; :::; 5 (de�ned just below (18.10)) are not available in closed form,

so we simulate them using a very large value of n; viz., n = 2; 000; 000:We use 4; 000; 000 simulation

repetitions to compute the correlations between the jth elements of M
y
h;p�qy and gh for j = 1; :::; 5

and the asymptotic NRP�s of the CLR test.61 The data-dependent critical values for the test are

computed using a look-up table that gives the critical values for each �xed value r of the rank

statistic in a grid from 0 to 100 with a step size of :005: These critical values are computed using

4; 000; 000 simulation repetitions.

Results are obtained for each of the 29 values of c listed above. The simulated correlations

between the jth elements of M
y
h;p�qy and gh for j = 1; :::; 5 take the following values

� :33; � :38; � :38; � :38; and � :38 (18.26)

for all values of c � 60:1: For c = 707:1; the correlations are �:32; �:36; �:36; �:36; and �:36:
For c = 1414:2; the correlations are �:24; �:27; �:27; �:27; and �:27: For c = 1; 000; 000; the

correlations are �:01; �:01; �:01; �:01; and �:01: These results corroborate the �ndings given
in Theorem 5.1 that M

y
h;p�qy and gh are correlated asymptotically in some models under some

sequences of distributions. In consequence, it is not possible to show the Jacobian-variance weighted

CLR test has correct asymptotic size via a conditioning argument that relies on the independence

61The correlations between the jth and kth elements of these vectors for j 6= k are zero by analytic calculation.
Hence, they are not reported here.
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of �
y
h;p�qy +M

y
h;p�qy and gh:

Next, we report the asymptotic NRP results for Kleibergen�s CLR test that uses Jacobian-

variance weighting and the Robin and Smith (2000) rank statistic. The asymptotic NRP�s are

found to be between 4:95% and 5:01% for the 29 values of c considered. These values are very

close to the nominal size of 5:00%: Whether the di¤erence is due to simulation noise or not is

not clear. The simulation standard error based on the formula 100 � (�(1 � �)=reps)1=2; where

reps = 4; 000; 000 is the number of simulation repetitions, is :01: However, this formula does not

take into account simulation error from the computation of the critical values.

We conclude that, for the model and error distribution considered, the asymptotic NRP�s of the

Kleibergen�s CLR test with Jacobian-variance weighting is equal to, or very close to, its nominal size.

This occurs even though there are non-negligible correlations between M
y
h;p�qy and gh: Whether

this occurs for all parameters and distributions in the linear IV model, and whether it occurs in

other moment condition model, is an open question. It appears to be a question that can only be

answered on a case by case basis.

18.4 Asymptotic Size of Kleibergen�s CLR Test for General eVDn Estimators

In this section, we determine the asymptotic size of Kleibergen�s CLR test (de�ned in Section 5)

using the Robin and Smith (2000) rank statistic based on a general �Jacobian-variance�estimatoreVDn (= eVDn(�0)) that satis�es the following Assumption VD.
The �rst two results of this section, viz., Lemma 18.2 and Theorem 18.3, combine to establish

Theorem 5.1, see Comment (i) to Theorem 18.3. The �rst and last results of this section, viz.,

Lemma 18.2 and Theorem 18.6, combine to prove Theorem 18.1.

The proofs of the results in this section are given in Section 18.6.

Assumption VD: For any sequence f�n;h 2 �KCLR : n � 1g; the estimator eVDn is such that
n1=2(fMn �MFn) !d Mh for some random matrix Mh 2 Rkp�kp (where fMn = eV �1=2Dn and MFn is

de�ned in (18.6)), the convergence is joint with

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A ; (18.27)

and (gh; Dh;Mh) has a mean zero multivariate normal distribution with pd variance matrix. The

same condition holds for any subsequence fwng and any sequence f�wn;h 2 �KCLR : n � 1g with
wn in place of n throughout.

Note that the convergence in (18.27) holds by Lemma 8.2.
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The following lemma veri�es Assumption VD for the estimator eVDn de�ned in (5.3).
Lemma 18.2 The estimator eVDn de�ned in (5.3) satis�es Assumption VD. Speci�cally,

n1=2(bgn; bDn�EFnGi;fMn�MFn)!d (gh; Dh;Mh); where fMn := eV �1=2Dn ; MFn := (�
vec(Gi)
Fn

)�1=2; and

(gh; Dh;Mh) has a mean zero multivariate normal distribution de�ned by (18.11) and (18.13)-

(18.18) with pd variance matrix.

Comment: As stated in the paragraph containing (18.21), bDn is de�ned in Lemma 18.2 and

Theorem 18.3 below with cWn = b
�1=2n and bUn = Ip:

De�ne

Syn := Diagf(n1=2� y1Fn)
�1; :::; (n1=2� yqFn)

�1; 1; :::; 1g 2 Rp�p and T yn := BynS
y
n; (18.28)

where Byn is de�ned in (18.7).

The asymptotic distribution of n1=2 bDy
nT

y
n is given in the following theorem.

Theorem 18.3 Suppose Assumption VD holds. For all sequences f�n;h 2 �KCLR : n � 1g;
n1=2(bgn; bDn � EFnGi; bDy

nT
y
n) !d (gh; Dh;�

y
h +M

y
h); where �

y
h is a nonrandom a¢ ne function of

Dh de�ned in (18.14) and (18.15), M
y
h is a nonrandom linear (i.e., a¢ ne and homogeneous of

degree one) function of Mh de�ned in (18.19), (gh; Dh;Mh) has a mean zero multivariate normal

distribution, and gh and Dh are independent. Under all subsequences fwng and all sequences
f�wn;h 2 �KCLR : n � 1g; the same result holds with n replaced with wn:

Comments: (i) Note that the random variables (gh;�
y
h;M

y
h) in Theorem 5.1 have a multivariate

normal distribution whose mean and variance matrix depend on limV arFn((f
�0
i ; vec (f

�
i f

�0
i )

0) and

on the limits of certain functions of EFnGi by (18.11)-(18.19). This, Lemma 18.2, and Theorem

18.3 combine to prove Theorem 5.1 of AG1.

