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13 Outline

We let AG1 abbreviate the main paper “Asymptotic Size of Kleibergen’s LM and Condi-
tional LR Tests for Moment Condition Models” and its Appendix. References to Sections with
Section numbers less than refer to Sections of AG1. Similarly, all theorems and lemmas with
Section numbers less than [L3] refer to results in AG1.

This Supplemental Material provides proofs of some of the results stated in AG1. It also provides
some complementary results to those in AG1.

Sections and [16] prove Lemma Lemma and Theorem respectively, which
appear in Section (8| in the Appendix to AG1. Section proves that the conditions in and
are sufficient for the second condition in Fo;.

Section [18| proves Theorem Section [18| also determines the asymptotic size of Kleibergen’s
(2005) CLR test with Jacobian-variance weighting that employs the Robin and Smith (2000) rank
statistic, defined in Section 5| for the general case of p > 1. When p = 1, the asymptotic size of
this test is correct. But, when p > 2, we cannot show that its asymptotic size is necessarily correct
(because the sample moments and the rank statistic can be asymptotically dependent under some
sequences of distributions). Section [1§ provides some simulation results for this test.

Section [19| proves Theorem which provides results for time series observations.

For notational simplicity, throughout the Supplemental Material, we often suppress the argu-
ment fy for various quantities that depend on the null value 6y. Throughout the Supplemental
Material, the quantities Br, Cp, and (71F,..., 7pr) are defined using the general definitions given
in —, rather than the definitions given in Section |3 which are a special case of the former
definitions.

For notational simplicity, the proofs in Sections are for the sequence {n}, rather than a
subsequence {wy, : n > 1}. The same proofs hold for any subsequence {w, : n > 1}. The proofs in

these three sections use the following simplified notation. Define

D, = EFnGu Q, = QFna B, = BFna Cp = CFn7 B, = (Bn,thn,p—q): Cp = (Cn,qvcn,qu)a
Wy = Wg,, Wap := Wag,, Uy :=Upg,, and Upy, 1= Uar,, (13'1)

where ¢ = g, is defined in (8.16), By, € RP*?, By, € RP*P=9 C, € RF* and C,;_, €



RFX(k=4)  Define

T” q-= Diag{Tan’ "'7Tan} € quqa Tmp_q = Dia’g{T(Q+1)Fn7 ""TpFn} € R(pfq)X(pfq% and
Ty 9% (r—9)
k
Yhp—q € R™P. (13.2)
olk—p)xq lk—p)x(p—q)

Y, := | olp—a)xq

Note that Y, is the diagonal matrix of singular values of W,,D,,U,,, see (8.8).

14 Proof of Lemma [8.2
Lemma of AG1. Under all sequences {\,, : n > 1},

kapk

nl/2 In In ~ N | olptDE hs,g

—d —

vee(Dy, — Ep, Gy) vec(Dp,) "\ pkxk q,zec(Gi)

Under all subsequences {wy} and all sequences {A,, n : n > 1}, the same result holds with n

replaced with wy,.

Proof of Lemma [8.2l. We have

Fln
n'?vec(Dy — D,,) = n~'/? i vec(Giy — Dy) — : ﬁ;lnlﬂﬁn (14.1)
i=1 fpn
. Er,Gongy
=n /2 Z vec(G; — Dy) — : Q;igi + 0p(1),
= EFnGépgz

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n=! 377,
Guig) for 5 =1,...,p, n 1Y) vee(Gy), and n =t 3", qeg), (i) Ep,g; = OF, (iii) hs g = lim Qp, is
pd, and (iv) the CLT, which implies that n'/2g, = O,(1).

Using , the convergence result of Lemmaholds (with n in place of wy,) by the Lyapunov
triangular-array multivariate CLT using the moment restrictions in F. The limiting covariance

matrix between n!/ 2vec(D,, — D,,) and n'/2G, in Lemma is a zero matrix because

EF,[Gij — Dnj — (Er,Ge;g0) Q5 gilg; = 0%, (14.2)



where D,,; denotes the jth column of D,,, using Er, g; = 0% for j = 1, ..., p. By the CLT, the limiting
variance matrix of n'/2vec(D, — D,) in Lemma [8.2] equals

lim Varg, (vec(G;) — (Eanec(Gg)gé)Q;igi) = lim @ﬁc(Gi) = @Zec(Gi), (14.3)

(Gi)

see (8.15)), and the limit exists because (i) the components of @%ic are comprised of Ay g, and

submatrices of A5 g, and (ii) A\s g, — hs for s = 4,5. By the CLT, the limiting variance matrix of

n'/2g, equals lim Er, g;g, = hs 4. O

15 Proof of Lemma 8.3

Lemma of AG1. Suppose Assumption WU holds for some non-empty parameter space A, C
As. Under all sequences { A :n > 1} with A, € Ay,

n'2(G,, Dn — Ep, Gi, W, DyUr, Ty) —a (G, Dny D),

where (a) (g, Dy) are defined in Lemma (b) Ay, is the nonrandom function of h and Dy,
defined in (8.17)), (c) (Dp,Ay) and g, are independent, (d) if Assumption WU holds with A, = A,
Wrp = 9;1/2, and Up = I,, then Ay, has full column rank p with probability one and (e) under all
subsequences {wy} and all sequences { Ay, n : 1 > 1} with Ay, n € Ay, the convergence result above

and the results of parts (a)-(d) hold with n replaced with wy,.

The proof of part (d) of Lemma uses the following two lemmas and corollary.

Lemma 15.1 Suppose A € R**P has a multivariate normal distribution (with possibly singular
variance matriz), k > p, and the variance matriz of A& € RF has rank at least p for all nonrandom

vectors £ € RP with ||£|| = 1. Then, P(A has full column rank p) = 1.

Comments: (i) Let Condition A denote the condition of the lemma on the variance of AE.
A sufficient condition for Condition A is that vec(A) has a pd variance matrix (because A¢ =
(¢’ ® Ix)vec(A)). The converse is not true. This is proved in Comment (iii) below.

(ii) A weaker sufficient condition for Condition A is that the variance matrix of A¢ € R* has
rank k for all constant vectors £ € RP with ||£|| = 1. The latter condition holds iff Var({'vec(A)) > 0
for all ¢ € RPF of the form ¢ = ¢ ® u for some & € RP and p € R¥ with ||¢]] = 1 and ||u|| = 1
(because (&' ® p)vec(A) = vec(p/ A€) = p/A€). In contrast, vec(A) has a pd variance matrix iff
Var(C'vec(A)) > 0 for all ¢ € RPF with ||¢|| = 1.



(iii) For example, the following matrix A satisfies the sufficient condition given in Comment (ii)
for Condition A (and hence Condition A holds), but not the sufficient condition given in Comment

(i). Let Z; for j = 1,2,3 be independent standard normal random variables. Define

AR
A= . (15.1)
Z3 1
Obviously, Var(vec(A)) is not pd. On the other hand, writing § = (£1,&5)" and p = (uq, y)’, we

have

Var(W A8) = Var(u,[Z1&) + Zas] + o231 + Z16,))
= Var((p&1 + 1282) 21 + 1€ 22 + 11261 Z3)
= (& + N2§2)2 + (M1§2)2 + (N2§1)2' (15.2)

Now, (111€5)% = 0 implies p; = 0 or £, = 0 and (p5€;)? = 0 implies py = 0 or &; = 0. In addition,
gy = 0 implies s # 0, €&, = 0 implies &; # 0, etc. So, the two cases where (1,&5)? = (19€1)% = 0
are: (p11,€1) = (0,0) and (pg, &) = (0,0). But, (1,&;) = (0,0) implies (111 +119€2)? = (12€2)* > 0
and (p19,&5) = (0,0) implies (u1&; + p9€5)? = (11&1)? > 0. Hence, Var(u/' A¢) > 0 for all p and &
with [|p|] = [|€]] = 1, Var(A€) is pd for all £ € R? with ||¢]|?> = 1, and the sufficient condition given
in Comment (ii) for Condition A holds.

(iv) Condition A allows for redundant rows in A, which corresponds to redundant moment
conditions in the application of Lemmal[I5.1] Suppose a matrix A satisfies Condition A. Then, one
adds one or more rows to A, which consist of one or more of the existing rows of A or some linear
combinations of them. (In fact, the added rows can be arbitrary provided the resulting matrix has a
multivariate normal distribution.) Call the new matrix A . The matrix A, also satisfies Condition
A (because the rank of the variance of A, ¢ is at least as large as the rank of the variance of AE,

which is p).

Corollary 15.2 Suppose A, € RF*4 s a nonrandom matriz with full column rank g, and Ap_y, €
RF*(0=4+) has a multivariate normal distribution (with possibly singular variance matriz) and k > p.
Let M € RF** be a nonsingular matriz such that MA,, = (e1,...,eq,), where e; denotes the [-th
coordinate vector in R®. Decompose M = (M}, M3 with My € R*** and My € R*=2)%F_ Syppose
the variance matriz of MaA,_4.&s € RE=% has rank at least p — qs for all nonrandom vectors
£y € RP™9 with ||&|| = 1. Then, for A = (A,., Ap—q.) € R¥*P| we have P(A has full column rank
p) =1



Comment: Corollary [I5.2] follows from Lemma by the following argument. We have

MlA‘]* MlAp_Q* _ IQ* MlAp_Q*

MA = =
Mg, MaApg, Oth=a)xa= My, g,

(15.3)
The matrix A has full column rank p iff M A has full column rank p iff MsA,_,, has full column
rank p — .. The Corollary now follows from Lemma applied with A, &, p, and £ replaced by
MyAp_y., k= g, p— s, and &5, respectively.

The following lemma is a special case of Cauchy’s interlacing eigenvalues result, e.g., see Hwang
(2004). As above, for a symmetric matrix A, let A\;(A) > Aa(A) > ... denote the eigenvalues of A.
Let A_, denote a principal submatrix of A of order » > 1. That is, A_, denotes A with some choice

of r rows and the same r columns deleted.

Proposition 15.3 Let A by a symmetric k x k matriz. Then, A\p(A) < Ag—1(A—1) < Me—1(A) <
e < A2(A4) < M (Aq) < A (4).

The following is a straightforward corollary of Proposition

Corollary 15.4 Let A by a symmetric k X k matriz and let r € {1,....k — 1}. Then, (a) Ay, (A) >
Am(A_y) form=1,...,k—r and (b) \p(A) < A\p—r(A_y) form=r+1,.. k.

Proof of Lemma First, we prove the convergence result in Lemma [8.3] The singular value
decomposition of W,,D, U, is
W, DU, = C, Y, Bl (15.4)

because B, is a matrix of eigenvectors of U] D, W)W, D,U,, C, is a matrix of eigenvectors of
W, DU, U, D;,W),, and Y,, is the k x p matrix with the singular values {75, : j < p} of W,,D, Uy,
on the diagonal (ordered so that 7jg, > 0 is nonincreasing in j).

Using (15.4)), we get

- - Iy - Iy
W DU B g Yrt = CpYn Bl Bp g T, t = Cp Yy o Yoh=Ch R Crg:
(15.5)
where the second equality uses Bj, B,, = I,,. Hence, we obtain
W DypUpnBng Yok = WuDnUpBrg Yok + Wun'2(Dyy, — Di)Up By g (/2T )7
= Cpyg+0p(1) —p hag = Apg, (15.6)



where the second equality uses n'/ 2riF, — oo for all j < ¢ (by the definition of ¢ in ),
W,, = O(1) (by the condition ||Wg|| < M; < oo VF € Fyy, see ), n'/2(D, — D,) = O,(1) (by
Lemma[8.2)), U, = O(1) (by the condition ||Ur|| < M; < 0o VF € Fyy, see (8.5)), and B, g — hagq
with [|vec(haq)|| < oo (by using the definitions in and (13.1))). The convergence in
holds by , , and , and the last equality in holds by the definition of
Zhyq in .

Using (|15.4]) again, we have

09%(p—q)
nY2W,DpUpn By p—q = n'/2C X Bl By g = n'/2C, Y,
Ip—q
02x(P—9) 02x(r—q)
= Cn nl/zﬁrn,pfq — hs Diag{hl,qulv ) hl,p} = h3h’<1>,pfq7 (157)
0(k=p)x(p—q) 0(k=p)x(p—9)

where the second equality uses B}, By, = I,, the convergence holds by (8.12)) using the definitions in

(8-17) and (13.2), and the last equality holds by the definition of A, , in (8.17).
Using (15.7) and Lemma we get

n' Wy DyUnBpp—q = n'*Wy DUy, By p—q + Wan?(Dy, — Dp)UpnBupg

—d hghip_q + h71bhh81h2’p_q = th,q, (15.8)

where By, ,—q — hop—q, Wy, — hy1, and U,, — hg1 by (8.3), (8.12), (8.17), and Assumption WU
using the definitions in l) and the last equality holds by the definition of A, in ll

Equations ([15.6)) and ({15.8) combine to prove

n' W, DU, Ty = n'?WoDpUpBnSy = (WyDpUpn By o Uik 0 ?Wo DU Brp—q)

n?q’

—d (Dhg, Dpp_q) =Dy (15.9)

using the definition of S, in (8.19). The convergence is joint with that in Lemma because it
just relies on the convergence of n'/ 2(13,1 — D,,), which is part of the former. This establishes the
convergence result of Lemma [8.3]

Properties (a) and (b) in Lemma hold by definition. Property (c) in Lemma holds by
Lemma and property (b) in Lemma



Now, we prove property (d). We have

hap—q = lim B, By p—q = Ip—4 and hg7qh3,q = lim C,’%quq = I (15.10)

!
2,p—q n,p—q

because B,, and C,, are orthogonal matrices by and . Hence, if ¢ = p, then A}, = Zh’q =
h3.q, Z;Zh = I,, and Ay}, has full column rank.

Hence, it suffices to consider the case where ¢ < p and A, ;, € Ag ¥n > 1, which is assumed in part
(d). We prove part (d) for this case by applying Corollary with ¢, = ¢, Ay, = Ay (= hsyg),
Ap_g = Dppog, M =y, My = Ry, My = by, & € RP7% and A = A,. Corollary
gives the desired result that P(A; has full column rank p) = 1. The condition in Corollary
that “MA,, = (e1, ..., €q,)" holds in this case because hA, ; = hihs 4 = (e1, ..., ¢4). The condition
in Corollary that “the variance matrix of MaA,_, & € RF~% has rank at least p — ¢, for
all nonrandom vectors £, € RP™9 with ||£5|| = 17 in this case becomes “the variance matrix of
hgyquth_qﬁ € RF~9 has rank at least p — ¢ for all nonrandom vectors &, € RP™9 with ||&,]] = 1.7

It remains to establish the latter property, which is equivalent to
Ap—qg (Var(hyp_ Anp—qs)) >0V € RP™ with [[&]| = 1. (15.11)
We have

Var(hé,k—qzhm—q@) = Var( g,k—qh;;ﬂﬁhhlpw@)

= ((hayp-g82)' © (s ghs g )V ar(vee(Di)(hap-g62) © (R sghs*))

— vee(G; _
= ((h2pq€2)' @ (W s_ghs g N (hopga) @ (Wyi_ghsg”))

_ (I)Zéyquh;_;/ZGihlp*q&’ (1512)

where the first equality holds by the definition of Aj, ,_, in (8.17) and the fact that hy; = h;;/ % and

hg1 = I, by the conditions in part (d) of Lemma the second and fourth equalities use the general
formula vec(ABC) = (C' ® A)vec(B), the third equality holds because vec(Dy,) ~ N(0PF, @ZEC(G”)
by Lemma and the fourth equality uses the definition of the variance matrix ®}* in (8.15) for
an arbitrary random vector a;.

hil/QGih?,p—qu

hl
Next, we show that CIDhB’H 59 equals the expected outer-product matrix



o —1/2

hm\I/ O pgftn " GiBnp- qf2

q)hék qh‘ /Gh2P 1152

= ((hap-a€2) ® (i ghs g D@ (h2pg8a) © (W g ghs "))

= 1m((Bup—q€s) © (Ch o2 V2N @ ) (B pegs) ® (Ch o2 72))
= lm((Bnp—g€s)' ® (Ch g V) U5 (Brpogbs) ® (Ch g V2))

n,k—q n,k—q°“n

- hm(<Bn,p—q§2)/ ® ( ’:Lk an 1/2))EFnUeC(Gi) ’ Eanec(Gi) ((BTL p—q§2) ® ( n,k— an 1/2) )

. vec(G;
= n((Brp—g&a) @ (C), 0 V2N ) (B pgs) @ (Chp_ g ?))

