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This supplement contains auxiliary results and proofs of the results in Section 5 of the main
text, as well as tables of the critical values, descriptions of some of the details of our Monte Carlo
study, and additional Monte Carlo simulations.

The following additional notation, which is also used in the appendix in the main text,
is used throughout this supplement. For a sample {Z;} , and a function f on the sample
space, E,f(Z;) = 1Y, f(Z;) denotes the sample mean, and G,f(Z;) = /n(E, — E)f(Z;) =
VnlEnf(Z;) — Ef(Z;)] denotes the empirical process. We use ¢V ' and t A t' to denote element-

wise maximum and minimum, respectively. We use ¢, to denote the kth basis vector in Euclidean

space (where the dimension of the space is clear from context).

S1 Auxiliary Results

This section contains auxiliary results that are used in the proof of Theorem 3.1 in Appendix A
of the main text, and in the proofs of the results from Section 5 of the main text given later in

this supplement.

*email: timothy.armstrong@yale.edu
femail: mkolesar@princeton.edu

S1



S1.1 Tail Bounds for Empirical Processes

We state some tail bounds based on an inequality of Talagrand (1996) and other empirical process
results. Throughout this section, we consider a class of functions G on the sample space R%* with
an iid sample of random variables Zy, ..., Z,. We assume throughout that G has a polynomial
covering number in the sense that, for some B,W, N1(4,Q,G) < Be W for all finitely discrete

probability measures Q, where Nj is defined in, e.g., Pollard (1984), p. 25.

Lemma S1.1. Let G be a subset of G such that, for some envelope function G and constant g, |¢(Z;)| <
G(Z;) < gas. forall g € G. Then, for some constant K that depends only on G,

1 t2
P |su Gn Zi ZK EGZZ‘2 t §Kex - =
(Qg’ sl 2y ES )H) p( KE[G(L-)Z]+g{ﬁ[c<zz->2]+t}/ﬁ)

Proof. We apply a result of Talagrand (1996) as stated in equation (3) of Massart (2000). The
quantity v from that version of the bound is, in our setting, given by v = Esup s Y;'1(8(Zi) —
Eg(Z;))? which, as shown in Massart (2000) (p.882), is bounded by n sup,.g E{[g(Zi) — Eg(Z))*} +
328Esup e Yi1(8(Zi) — Eg(Zi)] (see also Klein and Rio, 2005). By Theorem 2.14.1 in van der
Vaart and Wellner (1996),

Esup Y [g(Z) — Eg(Z)] < vaks\[EIG(Z)2 (1)

geg i=1

for a constant K; that depends only on G. Combined with the fact that E{[¢(Z;) — Eg(Z;)]*} <
E[G(Z;)?], this gives the bound

v < nE[G(Z;)?] + 328K1v/n\/ E[G(Z))]%.
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Applying the bound from equation (3) of Massart (2000) with these quantities gives

p <\/ﬁsup Gug(Z;) > Kyv/ny\/E[G(Z))* + r)

g€g

<P (ﬁsup Gng(Zi) = Esup i[g(Zl-) — Eg(Z)] + r)
g€g geg i=1

1,.2
SKZQXP( Ko nE[G(Z;)?] + 328K1v/n E[G<Zi)]2+gr>

where the first inequality follows from (1). Substituting r = \/nt gives

P (squng(Zi) > K11/ E[G(Z)]> + t)

€6

1 a
< Kaexp <_K2 E[G(Z)?] + 323K, E[G(Zi)]Z/\/ﬁ—th/\/E)

which gives the result after noting that replacing K; on the left hand side as well as K, and
32K; K> on the right hand side with a larger constant K decreases the left hand side and increases

the right hand side, and applying a symmetric bound to inf s G, 8(Z;). O

The above lemma gives good bounds for ¢ just larger than \/E[G(Z;)]?, so long as \/E[G(Z;)]?/v/n

is small relative to E[G(Z;)]? (i.e. so long as E[G(Z;)]?n is large). We now state a version of this

result that is specialized to this case.

Lemma S1.2. Let G be a subset of G such that, for some envelope function G and constant g, |¢(Z;)| <
G(Z;) < gas. forall g € G. Then, for some constant K that depends only on G,

P (sup 1Gng(Zi)| > ﬁ“) < Kexp <_Eli>

3€G
forall V> E[G(Z;)?] and a > 0 witha +1 < \/V/n/3.

Proof. Substituting t = rV1/2 into the bound from Lemma S1.1 gives, letting K; be the constant
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K from that lemma,

1 Vv
P Gug(Z)| > (Ky +7)V/? | <K (— )
<?€1§’ n8(Zi)| = (Ki+7) ) =MEP\ TR Vg (V2 vy
For g(1+7) < /nV1/2, this is bounded by Kj exp (—%) Setting a = Kj + r and noting that
Ki exp (—%) < Kpexp (—1‘1(—22) for a large enough constant K, (and that g(1+a) < \/nV1/2
implies g(1 +a — K1) < /nV1/2) gives the result. O

S1.2 Tail Bounds for Kernel Estimators

We specialize some of the results of Section S1.1 to our setting. We are interested in functions of
the form g(x,w) = f(w, h,t)k(x/h), where h varies over positive real numbers and f varies over
some index set T.

We assume throughout the section that k(x) is a bounded kernel function with support
[—A, A], with k(x) < By < oo for all k. We also assume that X; is a real valued random vari-

able with with a density fx(x) with fx(x) < fy < coall x.

Lemma S1.3. Suppose that {(x,w) — f(w,h,t)k(x/h)|0 < h < h,t € T} is contained in some larger
class G with polynomial covering number, and that, for some constant By, | f(W;, h, t)k(X;/h)| < By for
all h < hand t € T with probability one. Then, for some constant K that depends only on G,

1/251/271/2 a?

P sup |Gnf(W;, h, t)k(X;/h)| > aBfAV fyh < Kexp(——)

-~ K
0<h<hteT

foralla >0witha+1 < Al/zfi/zﬁl/znl/z.