(ii) From (18.19), M
y
h = 0k�p if p = 1 (because qy = 0 implies q = 0 which, in turn, implies

h4 = 0
k and qy = 1 implies M

y
h;p�qy has no columns).

62 For p � 2; M y
h = 0

k�p if p = qy (because

M
y
h;p�qy has no columns) or if h4;j = 0k for all j � p: The former holds if the singular values

(�1Fn ; :::; �pFn) of D
y
Fn
satisfy n1=2� jFn ! 1 for all j � p (i.e., all parameters are strongly or

semi-strongly identi�ed). The latter occurs if EFnGi ! 0k�p (i.e., all parameters are either weakly

identi�ed in the standard sense or semi-strongly identi�ed). These two condition fail to hold when

62Note that qy = 0 implies q = 0 when p = 1 because n1=2Dy
Fn
= n1=2MFnEFnGi = O(1) when qy = 0 (by the

de�nition of qy) and this implies that n1=2EFnGi = O(1) using the �rst condition in FKCLR: In turn, the latter
implies that n1=2
�1=2Fn

EFnGi = O(1) using the last condition in F . That is, q = 0 (since WF = 

�1=2
F and UF = Ip

because cWn = b
�1=2n and bUn = Ip in the present case, see the Comment to Lemma 18.2).
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one or more parameters are strongly identi�ed and one or more parameters are weakly identi�ed

or jointly weakly identi�ed.

(iii) For example, when p = 2 the conditions in Comment (ii) (under which M y
h = 0

k�p) fail to

hold if EFnGi1 6= 0k does not depend on n and n1=2EFnGi2 ! c for some c 2 Rk:

The following lemma establishes the asymptotic distribution of rkyn:

Lemma 18.4 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (18.3)) satis�es Assumption VD. Then, under
all sequences f�n;h 2 �KCLR : n � 1g;

(a) rkyn := b�ypn !p 1 if qy = p;

(b) rkyn := b�ypn !d rh(Dh;Mh) if qy < p; where rh(Dh;Mh) is de�ned in (18.20) using (18.19)

with Mh de�ned in Assumption VD (rather than in (18.18)),

(c) b�yjn !p 1 for all j � qy;

(d) the (ordered) vector of the smallest p� qy singular values of n1=2 bDy
n; i.e., ((b�y(qy+1)n)1=2; :::;

(b�ypn)1=2)0; converges in distribution to the (ordered) p � qy vector of the singular values of

hy0
3;k�qy(�

y
h;p�qy +M

y
h;p�qy) 2 R(k�q

y)�(p�qy); where M
y
h;p�qy is de�ned in (18.19) with Mh de�ned

in Assumption VD (rather than in (18.18)),

(e) the convergence in parts (a)-(d) holds jointly with the convergence in Theorem 18.3, and

(f) under all subsequences fwng and all sequences f�wn;h 2 �KCLR : n � 1g; parts (a)-(e) hold
with n replaced with wn:

The following lemma gives the joint asymptotic distribution of CLRn and rk
y
n and the asymp-

totic null rejection probabilities of Kleibergen�s CLR test.

Lemma 18.5 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (18.3)) satis�es Assumption VD. Then, under
all sequences f�n;h 2 �KCLR : n � 1g;

(a) CLRn = LMn + op(1)!d �
2
p and rk

y
n !p 1 if qy = p;

(b) lim
n!1

P (CLRn > c(1� �; rkyn)) = � if qy = p;

(c) (CLRn; rkyn)!d (CLRh; rh) if q
y < p; and

(d) lim
n!1

P (CLRn > c(1� �; rkyn)) = P (CLRh > c(1� �; rh)) if qy < p; provided

P (CLRh = c(1� �; rh)) = 0:

Under all subsequences fwng and all sequences f�wn;h 2 �KCLR � 1g; parts (a)-(d) hold with n
replaced with wn:
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Comments: (i) The CLR critical value function c(1 � �; r) is the 1 � � quantile of clr(r): By

de�nition,

clr(r) :=
1

2

�
�2p + �

2
k�p � r +

q
(�2p + �

2
k�p � r)2 + 4�2pr

�
; (18.29)

where the chi-square random variables �2p and �
2
k�p are independent. If rh := rh(Dh;Mh) does not

depend on Mh; then, conditional on Dh; rh is a constant and LMh and Jh are independent and

distributed as �2p and �
2
k�p (see the paragraph following (10.6)). In this case, even when q

y = p;

P (CLRh > c(1� �; rh)) = EDh
P (CLRh > c(1� �; rh)jDh) = �; (18.30)

as desired, where the �rst equality holds by the law of iterated expectations and the second equality

holds because rh is a constant conditional on Dh and c(1 � �; rh) is the 1 � � quantile of the

conditional distribution of clr(rh) given Dh; which equals that of CLRh given Dh:

(ii) However, when rh := rh(Dh;Mh) depends on Mh; the distribution of rh conditional on

Dh is not a pointmass distribution. Rather, conditional on Dh; rh is a random variable that is not

independent of LMh; Jh; and CLRh: In consequence, the second equality in (18.30) does not hold

and the asymptotic null rejection probability of Kleibergen�s CLR test may be larger or smaller

than � depending upon the sequence f�n;h 2 �KCLR : n � 1g (or f�wn;h 2 �KCLR : n � 1g) when
qy < p:

Next, we use Lemma 18.5 to provide an expression for the asymptotic size of Kleibergen�s CLR

test based on the Robin and Smith (2000) rank statistic with Jacobian-variance weighting.