—lim Ep, vec(Chy o 2GiBpp—g€s) - Ep,vec(Ch g 2GiBy p—gfs)

n,k—q

c 0GBy,
— lim W4 a2, (15.13)

where the general formula vec(ABC) = (C' ® A)vec(B) is used multiple times, the limits exist by
the conditions imposed on the sequence {\, , : n > 1}, the second equality uses B, p—; — hap—;,
Crkeq — hg,k,q, and Q"% — ng)/?

given in and (8.15)), respectively, and the last equality uses EFHUGC(C;L,;C_QQ; 1 2GZ- Bpp—q) =

vee(Cl qQ—WD Brp—q) = O(n=1/2) by (15.7) with W,, = Q,,"/%.
vec(C Q, 1/2 G;Bn)

, the third equality uses the definitions of ¥% and ®%

We can write lim ¥,
vee(C! QnY2GBy,,)

nm " "Mm

Ve for which F;,, € Fo; for all m > 1 for some j = 0, ...,q. It cannot be the case
1/2

that j > ¢, because if j > ¢, then we obtain a contradiction because nm, 7k, — o0 as m — oo

as the limit of a subsequence {n,, : m > 1} of matrices

by the first condition of Fo; and n,ln/szan - 00 as m — oo by the definition of ¢ in (8.16)).
Now, we fix an arbitrary j € {0, ...,q}. The continuity of the A,_;(-) function and the A,_;(-)
condition in Fo; imply that, for all £ € RP~7 with ||¢]| = 1,

nm "'m

o O Y2G.B, o 0 Y20 Ba, i
Ap—j <hrn\If kg J5> = lim \,_; (q; S Jg) > 0. (15.14)

For all £, € RP~? with ||&,|] = 1, let £ = (0977, &4) € RP~I. Then, By,, p—i€ = Bn,, p—q&2 and, by
(15.14),
c Q2 Y2G By o
Ap—j <lim ks "’ "52) > 0 Véy € RPT7 with ||&]] = 1. (15.15)

QY26 B, o
Next, we apply Corollary [15.4(b) with A = lim ¥ " Cnm g it

and A—(q—j) = lim

C o ni/QG B ,p— qf2 . . . : .
e =p—J, = q— j, where A,(q,j) equals A with its first ¢ — j rows

and columns deleted in the present case and p > ¢ implies that m =p—j > 1forall j =0,...,q



Corollary (15.4] and ([15.15) give

c Q226G B, o
Ap—g <lim O ek Brim.r qu,) > 0 V€, € RPT7 with ||&]] = 1. (15.16)

Equations ((15.12)), (15.13), and (15.16]) combine to establish (15.11)) and the proof of part (d)

is complete.
Part (e) of the Lemma holds by replacing n by the subsequence value w,, throughout the

arguments given above. [

Proof of Lemma It suffices to show that P(A¢ = 0 for some & € RP with ||¢|| = 1) = 0.
For any constant v > 0, there exists a constant K, < oo such that P(||vec(A)|| > K,) <.
Given e > 0, let {B(§,,€) : s = 1,..., Nc} be a finite cover of {€ € RP : ||¢|| = 1}, where ||| =1

and B(&,,¢) is a ball in RP centered at & of radius e. It is possible to choose {¢, : s = 1,..., N:}

such that the number, N., of balls in the cover is of order e P+, That is, N, < Cie P! for some

constant C7 < oo.

Let A, denote the rth row of A for r = 1, ..., k written as a column vector. If £ € B({,,¢), we

have

k

1/2 & 1/2
IAE = A || = (Z(Ai(ﬁ - ES))2> < (Z 1A1%]1€ — €s|2> = ¢llvec(A)][,  (15.17)
r=1 r=1
where the inequality holds by the Cauchy-Bunyakovsky-Schwarz inequality. If & € B(&,,¢) and
A¢ = 0F, this gives
A, < elfvec(A)]l (15.18)

Suppose Z, € RP has a multivariate normal distribution with pd variance matrix. Then, for

any € > 0,

P(||Z]| <€) = / fz.(z)dz < sup fZ*(z)/ dz < Cae? (15.19)
{ll=ll<e} z€Rk {ll=ll<e}

for some constant Cy < oo, where fz, (z) denotes the density of Z, with respect to Lebesgue
measure, which exists because the variance matrix of Z, is pd, and the inequalities hold because
the density of a multivariate normal is bounded and the volume of a sphere in RP of radius € is
proportional to eP.

For any § € RP with [|{]| = 1, let B¢A¢ By be a spectral decomposition of Var(Ag), where A¢ is
the diagonal k x k matrix with the eigenvalues of Var(A¢) on its diagonal in nonincreasing order
and By is an orthogonal k x k matrix whose columns are eigenvectors of Var(A¢) that correspond

to the eigenvalues in A¢. By assumption, the rank of Var(A¢) is p or larger. In consequence,

10



the first p diagonal elements of A¢ are positive. We have [|A|| = [|B{A¢]| and Var(B;AS) =
BiVar(A§)Be = A¢. Let (BgAE), denote the p vector that contains the first p elements of the k
vector BAE. Let Ag, denote the upper left p x p submatrix of A¢. We have Var((B¢AS),) = Agp
and Ag, is pd (because the first p diagonal elements of A¢ are positive).

Now, given any v > 0 and € > 0, we have

P(A¢ = 0% for some & € RP with ||¢]] = 1)
= P (U Usene, i1 106 = 0})
P (U2 118G | < llvec(a)]})
P (Uivél{llﬁésll < elfvec(A)|[} N {llvec(A)]] < Kw]’) + P([lvec(A)]] > K)

P (U {IIAG]] < eKy}) +

IAN - IA

IN

IN

NE
D P(|A | < eKy) +y

s=1

IA

Ne
D P(I(BE ALl < eKy) 4+
s=1

N:CoK%e? + v

IN

IN

016_p+102K,€8p + v

— vase—0, (15.20)

where the first inequality holds by using ¢ € B(&,, ), the third inequality uses the definition
of K, the third last inequality holds because [|(Bg A&,)pll < [|Bg A&l = ||A]| using the defini-
tions in the paragraph that follows the paragraph that contains , the second last inequality
holds by with Z, = (B¢ A¢,)p and the fact that the variance matrix of (B Ag,)p is pd by
the argument given in the paragraph following , and the last inequality holds by the bound
given above on N..

Because v > 0 is arbitrary, implies that P(A¢ = 0¥ for some ¢ € RP with ||¢]| = 1) = 0,
which completes the proof. [

16 Proof of Theorem [8.4]

Theorem of AG1. Suppose Assumption WU holds for some non-empty parameter space
A, C Ay, Under all sequences {\np, : n > 1} with Ay € Ay,
(a) Rpn —p OO if ¢=np,

(b) Fpn —d Amin (B gh3 k—ghs g Bhp—q) if 7 <D,

11



(¢) Kjn —p 00 for all j <q,
(d) the (ordered) vector of the smallest p—q eigenvalues of nﬁéﬁ%ﬁéﬁnf)nﬁn, i€, (K(g+1)ms o
Epn), converges in distribution to the (ordered) p—q vector of the eigenvalues of Z/h,pfqh3,k—qhg7k;—q
XDhpq € Rp=0)x(p=a),

(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma and

(f) under all subsequences {wy} and all sequences { Ay, p : n > 1} with Ay, p € Ay, the results

in parts (a)-(e) hold with n replaced with wy,.

The proof of Theorem [8.4] uses the following rate of convergence lemma. This lemma is a key

technical contribution of the paper.

Lemma 16.1 Suppose Assumption WU holds for some mon-empty parameter space A, C As.
Under all sequences {\np : n > 1} with A\, € Ay and for which q defined in (8.16) satisfies
q > 1, we have (a) Kjn —p 00 for j =1,...,q and (b) when p > q, Kjn, = op((nl/zmpn)z) for all
¢ < qandj=q+1,..,p. Under all subsequences {wy,} and all sequences { Ay, n : n > 1} with

Awn b € As, the same result holds with n replaced with wy,.

Proof of Lemma m By the definitions in and , hej = limT(11)p, /iR, for
7 =1,...,p— 1. By the definition of ¢ in , heq = 0if ¢ < p. If ¢ = p, heq is not defined by
and and we define it here to equal zero. Because 7 is nonnegative and nonincreasing
in j, hej € [0,1]. If hg; > 0, then {7;p, : n > 1} and {7(j;1)F, : » > 1} are of the same order of
magnitude, i.e., 0 < lim 7115, /Tjm, < lm We group the first ¢ singular values into groups that
have the same order of magnitude within each group. Let G}, (€ {1,...,q}) denote the number of
groups. (We have G}, > 1 because ¢ > 1 is assumed in the statement of the lemma.) Note that
G, equals the number of values in {hg 1, ..., he 4} that equal zero. Let 4 and rj denote the indices
of the first and last singular values, respectively, in the gth group for ¢ = 1, ..., Gp. Thus, r; = 1,
Ty = Tg+1— 1, where r¢, 11 is defined to equal ¢+ 1, and TOGh = ¢q. Note that ry and ry depend on h.
By definition, the singular values in the gth group, which have the gth largest order of magnitude,
are {7r,p, : n > 1}, ... {Tpep, 1 n > 1} By construction, he; > 0 for all j € {ry,...,rg — 1} for
g=1,...,Gp. (The reason is: if hg ; is equal to zero for some j € {rg,...,rg—1}, then {7yep, 1 n > 1}
is of smaller order of magnitude than {7, r, : n > 1}, which contradicts the definition of rj.) Also
by construction, lim 7 g, /7;r, = 0 for any (j,5') in groups (g, ¢’), respectively, with g < ¢’. Note

that when p =1 we have G, =1 and r; =] = 1.

50Note that SUD;j>1, reryy TiF < 00 by the conditions ||Wr|| < My and ||Ur|| < M1 in Fwy and the moment
conditions in F. Thus, {7;r, : n > 1} does not diverge to infinity, and the “order of magnitude” of {7;p, : n > 1}
refers to whether this sequence converges to zero, and how slowly or quickly it does, when it does converge to zero.
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AN AN, S~ A

AN AN, S~~~ A~

x |U; U, By|, they are solutions to
772 BLUL DY W Wa DUy By — (021, 5,) 26 B, UL Uy Uy U Ba| = 0 (16.1)

wp—1, using |A; Ag| = |A1]-| Az for any conformable square matrices Ay and As, |By,| > 0, |U,| >0
(by the conditions in Fyy in because A, C Ag and Ay only contains distributions in Fyyy),
U1 > 0 wp—1 (because U, —p hg1 by , , , and Assumption WU(b) and (c) and
hgi is pd), and 7, ., > 0 for n large (because n'/?7, p, — oo for v < q). (For simplicity, we omit

1/2

the qualifier wp—1 from some statements below.) Thus, {(n!/%7,, 5, ) %R, : j < p} solve

|T7T12FnB;lU7/1ﬁ"/fl/WT/LWnﬁnUan - K(Ip + A\n)| =0or

|(Ip + gn)_17;2FHB;LU,;ZA);W,’LWnZA)nUan — kIp| =0, where

~ A, A SN

Ap=| 2" 2 | = BUUMUUB, — 1, (16.2)
A/2n A3TL

for A\ln € RiX7, ﬁgn e R1x(=9) and A\gn e RP—r1)x(=%) and the second line is obtained by

multiplying the first line by |(Z, + A7,

We have
7,5 WnDyU, By,
= 7L (WaWy YW DoUp By — (0?7, 5, ) " Won'/?(Dy, — Dy,)Un By,
= 7, W W) Co T+ Op(0' P71, 1,) ™) (16.3)
hg o +0(1) 07T x(P=77)
= (Ik? + Op(l))cn O(p—rf)xrf O(TTQFn /Tran)(p_TY)X(p_r?) + OP((nl/QTTan)_I)
o(k—p)xr{ o(k—p)x(p—r7)

° . o x (p—19) r—1

—p h3 T , where g o := Diag{1, he1,he1h62, -, || hee}

/=1

O(k—rf) Xrs O(k_T<1>)X (p—r%)

haT? € RTTXTT, hgﬁ = 1whenr$ =1, O(7por, [Tr 1, ) P71 P=71) denotes a diagonal (p—r$) x (p—
r{) matrix whose diagonal elements are O(7,,r, /Tr,F, ), the second equality uses , W, —p hn
(by Assumption WU(a) and (c)), [|h71|] = || lim W,,|| < oo (by the conditions in Fyy defined in
), n'/2(D,, — D,) = O,(1) (by Lemma, U, = O(1) (by the conditions in Fy ), and B, =
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O(1) (because By, is orthogonal), the third equality uses Wan_ 1 —p Ii, (because W —p h71, h71 :=
j—1

lim Wy, and hr; is pd by the conditions in Fwv), 75, /TrF, = H(T(@+1)Fn/Tan H he ¢+ o(
(=1

for j = 2,...,r%, and 75, /TrF, = O(Tror, /TrF,) for j = ra,...,p (because {T]F" j < p} are

nonincreasing in j), and the convergence uses C,, — hs3, Tr,5, /Tr F, — 0 (by the definition of r2),

and n'/27, . — oo (by (8.16) because r; < q)
Equation (16.3) yields

he . Orfx(p—rf) he Orfx(p—rf)
72 BoUL DWW DyUp By — 6 hyhs Oy
1 0(1€—T<1>)><T<1> O(k—rf)x(p—rf) O(k—rf)xrf O(k—rf)x(p—rf)

he2, e X (p—19)
- e , 16.4
olp—r)xry  glp—ri)x(p—r) ( )

where the equality holds because h5hs = lim C},C,, = I}, using (8.7).
In addition, we have

A, :=B.U.U; VU, \UpB, — I, —, OP*P (16.5)

n-n-n

using ﬁn_lUn —p I, (because ﬁn —p hg1 by Assumption WU(b) and (c), hgy := lim U, and hg; is
pd by the conditions in Fyy ), By, — he, and hhhy = I, (because By, is orthogonal for all n > 1).
The ordered vector of eigenvalues of a matrix is a continuous function of the matrix by Elsner’s

Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38). Hence, by the second line of ((16.2 -, -,

, and Slutsky’s Theorem, the largest r{ eigenvalues of 7, 2 - BU, Dy Wy Wy DU By, (ie

n-n—n

{(nl/QTnFn) Q/an : j < ri} by the definition of k), satisfy

rg—1
((n1/2TT1Fn)727{'\1N7 ceny (n1/27r1Fn)72k\r<fn) —p (1’ h%,lv h 6 2 H hﬁ( and 50

/=1
/f%jn —p 00 Vj=1, ...,T’<1> (16.6)

because n'/27, , — oo (by (8.16) since r1 < q) and hgy > 0 for all £ € {1,...,75 — 1} (as noted

AN AN S~ A

ie., {(nY?7, 1) 2Rjn 2 j =18 + 1, ..., p}, satisfy
(R 27 1) 2R —p 0 V5 =15 + 1, .., p. (16.7)

If G, = 1, (16.6]) proves part (a) of the lemma and (16.7)) proves part (b) of the lemma (because

"For matrices that are written as O(-), we sometimes provide the dimensions of the matrix as superscripts for
clarity, and sometimes we do not provide the dimensions for simplicity.
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in this case r{ = ¢ and 7., , /7er, = O(1) for all £ < g by the definitions of ¢ and G},). Hence, from
here on, we assume that G}, > 2.