Proof. The result follows from Lemma S1.2, since BfI(|X;| < Ah) is an envelope function for

f(Wi, h, t)k(X;/h) as h and t vary over this set. O

Lemma S1.4. Suppose that the conditions of Lemma S1.3 hold, and let a(h) = 2,/Kloglog(1/h) where
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K is the constant from Lemma S1.3. Then, for a constant ¢ > 0 that depends only on K, A and f,

p (\an(Wi, h,Hk(X;/h)| > a(h)hl/zBfAl/zj‘;/2 some (loglogn)/(en) <h < h,te T>

< K(log2) 2 ) k2.

(2h)~1<2F<eo

Proof. Let H* = (2-+1),2-), Applying Lemma S1.3 to this set, we have

p <|Gn FOWi, b, k(X /)| > a(h) /2B AY2F? some h e HE, t € T)

<p ( sup  [Guf (Wi, b, k(X;/h)| > a(2 k)2 (k0/2B AL/2F ) 2)
0<h<2kteT
—k\n—1/272
< Kexp <—[[1(2)KZ]> = Kexp <—210g10g2k) = Kexp (—2log(klog2)) = K[klogZ]*2

so long as 271/23(27%) +1 < A1/2f2/22_k/2n1/2, where the first inequality follows since a(h) >
a(27%) and 1 > 2=+ for h € HE.
Note that 2-1/2(27%) +1 < AV2F/227%/201/2 will hold iff. [2-1/2a(27%) +1]2K/2 < AV2FY/*u1/2,

If 28 < en/loglogn for some & > 0, we will have a(27%) < 2,/Kloglog[en/loglogn], so that

[271/2(27K) - 1]2K/2 < {271/2. 2, /Kloglog[en/ loglog n] + 1}+/en/ loglog n. For large enough
n, this is bounded by 4v/Ken, which is less than A/ 2]71(/2111/ 2 for & small enough as required.

Thus, for e defined above,

P <|Gn FOWi, 1, k(X /)| > a(h)h/2B,AVZFY some (loglogn)/(en) <h <T, t € T)

< Y P( Sup G f (W, EK(X; /) za<z-’<>2—<k+”/ZBfA”Zfi{z)
(2h)~1<2k<2en/ loglogn 0<h<2kteT
< K(log2)™ ) k2,

(2h)~1<2k<2en/ loglogn
which gives the result. O

Using these bounds, we obtain the following uniform bound on G, f(W;, h, t)k(X;/h).
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Lemma S1.5. Under the conditions of Lemma S1.4,

|Guf (Wi, h, k(X /)|

(loglogh=1)1/2172" Or(1)

Sup
(loglogn)/(en)<h<hteT

Proof. Given & > 0, we can apply Lemma S1.4 to find a § > 0 such that

sup Guf (Wi, h, t)k(Xi/h)|

< 2v2KB;AVZF /[
(loglogn)/(en)<h<s,teT (loglog h—1)1/2h1/2 / fX

with probability at least 1 — K(log2) 2 Y_(26)1<2k<co k=2 > 1 — ¢/2. For this choice of J,

|G f (Wi, h, t)k(X;/h)|

(loglog h=1)1/2h1/2" Or(1)

sup
S<h<hteT

by Lemma S1.3. Thus, choosing C large enough so that C > 2v/2KB fAl/ 2?;/2 and

G W b DK/ _
(loglogh—1)1/2p1/2 =

sup
S<h<hteT

_ |G f (Wi,h,t)k(Xi/h)| <
loglogn)/(en)<h<hteT (loglogh=1)1/2x1/2 =

with probability at least 1 — /2 asymptotically, we have sup,
C with probability at least 1 — e asymptotically. O

S$1.3 Gaussian Approximation

This section proves Theorem A.2 in Appendix A.4, which gives a Gaussian process approximation
for the process IF,, (1) defined in that section.

For convenience, we repeat the setup here. We show that ﬁGnYik(Xi /h) = ﬁ Y Yik(X;/h)
is approximated by a Gaussian process with the same covariance kernel. We consider a general
setup with {(X;, Y;)}", iid, with X; > 0 a.s. such that X; has a density f5(x) on [0,%] for some
X > 0, with f¢(x) bounded away from zero and infinity on this set. We assume that Y; is bounded
almost surely, with E(Y;|X;) = 0 and var(Y;|X; = x) = fg(x)~!. We assume that the kernel func-
tion k has finite support [0, A] and is differentiable on its support with bounded derivative. For

ease of notation, we assume in this section that [ k(u)*du = 1. The result applies to our setup

with Y; given in (11) in Section A of the appendix in the main text and X; given by |X;|.
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Let

Theorem A.2. Under the conditions above, there exists, for each n, a process H,(h) such that,

conditional on (Xj, ..., X,), H, is a Gaussian process with covariance kernel

cov (Hy(h), H, (h")) k(x/h)k(x/h'") dx

F

and

sup [I,(h) ~ Hy(h)| = Op ((nlt,) " *llog(ni,)]'/?)
h,<h<x/A

for any sequence h, with nh, /loglogh,’ — .
We now prove the result. Let G(x) = 1 Y% <x Yi. With this notation, we can write the process

I, (h) as

A

H, (h) =

Vik(X:/h) = \\/fZ /k(x/h) a6 (x).

Let §(x) =  Xg <, fx(Xi) ™" In Lemma S1.6 below, a process B, (t) is constructed that is a Brow-
nian motion conditional on Xj, ..., X, such that B, (ng(x)) is, with high probability conditional
on Xj,..., Xy, close to nG(x). By showing that ¢(x) is close to x with high probability and using
properties of the fluctuation of the Brownian motion, it is then shown that B, (ng(x)) can be ap-
proximated by B, (nx), so that IF1,, () is approximated by the corresponding process with G(x)
replaced by B, (nx)/n.

Formally, let B, (t) be given by the (conditional) Brownian motion in Lemma S1.6 below, and

define

H, (h

r/kx/h dB,, ().