Theorem 18.6 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (18.3)) satis�es Assumption VD. Then, the
asymptotic size of Kleibergen�s CLR test based on rkyn is

AsySz = maxf�; sup
h2H

P (CLRh > c(1� �; rh))g

provided P (CLRh = c(1� �; rh)) = 0 for all h 2 H:

Comments: (i) Comment (i) to Theorem 18.1 also applies to Theorem 18.6.

(ii) Theorem 18.6 and Lemma 18.2 combine to prove Theorem 18.1.

(iii) A CS version of Theorem 18.6 holds with the parameter space F�;KCLR in place of FKCLR;
see Comment (v) to Theorem 18.1 and the Comment to Proposition 8.1.
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18.5 Correct Asymptotic Size of Equally-Weighted CLR Tests

Based on the Robin-Smith Rank Statistic

In this subsection, we consider equally-weighted CLR tests, a special case of which is considered

in Section 6. By de�nition, an equally-weighted CLR test is a CLR test that is based on a rkn

statistic that depends on bDn only through fWn
bDn for some general k � k weighting matrix fWn:

We show that such tests have correct asymptotic size when they are based on the rank statistic

of Robin and Smith (2000) and employ a general weight matrix fWn 2 Rk�k that satis�es certain
conditions. In contrast, the results in Section 6 consider the speci�c weight matrix b
�1=2n 2 Rk�k:
The reason for considering these tests in this section is that the asymptotic results can be obtained

as a relatively simple by-product of the results in Section 18.4. All that is required is a slight change

in Assumption VD.

The rank statistic that we consider here is

rkyn := �min(n bD0
n
fW 0
n
fWn

bDn): (18.31)

We replace Assumption VD in Section 18.4 by the following assumption.

Assumption W: For any sequence f�n;h 2 �KCLR : n � 1g; the random k � k weight matrixfWn is such that n1=2(fWn �W y
Fn
)!d W h for some non-random k � k matrices fW y

Fn
: n � 1g and

some random k� k matrix W h 2 Rk�k; W y
Fn
!W y

h for some nonrandom pd k� k matrix W y
h; the

convergence is joint with the convergence in (18.27), and (gh; Dh;W h) has a mean zero multivariate

normal distribution with pd variance matrix. The same condition holds for any subsequence fwng
and any sequence f�wn;h 2 �KCLR : n � 1g with wn in place of n throughout.

If one takes fMn (= eV �1=2Dn ) = Ip 
 fWn in Assumption VD, then bDy
n = fWn

bDn and the rank

statistics in (18.3) and (18.31) are the same. Thus, Assumption W is analogous to Assumption

VD with fMn = Ip 
 fWn and MFn = Ip 
W y
Fn
: Note, however, that the latter matrix does not

typically satisfy the condition in Assumption VD that MFn is de�ned in (18.6), i.e., the condition

that MFn = (�
vec(Gi)
Fn

)�1=2: Nevertheless, the results in Section 18.4 hold with Assumption VD

replaced by Assumption W and with MF = Ip 
W y
F ; D

y
F = W y

FEFGi; and Mh = Ip 
W h: With

these changes, D
y
h =W y

hDh in (18.14) (because (�
vec(Gi)
h )�1=2 is replaced by Ip
W y

h); �
y
h is de�ned

as in (18.15) with D
y
h as just given, and M

y
h is de�ned as in (18.19) with M

y
h;p�qy =W hh4h

y
2;p�qy :

Below we show the key result that M
y
h;p�qy = 0

k�(p�qy) for rkyn de�ned in (18.31). By (18.20),

this implies that

rh(Dh;Mh) := �min((�
y
h;p�qy)

0hy
3;k�qyh

y0
3;k�qy(�

y
h;p�qy)) (18.32)

43



when qy < p: Note that the rhs in (18.32) does not depend on Mh and, hence, is a function only

of Dh: That is, rh(Dh;Mh) = rh(Dh): Given that rh(Dh;Mh) does not depend on Mh; Comment

(i) to Lemma 18.5 implies that P (CLRh > c(1� �; rh)) = � under all subsequences fwng and all
sequences f�wn;h 2 �KCLR : n � 1g: This and Theorem 18.6 give the following result.

Corollary 18.7 Let the parameter space for F be FKCLR: Suppose the rank statistic rkyn (de�ned
in (18.31)) is based on a weight matrix fWn that satis�es Assumption W. Then, the asymptotic size

of the corresponding equally-weighted version of Kleibergen�s CLR test (de�ned in Section 5 with

rkn(�) = rkyn) equals �:

Comment: A CS version of Corollary 18.7 holds with the parameter space F�;KCLR in place of
FKCLR; see Comment (v) to Theorem 18.1 and the Comment to Proposition 8.1.

Now, we establish that M
y
h;p�qy (=W hh4h

y
2;p�qy) = 0

k�(p�qy): We have

W y
hh4 := limW

y
Fn
EFnGi = limC

y
Fn
�yFnB

y0
Fn
= hy3 lim�

y
Fn
hy02 ; (18.33)

where CyFn�
y
Fn
(ByFn)

0 is the singular value decomposition of W y
Fn
EFnGi; �

y
Fn
is the k � p matrix

with the singular values of W y
Fn
EFnGi; denoted by f�

y
jFn

: n � 1g for j � p; on the main diagonal

and zeroes elsewhere, and CyFn and B
y
Fn
are the corresponding k� k and p� p orthogonal matrices

of singular vectors, as de�ned in (18.7). Hence, lim�yn exists, call it �
y
h; and equals h

y0
3 h4h

y
2: That

is, the singular value decomposition of W y
hh4 is

W y
hh4 = hy3�

y
hh
y0
2 : (18.34)

The k�p matrix �yh has the limits of the singular values ofW
y
Fn
EFnGi on its main diagonal and

zeroes elsewhere. Let � yh;j for j � p denote the limits of these singular values. By the de�nition of

qy; � yh;j = 0 for j = qy+1; :::; p (because n1=2� yjFn ! hy1;j <1): In consequence, �
y
h can be written

as

�yh =

24 �y
h;qy

0q
y�(p�qy)