Next, define B, j, j, to be the p x (j2 — j1) matrix that consists of the j; + 1, ..., jo columns of
B, for 0 < j1 < j2 < p. Note that the difference between the two subscripts j; and js equals the
number of columns of B, j, ;,, which is useful for keeping track of the dimensions of the B, ;,
matrices that appear below. By definition, B, = (B, 0,9, Bn o p)-

By (excluding the convergence part) applied once with By, ¢ p in place of B, as the far-
right multiplicand and applied a second time with By, o »¢ in place of By, as the far-right multiplicand,
we have

0, := 1. 2% B!

r1Fp = n,0,r

UL, Dy W, Wi DUn By o
/
hg .o +o0(1) 0rix(P=r7)
6a
(/:1—7"°)><7’° C;l(Ik + Op(l))Cn (k—r)x(p—r7)
O ! ! O(TT2F7L /TTIF’IL) ! L
+0p (0?7, 1,) ")

= OP(TTQFn/Tth) + OP((n1/2TT1Fn)71)7 (168)

where the last equality holds because (i) C},(Ix + 0,(1))Cy, = I, + 0p(1), (ii) when I, appears in
place of Cj, (I + 0p(1))Ch,, the first summand on the left-hand side (lhs) of the last equality equals
071*(P=%) and (iii) when o,(1) appears in place of C/,(Ij, + 0,(1))C,, the first summand on the lhs
of the last equality equals an 7§ x (p — r{) matrix with elements that are op(7ryr, /T F,)-

Define

Einlr) = T,anB;,g,r?Ugﬁ;W{LWnﬁnUanoﬁ — k(s + Ay,) € RTiX
Eon(K) := 0, — KAy, € RTXP—1) and (16.9)
E?m(’i) = 7—;12FHB/ © UTILE;LWT/LWnﬁnUan,T%p - R(Ip—r? + A\Sn) S R(piﬁf)x(pﬂ"(l}).

nvrl P
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As in the first line of (16.2)), {(nY/?7,,5,) 2Rjn : j < p} solve

0 = |2 BLULDL W Wo DUy By — k(I + Ay)|

~

Eln(’%) an(”)

~

Eon(K) E3,(k)
~ —~ ~ ~1 ~
= [&1n(R)] - €30 (k) — §2n(’€)lfln (£)&ay,(K)]
~ B PN ~1
= |€1n("€)| ’ |7—r12FnB;L,Wf,pU;LD;LW'r/LWnDnUan,ri},p - erzgln (’{)Qn

~ ~ ~1 ~1, o~ ~ ~—1, -~
—t(Ip—rs + Azn — ApE1,, (K) 0y — 01 (K) A2 + KA, &1, (K) A2y, (16.10)

where the third equality uses the standard formula for the determinant of a partitioned matrix and
the result given in (16.11]) below, which shows that Eln(,‘i) is nonsingular wp—1 for k equal to any
solution (nl/ 21 Fn)_27‘5jn to the first equality in (16.10)) for j < p, and the last equality holds by

algebra /]

Now we show that, for j = r$41, ..., p, (n'/?

TrmF,) 2Rjn cannot solve the determinantal equation
\Eln(n)] = 0, wp—1, where this determinant is the first multiplicand on the right-hand side (rhs)
of (16.10). This implies that {(n'/?7, 5, ) 2Rjn : § = 75 + 1,...,p} must solve the determinantal
equation based on the second multiplicand on the rhs of wp—1. For j =7+ 1,...,p, we

have

s A 1/2 -2~
gjln = gln((n / TTan) Hjn)
_9 N~~~ 1/2 o ~
= TranB;L,Oﬂ'(f U;LD;LW'/;WTLDTLUTLBH,O,TI — (’n, / T'ran) Hjn(]—ﬂf + Aln)

= hie + 0p(1) — 0p(1) (s + 0p(1))

= hhe + 0p(1), (16.11)

where the second last equality holds by 1) 1 , and 1) Equation ((16.11)) and )\min(hg?r?) >

0 (which follows from the definition of har<1> in 1' and the fact that hgy > 0 for all £ ¢
{1,...,7] — 1}) establish the result stated in the first sentence of this paragraph.
For j =r{+1,...,p, plugging (nl/QTnFn)*Qk\jn into the second multiplicand on the rhs of ((16.10))

& &
& &

52The determinant of the partitioned matrix £ = { ] equals €] = |&,] - |65 — E5E71E,| provided €& is

nonsingular, e.g., see Rao (1973, p. 32).
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gives

0 = |72 Bl o JUh D WhWoDyUn By o + 0p(Tryr, [ Trr 1)) + Op(0 270, 5,)72)

T1 n77‘17p

— (0270, 5,) " 2Rjn(Ly—rs + Ajan)|, where (16.12)
~ -~ -~ =1 ~1 ~ o~ oy 1~ Y x (p—r®
Aj2n = Asn — Aénfjlngn - Q;“ijlnAQH + (n1/2TT1Fn) 2K’jnAl2n£j1nA2n € R(p 7)< (e-ry)

using 1’ and (16.11)). Multiplying (16.12) by T%l P, /722 F, 8ives

0= |72 Bl o yUs Do WiWnDoUn By ye p + 0p(1) — (0270, 5,) 2R jn(Ly—ys + Ajan)|  (16.13)

roFy n,ri,p

using O,((n*?1,,7,)72) = 0,(1) (because r9 < ¢ by the definition of ry and n'/?7,5, — oo for all
j < ¢ by the definition of ¢ in (8.16])).

Thus, {(n*?7,,5,) 2Rjn 1§ =75+ 1,...,p} solve

0= |2 Bl o Us DWW, DUy By oy + 0p(1) = KTy + Ajan)]. (16.14)

roFy n,r{,p

For j =r{+1,...,p, we have

Ajon = 0p(1), (16.15)

because Ag, = 0p(1) and As, = op(1) (by (16.5)), E;fn = 0p(1) (by (16.11))), 0,, = 0p(1) (by (16.8
1/2

2

since Typ, < 7o, and n'/21, g — o0), and (0?7, g, ) %R = 0p(1) for j =15+ 1,...,p (by

(116.7))).
Now, we repeat the argument from ([16.2)) to (16.15)) with the expression in (16.14)) replacing that

in the first line of 1' with (|16.15)) replacing 1' and with j = r$+1, ..., p, A\jzn, Brp—r¢s TroFy )

rg—1

(o <& & <o _ - SV (rS—r

TrsFp, Ty =71, P —T9, and hG,Tg = Dlag{la h6,r<1>+1> h6,r<1>+1h6,7“<1>+2a ey H hG,Z} € R(TQ X (rz=ry)
L=r{+1

in place of j = r{ 4+ 1,...,p, An, Bn, TriF,» TroF,, T3, P — 7§, and hg,rf’ respectively. (The fact

that ./Zl\jzn depends on j, whereas A\n does not, does not affect the argument.) In addition, Broro
and By, po , in (16.8)-(16.10) are replaced by the matrices By, ;o ¢ and By, ¢, (which consist of the
r{ +1,...,75 columns of By, and the last p — r§ columns of B, respectively.) This argument gives

the analogues of (16.6) and (16.7]), which are

Rjn —p 00 Vi =19, ...,rS and (027,51 ) 2Rjn = 0p(1) Vj =5 + 1, ..., p. (16.16)

In addition, the analogue of (|16.14)) is the same as (16.14) but with A\j3n in place of ijgn, where

~ ~

Ajsy, is defined just as Ajo, is defined in (16.12) but with A\gjzn and A\gjgn in place of ﬁgn and A\gn,
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respectively, where
~ Avjon Agjo
J2n 721
Ajon = - ~ (16.17)
A2j2n A3j2n
for Ayjon € R™S*"S, Ayjo, € RE*(P=r1775) and Agjy, € RPTi—75)x(p=r{—r5),

Repeating the argument G, — 2 more times yields
Rjn —p oo Vi =1,..,1&, and (027, 5 ) 2Rjn = 0,(1) Vj =75 +1,...,p,Yg = 1,..,Gp,. (16.18)

A formal proof of this “repetition of the argument GG}, —2 more times” is given below using induction.
Because TQGh = ¢, the first result in (16.18]) proves part (a) of the lemma.
The second result in (16.18) with ¢ = G}, implies: for all j =q¢+1,...,p

(n'?716, 1) *Rjn = 0p(1) (16.19)
because réh = q. Either rq, = rOGh =qorrg, < r°Gh = ¢. In the former case, (nl/QTan)_Q/’%jn =

op(1) for j =q+1,...,p by (16.19). In the latter case, we have

TG,
Tro, F h
T . Trg, Fa
lim — 2 = Jiy — " H he,j > 0, (16.20)
TrGth TrGth J=re
h

where the inequality holds because hg > 0 for all ¢ € {rq,, ..., T'QGh — 1}, as noted at the beginning

1/27an)72/’5jn = op(1) for j = ¢+ 1,...,p by (16.19) and

(16.20)). Because 7¢p, > 74p, for all £ < g, this establishes part (b) of the lemma.

of the proof. Hence, in this case too, (n

Now we establish by induction the results given in that are obtained heuristically by
“repeating the argument G, — 2 more times.” The induction proof shows that subtleties arise when
establishing the asymptotic negligibility of certain terms.

Let og, denote a symmetric (p —ry_y) x (p — ry_;) matrix whose (£,m) element for £,m =
L,p—ry_qis Op(T(Tg_lJrg)FnT(rg_ler)Fn/ngFn)+Op(<n1/2TTan)_1). Note that og4, = 0,(1) because
ro_1 + 4 >rg for £ > 1 (since 7;p, are nonincreasing in j) and nI/QTran — oo for g =1,...,Gp.

We now show by induction over g = 1, ..., G}, that wp—1 {(nl/QTTan)_QEjn rj=rg_+1,..,p}
solve

|75 Bl 7pU;Lﬁ;LW[WnﬁnUangwp +0gp = K(Ip—ro | + Ajgn)] =0 (16.21)

for some (p—rj_y) X (p—75_;) symmetric matrices A\jgn = 0p(1) and og4p (Where the matrices that
are og, may depend on j).

The initiation step of the induction proof holds because (16.21]) holds with g = 1 by the first line
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of with ﬁjgn := A, and ogp = 0 for g =1 (and using the fact that, for g =1, ro_1=15:=0
» = Bnop = By).

For the induction step of the proof, we assume that holds for some g € {1,...,Gy, — 1}
and show that it then also holds for g + 1. By an argument analogous to that in , we have

and Bnmg,l

07’271 x(p—rg_1)

T;IIJ'anDnUan’Tg—up = (Ik + 0p(1))0n Diag{TTanv L) TPFn}/TTan + Op((n1/27—7‘an)_1)
olk=p)x(p=rg_;)

rg—1
—p h3 gﬂg L 0F*@=r9) | where hg’rg := Diag{1, her,, ..., H he i},
O(kfrg)x(rgfrg_l) jZTg_l-‘rl
(16.22)
g,rg € R(Ts_rgfl)x(rg_rgfl), and h%,rg := 1 when 7“; =1.
Equation (16.22) and hjhs = lim C),C,, = I}, yield
2 ST A hgo 05— 75-1)x =75

T;anB;L,rg_l,pUrILD;LWAWnDnUan,rg_l,p —p 9 (16.23)

0= (rg=rg_1)  o=rd)x(p=rg)

By (16.21) and o4, = o0p(1), we have wp—1 {(nl/QTran)_Qﬁjn 1 Jj =715 +1,..,p} solve
[(Tp—ro | + Ajgn)_17';5]21;”B;L’Tg_l7pU7’LD;LWT’LWnDnUan7T§717p + 0p(1) = KIp—po | = 0. Hence, by
(116.23)), ngn = 0,(1) (which holds by the induction assumption), and the same argument as used
to establish (16.6)) and ((16.7]), we obtain

Rjn —p oo Vi =151+ 1,75 and (n'/27,,p,) 2Rjn —p 0 Vj =15+ 1,...,p. (16.24)
Let og,, denote an (ry —ry
are op(T(ro4 )P,/ TryFn) + Op((nl/QTran)—l), Note that o}, = 0,(1).

By (16.22) applied once with Br e p in place of Bnﬂ“;?_l,p as the far-right multiplicand and

_1) X (p — ) matrix whose elements in column j for j =1,....,p —ry
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applied a second time with B,, .o s in place of B,, o ro_p a3 the far-right multiplicand, we have

an
= T Bl s U} D W)W DoUp Brys
07"371 x(rg—rg_1) Org x(p—rg)
= Diag{T(T 1+ Ens - TTOFn}/TTan C;L(Ik + Op(l))cn Diag{T(rg+1)Fna ey TpFn}/TTan
ok—rg)x(rg—rg_1) o(k—p)x(p—7§)
+Op((n1/2TTan)71)
= 0%, (16.25)
where o,,, € R(rs=rg-1)x(p=7g) , Diag{r o 1+1)F7L,...,7'T§Fn}/7'rgpn = ng + o(1) = O(1) and the
last equality holds because (i) C/ (I + op(l))Cn = I + op(1), (ii) when I} appears in place of
C! (I + 0p(1))Cy, then the contribution from the first summand on the lhs of the last equality
n (16.25) equals 05 ~"9-1)*(P=75) "and (iii) when op(1) appears in place of C}, (I}, + 0p(1))Cyp, the
contribution from the first summand on the lhs of the last inequality in (16.25]) equals an o} matrix.

gp
We partition the (p —r7_;) x (p — ry_;) matrices o4, and ﬁjgn as follows:

01 02 -~ Al' n A2' n
Ogp = PP and Ajgy = 7 7 (16.26)
9p , jgn n i ’
0291) O3gp 25gn 3jgn

~ OO (1O — 70 -~ ro—pro X (p—ro 1
where o1y, Aujgn € RUSTIOXUTED o0 R e RUFTE X0 and g Ay,

e R—r)x(r=79) for j = ro_1+1,..,pand g =1,..,Gp. Define

1jgn(K) = szB; RO roUo/v,D;Wr/LWnDnUanr‘;,wg + o19p — “(Iro—r + Angn)
€2jgn(’i) ‘= Ogn + 02gp — HA2jgm and (16.27)
§3jgn(K’) =T ;2F Bn r3.p U, D/ W/W D UnBn, rop T 03gp — ”(Ip—rg + E?)jgn)v

where le gn(K), sz gn(r), and /5\3jgn(f£) have the same dimensions as 014y, 02gp, and o34, respectively.
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From (|16.21f), we have wp—1 {(nl/QTTan)_Qﬁjn 1 =r5_1+1,..,p} solve

0= |7'1;2FnB;z,rg_l,pUr/Lﬁ;LWﬁWnﬁnUan,r;’,l,p + 0gp — K(Ip—re_, + zzl\jgn)|

— [€1ign ()] - [€0m (K) = Eajgn(9)Erjgn (9)Enjgn ()]

= [E1jon (W] - 752, By U D WA TWn DulUn B o+ 0300 — (8gn + 02) €1y () (05 + 0207)
~AlTyrs + Asjgn — A Erin(5)(@gn + 020) — (0gn + 0299) E1jgn (%) Aajgn

~ ~1 —~
+K’A,2jgn£1jgn(’<‘)A2jgn”7 (1628)

where the second equality holds by the same argument as for and uses the result given in
below which shows that legn(/ﬁ) is nonsingular wp—1 when & equals (n!/?7, JFn) 2Ry for
J=rg+1,..p.

Now we show that, for j = 7“<g>+1, ey D, (nl/zngpn)”%jn cannot solve the determinantal equation
|/§\1jgn(/<c)] = 0 for n large, where this determinant is the first multiplicand on the rhs of
and, hence, it must solve the determinantal equation based on the second multiplicand on the rhs

of (16.28). For j =rg +1,...,p, we have

’Sljgn = gljgn((nl/QTTan)_Q//%jn) = h‘g?rg + OP(1)7 (1629)

by the same argument as in (16.11)), using 014, = 0,(1) and A\ljgn = 0p(1) (which holds by the
definition of A\ljgn following (16.21)). Equation (16.29) and Amin(hg2..) > 0 establish the result

<O
77‘9

stated in the first sentence of this paragraph.