Note that H, (h) = ﬁ [ k(x/h)dB,(x) (where B, (x) = B,(nx)//n is another Brownian motion

conditional on Xj, .. .,Xn), so that, conditional on (Xl, .. ,Xn), H, is a Gaussian process with
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the desired covariance kernel.

Let Ry ,(x) = nG(x) — B, (ng(x)) and Ry, (x) = B, (ng(x)) — B, (nx). Then

FL () — F, (1) = —— [ K(x/B) Ry (3 [ ey dRo, ().

~ Vah W

Using the integration by parts formula, we have, for j = 1,2 and Ah <X,

R, (AWk(A) 1 b
Vil nk e

/k (x/h) dR;,(x) = (x )k’(x/h)%dx

Vnh

|R;n(Al)|K(A)
Vnh

A '
ﬁ (O;‘CJSPM ‘R]}n (x)|> (0?:24 ‘k (1) ‘)

(see Bickel and Rosenblatt, 1973, for a similar derivation). By boundedness of k’(u), it follows

The first term is bounded by , and the second term is bounded by

that both terms are bounded by a constant times \/% SUP(<x< Al IR (x)],

sup ‘]I:I”(h) _Hn(h)} <K sup ZZ; sup M < KZ sup ‘Rj,n(x)| '
I, <h<%/A h,<h<x/A = 0<x<An  Vnh Ho<esz /n[(x/A) V]
[Ryn(¥)]

and

for some constant K. Thus, the result will follow if we can show that sup,_,_+ i
== n(xVh,

SUP)< <% n(/ ) converge to zero at the required rate.
“n

‘Rln )

v/ n(xVh,)

with this construction, using an approximation of Sakhanenko. Let Fy(x) = 1y, I(X; < x) be

We first construct B, () and show that supy_, - 1%, 4

converges to zero quickly enough

the empirical cdf of X;, and let f((k) be the kth smallest value of X;.

Lemma S1.6. Under the conditions of Theorem A.2, one can construct variables Zy, . . ., Z,, with Z;| (f(l, s, Xn) ~

N(O,fx(Xf)fl) such that

d

with probability one, where €(K) is a deterministic function with e(K) — 0 as K — oo.

> Klog [nﬁg(x) +2] some 0 <x<%X

Y Zi— ) Y

Xi<x Xi<x

Xl,.‘ .,Xn) S S(K)

Proof. Using a result of Sakhanenko (1985) as stated in Theorem A of Shao (1995), we can con-
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struct Z4,...,7Z, such that

Eexp | AA sup Zi — Y
0<x<X( |Xi<x Xi<x

where A is a universal constant and A is any constant such that AE[exp(A|Y;|)|Y;]%|X;] < E[Y?|X/].

Let Y be a bound for Y;. Then AE[exp(A]Y;])]Y;]?|Xi] < Aexp(AY)YE]|Y;|?|X;], so the inequality

holds for any A with A exp(AY)Y < 1. From now on, we fix A > 0 so that this inequality holds.
Letting /. be a lower bound for fg(x) over 0 < x < X and applying Markov’s inequality, the

above bound gives

P ()\A sup Zl — Y| >t

0<x<X < X;<x

<exp(—t)Eexp [ AA sup

~
o
IN
=
IA
><

Xy, .. .,f(n) <exp(—t)(1+ }Uj;k).

Thus,
n ~ ~ ~
P Zi— Yi| > Klog | Y I(X; < x)+2| some0<x <% Xy,..., X,
X:SX X,SX i=1
<P sup Zi — Y; >K10gksome2§k§nX1,...,Xn
OSXSX(k) Xi<x X;<x
< ZP AA  sup Zi — Y; ZAAKlogk‘Xl,...,Xn
k=2 0<x<X() X;<x X;<x

n [ee)
<Y MR AfR) < Y MRS ),
k=2 B k=2 a

which can be made arbitrarily small by making K large.

O]

Embedding } x -, Z; in a Brownian motion, we can restate the above construction as follows:
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with probability at least 1 — K(¢) conditional on Xj, ..., X,

A

[nG(x) — Bu(ng(x))| < Klog[nFg(x) +2]all0 < x <X

where B, (t) = B, (t; Xy,...,X,) is a Brownian motion conditional on Xj,...,X,. Let fg be an

upper bound for the density of X; on [0, X].

Lemma S1.7. Under the conditions of Theorem A.2, for any n > 0,

Fy(x) < fx- (1+n)(x V1)
forall 0 < x < X with probability approaching one.
Proof. By Lemma S1.5,

wap VAR “F

hngxl:;y Vxloglog x—1

Thus,

|Fg(x) — Fx(x)| “u Vn|Fx(x) = Fg(x)| \/xloglog x~T

sup =

h,<x<x X hngx};y xloglogx~! Vnx
o ( loglog x‘l) 0 ( loglog i, 1)
P _— = P -

= Op(l)

sup
h<x<x o VX nh

n

where the last step follows since nh,/loglogh,’ — co. Thus, for any # > 0, we have, with
probability approaching one,

F}?(x) < Af((xvhn) < Pf((JC\/hn)—F(ﬂfx)(X\/hn) S?f{ (1+77)(x\/hn)

for all x. O
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Combining these two lemmas, we have, for large enough 7,

lim sup P <|né(x) — B, (ng(x))| > Klog [ang(x Vh,) —|—2} some 0 < x < f)

< ¢(K) +limnsupP (ﬁX(x) > fg2(x vhn)) < ¢(K).

Since this can be made arbitrarily small by making K large, it follows that

sup

nG() ~Balng()| _ (L 1B 2V 2]\ fogum,)
o<z V/n(xVhy) ’ ’ ’

sup
0<x<x n(x v hn) nhn
which gives the required rate for Ry ,(x).

Define the function LL(x) = loglog x for loglogx > 1 and LL(x) = 1 otherwise. Given K, let
B, (K) be the event that

[ng(x) —nx| < K\/n(x Vh,)LL(x/h,) all0 < x <X,

and let C,(K) be the event that

[B() — Bu(t)] < Ky/(I# — £ V1) -log(t v # vV2) all 0 < t,# < oo,

Lemma S1.8. On the event B, (K) N C,(K), for large enough n,

[Rou(x)]
n(xVh,)

< K¥2(nh,)"/* - {log2 + log[nh, ] }'/?