0(k�q
y)�qy 0(k�q

y)�(p�qy)

35 ; where �y
h;qy

:= Diagf� yh;1; :::; �
y
h;qy
g: (18.35)

In addition,

hy02 h
y
2;p�qy =

0@ 0q
y�(p�qy)

Ip�qy

1A : (18.36)
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Thus, we have

M
y
h;p�qy : =W h(W

y
h)
�1W y

hh4h
y
2;p�qy =W h(W

y
h)
�1hy3�

y
hh
y0
2 h

y
2;p�qy

= W h(W
y
h)
�1hy3

24 �y
h;p�qy 0q

y�(p�qy)

0(k�q
y)�qy 0(k�q

y)�(p�qy)

350@ 0q
y�(p�qy)

Ip�qy

1A
= 0k�(p�q

y); (18.37)

where the �rst equality holds by the paragraph following Assumption W and uses the condition in

Assumption W thatW y
h is pd and the second equality holds by (18.35) and (18.36). This completes

the proof of Corollary 18.7.

18.6 Proofs of Results Stated in Sections 18.2 and 18.4

For notational simplicity, the proofs in this section are for the sequence fng; rather than a
subsequence fwn : n � 1g: The same proofs hold for any subsequence fwn : n � 1g:

Proof of Theorem 18.1. Theorem 18.1 follows from Theorem 18.6, which imposes Assumption

VD, and Lemma 18.2, which veri�es Assumption VD when eVDn is de�ned by (5.3). �
Proof of Lemma 18.2. Consider any sequence f�n;h 2 �KCLR : n � 1g: By the CLT result in
(18.11), the linear expansion of n1=2( bDn � EFnGi) in (14.1), and the de�nitions of gh and Dh in

(18.13), we have

n1=2(bgn; bDn � EFnGi)!d (gh; Dh): (18.38)

Next, we apply the delta method to the CLT result in (18.11) and the function a(�) de�ned in
(18.16). The mean component in the lhs quantity in (18.11) is (0(p+1)k0; vech(EFnf

�
i f

�0
i )

0)0:We have

a

0@0@ 0(p+1)k

vech(EFnf
�
i f

�0
i )

1A1A
= vech

��
EFnvec(Gi � EFnGi)vec(Gi � EFnGi)0 � �

vec(Gi)
Fn


�1Fn�
vec(Gi)0
Fn

��1=2�
= vech

��
�
vec(Gi)
Fn

��1=2�
= vech(MFn); (18.39)

where �vec(Gi)Fn
and 
Fn are de�ned in (3.2), the �rst equality uses the de�nitions of a(�) and f�i

(given in (18.16) and (5.6), respectively), the second equality holds by the de�nition of �vec(Gi)Fn

in (8.15), and the third equality holds by the de�nition of MFn in (18.6). Also, EFnf
�
i f

�0
i !

h10;f� and h10;f� is pd. Hence, a(�) is well de�ned and continuously partially di¤erentiable at
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lim(0(p+1)k0; vech(EFnf
�
i f

�0
i )

0)0 = (0(p+1)k0; vech(h10;f�)
0)0; as required for the application of the

delta method.

The delta method gives

n1=2(An � vech(MFn)) = n1=2

0@a
0@n�1 nX

i=1

0@ f�i

vech (f�i f
�0
i )

1A1A� a
0@ 0(p+1)k

vech(EFnf
�
i f

�0
i )

1A1A
! d AhLh; (18.40)

where the �rst equality holds by (18.39) and the de�nitions of a(�) and An in (18.16), the convergence
holds by the delta method using the CLT result in (18.11) and the de�nition of Ah following (18.16).

Applying the inverse vech(�) operator, namely, vech�1kp;kp(�); to both sides of (18.40) gives the
recon�gured convergence result

n1=2(vech�1kp;kp(An))�MFn)!d vech
�1
kp;kp(AhLh) =Mh; (18.41)

where the last equality holds by the de�nition of Mh in (18.18).

The convergence results in (18.38) and (18.41) hold jointly because both rely on the convergence

result in (18.11).

We show below that

n1=2(eVDn � (vech�1kp;kp(An))�2) = op(1): (18.42)

This and the delta method applied again (using the function `(A) = A�1=2 for a pd kp� kp matrix
A) give

n1=2(eV �1=2Dn � vech�1kp;kp(An)) = op(1) (18.43)

because vech�1kp;kp(An) = (�
vec(Gi)
h )�1=2+op(1) and �

vec(Gi)
h is pd (because h10;f� is pd and �

vec(Gi)
h =

Qh10;f�Q
0 for some full row rank matrix Q). Equations (18.38), (18.41), and (18.43) establish the

result of the lemma.
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Now we prove (18.42). We have

eVDn := n�1
nX
i=1

vec(Gi � bGn)vec(Gi � bGn)0 � b�nb
�1n b�0n
=

 
n�1

nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0
!
�
�
vec( bGn � EFnGi)vec( bGn � EFnGi)0�

�
�e�n � vec( bGn � EFnGi)bg0n��e
n � bgnbg0n��1 �e�n � vec( bGn � EFnGi)bg0n�0

= n�1
nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0 � e�ne
�1n e�0n +Op(n�1); (18.44)

where the second equality holds by subtracting and adding EFnGi and some algebra, by the de�-

nitions of b
n and b�n in (4.1), (4.3), and (5.3), and by the de�nitions of e
n and e�n in (18.16) and
the third equality holds because (i) the second summand on the lhs of the third equality is Op(n�1)

because n1=2vec( bGn � EFnGi) = Op(1) (by the CLT using the moment conditions in F ; de�ned in
(3.1)) and (ii) n1=2bgn = Op(1) (by Lemma 8.3)), n1=2vec( bGn � EFnGi) = Op(1); and b�n = Op(1);b
�1n = Op(1); e�n = Op(1); and e
�1n = Op(1) (by the justi�cation given for (14.1)).