For j =ry+1,...,p, plugging (nl/QTTan)*zﬁjn into the second multiplicand on the rhs of (|16.28))

gives
-2 DITHTT D ~—1
0= ’TTanB;WZWU’QD;WAW"D”U”B”"“g’l’ + 03gp — (0gn + 029p)'€1jgn(Qgn + 029p)
— (0?71, 5,) P Rjn(Ip—rg + Aj(gs1yn)|, Where
n ~ -~ ~—1 ~—1 -~
Aj(g-i—l)n L= A3jgn - éjgngljgn(ggn + OQgp) - (an + OQgp)lgljgnA%gn

I N
(0271, 5,) PR jn A jgn€1jgn Azjgn (16.30)
and A\j(gﬂ)n e RP=79)x(P=9) The last two summands on the rhs of the first line of (16.30) satisfy

71 * -2
03gp — (0gn + 029p)/§1jgn(99n + 02gp) = 03gp — (0, + 029p)/(hg,r3 + 0p(1))(0g), + 02gp)

2 2
= O3gp — O;;O;p = (Trg+1Fn /Tran)O(g—i—l)pa (1631)
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where (i) the first equality uses (16.25)) and (16.29)), (ii) the second equality uses oag, = 0y, (which

holds because the (j,m) element of 0y, for j =1, ..., Ty _Tgf
XT (7"°+m Fn/T Fn)+0 ((nl/QTTan)_l) = OP(T(TQ-Fm)Fn/TTan)—'_O ((n1/2TTan)_1) SlnCe T 1+‘7 >

re) and (hgﬂé +o0p(1))oy;, = oy, (which holds because hg ro is diagonal and Amin (g ro) > 0), (iii) the

randm=1,..,p—rpis Op(T(To ) Fn

last equality uses the fact that the (j,m) element of (72 "o P /T for jym =1,...p—ry

N o
Tg+1Fn gp gp
2 2 _ .

rgFn Trg+1Fn) - OP(T(T§+])FnT(T§+m)Fn

/T2g+1F7L) and a term that is Op((nl/zTran)_Z)(ngFn ng+1F7L) = Op((nl/QTTgHFn)_Q) and, hence,

is the sum of a term that is Op(T(T§+j)FnT(Tg+m)Fn/ngFn)(7‘

(ngFn/ng+1Fn)o 0y, 18 0(g11)p (using the definition of 0(411),), and (iv) the last equality uses the

gp®gp
fact that the (j,m) element of (72 Ty Fo /TTQ_HF )osgp for j,m =1,....,p — 1y is Op(T(T§+j)FnT(Tg+m)Fn
_ 2
/ngFn)(ngFn ng+1Fn) + Op(( 1/27—T9Fn) 1)(T29Fn/7—39+1Fn) - Op(T(Tg+j)F"T(T<9>+m)F"/TT9+1F")

+Op((n1/27'rg+1pn)_l)(T,«an /Tra41F,), Which again is the same order as the (j, m) element of o(g41),
(using 7,7, /Tryo1Fn < 1)

The calculations in are a key part of the induction proof. The definitions of the terms
ogp and oy, (given preceding and , respectively) are chosen so that the results in
hold.

For j =ry +1,...,p, we have

Ajigr1yn = 0p(1), (16.32)

~ ~ ~1
because Azjgn = 0p(1) and Aszjgn = op(1) by (16.21)), &;;,, = Op(1) (by (16.29)), 04, + 02gp = 0p(1)
(by (16.25) since oy, = 0,(1)), and (nY27,, k) 2R jn = 0p(1) (by (16.24)).
Inserting ((16.31f) and (16.32) into (|16.30) and multiplying by T%an/T3g+an gives

0= |7-7"g+1Fn n,ry pUry,sznW,W D U.B, Tgap + O(g+1)p — (nl/QTTngan)_Qk\jn(Ip*Tg - Aj(g+1)n)|'

(16.33)
Thus, wp—1, {(nl/QTTngn)*Qk\jn 1 Jj =Tg41,...,p} solve
0=1|r2p mopU;D;LW'W DnUn By p + 0(gs1)p — £Ip—rs + Ajgr1yn)l- (16.34)

This establishes the induction step and concludes the proof that ((16.21]) holds for all g =1, ..., Gp,.

Finally, given that (16.21]) holds for all g = 1,..., G}y, (16.24)) gives the results stated in (|16.18))
and ([16.18)) gives the results stated in the Lemma by the argument in (16.18))-(16.20)). [

Now we use the approach in Johansen (1991, pp. 1569-1571) and Robin and Smith (2000, pp.
172-173) to prove Theorem In these papers, asymptotic results are established under a fixed
true distribution under which certain population eigenvalues are either positive or zero. Here we

need to deal with drifting sequences of distributions under which these population eigenvalues may
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be positive or zero for any given n, but the positive ones may drift to zero as n — oo, possibly at
different rates. This complicates the proof. In particular, the rate of convergence result of Lemma
16.1(b) is needed in the present context, but not in the fixed distribution scenario considered in

Johansen (1991) and Robin and Smith (2000).

Proof of Theorem Theorem [8.4f(a) and (c) follow immediately from Lemma [16.1](a).
Next, we assume ¢ < p and we prove part (b). The eigenvalues {K; : j < p} of nﬁnﬁ;ﬁ/\é/vﬁn

AN AN~ A~

Equivalently, with probability that goes to one (wp—1), they are the solutions to

1Q2 (k)| = 0, where Q°(k) := nS,B,U. D! W' W, DyUpBnSy — 68, B U.U;VU 7 Up By S,
(16.35)

AN AN S~ A~

the smallest solution, Ky, to |@5 (k)] = 0 wp—1. (For simplicity, we omit the qualifier wp—1 that
applies to several statements below.)

We write Q2 (k) in partitioned form using

BnSn = (Bn,an,q,Bn,pfq), where
Sn.q := Diag{(n*?*71r,) 7% .., (W *1yr, )"} € RI¥Y. (16.36)

The convergence result of Lemma for nl/QWnﬁnUnTn (= n1/2WnlA)nUanSn) can be written
as

0 Wy DUy By gSng —p Dhg i= hsg and 0 *W,, Dy Un By p—g —d Dhp—g» (16.37)

where Zh,q and th_q are defined in 1D
We have

W,W; ' =, I) and U,U; ' —, I, (16.38)

because W, —p h71 :=1lim W), (by Assumption WU(a) and (c)), U, —p hg1 :=1lim U,, (by Assump-
tion WU(b) and (c)), and h7; and hg; are pd (by the conditions in Fyy).
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By (16.35))-(16.38)), we have

02 ) = I+ op(1) b 2 W DnUp Brp—q + 0p(1)
" n'2B!, UL DLWihs g+ 0,(1) n'/2Bl _ ULDW!EWun'/2 Dy Uy Bip—g + 0p(1)
S2 0% (p=a) SpqA1nSng  SnqAon
—K 4 - K At e , where (16.39)
0(p-a)>a Ip—q Ay, Sng Asn
n Ain Az I =i —1 -
A, = | 7 = B\UUYU U, B, — I, = 0,(1) for Ay, € R, Ay, € RI*P~9),

A2n A3n

and Az, € RP-Dx(—a), /Tn is defined in ((16.39) just as in l} and the first equality uses

Bhg = hsg and N, Ny = bl hsg = 1imC ,Crg = I, (by (8.7), (8.9). (8.12), and (8.17)). Note
that A, and A\jn (defined in |i are not the same in general for j = 1,2,3, because their
><r<1>'

dimensions differ. For example, A1, € R?7*Y, whereas //l\ln e R1

If g=0 (< p), then B, = B, ,—, and

AN, N, o, A A

n-n—mn n

~ ~ o~ ! s~ ~
= nB.(U-\0,)B;YB.U DLW (Wan_l) (an,;l) (W DUy Bp)BY (UL, By,
—d DBy (16.40)

where the convergence holds by (|16.37)) and (16.38]) and Zh’p_q is defined as in |i with ¢ = 0.

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see
Stewart (2001, Thm. 3.1, pp. 37-38)). Hence, the smallest eigenvalue of nB;ﬁéﬁ;WéWnﬁnﬁan
converges in distribution to the smallest eigenvalue of Z’h,p_qhg’k_qhgquzh,p_q (using h3,k—qh§,,k,q =
hshly = I, when ¢ = 0), which proves part (b) of Theorem when ¢ = 0.

In the remainder of the proof of part (b), we assume 1 < g < p, which is the remaining case

to be considered in the proof of part (b). The formula for the determinant of a partitioned matrix

and ((16.39)) give

|Qn(R)| = 1Q7,.(K)] - |@3, ()], where
tn(k) ©= Iy + 0p(1) = S} ; — £SnqA1nSng,
Q3n(k) = =n2B _ ULDLWiWun'> DUy By g + 0p(1) — Kl g — kA3,
_[nl/2B/ U,D! erzh&q + Op(l) - "@Alznsn,q]([q + Op(l) - Hsz,q - HSn,qunSn,q)_l

n,p—q@-mn n

X[ qunl/QW”ﬁnUanﬁU*q + Op(l) - ’QSn,qAQn]y (16.41)
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none of the opy(1) terms depend on k, and the equation in the first line holds provided Qf,, (k) is
nonsingular.

By Lemma M(b) (which applies for 1 < ¢ < p), for j = ¢+ 1,...,p, we have //%jnS%’q = 0p(1)
and K;jn Sy, ¢A1nSn,q = 0p(1). Thus,

QTn(Ejn) = Iy +op(1) — k\jnSEL,q — KjnSn,qA1nSn,q = Iy + 0p(1). (16.42)

By (16:35) and ([6AT), |Q5(%n)| = Q3. (%n)| - [Q5,(Fjn)| = 0 for j = 1,....p. By (16.42),

|Q%, (Rjn)| # 0 for j =q+1,...,p wp—1. Hence, wp—1,
|Q5, (Fjn)| =0 for j =g+ 1,....,p. (16.43)
Now we plug in kj, for j = ¢+ 1,...,p into @5, (x) in (16.41)) and use (16.42)). We have

Q5n(Rjn) = 1By, U Dy W WaDalUnBp—q + 0p(1)
_[nl/QB;L,p—qU;Iﬁ’;LWTILh&q + op(1)] (g + Op(l))[hg,qnl/QWnﬁnUan,%q + op(1)]
~Rjnllp—q + Asn — (n1/2B;L,p7qU’I/1ﬁ;1WTILh37q + 0p(1))(Lg + 0p(1))Sn.qA2n
— Ay S g (I + 0p(1)) (W 0" Wy DU B pg + 0(1))

+Hjn Ay Sn.g(Ig + 0p(1)) Sn g Azn]. (16.44)
The term in square brackets on the last three lines of (16.44) that multiplies k;, equals
Ip—q +0p(1), (16.45)

because Az, = 0p(1) (by (16.39)), n*/2W,,DpUpBnp—q = Op(1) (by (16.37)), Snq = o(1) (by the

definitions of ¢ and S, 4 in (]8.16[) and (]16.36[), respectively, and hq ; := lim nl/QTan), Az, = 0p(1)
(by (16.39)), and &jn A%y, Snq(Ig+0p(1)) SngAon = A, EjnSy g Azn+ Ay RjnSn.q0p(1)Sn,g A2n = 0p(1)
(using %jn Sz, = 0p(1) and Ag, = 0p(1)).

Equations (|16.44)) and (16.45]) give

an(gjn) = nI/ZB/ lezﬁ;qu/z [Ik - h37q é,q]nl/QWnﬁnUanp—q + Op(l) - Ejn[fp—q + Op(l)]

n,p—q

_ nl/QB/ U’ l’j/

n,p—q-n n

i= Mnp—q = Kjnllp—q + 0p(1)], (16.46)

Wr,zh3,k—qhg,k—qn1/2WnﬁnUan,pfq + 0p(1) = Kjnllp—q + 0p(1)]

where the second equality uses I, = hshf = h37qhqu + hg}k,qhé k—q (because hg = lim C), is an
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orthogonal matrix) and the last line defines the (p — ¢) x (p — q) matrix M, .
Equations (16.43) and ((16.46) imply that {k;, : j = ¢+1,...,p} are the p — ¢ eigenvalues of the
matrix

M,y = Tp—q + 0p(1)] 2 My g[Tp—g + 0p(1)] /2 (16.47)

by pre- and post-multiplying the quantities in (16.46) by the rhs quantity [I,—, + Op(l)}_l/ 2 in

([500). By (I657).

Mg —a B gha kgl o Bnpq (16.48)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by
Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)). By , the matrix My .
converges in distribution. In consequence, by the CMT, the vector of eigenvalues of M;;p,q, Viz.,
{Kjn : j = q+1,...,p}, converges in distribution to the vector of eigenvalues of the limit matrix
Z;L’p,qh37k_qhg7k_qzh’p_q, which proves part (d) of Theorem In addition, )\min(nﬁéﬁg/ﬁg
xW,DynU,), which equals the smallest eigenvalue, kKp,, converges in distribution to the smallest
eigenvalue of Z/h’p,qh&k_qhg’k_qzhp_q, which completes the proof of part (b) of Theorem

The convergence in parts (a)-(d) of Theorem is joint with that in Lemma because it
just relies on the convergence in distribution of nt/ 2I/VnﬁnUnT n, which is part of the former. This
establishes part (e) of Theorem

Part (f) of Theorem holds by the same proof as used for parts (a)-(e) with n replaced by

Wy, 1

17 Proofs of Sufficiency of Several Conditions for the A,_;(-)

Condition in F;

In this section, we show that the conditions in (3.9) and (3.10) are sufficient for the second

Cl Q5 2GiBry :
condition in Fo;, which is A,—; (¥ o ]5) > 01 V&€ € RPJ with ||¢]| = 1.
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Condition (i) in (3.9)) is sufficient by the following argument:

.- \I/C%,k_jﬂfwl/QGiBF,p—jﬁ
=i \ ¥F

> Ap—j <\I/I(j:%,ijF1/QGiBF,ij>
, vec(élpyp_j Q;l/QGiBF,p,j)
= Amin ( (' ® L—;)Vp (€@ 1)

. (€ ® Ip—j)A >, vee(Cpp_ ;5" ?GiBry—y) (E@ I )\ 2
= min —_— | U pE R TR [ (= MDY
AeRP=:|A|=1 <|I(£®ij)kll g 1(€ @ L)l v

. (6/F 7-971/2G1BF ,') . 2
> min A S i P % min [|(€ @ L,—;) ||
neR®P=12||n||=1 r AERP=I:||A]|=1 Y

'uec(élpyp,j Q;1/2G1}BF,p7j)

= Amin (wF ) : (17.1)

where the first inequality holds by Corollary [15.4(a) with m = p — j and r = k — p (because

_ “1/2 —1/2
QF1/2GiBF,p*j§ C}r,k—jQFl/ GiBrp—;§ Qp / GiBrp—;¢

—/
Crppi . . . Crpj
\IIFF”’ J is a submatrix of V¥, , since \IJFF"C J =

C’l’m’kfj\lfg;l QGiBF’p_ﬁCRk_j, likewise with C’},ﬂ’kfj replaced by élp’p_j, and by definition the rows of
élﬂp_j are a collection of p— j rows of C’},ﬂ’kfj), the first equality holds because the (p— j)-th largest
eigenvalue of a (p — j) X (p — j) matrix equals its minimum eigenvalue and by the general formula
vec(ABC) = (C'® A)vec(B), and the last equality holds because ||(€®@1I,—;)A||2 = N (£€®,_ )\ =
AN =1 using [[¢]| = [|Al] = 1.

Condition (ii) in is sufficient by sufficient condition (i) in and the following;:

Yol —1/2
)\ . (\I/UEC(CF’ijF / GzBF,pj)>
min F

_ , _
_ min ( (Ip—j ®€F7p—j)77 > \IJ;GC(Q;«“I/QGI'BF,?*J') (Ip—j ®€F,p—j)77
neR@=1:|nl|=1 \||(Lp—j ® C'Fp—j)nl| [(Ip-j ® Crp—j)nl|
<l|(Tp-; ® Crp-p)ll?

. vec(Q_1/2G¢BF7 —) . Val 2
> min g PC X min = |[(Zp—; ® Crp—j)nl|
CERP=Dk||¢]|=1 n€RP=1%||n||=1
vee(Q.?GiBr.,_;
= Amin <\IIF @ Fir=d) 5 (172)

where the last equality uses ||(I,—j @ Crp—i)n|[* =0 (Lp—; ®€/F,p_jép7p,j)n = 1 because the rows
of 6;?,;;_]' are orthonormal and ||n|| = 1.

Condition (iii) in (3.9) is sufficient by sufficient condition (ii) in (3.9) and a similar argument to
that given in |) using the fact that minye g, p)=1 |[(Br,; ® I;)¥||?> = 1 because the columns

of Br,_j are orthonormal.
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Condition (iv) in (3.9) is sufficient by sufficient condition (iii) in and a similar argument to
that given in (17.2)) using minge pok.||4)=1 [|(Ip @ Qp 1/2)¢]|2 > M~2/+7) for M as in the definition

of F in place of min _j @ Cpp—j)n||*> = 1. The latter inequality holds by the

neR®=12:||n||=1 1(Zp
following calculations:

p
&' (I Z /116511 QR (5 110511) % 1165112
p
Z min (1) % [[6512 = 1/ Amax (Qp) > M2/, (17.3)

where ¢ = (¢}, ..., qb;)’ for ¢; € RFEYj < p, the sums are over j for which b; # 0%, the second equal-
ity uses ||¢|| = 1, and the last inequality holds because Amax(2r) = max,cgr.||x||=1 Er(Ng:)?
Erllgl? = (Brllgd P22 < (ExllglP)V@0) < M4 by successively applying the
Cauchy-Bunyakovsky-Schwarz inequality, Lyapunov’s inequality, and the moment bound Er||g;||>™
<M in F.