< K[n(x V h,)]7H{LL(x/ ) }* - {log 2 + log[n(x V h,) ]}/

forall0 < x <Xx.
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Proof. On this event, for all 0 < x < X and large enough ,

|Rou(x)] = [Bu(ng(x)) — Bu(nx)| < sup By (t) — By(nx)|
|t—nx|<K+y/n(xVh,)LL(x/h,)

< sup K/ (|t —nx| V1) -log[t v (nx) v 2]
|t—nx|<K+/n(xVh,)LL(x/h,)

< K\/K\/n(x V h,)LL(x/h,) -log[2n(x V h,)]

= K*2n" 4 (x v by ) VH{LL(x /R, ) Y - {log 2 + log[n(x V b, )] }1/2.

O]

Lemma S1.9. Under the conditions of Theorem A.2, for any € > 0, there exists a K such that P(B,(K)) >

1 — ¢ for large enough n.

Proof. Let X* = (2Fh,,,2"+1h,] N [0,%]. We have, for k > 2,

p <|n (x) —nx| > K\/n(x\/hn)LL(x/hn) some x € Xk>

2

2 k 2
< Cexp (—I<Lé(2)> < Cexp (—Iéloglog(Zk)) = C[klogZ]’%

for some constant C by Lemma S1.3. Thus,

p (|n§(x) — nx| > K\/n(x\/hn)LL(x/hn) some 4h, < x < x> <C Z[klogZ]_Kz/C
k=2

which can be made arbitrarily small by making K large. Note also that

p <|ng(x) —nx| > K\/n(x V h,)LL(x/h,) some 0 < x < 4hn>

<P ( sup |G.f(X) (X < x)| > K\/E) p

0<x<4h,
which can also be made arbitrarily small by choosing K large by Lemma S1.3. Combining these
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bounds gives the result. ]

Lemma S1.10. Under the conditions of Theorem A.2, for any e > 0, there exists a K such that P(C,(K)| Xy, ..., X,) >
1 — & with probability one for all n.

Proof. We have

— P(Cu(K)| Xy, ..., X)) P(‘]Bn(t/)—IBn(l‘)‘>K\/(|f—t/|\/1)-log(t\/t/\/Z) someOSt,t’<oo>

J(E+5) = By(8)] > Ky/(s V1) -log[(t +5) v 2] some 0 < 5, < oo>

f
<%

i <|]Bnt+s — By, (t) \>K\/s\/1 log[(t+s)v2]some(st)eSkg)

where Sy p = {(s,t)[{ <s <{+1,({V1)k<t<(£V1)(k+1)}. Note that

p <|]Bn(t—i—s) —B,(t)] > K\/(s V1) -log[(t+s) V2] some (s,t) € Sk,g>

<P (]IBn(t+s) — B, ()] > K\/(é\/ 1) -log{[(¢V 1)k + ¢] V 2} some (s,t) € Sk/(>

=P <]IBn(t+s) — B, ()] > K\/(E\/ 1) -log{[(¢V 1)k + ¢] v 2} some (s,t) € S(),g>

IN

p <11Bn(t)| > (K/z)\/(ﬁvl) log{[(/V1)k+¢]V2} some0 <t < (€v1)+€+1>

VAN

4P (\Bn((ﬁvl) +0+1) > (K/Z)\/(£v1).1og{[(£v1)k+e] vz})
2 ‘1o
<4 exp <_§(K/2) (v 1) lg{[(ﬁvl)kw]vz})

V2 (Ev1)+0+1
< 4. \/;77-( - exp (_ (K/2)210g{[(€6v 1)k+£] \/2}> =4. \/12771' . {[(f\/l)k—f—f] \/2}71(2/24.

The third line follows since B, (t) has the same distribution as B, (f + (¢ V 1)k). The fourth line
follows since, if |B,(t +s) — B, (t)| > C for some C and (s, t) € Sy ¢, we must have |B,(t)| > C/2
for some 0 < t < (¢ V 1)+ £+ 1. The fifth line follows from the reflection principle for the
Brownian motion (see Theorem 2.21 in Morters and Peres, 2010). The sixth line uses the fact that

P(Z>x) < \/%exp(—xz/Z) forx >1and Z ~ N(0,1).
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Thus,

P <}IBn(t’) —Bu(t)] > K\/(\t —#|V1)-log(tVt V1) some0 <t t < oo)

o0 o0 1 5
4. — L[V 1Dk+ ¢ —K%/24
skgwgo T {[(ev1)k+£]v2}

This can be made arbitrarily small by making K large.

O]

Theorem A.2 now follows since, for any constant ¢ > 0, there is a constant K such that
SUP, <j<z/A [, (h) — H, (k)] is less than K{(lognh,)(nh,) "/ + (nh,)~'/*[log(nh,)]"/*} with
probability at least 1 — ¢ asymptotically.

S1.4 Calculations for Extreme Value Limit

This section provides the calculations for the asymptotic distribution derived in Theorem A.3 in
Section A.5 of the appendix.

As described in the proof of Theorem A.3, we use Theorem 12.3.5 of Leadbetter, Lindgren,
and Rootzen (1983) applied to the process X(t) = H(e), which is stationary, with, in the case

where k(A) # 0, a = 1 and C = f‘zlgi‘)?;u and, in the case where k(A) = 0, « =2 and C =

f[k/(u)u—&-%k(u)du]zdu
2 [k(u)?du

In the notation of that theorem, we have

et [ k(uet)k(u) du

r(t) = cov (X(s),X(s + 1)) = J k(u)? du

Since r(t) is bounded by a constant times ezt . ¢!, the condition r(f) logt Z$° 0 holds, so it
remains to verify that r(t) = 1 — C|t|* 4+ o(|t|*) with « and C given above.
Since k(ue')k(u) has a continuous derivative with respect to t on its support, which is [—Ae™!, Ae™]

for t > 0, it follows by Leibniz’s rule that, & [ k(ue')k(u)du = —2Aetk(A)k(Ae™") + [ K (uet)k(u)ue' du
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for t > 0, (here, we also use symmetry of k). Thus, for t > 0,

d e2t A - J k(ue)k(u) du + %e%tfk(uet)k(u)du
Er(t) - fk(u)2 du
_ et [—2Ae tk(A)k(Ae™) + [ K (uet)k(u)ue du] + Lezt [ k(ue')k(u) du
B [ k(u)?du '
Thus,
d —2Ak(A? + [K (w)k(u)udu+ 3 [k(u)>du  —Ak(A)?