Excluding the Op(n�1) term, the rhs in (18.44) equals (vech�1kp;kp(An))
�2: Hence, (18.42) holds

and the proof is complete. �

Proof of Theorem 18.3. The proof is similar to that of Lemma 8.3 in Section 8 with cWn =

Wn = Ik; bUn = Un = Ip; and the following quantities q; bDn; Dn (= EFnGi); Bn;q; �n;q; Cn; and

�n replaced by qy; bDy
n; D

y
n (= Dy

Fn
); By

n;qy
; �y

n;qy
; Cyn; and �

y
n; respectively. The proof employs the

notational simpli�cations in (13.1). We can write

bDy
nB

y
n;qy
(�y

n;qy
)�1 = Dy

nB
y
n;qy
(�y

n;qy
)�1 + n1=2( bDy

n �Dy
n)B

y
n;qy
(n1=2�y

n;qy
)�1: (18.45)

By the singular value decomposition, Dy
n = Cyn�

y
nB

y0
n : Thus, we obtain

Dy
nB

y
n;qy
(�y

n;qy
)�1 = Cyn�

y
nB

y0
nB

y
n;qy
(�y

n;qy
)�1 = Cyn�

y
n

0@ Iqy

0(p�q
y)�qy

1A(�y
n;qy
)�1

= Cyn

0@ Iqy

0(k�q
y)�qy

1A= Cy
n;qy

: (18.46)
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Let bDn = ( bD1n; :::; bDpn) 2 Rk�p and Dh = (D1h; :::; Dph) 2 Rk�p: We have

n1=2( bDy
n �Dy

n) = n1=2
pX
j=1

(fM1jn
bDjn �M1jFnEFnGij ; :::;fMpjn

bDjn �MpjFnEFnGij)

=

pX
j=1

[fM1jnn
1=2( bDjn � EFnGij) + n1=2(fM1jn �M1jFn)EFnGij ; :::;

fMpjnn
1=2( bDjn � EFnGij) + n1=2(fMpjn �MpjFn)EFnGij ]

! d

pX
j=1

(M1jhDjh +M1jhh4;j ; :::;MpjhDjh +Mpjhh4;j); (18.47)

where the convergence holds by Lemma 8.2 in Section 8, Assumption VD, and EFnGij ! h4;j (by

the de�nition of h4;j):

Combining (18.45)-(18.47) gives

bDy
nB

y
n;qy
(�y

n;qy
)�1 = Cy

n;qy
+ op(1)!p h

y
3;qy

= �
y
h;qy ; (18.48)

where the equality uses n1=2� yjFn ! 1 for all j � qy by the de�nition of qy and B0
n;qyBn;qy = Iqy ;

the convergence holds by the de�nition of hy
3;qy

; and the last equality holds by the de�nition of

�
y
h;qy in (18.15).

Using the singular value decomposition Dy
n = Cyn�

y
nB

y0
n again, we obtain

n1=2Dy
nB

y
n;p�qy = n1=2Cyn�

y
nB

y0
nB

y
n;p�qy = n1=2Cyn�

y
n

0@ 0q
y�(p�qy)

Ip�qy

1A

= Cyn

0BB@
0q

y�(p�qy)

n1=2�y
n;p�qy

0(k�p)�(p�q
y)

1CCA! hy3

0BB@
0q

y�(p�qy)

Diagfhy
1;qy+1

; :::; hy1;pg
0(k�p)�(p�q

y)

1CCA = hy3h
y�
1;p�qy ; (18.49)

where the second equality uses By0nB
y
n = Ip; the convergence holds by the de�nitions of h

y
3 and h

y
1;j

for j = 1; :::; p; and the last equality holds by the de�nition of hy�
1;p�qy in the paragraph following

(18.10), which uses (8.17).

By (18.47) and By
n;p�qy ! hy

2;p�qy ; we have

n1=2( bDy
n �Dy

n)B
y
n;p�qy !d D

y
hh
y
2;p�qy +M

y
h;p�qy ; (18.50)

using the de�nitions of D
y
h and M

y
h;p�qy in (18.14) and (18.19), respectively.
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Using (18.49) and (18.50), we get

n1=2 bDy
nB

y
n;p�qy = n1=2Dy

nB
y
n;p�qy + n

1=2( bDy
n �Dy

n)B
y
n;p�qy

! d h
y
3h
y�
1;p�qy +D

y
hh
y
2;p�qy +M

y
h;p�qy = �

y
h;p�qy +M

y
h;p�qy ; (18.51)

where the last equality holds by the de�nition of �
y
h;p�qy in (18.15).

Equations (18.48) and (18.51) combine to give

n1=2 bDy
nT

y
n = n1=2 bDy

nB
y
nS

y
n = ( bDy

nB
y
n;qy
(�y

n;qy
)�1; n1=2 bDy

nB
y
n;p�qy)

! d (�
y
h;qy ;�

y
h;p�qy +M

y
h;p�qy) = �

y
h +M

y
h (18.52)

using the de�nitions of Syn and T
y
n in (18.28), �

y
h in (18.15), and M

y
h in (18.19).

By Lemma 8.2, n1=2(bgn; bDn�EFnGi)!d (gh; Dh): This convergence is joint with that in (18.52)

because the latter just relies on the convergence of n1=2( bDn �EFnGi); which is part of the former,
and of n1=2(fMn �MFn) !d Mh; which holds jointly with the former by Assumption VD. This

establishes the convergence result of Theorem 18.3.

The independence of gh and (Dh;�
y
h) follows from the independence of gh and Dh; which holds

by Lemma 8.2, and the fact that �
y
h is a nonrandom function of Dh: �

Proof of Lemma 18.4. The proof of Lemma 18.4 is analogous to the proof of Theorem 8.4 withcWn = Wn = Ik; bUn = Un = Ip; and the following quantities q; bDn; Dn (= EFnGi); b�jn; Bn; Bn;q;
Sn; Sn;q; � jFn ; and h3;q replaced by q

y; bDy
n; D

y
n (= Dy

Fn
); b�yjn; Byn; Byn;qy ; Syn; Syn;qy ; � yjFn ; and hy3;qy ;

respectively. Theorem 18.3, rather than Lemma 8.3, is employed to obtain the results in (16.37).