Conditions (v) and (vi) in are sufficient by the following argument. Write

U0l — (Mp, L) S (Mp, L)', where Mp = —(Epvec(Gi)gl)(Epgig)) ™" € RP***. (17.4)
We have

)\mm(qﬂ;fc(G")) = min )\,(MF, ka)Eg (MF’ ka)/)‘

AERPE:||A||=1
Mg L)X\ . Mg, I;)'\
min ( ( F pk)/ > 2f1< ( F pk)l
Aerrk:| =1 \ ||(MF, Ipr)' Al [[(MF, Ipg)' M|
min s fi
perw b=
= Amin(S9), (17.5)

) < (M, L) A2

Y

where the inequality uses ||(Mp, Lyk)' |2 = XA+ NMpMpX > 1 for A € RPF with ||A|| = 1. This
shows that condition (v) is sufficient for sufficient condition (iv) in . Since E% =Varp(fi) +
ErfiEpf], condition (vi) is sufficient for sufficient condition (v) in (3.9).

The condition in (3.10|) is sufficient by the following argument:

Cl 5 2GiBry r Q=120 , —1/2 4 .
Ap—j (qu” i Fip ]g) >\ (mngQF GZBFvPﬁ) =X (\ng GZBF*”g) : (17.6)

where the first inequality holds by Corollary [15.4(b) with m = p and r = j and the equality holds
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—1/2
PQp ' "GiBrp—;¢

1o} O Y2GBp,_; )
because ¥, =CpVU " p ]éCF and Cp is orthogonal.

18 Asymptotic Size of Kleibergen’s CLR Test with Jacobian-
Variance Weighting and the Proof of Theorem (5.1

In this section, we establish the asymptotic size of Kleibergen’s CLR test with Jacobian-variance
weighting when the Robin and Smith (2000) rank statistic (defined in (5.5])) is employed. This rank
statistic depends on a variance matrix estimator VDn. See Section [5| for the definition of the test.
We provide a formula for the asymptotic size of the test that depends on the specifics of the moment
conditions considered and does not necessarily equal its nominal size «. First, in Section [18.1] we
provide an example that illustrates the results in Theorem and Comment (v) to Theorem [5.1
In Section we establish the asymptotic size of the test based on Vbn defined as in 1’ In
Section we report some simulation results for a linear instrumental variable (IV) model with
two rhs endogenous variables. In Section [18.4] we establish the asymptotic size of Kleibergen’s CLR
test with Jacobian-variance weighting under a general assumption that allows for other definitions
of ‘7Dn.

In Section [I8.5] we show that equally-weighted versions of Kleibergen’s CLR test have correct
asymptotic size when the Robin and Smith (2000) rank statistic is employed and a general equal-
weighting matrix Wn is employed. This result extends the result given in Theorem in Section
|§|7 which applies to the specific case where Wn =0, 1/ 2, as in . The results of Section are
a relatively simple by-product of the results in Section

Proofs of the results stated in this section are given in Section [18.6

Theorem follows from Lemma and Theorem which are stated in Section

18.1 An Example

Here we provide a simple example that illustrates the result of Theorem 5.1} In this example, the
true distribution F' does not depend on n. Suppose p = 2, EpG; = (1¥,0%), where ¢* = (c, ...,c)’ €
RF for ¢ =0, 1, nl/Z(ZA)n—EFGi) —4 Dy, under F for some random matrix Dy, = (D1, Dap,) € RF*2,
Suppose for Mn = YN/D_;/Q and Mg = I, we have nl/z(Mn — Mp) —4 M}, under F for some random
matrix M), € RZ*2k 53| We have

D} = Uec;;;,(%)_;/%ec(ﬁn)) = (Mllnﬁln + M2, Doy, M1, D1y, + ]\7227113271) ; (18.1)

"3 The convergence results nl/Q(f)n — ErG;) —q D, and n'/? (Mn — Mp) —q M, are established in Lemmas
and [18.2] respectively, in Section of AG1 and Section in this Supplemental Material under general conditions.
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where ﬁn = (ﬁln,f)gn), ]\/ngn for j,£ = 1,2 are the four k x k submatrices of ]\A/.fn, and likewise
for Mjp for j, £ = 1,2. Let Mﬂh for j,¢ = 1,2 denote the four k& x k submatrices of Mj,. We let
T = Diag{n~'2,1}. Then, we have

”1/213;:7}]: = (Mllnﬁln + MlQnﬁ%u n1/2M2lnﬁln + 1\72271711/213271)

—d (Iklk + 0F<kok Mg 1F + Ikﬁ%) = <1kaﬂ21h1k +52h) ) (18.2)

where the convergence uses n1/2M21n —q Moy, (because Mo1p = Oka) and nl/ZlA)gn —q Doy,
(because EpGys = 0F). Equation shows that the asymptotic distribution of nt/ QZA)ILTQ; depends
on the randomness of the variance estimator ?Dn through Moqy.

It may appear that this example is quite special and the asymptotic behavior in only
arises in special circumstances, because EpG; = (1%,0%), Mo = 0**F, and Mp = Iy in this
example. But this is not true. The asymptotic behavior in arises quite generally, as shown
in Theorem whenever p > 2@

If one replaces 1755/ 2 by its probability limit, Mg, in the definition of lA?L, then the calculations
in hold but with nl/zﬁgln replaced by n1/2M21F = 0F*F in the first line and, hence, My,
replaced by 0°** in the second line. Hence, in this case, the asymptotic distribution only depends
on Dj,. Hence, Comment (iv) to Theorem [5.1| holds in this example.

Suppose one defines IADIL by Wnﬁn as in Comment (v) to Theorem This yields equal
weighting of each column of ﬁn This is equivalent to replacing ‘755/ 2 by I, ® Wn in the definition
of IA?,]; in . In this case, the off-diagonal k x k blocks of Ir ® Wn are 05%F and, hence, len
in the first line of (18.2)) equals 0¥**, which implies that Msy;, = 0¥** in the second line of .
Thus, the asymptotic distribution of ﬁ;[l does not depend on the asymptotic distribution of the
(normalized) weight matrix estimator W It only depends on the probability limit of Wn, as stated

in Comment (v) to Theorem [5.1

18.2 Asymptotic Size of Kleibergen’s CLR Test with Jacobian-Variance
Weighting

In this subsection, we determine the asymptotic size of Kleibergen’s CLR test when ﬁn is
weighted by Vpn, defined in li which yields what we call Jacobian-variance weighting, and the
Robin and Smith (2000) rank statistic is employed. This rank statistic is defined in (5.5) with

%“When the matrix Mo g #* Oka, the argument in 1} does not go through because nl/Qan does not converge
in distribution (since n1/2(M21n — M) —q M1y, by assumption). In this case, one has to alter the definition of T;{
so that it rotates the columns of D,, before rescaling them. The rotation required depends on both Mg and ErG;.
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0 = 0y. For convenience, we restate the definition here:
rkn =kl == Amin(n(D})'D}), where D} := vecgé(~5;/2vec(ﬁn)) (18.3)

(so D} is as in (5.4) with = 00) Let
’f%;rn denote the jth eigenvalue of n(ﬁl)’ﬁi, forj=1,..,p, (18.4)

ordered to be nonincreasing in j. By definition, Amin(n(D})' D}) = ?;Ln. Also, the jth singular value
of n1/2D}, equals (R}n)l/Q.

Define the parameter space Fxcrr for the distribution F' by
Frorr = {F € F: Amin(Varg((g}, vec(G;)"))) > 62,EFH(gé,vec(Gi)’)'H“'y < M}, (18.5)

where d5 > 0 and v > 0 and M < oo are as in the definition of F in . Note that FrxorLr C Fo
when 07 in Fy satisfies §; < M~2/2+1§, by condition (vi) in . Let vech(-) denote the half
vectorization operator that vectorizes the nonredundant elements in the columns of a symmetric
matrix (that is, the elements on or below the main diagonal). The moment condition in Fxcrr is
imposed because the asymptotic distribution of the rank statistic rkIL depends on a triangular array
CLT for vech(f} '), which employs 4 + v moments for f*, where f} := (g;,vec(G; — EF,G;)")
as in 1D The Apmin(+) condition in Fxorr ensures that Vi is positive definite wp—1, which is
needed because ‘~/Dn enters the rank statistic rk:;r1 via 175711/ 2, see .

For a fixed distribution F, Vp,, estimates CIJ;EC(Gi) defined in , where @?C(Gi) is pd by its
definition in and the Apin(+) condition in Fxopgr{’®| Let

Myp - Myr
Mp = Do = (@G 12 ang (18.6)
MplF MppF
P
DI; = Z(MljFEFGija --prjFEFGij) S kap, where Gz = (Gil, ...,Gip) S kap.
j=1

%5 As in Section [5] the function veck;() is the inverse of the vec(-) function for k x p matrices. Thus, the domain
of vec,;;(-) consists of kp-vectors and its range consists of k X p matrices.

"More specifically, @}’fc(c") is pd because by @;ec(Gi) == Varp(vec(G;) — (Ervec(Ge)gy)Qptg:)
= (=(Brvec(Ge)go)p", Ipk)Varr((gi, vec(Gi)) ) (= (Ervec(Ge)gi) Q" Ipw)', where (—(Ervec(Ge)g)Qp', Iok) €
RPFX®H+DE has full row rank pk and Varr((g;,vec(G;)")') is pd by the Amin(+) condition in Fxcrr.
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Let (TJ{ Freees T; ») denote the singular values of D}. Define

B} € RP*P to be an orthogonal matrix of eigenvectors of D%D}; and

C’} € R"™F to be an orthogonal matrix of eigenvectors of D};D% (18.7)

ordered so that the corresponding eigenvalues (/@J{F, ey H;F) and (HIF, e K;F, 0,...,0) € R*, respec-
tively, are nonincreasing. We have /1; = (7‘; F)2 for j = 1,...,p. Note that gives definitions
of Br and Cp that are similar to the definitions in and 1D but differ because D}; replaces
Wgr(ErG;)Up in the definitions.

Define (A1, ..., Ag.r) as in (8.9) with Ao = Wr = Q% Ag g = I,,, and Wy(-) and Uy (-) equal
to identity functions. Define

*
Aor = Varg Ji e RT*T, (18.8)

vech (fz*fz*/>

where d* := (p+1)k+(p+1)k((p+1)k+1)/2. Define (\] p, A} . AL 2, AL ) as (A1 p, Ao, Mg, e )
are defined in but with {T;F 17 < p}, B};, and C;r; in place of {7;r : j < p}, B, and Cp,
respectively.

Define

A= Ap = (Anm, o Mo A A p AL M ), (18.9)
Axcrr =X A = Or, o Mo ALp, AL o, ML AL ) for some F € Fieopp}, and

hn(N) 1= (012A1, 0, Ao, p A3 ps Ay As, i, Mo, A s Ao, n2A] gy AL o A R A ).

Let {\, 1 € Akcrr : n > 1} denote a sequence {\, € Axcrr : n > 1} for which hy(A\,) — h € H,
for H as in |} The asymptotic variance of nl/%ec(f?n — Ep,G;) is @ZeC(Gi)
AKCLR n Z 1} by Lemma

Define hy ; for j < p and hg for s = 2,...,8 as in (8.12), ¢ = ¢, as in (8.16)), ha g, h2p—q, R34,

h3p—q, and h{, . asin (8.17), and Yy, Ty g, and Ty 4 as in (13.2). Note that hy = h;;ﬂ and

under {\,} €

hg = I, due to the definitions of A7 r and Ag r given above, where hs 4 (=lim Ep, gigg) denotes the
upper left k x k submatrix of hs, as in Section

For a sequence {\, € Agxcrr :n > 1}, we have

h * h * £ *
10.5 102/ =l1limVarg, Ji

hao,pr2ps Pag,pr2pe2 vech (ff fi')

hig = e RI >4, (18.10)
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Note that hyg g« € RPHDF*(PHDE is pd by the definition of Fxorr in (18.5).
With T}F, B}, and C’;r, in place of 7, B, and CF, respectively, define hij for j < p and hl
for s =2,3,6 as in 1) as analogues to the quantities without the t superscript, define ¢f = q;rl

as in (8.16), define AY ., hY o bl bl and Al Cas in (8.17), and define Y}, YT i, and

TL gt 3 in ((13.2). The quantity ¢ determines the asymptotic behavior of rk;[L. By definition, ¢f

is the largest value j (< p) for which lim nl/QT;Fn = oo under {\,,, € Agcrr :n > 1}. It is shown

below that if ¢ = p, then Tkl: —p 00, whereas if ¢ < p, then rk:;rL converges in distribution to a
nondegenerate random variable, see Lemma
By the CLT, for any sequence {\,, € Axcrr:n > 1},

n *
w2y . —4 Ly ~ N(0%, hyg), where

i=1 vech (fz*fz*/ — Ep, fz*fz*/)
Ly = (Lp1. Loy Lys) for Ly € R, Lyp € R, and Iy 3 € RPTDR(PHDEFD/2(18 17)

and the CLT holds using the moment conditions in Fxcrr. Note that by the definitions of hy :=
lim Er, G; and hs := lim Ef, (g;, vec(G;)') (gi, vec(G;)'), we have

h h h h
hoge = | 9 59¢ where hs = | 09 96 (18.12)
hs g  hs.c — vec(ha)vec(ha) hs g  hsc
for hs g € R¥k by ¢ € RF*E and hy g € RFPXFP,
We now provide new, but distributionally equivalent, definitions of g, and Dp,:
Gp = Lp1 and vec(Dp) := Lp o — h5,Gghg7!1]fh71. (18.13)

These definitions are distributionally equivalent to the previous definitions of g, and Dj, given

in Lemma because by either set of definitions g, and vec(Dj) are independent mean zero

random vectors with variance matrices hs 4 and @Zec(Gi) (= hs,q —vec(hg)vec(hs) — hg,,ggh;;h’&(;g),

(©) s defined in (8.15) and is pd (because @Zec(Gi) = lim q)%ic(Gi) and

. vec
respectively, where @,

Amin(Qﬁ/c(Gi)) is bounded away from zero by its definition in (8.15) and the Apin(-) condition in

FKCLR)-

33



Define

P Myip - Mlph
D} := > (MyjnDjn, ... MyjnDjn) € R¥*P, where SV = (@UC)1/2
j=1
My -+ My
(18.14)
Dy, = (Dun, ..., Dpn), and Dy, is defined in (18.13). Define
AT ~t =t —t ;
Ap = (Bpgt: Dppgt) € RMP, Apgt = hg,qf € R™' and
Al = i kex (p—q
Njpgt = hhY DRy € BP0, (18.15)
Let a(-) be the function from R%" to RFP(P+1)/2 that maps
Tty ' into (18.16)

im1 \ vech (fif)
n ~1/2
Ay = vech (n_l Zvec(Gi — Ep,Gi)vec(G; — Ep,G;) — fn§~2511~%> , where
i=1
Q, =nt Zgw{ € Rk and T, := n~? Zvec(Gi — Ep,Gy)g. € RP**F,
i=1 =1
Note that a(-) does not depend on the n=t Y"1 | f¥ part of its argument. Also, a(-) is well defined

and continuously partially differentiable at any value of its argument for which n=1 Y | f7 f# is

pd We define A, as follows:

A}, denotes the (kp)(kp + 1)/2 x d* matrix of partial derivatives of a(-)

evaluated at (0P+H1F vech(hyo,+)')', (18.17)

where the latter vector is the limit of the mean vector of (', vech (ff f')") under {\, 4 € AxcLR :
n>1}.
Define

M), :=vech;) . (AnLy) € R#*M, (18.18)

where vech,;pl, kp(-) denotes the inverse of the vech(-) operator applied to symmetric kp X kp matrices.