r(t)

[ [ k(u)2du [ k(u)2du

where the last step follows by noting that, applying integration by parts with k(u)u playing the
part of u and k' (u)du playing the part of dv,

/k WK ()udu = | /k u) + K (u)u] du
:2k(A2A—/ku du—/kuk’u)udu
so that [ k(u)k'(u)udu = k(A)?A — % [k(u)?du. For the case where k(A) # 0, it follows from
this and a symmetric argument for t < 0 that 7(t) =1 — C|t| —o(|t]) for C = TR da (A) — as required.

For the case where k(A) = 0, applying Leibniz’s rule as above shows that r(¢ ) is d1fferentiable

with,
r(t) = oyt K (uek(u)ue' du + 5 [ k(ue')k(u) du
[ k(u)2du '
Thus, 7'(0) = 0 (using the integration by parts identity above) and r(t) is twice differentiable
with
r(t) = b S K (uek(uyue! du + 36 [k(ue)k(u)du 1 1 [ K (ue')e(u)ue' du+ 5 [ k(ue')k(u) du
J k(u)? du 2 [ k(u)?du '
We have

/k'ue uedu——/k' “tdo
dt

= /k’ v)k'(ve ) (—ve™") ve‘tdv—/k’ v)k(ve Hve ' do
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and 4 [ k(ue')k(u)du = [ k'(ue')k(u)ue' du, so this gives

(1) =ebt [ K (0)K (ue™")uPe 2 du — 5 [ K (ue')k(u)ue' du

[ k(u) Zdu
N le%tfk’(uet)k(u)uet du + 3 fk(uet)k(u)du.
2 S k(u)?du
Thus,
y — [[K'(w)u)>du+ L [ k(u)?du
o) - ZLKCOE b e

Since, by the integration by parts argument above, § [k(u)?du = 3 [k(u)?du — § [k(u)?du =
— [ k(u)k'(w)udu — L [ k(u)?du, this is equal to

— [IK (w)u)?* du — [ k(u)k'(u)udu — % [ k(u)*du [ [k (uw)u + %k(u)}z du

[ k(u)?du o J k(u)?du

which gives the required expansion with C given by one half of the negative of the above display

and o« = 2.

S1.5 Delta Method

We state some results that allow us to obtain influence function representations with the necessary
uniform rate for differentiable functions of estimators. These results amount to applying the delta
method to our setting and keeping track of the uniform rates.

Let B(h) be an estimator of a parameter (1) € R% with influence function representation

Y 5 (Wi, IK(Xi/B) + Run(h)

Vil(Bn) = pl) = Y-

for some function ¢ and a kernel function k, where ¢g(W;, h)k(X;/h) has mean zero and

supy, <y<p IRy, (h)| = op(1/4/loglogh,"). Let g be a function from R% to R% and consider
the parameter 6(h) = g(B(h)) and the estimator 8() = g(B(h)).
Let V(h) be an estimate of Vg(h) = +Eyg(W;, h)pg(W;, h)'k(X;/h)?, the (pointwise in h)
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asymptotic variance of (h). A natural estimator of the asymptotic variance Vy(I) of 8 is

Lemma S1.11. Suppose that B(h) is bounded uniformly over h < h,, where h, = O(1) and

(i) For large enough n, g is differentiable on an open set containing the range of B(h) over h < hy, with

Lipschitz continuous derivative Dy.

(ii) g and k are bounded, k has finite support, and the class of functions (w, x) ~— g(w, h)k(x/h) has

polynomial uniform covering number.
(iii) | X;| has a bounded density on [0, hy] for large enough n.

Then, if nh,,/ (loglogn)® — oo,

sup_|V/h(0(01) —0(0) ~ —— éDg<ﬁ<h>>¢ﬁ<wi,h>k<xi/h>' — o (1 / \/1ogloghn1) .

h,<h<h,

If, in addition, sup, .5 | Vg(h) — Vg(h)|| 50, then, for some constant K and some Ry, (h) with

SUpPy, <n<h, \/ﬁmmz(hﬂ = Op(1),

A

Vo(h) — Vo(h)|| <K

Vg(h) = Vg(h)|| + Ru2(h)

for all h,, < h < hy, with probability approaching one.
Proof. By a first order Taylor expansion, we have, for some * (k) with ||*(h) — B(h)| < ||B(h) —
B,
Vnh(8(h) = 6(h)) = Vnh(g(B(h)) — g(B(h))) = VnhDg(p" ())(
1 n
= Dg(ﬁ*(h))ﬁ l; Yp(Wi, m)k(Xi/h) + Dg(B* (1)) Ry, (h)

o~y
~
=
S—
|
=
—~
=
S—
S—

1 & 1 &

= o L DB (Wi, k(X /) + (DB () = Dy (B} 3 (W h)k(Xi/ 1)
+ Dy (1) R ()
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Applying Lemma A.2, (k) — B(h) is Op(y/loglogh~—1/+/nh) uniformly over h, < h < h, and
\/%Z?:l (Wi, h)k(X;/h) is Op(y/loglogh~1) uniformly over h, < h < hy. so that, by the
Lipschitz condition on Dy, the second term is Op(loglogh~!/+/nh) uniformly over h, < h < Ny,

which is 0p(1/4/loglogh, ') uniformly over h, < h < h, since \/nh,/(loglogh,)/? — co. The
last term is op(1//loglogh, h uniformly over i, < h < h, by the conditions on Ry ,(h), the
uniform consistency of B(h) and the Lipschitz condition on Ds.