In consequence, �h;q and �h;p�q are replaced by �
y
h;qy+M

y
h;qy and �

y
h;p�qy+M

y
h;p�qy ; respectively,

where �
y
h;qy +M

y
h;qy = �

y
h;qy (because M

y
h;qy := 0

k�qy by (18.19)). The quantities �h;q and �h;p�q

are replaced by �
y
h;qy and �

y
h;p�qy +M

y
h;p�qy in (16.37) and in the rest of the proof of Theorem

8.4. Note that (16.39) holds with h3;q replaced by h
y
3;qy

because �
y
h;qy = hy

3;qy
by (18.15) (just as

�h;q = h3;q): Because bUn = Un; the matrices bAn and Ajn for j = 1; 2; 3 (de�ned in (16.39)) are all
zero matrices, which simpli�es the expressions in (16.41)-(16.44) considerably.

The proof of Theorem 8.4 uses Lemma 16.1 to obtain (16.42). Hence, an analogue of Lemma

16.1 is needed, where the changes listed in the �rst paragraph of this proof are made and h6;j and

Cn are replaced by h
y
6;j and C

y
n; respectively. In addition, FWU is replaced by FKCLR (because

FKCLR � FWU for �WU su¢ ciently small andMWU su¢ ciently large using the facts that F0\FWU

equals F0 for �WU su¢ ciently small and MWU su¢ ciently large by the argument following (8.5)

and FKCLR � F0 by the argument following (18.5)). Because bUn = Un; the matrices bAjn for
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j = 1; 2; 3 (de�ned in (16.2)) are all zero matrices, which simpli�es the expressions in (16.9)-(16.12)

considerably. For (16.3) to go through with the changes listed above (in particular, with cWn; bDn;

Dn; and Un replaced by Ik; bDy
n; D

y
n; and Ip; respectively), we need to show that

n1=2( bDy
n �Dy

n) = Op(1): (18.53)

By (5.4) with � = �0 (and with the dependence of various quantities on �0 suppressed for

notational simplicity), we have

bDy
n =

pX
j=1

(fM1jn
bDjn; :::;fMpjn

bDjn); where fMn =

26664
fM11n � � � fM1pn

...
. . .

...fMp1n � � � fMppn

37775:= eV �1=2Dn 2Rkp�kp: (18.54)

By (18.6), we have

Dy
n =

pX
j=1

(M1jFnDjn; :::;MpjFnDjn) (18.55)

using Dn = (D1n; :::; Dpn); and Djn := EFnGij for j = 1; :::; p:

For s = 1; :::; p; we have

n1=2(fMsjn
bDjn �MsjFnDjn) = fMsjnn

1=2( bDjn �Djn) + n
1=2(fMsjn �MsjFn)Djn = Op(1); (18.56)

where n1=2( bDjn�Djn) = Op(1) (by Lemma 8.2), n1=2(fMsjn�MsjFn) = Op(1) (because n1=2(fMn�
MFn) !d Mh by Assumption VD), MsjFn = O(1) (because MF = (�

vec(Gi)
F )�1=2; �

vec(Gi)
F de�ned

in (8.15) satis�es �vec(Gi)F := V arF (vec(Gi)� �vec(Gi)F 
�1F gi) = [�EF vec(Gi)g0i
�1F : Ipk]V arF (f
�
i );

and �min(V arF (f�i )) � �2 by the de�nition of FKCLR in (18.5)), and Djn = O(1) (by the moment

conditions in F , de�ned in (3.1)).
Hence,

n1=2( bDy
n �Dy

n) =

pX
j=1

n1=2[(fM1jn
bDjn; :::;fMpjn

bDjn)� (M1jFnDjn; :::;MpjFnDjn)] = Op(1): (18.57)

This completes the proof of the analogue of Lemma 16.1, which completes the proof of parts (a)-(d)

of Lemma 18.4.

For part (e) of Lemma 18.4, the results of parts (a)-(d) hold jointly with those in Theorem 18.3,

rather than those in Lemma 8.3, because Theorem 18.3 is used to obtain the results in (16.37),

rather than Lemma 8.3. This completes the proof. �
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Proof of Lemma 18.5. The proof of parts (a) and (b) is the same as the proof of Theorem 10.1

for the case where Assumption R(a) holds (which states that rkn !p 1) using Lemma 18.4(a),
which shows that rkyn !d 1 if qy = p:

The proofs of parts (c) and (d) are the same as in (10.5)-(10.9) in the proof of Theorem 10.1 for

the case where Assumption R(b) holds, using Theorem 18.3 and Lemma 18.4(b) in place of Lemma

8.3, with rh(Dh;Mh) (de�ned in (18.20)) in place of rh(Dh); and for part (d), with the proviso

that P (CLRh = c(1 � �; rh)) = 0: (The proof in Theorem 10.1 that P (CLRh = c(1 � �; rh)) = 0

does not go through in the present case because rh = rh(Dh;Mh) is not necessarily a constant

conditional on Dh and alternatively, conditional on (Dh;Mh); LMh and Jh are not necessarily

independent and distributed as �2p and �
2
k�p:) Note that (10.10) does not necessarily hold in the

present case, because rh = rh(Dh;Mh) is not necessarily a constant conditional on Dh: �

The proof of Theorem 18.6 given below uses Corollary 2.1(a) of ACG, which is stated below as

Proposition 18.8. It is a generic asymptotic size result. Unlike Proposition 8.1 above, Proposition

18.8 applies when the asymptotic size is not necessarily equal to the nominal size �: Let f�n : n � 1g
be a sequence of tests of some null hypothesis whose null distributions are indexed by a parameter

� with parameter space �: Let RPn(�) denote the null rejection probability of �n under �: For

a �nite nonnegative integer J; let fhn(�) = (h1n(�); :::; hJn(�))
0 2 RJ : n � 1g be a sequence of

functions on �: De�ne H as in (8.1).