"The function a(-) is well defined in this case because n™' 31"  vec(Gi — Er, Gi)vec(Gs — Er, G;) — r,Q,'T,
= (~Lo QY L) n ™ SO0 i fE (Tt L) and (=T, Q51 Ik) € RPFXPHDE hag full row rank pk.
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Define

M} = (M} 4, M}, 1) = (04 31} 1) € R*™*P, where (18.19)
Mi1p Mipn
p
— — — ) 7 :
MJ;L,p—qT = Z(Mljhh4,ja "'?ijhh47j)h;p7qlr S ka(p E ), Mh = )

J=1 . _

and hy = (h4,1, ey h47p) € RFxp.
Below (in Lemma , we show that the asymptotic distribution of rk}, under sequences
{Mh € Akcrr i n > 1} with ¢" < p is given by

Vi Nl il Nl il
Th (Dh? Mh) = Arﬂin((Ah,pqu + Mh,pfqlf),h;qu’r h;iquT (Ah,pfqlf + Mh,pqu))7 (1820)
where Z;rl’pf 4t 18 @ nonrandom function of Dy, by (18.14) and (18.15) and M;[wf 4t 18 @ nonrandom

function of M), by (18.19). For sequences {Mh € Akcrr : n > 1} with ¢" = p, we show that
rkp —p Th 1= 00.
We define Ay, as in (8.17)), as follows:

Ay = (Ahg, Anp—q) € RPNy, = hay, and Ay g = h3hS,_, + h7Dphsha p—q, where

<
1,p—q
9% (P—q)
he = (hQ,qa h2,p—q)7 h3 = (hS,qa h3,qu)7 h<1>7p7q = Diag{thH, ceny hl,p} S ka(piq). (1821)
0(k—=p)x(p—q)

In the present case, hy = h;l/ % and hg = I, because the CLR,, statistic depends on ﬁn through

7g
On Y 213,1, which appears in the LM, statistic This means that Assumption WU for the parameter
space Axcorr (defined in Section holds with Wn = 651/2, ﬁn =1Ip, h7 = h;;m, and hg = Ip,.
Thus, the distribution of A, depends on Dy, ¢, and hy for s = 1,2, 3, 5.

Below (in Lemma [18.5)), we show that the asymptotic distribution of the CLR,, statistic under

%8The CLR,, statistic also depends on D, through the rank statistic.
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sequences {A, n, € Agcrr :n > 1} with q' < pis given byﬁ

o 1/ _ —— —
CLRy, := 3 <LMh+Jh—Th+\/(LMh+Jh—Th)2+4LMT’h>7 where

— - _ 1/2 -1
LM}, := 0,0 ~ X3, Up = s, g/ Gns Jh = Guhs, / Mg h5,g/ Gh ~ Xir—p and

Th := Th(Dp, Mp). (18.22)

The quantities (gj,, Dy, M) are specified in and (and (g, Dp,) are the same as in
Lemma . Conditional on Dj,, LM}, and .J, are independent and distributed as X;% and Xi_p’
respectively (see the paragraph following ) For sequences {\, € Axcrr :n > 1} with ¢f =
p, we show that the asymptotic distribution of the CLR,, statistic is CLR}, :== LM}, := T, Up ~ Xf,,
where v, := Px, hy, ;/2§h

The critical value function ¢(1 — a, r) is defined in for 0 < r < oo. For r = 0o, we define
¢(1 — a,r) to be the 1 — a quantile of the X127 distribution.

Now we state the asymptotic size of Kleibergen’s CLR test based on Robin and Smith (2000)

statistic with Vp,, defined in |'

Theorem 18.1 Let the parameter space for F be Fxcorr. Suppose the variance matrix estimator

Y7Dn employed by the rank statistic rk:Jr (defined in ) is defined by 1) Then, the asymptotic
size of Kleibergen’s CLR test based on the rank statistic rkn 18

AsySz = max{a, sup P(CLRp, > ¢(1 — a,71))}
heH

provided P(CLRy, = ¢(1 — a,T)) =0 for all h € H.

Comments: (i) The proviso in Theorem is a continuity condition on the distribution function
of CLR}, — ¢(1 — a,7) at zero. If the proviso in Theorem [18.1| does not hold, then the following

weaker conclusion holds:

AsySz (18.23)
€ [max{a, sup P(CLR), > c¢(1 — o, 7))}, max{a, sup lim P(CLR;, > c¢(1 — a,T) + x)}].

heH heH =10
(ii) Conditional on (Dy, M}), g, has a multivariate normal distribution a.s. (because (G, Dn,

M},) has a multivariate normal distribution unconditionally) The proviso in Theorem |18.1) holds
59The definitions of Ty, LM, Jn, and CLRy, in (18.22) are the same as in (9.1, (9.2)), (10.6), and (10.7)), respec-

tively.
50Note that g, is independent of Dp,.
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whenever g, has a non-zero variance matrix conditional on (Dj, M) a.s. for all h € H. This

holds because (a) P(CLRy = c(1 — a,7h)) = Ep, 37, ) P(CLR, = ¢(1 - a,7n)|Dp, M}1,) by the law

of iterated expectations, (b) some calculations show that CLR;, = c¢(1 — «,7) iff

(Tn 4+ ¢)LM}, = —cJp, + ¢ + cry, iff Y;lyh = ¢ + ¢y, where ¢ := ¢(1 — a,7) and Xp, = ((75 +
~1/2_ ~1/2_ .

Y2 (Px, hy ) *g,) M2 (M, hy 2/ ?g,)') using (18.22), (¢) Px, + Mg, = I and Px My = 08k,

and (d) conditional on (Dy, M},), Ts, ¢, and A}, are constants.

(iii) When p = 1, the formula for AsySz in Theorem reduces to a and the proviso holds

automatically. That is, Kleibergen’s CLR test has correct asymptotic size when p = 1. This holds
because when p = 1 the quantity M,Tz in equals 0P by Comment (ii) to Theorem m
below. This implies that 74 (D, M) in does not depend on M,. Given this, the proof that
P(CLRy, > ¢(1—a,7;) = a for all h € H and that the proviso holds is the same as in -
in the proof of Theorem [10.1

(iv) Theorem is proved by showing that it is a special case of Theorem below, which is
similar but applies not to ‘7Dn defined in , but to an arbitrary estimator YN/Dn (of the asymptotic
variance @ZEC(Gi) of nt/ 2U€C(ﬁn — EF,G;)) that satisfies an Assumption VD (which is stated below).
Lemma, below shows that the estimator Vpn defined in satisfies Assumption VD.

(v) A CS version of Theorem holds with the parameter space Fo xcrr in place of Fxcrr,
where Fo korr = {(F,00) : F € Fxcrr(bo),00 € ©} and Frcrr(6o) is the set Fropr defined
in with its dependence on 6y made explicit. The proof of this CS result is as outlined in
the Comment to Proposition [8.I} For the CS result, the h index and its parameter space H are as

defined above, but h also includes 0 as a subvector, and H allows this subvector to range over O.

18.3 Simulation Results

In this section, for a particular linear IV regression model, we simulate (i) the correlations

between M;& p—qt (defined in (18.19)) and g, and (ii) some asymptotic null rejection probabilities

(NRP’s) of Kleibergen’s CLR test that uses Jacobian-variance weighting and employs the Robin
and Smith (2000) rank statistic. The model has p = 2 rhs endogenous variables, kK = 5 IV’s; and

an error structure that yields simplified asymptotic formulae for some key quantities. The model is
Y1 = Y2/190 4+ u; and Ys; = 7T,Zi + Vai, (1824)

where y1;,u; € R, Yo;, Vo, = (‘/gli,‘/gzi),,e € Rz, Z; = (Zil,...,Zig,)/ € R5, and T € R?*2. We
take Zij ~ N(OE), (05)2) for j = 1,...,5, U; ~ N(O, 1), Vli ~ N(O, 1), and ‘/21 == qugh The

random variables Z;1, ..., Z;5, u;, and Vy; are taken to be mutually independent. We take m =
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mn = (e1,eaen™'/?), where e; = (1,0,...,0) € R® and ey = (0,1,0,...,0) € R®. We consider 26
values of the constant ¢ lying between 0 and 60.1 (viz., 0.0,0.1,...,1.0,1.1,...,10.1,20.1, ...,60.1),
as well as 707.1, 1414.2, and 1,000, 000. Given these definitions, h1; = 00, h12 = ¢, and MIL =

(0°, 31}, ,_ 1) € B2, see (18.19).

In this model, we have g; = —Z;u; and G; = —Z,;Y;,. The specified error distribution leads to
ErG;g: = 0"k In consequence, the matrix CIJZQC(Gi) (defined in ), which is the asymptotic

variance of the Jacobian-variance matrix estimator Vpy, (defined in ([5.3))), simplifies as follows:

(I)Zec(Gi) = lim Varp, (vec(D; — Ep, Di)vec(D; — Ep, D;)')
= lim Varp, (vec(G; — Ep,G;)vec(G; — Ep,G;)') , where (18.25)
D; := (G —T1rQ5'gi,Gio — T2rQ%'g;) , Tjp = ErGijg, for j = 1,2, and Qp = Epgg,.

In addition, in the present model, G;; and G;3 are uncorrelated, where G; = (G;1,Gi2). In con-

sequence, @Zec(ai) is block diagonal. In turn, this implies that lim My, := (@Zec(ci))_l/ 2 is block

diagonal with off-diagonal block lim MjaF, = 055,

The quantities h; j for j =1,...,5 (defined just below ) are not available in closed form,
so we simulate them using a very large value of n, viz., n = 2,000, 000. We use 4, 000, 000 simulation
repetitions to compute the correlations between the jth elements of M};p_ g and gy forj=1,....5
and the asymptotic NRP’s of the CLR test@ The data-dependent critical values for the test are
computed using a look-up table that gives the critical values for each fixed value r of the rank
statistic in a grid from 0 to 100 with a step size of .005. These critical values are computed using
4,000,000 simulation repetitions.

Results are obtained for each of the 29 values of ¢ listed above. The simulated correlations

between the jth elements of Mihpqu and g, for j = 1,...,5 take the following values
—.33, —.38, —.38, —.38, and — .38 (18.26)

for all values of ¢ < 60.1. For ¢ = 707.1, the correlations are —.32, —.36, —.36, —.36, and —.36.
For ¢ = 1414.2, the correlations are —.24, —.27, —.27, —.27, and —.27. For ¢ = 1,000,000, the
correlations are —.01, —.01, —.01, —.01, and —.01. These results corroborate the findings given
in Theorem that M;ypf . and gy, are correlated asymptotically in some models under some
sequences of distributions. In consequence, it is not possible to show the Jacobian-variance weighted

CLR test has correct asymptotic size via a conditioning argument that relies on the independence

61The correlations between the jth and kth elements of these vectors for j # k are zero by analytic calculation.
Hence, they are not reported here.
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of Z};p_qf + Mgp_qf and g,,.

Next, we report the asymptotic NRP results for Kleibergen’s CLR test that uses Jacobian-
variance weighting and the Robin and Smith (2000) rank statistic. The asymptotic NRP’s are
found to be between 4.95% and 5.01% for the 29 values of ¢ considered. These values are very
close to the nominal size of 5.00%. Whether the difference is due to simulation noise or not is

not clear. The simulation standard error based on the formula 100 * (a(1 — a)/reps)'/?

, Where
reps = 4,000,000 is the number of simulation repetitions, is .01. However, this formula does not
take into account simulation error from the computation of the critical values.

We conclude that, for the model and error distribution considered, the asymptotic NRP’s of the
Kleibergen’s CLR test with Jacobian-variance weighting is equal to, or very close to, its nominal size.
This occurs even though there are non-negligible correlations between M};’pf . and g,. Whether
this occurs for all parameters and distributions in the linear IV model, and whether it occurs in

other moment condition model, is an open question. It appears to be a question that can only be

answered on a case by case basis.

18.4 Asymptotic Size of Kleibergen’s CLR Test for General Vbn Estimators

In this section, we determine the asymptotic size of Kleibergen’s CLR test (defined in Section
using the Robin and Smith (2000) rank statistic based on a general “Jacobian-variance” estimator
Von (= Vin (0p)) that satisfies the following Assumption VD.

The first two results of this section, viz., Lemma and Theorem combine to establish
Theorem see Comment (i) to Theorem [18.3] The first and last results of this section, viz.,
Lemma [18.2] and Theorem [18.6] combine to prove Theorem [18.1

The proofs of the results in this section are given in Section [18.6

Assumption VD: For any sequence {)\n,h € Agcrr : n > 1}, the estimator XN/Dn is such that
nl/z(ﬂn — Mg,) —4 My, for some random matrix M, € RFPXEP - (where ]T/fn = 175;/2 and Mp, is

defined in ([18.6))), the convergence is joint with

An q h kapk
n1/2 9 .y In ~ N [ o+Dk 5,9 o . (18.27)
vec(Dy, — EF,G;) vec(Dy,) ophxk @yt

and (gy,, Dp, M1,) has a mean zero multivariate normal distribution with pd variance matrix. The
same condition holds for any subsequence {w,} and any sequence {\,, € Axcrr : n > 1} with

wy, in place of n throughout.

Note that the convergence in ((18.27]) holds by Lemma
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The following lemma verifies Assumption VD for the estimator Y~/Dn defined in 1)

Lemma 18.2 The estimator ‘~/Dn defined in lb satisfies Assumption VD. Specifically,
172G, Dn— B, Gi, My — Mp,) =4 (G Di, My), where M, = ‘75;/2, My, = (‘PEC(GZ'))AM, and
(Gp, D, M}p,) has a mean zero multivariate normal distribution defined by (18.11) and (18.13)-
(18.18) with pd variance matrizx.

Comment: As stated in the paragraph containing (|18.21)), D, is defined in Lemma and
Theorem below with W, = Q,"/? and U, = I,.
Define

ST = Diag{(nl/QT];Fn)_l, s (n1/2T;Fn)_1, 1,..,1} € RP*? and T := Bl ST, (18.28)

where B} is defined in 1D

The asymptotic distribution of nt/ 213ILT71 is given in the following theorem.

Theorem 18.3 Suppose Assumption VD holds. For all sequences {\,, € Axcrr : n > 1},
n1/2(§n,ﬁn — EpnGi,]jLT;{) —yq (gh,ﬁh,ﬂl —&—M;), where Z}; is a nonrandom affine function of
Dy, defined in and , M}; is a nonrandom linear (i.e., affine and homogeneous of
degree one) function of M), defined in , (Gn, Dn, M1,) has a mean zero multivariate normal
distribution, and g, and Dy, are independent. Under all subsequences {wy,} and all sequences

{Awn,h € AxkcLr : > 1}, the same result holds with n replaced with wy,.

Comments: (i) Note that the random variables (g, ZE,M}:) in Theorem 5.1 have a multivariate
normal distribution whose mean and variance matrix depend on lim Varg, ((f,vec (ff f;")') and
on the limits of certain functions of Er G; by —. This, Lemma and Theorem
[18.3] combine to prove Theorem [5.1] of AG1.

(ii) From , M;FL = 0%*P if p = 1 (because ¢! = 0 implies ¢ = 0 which, in turn, implies
hs = 0F and ¢f = 1 implies M};,p_qf has no columns) For p > 2, M;& = 05*P if p = ¢t (because
M;f%p_ gt has no columns) or if hy; = 0% for all j < p. The former holds if the singular values
(T1F, s TpF,) Of D}n satisfy ’/Ll/2’7'an — oo for all j < p (i.e., all parameters are strongly or
semi-strongly identified). The latter occurs if Er, G; — 0F*P (i.e., all parameters are either weakly

identified in the standard sense or semi-strongly identified). These two condition fail to hold when

52Note that ¢ = 0 implies ¢ = 0 when p = 1 because nl/gD}" = n'Y2Mp, Er,G; = O(1) when ¢ = 0 (by the
definition of qT) and this implies that n1/2EF” G; = O(1) using the first condition in Fxcrr. In turn, the latter
implies that nl/zﬂ;i/QEFn G; = O(1) using the last condition in F. That is, ¢ = 0 (since Wr = 9;1/2 and Up = I
because I//.V\n = fl;l/Q and ﬁn = I, in the present case, see the Comment to Lemma .
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one or more parameters are strongly identified and one or more parameters are weakly identified
or jointly weakly identified.
(iii) For example, when p = 2 the conditions in Comment (ii) (under which ML = 0F*P) fail to

hold if Er, Gy # 0% does not depend on n and nl/QEFnGig — ¢ for some ¢ € RF.

The following lemma establishes the asymptotic distribution of rk;ﬂ.

Lemma 18.4 Let the parameter space for F' be Fropr- Suppose the variance matriz estimator
Y7Dn employed by the rank statistic rk,]; (defined in 1D satisfies Assumption VD. Then, under
all sequences { A\, € Axcrr :n > 1},

(a) rkf == R, —p 00 if ¢ = p,

(b) rki = 7%;” —q 11 (Dy, M) if ¢* < p, where ry(Dy, My,) is defined in (18.20) using (18.19)
with M}, defined in Assumption VD (rather than in (18.18))),
(c) Rl —p 00 for all j < ¢,

jn

J(rq“rl)n)l/2
(//%;Lm)lﬂ)', converges in distribution to the (ordered) p — q' vector of the singular values of
hl,,,quf (ZTI:L,pqu —i—ML’pqu) € RUk=aNx =" yhere M;,pﬂﬁ is defined in ((18.19) with M}, defined

in Assumption VD (rather than in (18.18)),
(e) the convergence in parts (a)-(d) holds jointly with the convergence in Theorem and

(d) the (ordered) vector of the smallest p — q' singular values of n'/2D}, i.e., (R

g eeey

(f) under all subsequences {wy} and all sequences {\,, n € Axcrr :n > 1}, parts (a)-(e) hold

with n replaced with wy,.