For the second claim, note that

N A

Vo — Vo = Dy (B()) Vs (h)Dg(B(h))" — Dg(B(1))Vs(h) Dg(B(h))’
= [Dg(B(h)) — Dg(B(h))]Vs(h)Dg(B())" + Dg(B(1))[Vp(h) — V(h)| Dg(B(h))’
+ Dg(B(h))Vp(h)[Dg(B()) — Dg(B(h))]"

The first and last terms converge at a /loglogh~1/+/nh rate uniformly over h, < h < h, by
Lemma A.2 and the Lipschitz continuity on Ds. The second term is bounded by a constant times
[Vg(h) — Vg(h)|| uniformly over i, < h < h with probability approaching one by the uniform
consistency of B(h) and the Lipschitz continuity of Ds.

S1.6 Sufficient Conditions Based on Non-normalized Influence Function

In some cases, it will be easier to verify the conditions for an influence function approximation
to v/nh(A(h) — 6(h)) rather than the normalized version v/nh(8(h) — 6(h))/(h). The following

lemma is useful in these cases.
Lemma S1.12. Suppose that the following conditions hold for some {(W;, h).
(i) EY(W;, h)k(X;/h) = 0 and k is bounded and symmetric with finite support [—A, A].

(ii) |Xi| has a density fix| with fix(0) > 0, (Wi, h)k(X;/h) is bounded uniformly over h < h,
and, for some deterministic function ¢(h) with £(h)loglogh™! — 0as h — 0, the following ex-
pressions are bounded by £(t): |fix|(t) — fix (0)], |E[B(W;, 0)||Xi| = ] — E[$(W,, 0)[|X = 0] |,
foar [§(W;, 0)l|Xi] = £] — var [B(W,, 0)[1X;] = 0] | and | (F(W;, ) — (W;, 0)k(X;/h).
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Let o2(h) = foar(p(W;, h)k(X;/h)) for b > 0and 02(0) = var [§(W;,0)||X;] = 0] fx(0) [om o k(u)* du.
Let (Wi, h) = §(W;, h) /o (h) so that Toar[p(W;, h)k(X;/h)] = 1. Suppose that var [{(W;,0)||X;| = 0] >
0. Then the above assumptions hold with { replaced by ¥ for h small enough and with ((t) possibly rede-
fined.

Proof. First, note that the only condition we need to verify is the one involving |[y(W;, k) — ¢(W;,0)]k(X;/h)],
since the remaining conditions are only changed by multiplication by a constant when 1 is re-

placed by y. Note that

2(h) — %var(t/?(wi,o)k(xi /h)) = %var(t/?(wi,h)k(X,- /h)) — %var(tﬁ(wi,o)k(Xi /i)

= coar{[(Wi, h) — (W, 0) KX/ 1)} + 2 oot (W, h) — (W, O)K(X/B), (Wi, O)k(Xi/ 1) ).

Since |(P(W;, h) — Pp(W;, 0))k(X;/h)| < £(h)I(|X;] < Ah) and $(W;, h)k(X;/h) and P(W;, 0)k(X;/h)
are bounded, the last two terms are bounded by a constant times ¢(h)#EI(|X;| < Ah), which is
bounded by a constant times ¢(/) by the assumption on the density of |X;|.

Thus, let us consider
1 ~
5 0ar (Wi, 0)k(Xi/ h))

o0

- % o (WL 0)IXi] = 2] k(x/h)2f ) (x) dx + %var {E [(W;, 0)||Xi[] k(X:/h)} .

Arguing as in the proof of Lemma A.6 (using the fact that E¢)(W;, h)k(X;/h) = 0 and taking
limits), it can be seen that E [()(W;,0)||X;| = 0] = 0 under these conditions. Thus, the last term is
bounded by ¢(Ah)?*}Ek(X;/h)?*. The first term is equal to var [{(W;, 0)|| X;| = 0] fix(0) [i~ o k(u)* du
plus a term that is bounded by a constant times ¢(Ah).

It follows that, letting ¢*(0) = wvar [$(W;,0)||X;| = 0] fx(0) [ k(u)?du as defined above,

u=0
we have, for some constant K, |0%(h) — ¢%(0)| < K¢(Ah). Thus,

[ (Wi, h) — (W, 0)]k(X;/h)|

< 0(10) |[§(Wi, ) — (Wi, 0)]k(X; /)| + (Wi, h)k(Xi /1) - ‘0 _ ' '

The first term is bounded by a constant times ¢(/) by assumption. The last term is bounded by a
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constant times |¢?(h) — ¢%(0)|, which is bounded by a constant times ¢(Ah) as shown above. [J

S2 Local polynomial estimators: regression discontinuity/estimation

at the boundary

This section gives primitive conditions for smooth functions of estimates based on local polyno-
mial estimates at the boundary, or at a discontinuity in the regression function. The results are
used in Section S3 below to verify the conditions of Theorem 3.1 for the applications in Section
5 in the main text. Throughout this section, we consider a setup with {(X;, Y/)'}", iid with X;
a real valued random variable and Y; taking values in R . We consider smooth functions of the
left and right hand limits of the regression function at a point, which we normalize to be zero.

Let (Buji1(h), Bujo(h)/h, ..., Bujr+1(l) /1) be the coefficients of an rth order local polyno-
mial estimate of E[Y;;|X; = 0] based on the subsample with X; > 0 with a kernel function
k*. Similarly, let (Bg,jrl(h), Bg’]’,z(h) /h,..., Bg,j’r+1(l’l) /h") be the coefficients of an rth order local
polynomial estimate of E[Y;;|X; = 0_] based on the subsample with X; < 0, where the polyno-
mial is taken in |X;| rather than X; (this amounts to multiplying even elements of B,; by —1).
The scaling by powers of & is used to handle the different rates of convergence of the different
coefficients. Let p(x) = (1,x,x2,...,x")’, and define B, ; = (Buj1(h), Buj2(h), ..., Bujr+1(h)) and
Boj = (Buji(h),Boja(h), ..., Bejre1(h)). Let p(x) = (1,x,x%,...,x")". Then B,,; minimizes

n

Y (Yij = p(IXi/ h1)' Buy)*1(Xi > 0)k* (Xi/ )

i=1
and f,; minimizes

Y (Y, — p(IXi/h1Y By 2I(X: < )K" (Xi/).

i=1

520



Define

Tu(h) = FEp(|1X:i/h)p(1Xi/h])'k* (Xi/ W) (X; > 0),

To(h) = REp(IXi/h) p(IXi/h])'k* (Xi/h)I(X; < 0),

Lu(h) = 25 iy p(IXa/H)p(1Xi /1)) k= (Xi /) 1(X; > 0) and
Lo(h) = o5 i p(1Xi/ B p(1Xi /1)K (X /1) 1(X; < 0).