For a sequence of scalar constants fCn : n � 1g; let Cn ! [C1;1; C2;1] denote that C1;1 �
lim infn!1Cn � lim supn!1Cn � C2;1:

Assumption B: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! [RP�(h); RP+(h)] for some RP�(h); RP+(h) 2 [0; 1]:

Proposition 18.8 (ACG, Corollary 2.1(a)) Under Assumption B, the tests f�n : n � 1g have
AsySz := lim sup

n!1
sup�2�RPn(�) 2 [suph2H RP�(h); suph2H RP+(h)]:

Comments: (i) Corollary 2.1(a) of ACG is stated for con�dence sets, rather than tests. But,

following Comment 4 to Theorem 2.1 of ACG, with suitable adjustments (as in Proposition 18.8

above) it applies to tests as well.

(ii) Under Assumption B, if RP�(h) = RP+(h) for all h 2 H; then AsySz = suph2H RP+(h):
We use this to prove Theorem 18.6. The result of Proposition 18.8 for the case where RP�(h) 6=
RP+(h) for some h 2 H is used when proving Comment (i) to Theorem 18.1 and the Comment to

Theorem 18.6.

Proof of Theorem 18.6. Theorem 18.6 follows from Lemma 18.5 and Proposition 18.8 because
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Lemma 18.5 veri�es Assumption B with RP�(h) = RP+(h) = � when qy = p and with RP�(h) =

RP+(h) = P (CLRh > c(1� �; rh)) when qy < p: �

19 Proof of Theorem 7.1

Theorem 7.1 of AG1. Suppose the LM test, the CLR test with moment-variance weighting,

and when p = 1 the CLR test with Jacobian-variance weighting are de�ned as in this section,

the parameter space for F is FTS;0 for the �rst two tests and FTS;JV W;p=1 for the third test, and
Assumption V holds. Then, these tests have asymptotic sizes equal to their nominal size � 2 (0; 1)
and are asymptotically similar (in a uniform sense). Analogous results hold for the corresponding

CS�s for the parameter spaces F�;TS;0 and F�;TS;JV W;p=1:

The proof of Theorem 7.1 is analogous to that of Theorems 4.1, 5.2, and 6.1. In the time series

case, for tests, we de�ne � = (�1;F ; :::; �9;F ) and f�n;h : n � 1g as in (8.9) and (8.11), respectively,
but with �5;F de�ned di¤erently than in the i.i.d. case. (For CS�s in the time series case, we make

the adjustments outlined in the Comment to Proposition 8.1.) We de�ne63

�5;F := VF =
1X

m=�1
EF

0@ gi

vec(Gi � EFGi)

1A0@ gi�m

vec(Gi�m � EFGi�m)

1A0 : (19.1)

In consequence, �5;Fn ! h5 implies that VFn ! h5 and the condition in Assumption V holds with

V = h5:

The proof of Theorem 7.1 uses the CLT given in the following lemma.

Lemma 19.1 Let fi := (g0i; vec(Gi)
0)0: We have: w�1=2n

Pwn
i=1(fi�EFnfi)!d N(0

(p+1)k; h5) under

all subsequences fwng and all sequences f�wn;h : n � 1g:

Proof of Theorem 7.1. The proof is the same as the proofs of Theorems 4.1, 5.2, and 6.1 (given

in Sections 9, 10, and 11, respectively, in the Appendix to AG1) and the proofs of Lemmas 8.2

and 8.3 and Theorem 8.4 (given in Sections 14, 15, and 16 in this Supplemental Material), upon

which the former proofs rely, for the i.i.d. case with some modi�cations. The modi�cations a¤ect

the proofs of Lemmas 8.2 and 8.3 and the proof of Theorem 5.2. No modi�cations are needed

elsewhere.

The �rst modi�cation is the change in the de�nition of �5;F described in (19.1).

63The di¤erence in the de�nitions of �5;F in the i.i.d. and time series cases re�ects the di¤erence in the de�nitions
of �vec(Gi)F in these two cases. See the footnote at (7.1) above regarding the latter.
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The second modi�cation is that b
n = b
n(�0) !p h5;g not by the WLLN but by Assumption

V and the de�nition of b
n(�) in (7.4). In the time series case, by de�nition, �5;F := VF ; so

h5 := lim�5;Fn = limVFn : By de�nition, h5;g is the upper left k � k submatrix of h5 and 
F is the
upper left k � k submatrix of VF by (7.1) and (19.1). Hence, h5;g = lim
Fn : By the de�nition of

FTS ; �min(
F ) � � 8F 2 FTS : Hence, h5;g is pd.
Let h5;Gjg be the k � k submatrix of h5 that corresponds to the submatrix b�jn(�) of bVn(�) in

(7.4) for j = 1; :::; p: The third modi�cation is that b�jn = b�jn(�0) = h5;Gjg + op(1) in (14.1) in

the proof of Lemma 8.2 (rather than b�jn = EFnGijg
0
i + op(1)) for j = 1; :::; p and this holds by

Assumption V and the de�nition of b�jn(�) in (7.4) (rather than by the WLLN).
We write

h5 =

0@ h5;g h05;Gg

h5;Gg h5;G

1A for h5;g 2 Rk�k; h5;Gg =

0BBB@
h5;G1g
...

h5;Gpg

1CCCA 2 Rpk�k; and h5;G 2 Rpk�pk:

(19.2)

The fourth modi�cation is that eVDn in (11.1) in the proof of Theorem 5.2 is de�ned as described
in Section 7, rather than as in (5.3). In addition, eVDn !p h7 in (11.1) holds with h7 = h5;G �
h5;Gg(h5;g)

�1h05;Gg by Assumption V, rather than by the WLLN.