The following lemma gives the joint asymptotic distribution of CLR,, and rk;& and the asymp-
totic null rejection probabilities of Kleibergen’s CLR test.

Lemma 18.5 Let the parameter space for F' be Fropr- Suppose the variance matriz estimator
Von employed by the rank statistic rk:l: (defined in 1) satisfies Assumption VD. Then, under

all sequences { A\, € Axcrr :n > 1},

(a) CLR,, = LM, + 0p(1) —q XIZ, and rk}: —p 00 if ¢ =p,

(b) nan;o P(CLR, > c¢(1 —a,rk})) = a if ' = p,

(¢) (CLR,,rk})) —4 (CLRy,7) if ¢' < p, and

(d) nan;O P(CLR, > ¢(1 — a,rk})) = P(CLRy, > ¢(1 — a, 7)) if ¢' < p, provided

P(CLRh = C(l - Oz,?h)) =0.

Under all subsequences {wy} and all sequences {\y,, n € AxcrLr > 1}, parts (a)-(d) hold with n

replaced with w,,.
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Comments: (i) The CLR critical value function ¢(1 — «,r) is the 1 — a quantile of clr(r). By

definition,

1
clr(r) = 5 (xf, + X — T+ \/(xf, +xi, )%+ 4X§,r) : (18.29)

where the chi-square random variables Xz% and X%_p are independent. If 7, := rh(ﬁh,ﬂh) does not
depend on My}, then, conditional on Dy, 7, is a constant and LM, and Jj, are independent and

distributed as X]% and X%_p (see the paragraph following ) In this case, even when ¢' = p,
P(CLRh > C(l — a,?h)) = EﬁhP(CLRh > C(l - Oé,?h)|ﬁh) = «, (1830)

as desired, where the first equality holds by the law of iterated expectations and the second equality
holds because 7, is a constant conditional on Dj, and ¢(1l — a,7p) is the 1 — « quantile of the
conditional distribution of clr(7},) given Dy, which equals that of CLRy, given Dy,

(ii) However, when 7 := r,(Dp, M}) depends on M, the distribution of 7, conditional on
Dy, is not a pointmass distribution. Rather, conditional on Dy, 7, is a random variable that is not
independent of LM}, Jp,, and CLR},. In consequence, the second equality in (18.30)) does not hold
and the asymptotic null rejection probability of Kleibergen’s CLR test may be larger or smaller
than a depending upon the sequence {\, 5 € Agxcrr:n > 1} (or {A\y, n € AkcrLr :n > 1}) when

qT<p.

Next, we use Lemma [I8.5] to provide an expression for the asymptotic size of Kleibergen’s CLR
test based on the Robin and Smith (2000) rank statistic with Jacobian-variance weighting.

Theorem 18.6 Let the parameter space for F' be Fxcorr. Suppose the variance matrix estimator
Y~/Dn employed by the rank statistic rk}; (defined in |i satisfies Assumption VD. Then, the
asymptotic size of Kleibergen’s CLR test based on Tki;rl 18

AsySz = max{a, sup P(CLRy, > ¢(1 — a,71))}
heH

provided P(CLRy, = ¢(1 — a,T)) =0 for all h € H.

Comments: (i) Comment (i) to Theorem also applies to Theorem [18.6]

(ii) Theorem and Lemma combine to prove Theorem [18.1]
(iii) A CS version of Theorem holds with the parameter space Fg kcrr in place of Fxcrr,

see Comment (v) to Theorem and the Comment to Proposition
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18.5 Correct Asymptotic Size of Equally-Weighted CLR Tests
Based on the Robin-Smith Rank Statistic

In this subsection, we consider equally-weighted CLR tests, a special case of which is considered
in Section [6] By definition, an equally-weighted CLR test is a CLR test that is based on a 7k,
statistic that depends on lA)n only through Wnﬁn for some general k x k weighting matrix Wn
We show that such tests have correct asymptotic size when they are based on the rank statistic
of Robin and Smith (2000) and employ a general weight matrix W, € RF** that satisfies certain
conditions. In contrast, the results in Section |§| consider the specific weight matrix (AZ,; /2 ¢ phxk,
The reason for considering these tests in this section is that the asymptotic results can be obtained
as a relatively simple by-product of the results in Section[I8:4] All that is required is a slight change
in Assumption VD.

The rank statistic that we consider here is
rk} = Amin(n.D W/ WynDy). (18.31)

We replace Assumption VD in Section [I8:4] by the following assumption.

Assumption W: For any sequence {\,, € Axcrr : n > 1}, the random k x k weight matrix
W, is such that nl/ Q(Wn — W}n) —q W, for some non-random k x k matrices {W}n :n > 1} and
some random k x k matrix W, € RF*k W}n — VV;Lr for some nonrandom pd k x k matrix W;{, the
convergence is joint with the convergence in , and (g,, D, W) has a mean zero multivariate
normal distribution with pd variance matrix. The same condition holds for any subsequence {w;, }
and any sequence {\y, » € Axcrr :n > 1} with w, in place of n throughout.

~—1/2

If one takes Mn =Vp, ) =1L ® Wn in Assumption VD, then D} = Wnﬁn and the rank

statistics in (18.3) and (18.31) are the same. Thus, Assumption W is analogous to Assumption

VD with Mn =1,® Wn and Mp, = I, ® W;fﬂn. Note, however, that the latter matrix does not
typically satisfy the condition in Assumption VD that Mg, is defined in , i.e., the condition
that Mg, = (@EC(Gi))_l/Q. Nevertheless, the results in Section |18.4] hold with Assumption VD
replaced by Assumption W and with Mp = I, ® W};, DL = W}EFGi, and My, = I, ® Wp. With
these changes, 5;2 = W;{ﬁh in {) (because (@Zec(ci))_l/ 2 is replaced by Ip®W;£ ), Z}; is defined
as in ([18.15) with 5;2 as just given, and M;& is defined as in (|18.19)) with M27p_qf = WhhzlhT

2,p—q""
Below we show the key result that M}:,p_qf = 0k*(P=4") for rk) defined in (18.31). By ([18.20)),
this implies that
SNV A~ AT
71 (Diy M) = Amin (B i)'l bl (B, 1) (18.32)
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when ¢' < p. Note that the rhs in does not depend on M, and, hence, is a function only
of Dy. That is, r,(Dy, M) = 74(D},). Given that r,(Dy,, M},) does not depend on M), Comment
(i) to Lemma implies that P(CLRy, > ¢(1 — a,73)) = « under all subsequences {wy,} and all
sequences {Ay, » € Axcrr : n > 1}. This and Theorem m give the following result.

Corollary 18.7 Let the parameter space for F be Fxcrr. Suppose the rank statistic rkz;@ (defined
n ) is based on a weight matrix Wn that satisfies Assumption W. Then, the asymptotic size
of the corresponding equally-weighted version of Kleibergen’s CLR test (defined in Section |5| with
rkn(0) = T‘k?;rl) equals a.

Comment: A CS version of Corollary holds with the parameter space Feo xcrr in place of
FrcrLr, see Comment (v) to Theorem and the Comment to Proposition
Now, we establish that M27p_qf (= Whh4h;p_qf) = 0F*(P=4") We have

Wihy :=lm W} Ep,G; =limC}, Th Bl =nilimY} A, (18.33)

where C}n T}n (B}n)’ is the singular value decomposition of W}nEFnGi, T}n is the k x p matrix
with the singular values of W}HEFH G, denoted by {T;f g, im > 1} for j < p, on the main diagonal
and zeroes elsewhere, and C}n and B}n are the corresponding k£ x k£ and p X p orthogonal matrices
of singular vectors, as defined in . Hence, lim TL exists, call it T;rl, and equals h§/h4h£. That

is, the singular value decomposition of W;: hy is
Wihy = hiTIRY. (18.34)

The k x p matrix TL has the limits of the singular values of W;Ln Er G; on its main diagonal and

zeroes elsewhere. Let T}: j for j < p denote the limits of these singular values. By the definition of

q', T;rw. =0forj=q"+1,..,p (because nl/QT;Fn — hJ{J < 00). In consequence, TL can be written

as
i 0d" x(p—a")
T et haqT 'i‘ e . T T
T, ol—ahxat gl x(—ah) |’ where T}WJr : Dzag{Th’l,...,ThgT}, (18.35)
In addition,
t (p—gt
04" x(p—q")
DI : (18.36)
-
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Thus, we have

71- N _ N _
M,y gt 2= Wa(WH ' Wihabl = Wuwh=pixfnlnl
o ol 04" x(p—q") AR D)
= WLW))~hl hp—qt
otk—a"xq"  ((k—q")x(p—q") I, g
= kx(p—ah) (18.37)

where the first equality holds by the paragraph following Assumption W and uses the condition in
Assumption W that Wg is pd and the second equality holds by d18.35l) and (118.36[). This completes

the proof of Corollary

18.6 Proofs of Results Stated in Sections [18.2 and [18.4]

For notational simplicity, the proofs in this section are for the sequence {n}, rather than a

subsequence {wy, : n > 1}. The same proofs hold for any subsequence {w,, : n > 1}.

Proof of Theorem [18.1} Theorem follows from Theorem [18.6, which imposes Assumption
VD, and Lemma which verifies Assumption VD when Vp,, is defined by {i 0

Proof of Lemma Consider any sequence {\,, € Axcrr : n > 1}. By the CLT result in
(18.11), the linear expansion of n*/2(D,, — Ep G;) in (14.1), and the definitions of g, and Dy, in

(18.13)), we have
“1/2(§n, ﬁn — Er,Gi) —a (Gn> Dh)- (18.38)

Next, we apply the delta method to the CLT result in (18.11]) and the function a(-) defined in
(18.16). The mean component in the lhs quantity in (18.11)) is (0PTV* vech(Er, fi f;')')’. We have

op+1)k
vech(Eg, fF )

. A —1/2
= vech <<Epnvec(Gi — Eg,G)vec(G; — Ep, G;) — F%iC(G“)QEFEC(Gl)) >
3\ —1/2
= vech <<(I>1;LC(GZ)> ) = vech(Mp,), (18.39)
where I‘;ic(Gi) and Qp, are defined in 1’ the first equality uses the definitions of a(-) and f;*
(given in (|18.16|) and 1) respectively), the second equality holds by the definition of @%f(Gi)

in (8.15), and the third equality holds by the definition of Mp, in (18.6). Also, Eg, fFf —
hio g+ and hyg g« is pd. Hence, a(-) is well defined and continuously partially differentiable at
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lim 0PV vech(Eg, f f')) = (0P*D* wvech(hyg p+)"), as required for the application of the
delta method.
The delta method gives

n f'* 0(p+1)k
n1/2(An —vech(Mp,)) = nt/2alnt Z ‘ —a
=1 \ vech (fFf) vech(EFr, f i)
ey AT, (18.40)

where the first equality holds by and the definitions of a(-) and A,, in , the convergence
holds by the delta method using the CLT result in and the definition of A, following .

Applying the inverse vech(-) operator, namely, vech,;; kp("); to both sides of gives the
reconfigured convergence result

nl/Q(vech,;;kp(An)) — Mpg,) —q vech,;;kp(ﬁhfh) = My, (18.41)

where the last equality holds by the definition of M} in ((18.18)).
The convergence results in ((18.38)) and (({18.41]) hold jointly because both rely on the convergence

result in ([18.11]).

We show below that

n!? (Vg — (vechy) ., (An)) %) = 0p(1). (18.42)

This and the delta method applied again (using the function £(A) = A='/2 for a pd kp x kp matrix
A) give
n2 (V% —vechi L, (An)) = 0p(1) (18.43)

because vech;;kp(An) = (@Zec(Gi))_l/erop(l) and @Zec(Gi) is pd (because hyg, ¢+ is pd and @Zec(Gi) =

Qhio,-Q’ for some full row rank matrix Q). Equations (18.38)), (18.41)), and (18.43|) establish the

result of the lemma.
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Now we prove (|18.42f). We have

n

‘7]3” =nt Z vec(G vec(G — @n)/ — an 1?;

=1

= (n_l Z vec(G; — Ep, Gi)vec(G; — EFnGi)'> - (Uec(@n — Ep, G;)vec(Gy, — Ep, Gi)')

(T~ veel@u — B, G)5,) (B~ 30dh) (T~ vec(Gr — Er, G)d)’

=n! Z vec(G; — Ep, G;)vec(G; — Eg,G;)' — fn?z;lf; + Op(n_l), (18.44)
i=1

where the second equality holds by subtracting and adding Fr,G; and some algebra, by the defi-
nitions of Q and Fn in ., and ( , and by the definitions of Q and Fn in and
the third equality holds because (i) the second summand on the lhs of the third equality is O ( D)
because n'/2vec(G, — Ep, Gi) = Op(1) (by the CLT using the moment conditions in F, defined in
1) and (ii) n'/2g, = O,(1) (by Lemma ), n'2vec(G, — Ep,G;) = Op(1), and T, = Op(1),
ﬁgl = 0,(1), T, = Op(1), and Q= Op(1) (by the justification given for )

Excluding the O,(n~!) term, the rhs in equals (vechkplkp(A ))~2. Hence, holds

and the proof is complete. [J

Proof of Theorem m The proof is similar to that of Lemma in Section |§| with W, =
Wy, = I, ﬁn = U, = I, and the following quantities ¢, ﬁn, D,, (= EFf,G;), Bng, Tng, Cn, and

Y,, replaced by ¢, ]_A);fl, D}, (= D} ), Bf

gt TL gt CIL, and TL, respectively. The proof employs the

notational simplifications in (13.1). We can write

piB! (et )t =DiB! (0! 7t +n'2(Df - DH)B! ('Yl )7 (18.45)

n,qt Y T nyg n,qt N " n,gf ,

By the singular value decomposition, D;rl = CZTLBJLI. Thus, we obtain

I
t pt T tt pt’ Bt to\=1 _ ~tet qt -1
D} B! qf(TWT) = CYI BY BMT(TW) =CIrh Qo TWT)
I+
pr T q = T
Ccl (ke Cmqf. (18.46)
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Let D, = (ﬁln, ...,f)pn) € R¥*? and Dy, = (Dyp, cey Dpp) € REXP_We have

p
n'/2(D}, = D}) = n'?) " (MyjuDjn — Myjr, Ep, Gij, oy MpjnDjn — My, Er, Gij)

j=1
P P —~ P
= Y [Myjun'?(Djn — Er,Gyj) + n'/*(Myjn — Mijr, ) Ep,Gij, ..,
j=1
Myjun'/*(Djn = Er, Gij) +n'*(Myjn — My, ) Er, Gyl
p
—d Z(Mlthjh + Myjnhaj, ..., MpipDjp + ijhh47j), (18.47)
j=1

where the convergence holds by Lemma in Section 8} Assumption VD, and Er,G;j — hy j (by
the definition of hy ;).

Combining (|18.45))-(18.47)) gives

A - Nl
piB! L (xh )Tt =Cl 4 o,(1) = Bl =B (18.48)
where the equality uses nl/QT}Fn — oo for all j < ¢f by the definition of ¢f and B;L’qTanqf = Iy,

the convergence holds by the definition of h; gt and the last equality holds by the definition of
A i in (18.15).

Using the singular value decomposition D} = C’;&TILBJL’ again, we obtain

12t gt 1201yt gt gt 1/2 ot 07" x(p=a)
n Dan’p_qJr =n/°C\Y] B Bn,p—q’r =n/°C}\T]
Ipqi
0a' x(p—a") 0a" x(p—a")
_ I . _ plpte
=l | w2t ot | Dzag{hqu R A S 9 G (18.49)
k=) x(p—q") k=) x(p—q")

where the second equality uses BI'BI = I, the convergence holds by the definitions of h;ﬂ) and hL j
for j = 1,...,p, and the last equality holds by the definition of hiop,qf in the paragraph following

(18.10]), which uses (8.17)).

t T
By (18.47)) and Bn’pqur — h2,p7

+, we have
q

= -t e
n'2(Df = DI)BY _  —a Dyhl A M, (18.50)

T
h,p—qt

using the definitions of ﬁL and M in (18.14)) and (|18.19)), respectively.
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Using (|18.49) and ((18.50)), we get

n'/?DiB! . =n'2DIB! 4 n'(D] DT)BJLP ”

T ~t
—q h};hlfp_qf + thgp a4+ M, =8+ M, . (1851)
where the last equality holds by the definition of Ah p—gt 10 ([18.15)).