Let pie o = [y u'k*(u) du, and let M be the matrix with i, jth element given by ji- i j_».

Let &y, (h) = (Biau(h),...Brayu(h)) and &(h) = (Bi1e(h),...Bra,¢(h)), and similarly for
wy(h) and ay(h) (i.e. ay, and ay contain the constant terms in the local polynomial regressions
for each j). Let a(h) = (&y,(h)’,&y(h)") and a(h) = (ay(h),ap(h)"). We are interested in 6(h) =
g(a(h)) for a differentiable function g from R* to R, and an estimator 8(h) = g(a(h)). We
consider standard errors defined by the delta method applied to the robust covariance matrix
formula obtained by treating the local linear regressions as a system of 2dy weighted least squares
regressions. Let v,(h) = ¢jT,(h)~! and let v,(h) = ejTy(h)~'. Let 0,(h) = e}l (k)" and let
v(h) = e|Ty(h)~1. Let ¥ (X;,Y;, h) be the (2dy) x 1 random vector with jth element given by

w()p(Xi /RN Yij = p(1Xi/ 1) Buj(1)]T(Xi 2 0 ifi=1,...,dy,
o j(Xi, Yi, h) = vu(h)p(1Xi/h|)[Yij — p(1Xi/h]) Bu,j(h)]1(X; > 0) if j y

Vg(h)p(|Xi/l’lD[Yi,j,dY — P(’Xi/hD/,Bé,jfdy(h)]I(Xi < 0) If] = dy + 1,. . .,Zdy.

Let o (X;, Y;, h) be defined analogously,

) 0u(R)p(|Xi/ R [Yij — p(1Xi/h]) Buj()]1(X; = 0) if j=1,... dy,
lpzx,j(Xi/ Yl/h) == ! ]A
ﬁg(h)p(|Xz/h])[Yl,]_dY — p(’Xi/hD,,Bé,j—dY(h)]I(Xi < 0) lf] = dy +1,.. .,Zdy.

Let

Valh) = T B (X0 Y H)pa (X, Yi YK (X, /)?
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and let

N 1. . A
Va(h) = 2 Entba (X3, Yi, h) (X, Y;, h)'k* (X; /)2
Let 0(h) = Dg(a(h))Vi(h)Dg(a(h)), and o(h) = Dg(a(h))Va(h)Dg(a(h))', where Dy is the
derivative of g.
We make the following assumption throughout this section. In the following assumption, ¢(t)

is an arbitrary nondecreasing function satisfying lim, o £(t) loglogt~! = 0.

Assumption S2.1. (i) X; has a density fx(x) with |fx(x) — fx—| < £(x) for x < 0and |fx(x) —
fx+| < l(x) for some fx 1 > 0and fx_ > 0.

(ii) Y; is bounded and, for some matrices ¥ and X, and vectors i and i, ¥(x) = var(Y;|X; = x)
and ji(x) = E(Y;|X; = x) satisfy ||Z(x) — Z4|| < £(x) and ||fi(x) — fiy || < £(x) for x > 0 and
1Z(x) = 2| < €(x) and ||fi(x) = i || < £(x) for x < 0.

(iii) k* is symmetric with finite support [—A, A, is bounded with a bounded, uniformly continuous first

derivative on (0, A), and satisfies [ k(u)du # 0, and the matrix M is invertible.

(iv) Dy is bounded and is Lipschitz continuous on an open set containing the range of a(h) over hy, for

n large enough.
(v) Dg,u(a(0))£1 Dy (x(0)) > 00r Dg¢(a(0))E_Dgu(€) > 0.
(vi) hy = O(1) and nh,,/ (loglogn)® — .
We prove the following theorem.

Theorem S2.1. Under Assumption S2.1, Assumptions 3.1 and Assumption 3.2 hold with k(u) =
et M~ p(|u|)k*(u) and o defined below so long as nh,/(loglogh,*)® — oo and h, is small enough

for large n.

Throughout the following, we assume that 1, is small enough so that ||T,, (k) || and ||T;(h) ! ||
are bounded uniformly over h < h, for large enough n (this will hold for small enough Iy by

Lemma S2.4 below).
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Lemma S2.1. Suppose that Assumption S2.1 holds. Then

VIt e () = ()| = Op(1),

su

p —
n,<h<h, V1oglogh™!

A

su vk ()t — Fu(h)‘lﬂ = 0p(1),

p —
n,<n<h, V10glog h—1

nh A
sup ——————— ||Bu,;j(h) — Bu,(h)
0 <h<h, loglogh=! ] /

BT X/ (X LY, = pCG/ Y BUIICK, > 0)| = Op(1)

and

Vnh .
sup  ———||Bu,j(h) — Buj(h)|| = Op(1)
ny<h<h, V1oglogh™ 1B (|| = Op

for each j. The same holds with 1(X; > 0) replaced by 1(X; < 0), T, replaced by Ty, T, replaced by T,
etc.