The �fth modi�cation is the use of a WLLN and CLT for triangular arrays of strong mixing

random vectors, rather than i.i.d. random vectors, for the quantities in the proof of Lemma 8.2 and

elsewhere. For the WLLN, we use Example 4 of Andrews (1988), which shows that for a strong

mixing row-wise-stationary triangular array fWi : i � ng we have n�1
Pn

i=1(�(Wi)�EFn�(Wi))!p

0 for any real-valued function �(�) (that may depend on n) for which supn�1EFn jj�(Wi)jj1+� <1
for some � > 0: For the CLT, we use Lemma 19.1 as follows. The joint convergence of n1=2bgn and
n1=2( bDn � EFnGi) in the proof of Lemma 8.2 is obtained from (14.1), modi�ed by the second and

third modi�cations above, and the following result:

n�1=2
nX
i=1

(�(Wi)� EFn�(Wi)) =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1An�1=2
nX
i=1

(fi � EFnfi)

!d N(0
(p+1)k; Lh5); where

�(Wi) :=

0@ gi

vec(Gi)� h5;Ggh�15;ggi

1A =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ gi

vec(Gi)

1A ; (19.3)

fi = (g
0
i; vec(Gi)

0)0; and the convergence holds by Lemma 19.1. Using (19.2), the variance matrix
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Lh5 in (19.3) takes the form:

Lh5 =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ h5;g h5;Gg0

h5;Gg h5;G

1A0@ Ik �h�15;gh05;Gg
0pk�k Ipk

1A
=

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ h5;g 0k�pk

h5;Gg �
vec(Gi)
h

1A =

0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A ; where

�
vec(Gi)
h = h5;G � h5;Ggh�15;gh05;Gg: (19.4)

Equations (14.1) (modi�ed as described above), (19.3), and (19.4) combine to give the result of

Lemma 8.2 for the time series case.

The sixth modi�cation occurs in the proof of Lemma 8.3(d) in Section 15 in this Supplemental

Material. In the time series case, the proof goes through as is, except that the calculations in (15.13)

are not needed because �aiF (and, hence, 	aiF as well) is de�ned with its underlying components

re-centered at their means (which is needed to ensure that �aiF is a convergent sum). The latter

implies that lim	vec(Gi)Fn
= �

vec(Gi)
h automatically holds and lim	

vec(C0Fn;k�q

�1=2
Fn

GiBFn;p�q�2)

Fn
=

�
vec(h03;k�qh

�1=2
5;g Gih2;p�q�2)

h (which, in the i.i.d. case, is proved in (15.13).

This completes the proof of Theorem 7.1. �

Proof of Lemma 19.1. For notational simplicity, we prove the result for the sequence fng rather
than a subsequence fwn : n � 1g: The same proof applies for any subsequence. By the Cramér-
Wold device, it su¢ ces to prove the result with fi�EFnfi and h5 replaced by s(Wi) = b0(fi�EFnfi)
and b0h5b; respectively, for arbitrary b 2 R(p+1)k: First, we show

limV arFn

 
n�1=2

nX
i=1

s(Wi)

!
= b0h5b; (19.5)

where by assumption �5;Fn =
P1

m=�1EFns(Wi)s(Wi�m)! h5: By change of variables, we have

V arFn

 
n�1=2

nX
i=1

s(Wi)

!
=

n�1X
m=�n+1

CovFn(s(Wi); s(Wi�m))�
n�1X

m=�n+1

jmj
n
CovFn(s(Wi); s(Wi�m)):

(19.6)

This gives 




V arFn
 
n�1=2

nX
i=1

s(Wi)

!
� b0�5;Fnb







� 2

1X
m=n

jjCovFn(s(Wi); s(Wi�m))jj+
n�1X

m=�n+1

jmj
n
jjCovFn(s(Wi); s(Wi�m))jj: (19.7)
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By a standard strong mixing covariance inequality, e.g., see Davidson (1994, p. 212),

sup
F2FTS

jjCovF (s(Wi); s(Wi�m))jj � C1�

=(2+
)
F (m) � C1C


=(2+
)m�d
=(2+
); where d
=(2+
) > 1;

(19.8)

for some C1 <1; where the second inequality uses the de�nition of FTS in (7.2). In consequence,
both terms on the rhs of (19.7) converge to zero. This and b0�5;Fnb! b0h5b establish (19.5).

When b0h5b = 0; we have limn!1 V arFn(n
�1=2Pn

i=1 s(Wi)) = 0; which implies that n�1=2
Pn

i=1

s(Wi) !d N(0; b
0h5b) = 0: When b0h5b > 0; we can assume �2n = V arFn(n

�1=2Pn
i=1 s(Wi)) � c

for some c > 0 8n � 1 without loss of generality. We apply the triangular array CLT in Corollary
1 of de Jong (1997) with (using de Jong�s notation) � = 
 = 0; cni := n�1=2��1n ; and Xni :=

n�1=2s(Wi)�
�1
n : Now we verify conditions (a)-(c) of Assumption 2 of de Jong (1997). Condition (a)

holds automatically. Condition (b) holds because cni > 0 and EFn jXni=cnij2+
 = EFn js(Wi)j2+
 �
2jjbjj2+
M < 1 8Fn 2 FTS : Condition (c) holds by taking Vni = Xni (where Vni is the random

variable that appears in the de�nition of near epoch dependence in De�nition 2 of de Jong (1997)),

dni = 0; and using �Fn(m) � Cm�d 8Fn 2 FTS for d > (2 + 
)=
 and C < 1: By Corollary 1 of
de Jong (1997), we have Xni !d N(0; 1): This and (19.5) give

n�1=2
nX
i=1

s(Wi)!d N(0; b
0h5b); (19.9)

as desired. �
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