Equations ([18.48)) and (18.51]) combine to give

n'?DIT! = n'?D}BlSE = (DiB! (X! )7 e'?DiB! )

n nql‘

(Ath’AILP gt +Mhp gt) = Zh +M1TL (18.52)

using the definitions of S}, and T}l in , Z;{l in , and HJ}[L in .

By Lemma (G, lA)n—EFn G;) —a (Gn, Dp). This convergence is joint with that in
because the latter just relies on the convergence of n'/ 2(13” — EF,G;), which is part of the former,
and of n!/ Q(Mn — Mp,) —q M}, which holds jointly with the former by Assumption VD. This
establishes the convergence result of Theorem

The independence of g;, and (Eh,ZL) follows from the independence of g, and Dj,, which holds
by Lemma and the fact that ZIL is a nonrandom function of Dj,. OJ

Proof of Lemma The proof of Lemma [18.4]is analogous to the proof of Theorem with
W, =W, = I, U, = U, = I,,, and the following quantities ¢, Dy, Dy, (= Er, G), Rjn> Bns Bn.g,
Sn: Sngs 7jF,» and hs g xeplaced by qf, D}, D} (= D}, ), &, BL, B! . sh. st ol and nd
respectively. Theorem rather than Lemma is employed to obtaln the results in ([16.37)).
In consequence, Zh’q and Zh’p_q are replaced by ZL gt +ML, ot and ZL p—gt +M,T1 p—qt respectively,

where ZIWT + M,Tz ZL gt (because ML,qT ;= Qkxd' by (18.19)). The quantities Ay, and Ay,

at =

are replaced by szqf and Zz,p_qf + MIW_QT in (16.37) and in the rest of the proof of Theorem
Note that (|16.39)) holds with hs3, replaced by h;qT because ZZ,qT = h;qT by (18.15)) (just as
Zhyq = h3 ). Because (/}n = U,,, the matrices /Tn and Aj, for j =1,2,3 (defined in (]@D) are all
zero matrices, which simplifies the expressions in — considerably.

The proof of Theorem uses Lemma, to obtain . Hence, an analogue of Lemma

16.1}is needed, where the changes listed in the first paragraph of this proof are made and hg ; and

C), are replaced by hg,j and C«;r“ respectively. In addition, Fyy is replaced by Fxorr (because
Freorr C Fwu for dwy sufficiently small and My sufficiently large using the facts that FoNFyr
equals Fy for dywy sufficiently small and My sufficiently large by the argument following
and Frorpr C Fo by the argument following ) Because Un = U,, the matrices A\jn for
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j=1,2,3 (deﬁned in 1’ are all zero matrices, which simplifies the expressions in m
considerably. For to go through with the changes listed above (in particular, with Wn, Dn,

D,,, and U, replaced by I, EIL, D;Q, and I, respectively), we need to show that
n'2(DI — DI) = 0,(1). (18.53)

By (5.4) with 8 = 6y (and with the dependence of various quantities on 6y suppressed for

notational simplicity), we have

P Mlln ]/\len
BL = Z Mlgn Jns ---,ijnﬁjn), where ]/\\4/” = = ]755/2 ERkPXkP' (18.54)
- Mpln Mppn
By (18.6)), we have
p
= Z(MlanDjm ey Mg, D) (18.55)
j=1

using Dy, = (Din, ..., Dpy), and Dy, := Ep,G;j for j =1,...,p

For s =1,...,p, we have

~

n'*(MjnDjn — Myjp, Djn) = Myjun?(Djn — Djn) + 1/ (Mgjn — Myjp, ) Djn = Op(1), (18.56)

where nl/Q(]jjn —Dj,) = Op(1) (by Lemma 1/2( sin — Msjp,) = Op(1) (because nl/Q(]W -
Mp,) —q M}y, by Assumption VD), My;p, = O( ) (because Mp = ((I)%QC(G"))—V? @vec( ) defined
in satisfies ?C(G) = Varrp(vec(G;) — FvFec(Gi)legi) = [~ Epvec(Gy)giQ5" : Li|Varp(f),
and Amin(Varp(fF)) > 62 by the definition of Fxcrp in ), and Dj, = O(1) (by the moment
conditions in F, defined in (3.1))).

Hence,

P
n'2(D} - D}) = > n*[(MijnDjn, ey MyjnDjn) = (M, Djns ooy Mpjie, Djn)] = Op(1). (18.57)
j=1
This completes the proof of the analogue of Lemma which completes the proof of parts (a)-(d)
of Lemma [18.4]
For part (e) of Lemmal[18.4] the results of parts (a)-(d) hold jointly with those in Theorem [18.3]
rather than those in Lemma m because Theorem is used to obtain the results in ,
rather than Lemma [8.3] This completes the proof. [
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Proof of Lemma The proof of parts (a) and (b) is the same as the proof of Theorem [10.1]
for the case where Assumption R(a) holds (which states that rk, —, co) using Lemma [18.4fa),
which shows that rk:;r1 —q 00 if ¢ = p.

The proofs of parts (c) and (d) are the same as in (10.5))-(10.9) in the proof of Theorem for
the case where Assumption R(b) holds, using Theorem and Lemma[18.4|(b) in place of Lemma
with 7,(Dp, M},) (defined in (18.20)) in place of ,,(Dy), and for part (d), with the proviso
that P(CLRy, = ¢(1 — o, 7)) = 0. (The proof in Theorem that P(CLRy, = ¢(1 — a,73)) = 0
does not go through in the present case because 7, = 74(Dp, M},) is not necessarily a constant
conditional on D, and alternatively, conditional on (Dy, M},), LMj, and J, are not necessarily
independent and distributed as XZ and Xzfp-) Note that does not necessarily hold in the

present case, because 75, = 74 (D}, M}) is not necessarily a constant conditional on Dj,. OJ

The proof of Theorem [18.6] given below uses Corollary 2.1(a) of ACG, which is stated below as
Proposition It is a generic asymptotic size result. Unlike Proposition above, Proposition
applies when the asymptotic size is not necessarily equal to the nominal size «. Let {¢,, : n > 1}
be a sequence of tests of some null hypothesis whose null distributions are indexed by a parameter
A with parameter space A. Let RP,(\) denote the null rejection probability of ¢, under \. For
a finite nonnegative integer J, let {h,(A) = (h1n(N), ..., hyn(N)) € R’ : n > 1} be a sequence of
functions on A. Define H as in .

For a sequence of scalar constants {Cy, : n > 1}, let C;, — [C} 0, C2,00] denote that Cq o <

liminf,, o €, <limsup,,_, . Cpn < 02 0.

Assumption B: For any subsequence {w,} of {n} and any sequence {\,,, € A:n > 1} for which
haw, (Aw, ) — h € H, RP,,, (A, ) — [RP~(h), RP*(h)] for some RP~(h), RP*(h) € [0,1].

Proposition 18.8 (ACG, Corollary 2.1(a)) Under Assumption B, the tests {¢,, : n > 1} have
AsySz :=limsupsupycp RP,()\) € [supyey RP~(h),suppc g RPT(h)].

Comments: (i) Corollary 2.1(a) of ACG is stated for confidence sets, rather than tests. But,
following Comment 4 to Theorem 2.1 of ACG, with suitable adjustments (as in Proposition m
above) it applies to tests as well.

(ii) Under Assumption B, if RP~(h) = RP*(h) for all h € H, then AsySz = sup,cyg RP(h).
We use this to prove Theorem m The result of Proposition for the case where RP~(h) #
RP™(h) for some h € H is used when proving Comment (i) to Theorem and the Comment to
Theorem

Proof of Theorem Theorem follows from Lemma and Proposition because
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Lemma verifies Assumption B with RP~(h) = RP*(h) = a when ¢' = p and with RP~(h) =
RP*(h) = P(CLRy, > ¢(1 — a,7)) when ¢f < p. O

19 Proof of Theorem [7.1]

Theorem of AG1. Suppose the LM test, the CLR test with moment-variance weighting,
and when p = 1 the CLR test with Jacobian-variance weighting are defined as in this section,
the parameter space for F'is Frggo for the first two tests and Frs jvwp=1 for the third test, and
Assumption V holds. Then, these tests have asymptotic sizes equal to their nominal size o € (0, 1)
and are asymptotically similar (in a uniform sense). Analogous results hold for the corresponding

CS’s for the parameter spaces Forso and Fo rs,jvwp=1-

The proof of Theorem [7.1]is analogous to that of Theorems and In the time series
case, for tests, we define A = (A p,..., \gr) and {\, , : n > 1} as in and (8.11]), respectively,
but with A5 r defined differently than in the i.i.d. case. (For CS’s in the time series case, we make

the adjustments outlined in the Comment to Proposition ) We deﬁn@

/

w . .
As.p = Vi = Z Ep i Ji—m

(19.1)
Moo vec(G; — ErG) vec(Gi—m — ErGi—p)

In consequence, A5 f,, — hs implies that Vi, — hs and the condition in Assumption V holds with
V = hs.
The proof of Theorem [7.1] uses the CLT given in the following lemma.

Lemma 19.1 Let f; := (g.,vec(G;)"). We have: wy S (fi — Eg, i) —a N(OPTVF he) under

all subsequences {wy,} and all sequences { Ay, p : 1 > 1}.

Proof of Theorem The proof is the same as the proofs of Theorems and (given
in Sections |§|, and respectively, in the Appendix to AG1) and the proofs of Lemmas
and and Theorem (given in Sections and [16] in this Supplemental Material), upon
which the former proofs rely, for the i.i.d. case with some modifications. The modifications affect
the proofs of Lemmas [8.2] and and the proof of Theorem No modifications are needed
elsewhere.

The first modification is the change in the definition of A5 p described in (19.1)).

3 The difference in the definitions of A5 r in the i.i.d. and time series cases reflects the difference in the definitions
of E}EC(G"') in these two cases. See the footnote at 1' above regarding the latter.
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The second modification is that @n = ﬁn(ﬁg) —p hsg not by the WLLN but by Assumption
V and the definition of Qn(ﬂ) in . In the time series case, by definition, A5 r := VF, so
hs :=lim A5 g, = lim VE,. By definition, hs 4 is the upper left £ x k submatrix of hs and QF is the
upper left £ x k£ submatrix of Vz by and . Hence, hs 4 = lim QF,. By the definition of
Frs, Amin(QF) > 0 VF € Frg. Hence, hs 4 is pd.

Let hs5 a4 be the k x k submatrix of hs that corresponds to the submatrix fjn(ﬁ) of V,,(6) in
for j = 1,...,p. The third modification is that fjn = fjn(eo) = hs,g;g +0p(1) in in
the proof of Lemma (rather than fjn = FEp,Gijg; + 0p(1)) for j = 1,...,p and this holds by
Assumption V and the definition of fjn(O) in 1' (rather than by the WLLN).

We write
hsy K. h5.dag
57 .
hs = 9709 ) for b, € RO hs gy = : € RP¥Fand hs g € RPFXPE,
hsGg  hsa
hB,Gpg

(19.2)

The fourth modification is that VDn in 1} in the proof of T heorem is defined as described
in Section @ rather than as in . In addition, Y~/Dn —p h7 in holds with h7 = hsq —
h57Gg(h5,g)_1h’57Gg by Assumption V, rather than by the WLLN.

The fifth modification is the use of a WLLN and CLT for triangular arrays of strong mixing
random vectors, rather than i.i.d. random vectors, for the quantities in the proof of Lemma 8.2 and
elsewhere. For the WLLN, we use Example 4 of Andrews (1988), which shows that for a strong
mixing row-wise-stationary triangular array {W; : i < n} we have n =1 Y- (£&(W;) — Eg, £(W;)) —p
0 for any real-valued function {(-) (that may depend on n) for which sup,,>, EF,||{(W, DI < oo
for some § > 0. For the CLT, we use Lemma as follows. The joint convergence of n'/2g, and
nt/ 2(lA?n — Er,G;) in the proof of Lemma is obtained from , modified by the second and

third modifications above, and the following result:

1/2 Iy OfxPk 1/2 -
Y Z - Ep,¢(Wi)) = . n 2N "(fi — Ep, f;)
—hs,aghsg Ik i=1
—4 N(O(p'H)k, Ly,), where
; I Okka ;
C(Wi) = )= Lo g . (19.3)
vec(Gy) — h57Ggh57ggi —h5,Ggh5’g Iy, vec(Gy)

fi = (¢, vec(G;)"), and the convergence holds by Lemma Using (19.2)), the variance matrix
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Ly, in (19.3)) takes the form:

Ly = I, OF>ph hsg  hsGy I, *hg,;h/&Gg
5 _
—hs,GghB,; Lok, hscg  hsc Vi Lok
oo o\ (g, oot hag O
_ X vee(G) = vee(Gi) , Where
—hscohsg Ik hs.gg ®p oPEE @, T
Gy -
Ul _ o hs,ghs LS G- (19.4)

Equations (modified as described above), (19.3)), and (19.4) combine to give the result of
Lemma [R.2] for the time series case.

The sixth modification occurs in the proof of Lemma [8.3((d) in Section [15|in this Supplemental
Material. In the time series case, the proof goes through as is, except that the calculations in
are not needed because X% (and, hence, U as well) is defined with its underlying components

re-centered at their means (which is needed to ensure that X3! is a convergent sum). The latter
. . c Q. 2GiBp, -
implies that lim \I/%ff(Gl) = @ZEC(GZ) automatically holds and lim \IJU;C( Frok=a™"Fn Frp=ate) _

n
—1/2
vec(hly j,_ s s 2Giha p—qg€s)

¢, (which, in the i.i.d. case, is proved in ((15.13]).
This completes the proof of Theorem O

Proof of Lemma For notational simplicity, we prove the result for the sequence {n} rather
than a subsequence {w, : n > 1}. The same proof applies for any subsequence. By the Crameér-
Wold device, it suffices to prove the result with f; — Fg, f; and hs replaced by s(W;) =V (fi— EFr, fi)

and b'hsb, respectively, for arbitrary b € R®+V5 First, we show
lim Varg, <n1/2 > S(Wi)) = b'hsb, (19.5)
i=1

where by assumption \s g, = > oo Ep, s(W;)s(W;_,,) — hs. By change of variables, we have

n n—1 n—1
-1/ N . W [ . .
Varg, <n Zs(WJ) = Y Covp,(s(Wi),s(Wiem))— > —Covr, (s(Wi), s(Wi-m))-
=1 m=—n-+1 m=—n+1
(19.6)
This gives
Varg, (“ 1/223(Wz)> — b X550
=1
- - I
<2 |[Covp, (s(Wo), sWicn))l| + > ——||Covp, (s(Wa), s(Wiew))||.  (19.7)
m=n m=—n+1



By a standard strong mixing covariance inequality, e.g., see Davidson (1994, p. 212),

sup ||Covp(s(W;), s(Wi—m))|| < C’la}/(%w (m) < C’1C7/(2+7)m7d7/(2+7), where dvy/(2+7v) > 1,
FE]'—TS

(19.8)
for some C7 < oo, where the second inequality uses the definition of Frg in . In consequence,
both terms on the rhs of converge to zero. This and b'As g, b — b'hsb establish (| .

When b'hsb = 0, we have lim,, o Varg, (n=Y2 3", s(W;)) = 0, which implies that n=1/2 37",
s(W;) —q N(0,b'hsb) = 0. When b'hsb > 0, we can assume o2 = Varg, (n" /230" s(W;)) > ¢
for some ¢ > 0 Vn > 1 without loss of generality. We apply the triangular array CLT in Corollary
1 of de Jong (1997) with (using de Jong’s notation) 8 = v = 0, ¢ := n~ Y201, and X,y :=
n~125(W;)o, 1. Now we verify conditions (a)-(c) of Assumption 2 of de Jong (1997). Condition (a)
holds automatically. Condition (b) holds because c,; > 0 and Eg, | Xpi/cni|*™ = Eg, |s(W;)]?T7 <
2||b||?*YM < oo VF,, € Frs. Condition (c) holds by taking V,; = X,; (where V,; is the random
variable that appears in the definition of near epoch dependence in Definition 2 of de Jong (1997)),
dn; = 0, and using ar, (m) < Cm~?% VF, € Frg for d > (2+7)/v and C < co. By Corollary 1 of
de Jong (1997), we have X,,; —4 N(0,1). This and give

71/22 W;) —q N(0,0'hsb), (19.9)

as desired. OJ
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