Proof. The first display follows from Lemma A.2. For the second display, note that I'(h)~! —
L(h)~t = =L ()~ (T(h) =T (h))T(R)~", s0 [[T(h) = =T (k) =M < [[T(h) 1T () = T(R)[HIT ()~
|T(h)~Y|| is bounded by assumption and ||T'(k)~!|| is Op(1) uniformly over h, < h < h,, by this
and the first display in the lemma. For the third display, note that

Buj ) — Bu () = Bul) ™4 Eap (Xe/ WK (X /1) = p(Xi/ ) BORI(X; > 0).
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Thus,

nh 5 B ‘ _1 ) | . | B | / |
@,,s;zzﬁnw Puj(h) = u,j(h) hE”r”(h) p(Xi/h)k* (X;/h)[Y; P(Xz/h)ﬁ(h)]l(xlgo)H
Vnh o )
S su A1 ru(h) 1_Flt(h) !
hnéhzﬁn loglogh~! H
Vnh 1 H
©osup e || Enp (Xi/ WK (Xi/ W) [Y; = p(Xi/ 1) B()]T(X; 2 0)) -
B logloghT |7 p(Xi /WK (X; /) [Y; — p(X;/hY B(W)]I(X; > 0)

The first term is Op(1) by the second display in the lemma. The second term is Op(1) by Lemma
A.2. The last display in the lemma follows from the third display and Lemma A.2. O

Applying the above lemma, we obtain the following.

Lemma S2.2. Under Assumption S2.1,

nh 1 n
su T 1 1.-1 &(h> _Dl<h) — l/)ﬂ(XZ/Yuh)k*(Xl/h) _ Op(l)
hnghzﬁn loglogh~1 ”hz;
and
Vnh R
sup ———||Va(h) — Va(h)|| = Op(1).
hnéhzﬁn loglogh™! w(l) = Va()| p(1)

Proof. The first claim follows by Lemma S2.1. The second claim follows by using the fact that
V. (h) is a Lipschitz continuous function of the B and ? terms and terms that can be handled with

Lemma A.2. O

Lemma S2.3. Suppose that Assumption S2.1 holds. Then

sup Vnh ||6(h) - 6(h) — \/L Zn:Dg(“(h))%(xi/Yz‘,h)k*()fi/h)H . (1/ logloghn1>
oy <h<hn nh i3
and
Vnh
sup —————=1|0(h) —o(h)|| = Op(1).
hnghzﬁn loglogii—1 lo:() — o (h)] p(1)
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Proof. By Lemma 52.2,

n

1
su vnh (&(h) —a(h)) — Yo (X5, Y, W)k (Xi/h)
hnﬁhzﬁn Vih i3
=Op ( sup (logloghl)/\/nh) = Op ((loglogh,jl)/\/nhn> =op (1/\/loglogh;1>
h<h<hy

since (loglog h;1)3/2/\/nhn — 0. Thus, the result follows by Lemma S1.11.
O

Let m;(x,h) = p(x/h)'B,,j(h) for x > 0and m;(x,h) = p(x/h)'Byj_a,(h) for x < 0. Let Dg,(«)
be the row vector with the first dy elements of Dg(a), and let Dy /() be the row vector with the

remaining dy elements. With this notation, we have

Dg(a(h))a(Xi, Yi, 1)
= {10 2 0)va (h) (X /H]) Dya(()) + 1(X; < O)ve()p(1i/ 1) Dy () } [Yi = m (X, ).

Let 7,,i(h) = 4EY;ip(|Xi/h))k*(X;/h)[(X; > 0) and 7,,¢(h) = {EY;jp(|X:/h)k*(Xi/h)I(X; < 0).
Let 7,,/(0) be the (r + 1) x 1 vector with gth element given by fx . i i}k 4 and let Let 7, ;(0) be
the (r + 1) x 1 vector with gth element given by fx, fi_ jpx . Let a(0) = (fi,, fi’)" (it will be
shown below that limy,_,oa(h) = «(0)).

We now verify the conditions of the main result with k(1) = e{ M~ 1p(|u|)k*(u) and

o Dg(a(h))ya(Xi, Yi h)
pin ) = eyM~1p(|X;/h|)o(h)
for h > 0 and
Pp(W;,0) = 0'(10) [Dg,u(ﬂ(o))f)zi(yi —up)[(X; >0)+ Dg,f(‘)‘(()))f);l,(yi —u (X < 0)}

where ¢2(0) = limy,_,oc?(h) (this choice of y(W;,0) will be justified by the calculations below).
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Lemma S2.4. Under Assumption S2.1, for some constant K,

ITu(h) = e MI| < KE(AR),

(Ah)
IT¢(h) — fx,- M| < KE(Ah),
H')’u(h) - 'Yu(O)H < KE(AI/I),
(Ah)

and — |[ye(h) — 70(0)[| < KE(Ah).

Proof. We have

T (1) = B, p(X0/ DK (/WG 2 0) = 1 [ gi(x)p(e/ e (x/1) ()

7
B /0_00 i (uh) p(u)k* (1) fx (uh) dx.

Thus, by boundedness of k*, ||y,j(h) — 74,j(0)| is bounded by a constant times sup , 4, |/ (x) fx (x) —
fit,jfx,+|, which is bounded by a constant times ¢(Ah) by assumption. Similarly,

Lujm(h) = %E(Xi/h)”m‘zk*(xi/h)l (X2 0) = = [ (x/m)" 2K (x /) () dx

h x=0
= / w2kt (u) fx (uh) du,
x=0

80 [Ty jm(h) — fx,+ Mjn| is bounded by a constant times sup_, . 4, |fx(x) — fx,+| < ¢(Ah). The

proof for I'; and <y, is similar. O]

Note that B,,;(h) = Tu(h) Yy j(h) = MY, e, o i) = fi4j(1,0,...,0) as h — 0,
where the last equality follows since M~ (1, pig- 1, .. ., pig+,)" is the first column of M~'M = I,
(the second through rth elements of B, ; are given by the corresponding coefficients of the local
polynomial scaled by powers of &, so this is a result of the fact that the coefficients of the local
polynomial do not increase too quickly as & — 0). By these calculations and Lemma S2.4, we

obtain the following.

Lemma S2.5. Under Assumption S2.1, for some constant K and h small enough,

‘ﬁ”/](h> - ﬁJr,j(lIO/- . -;O>/| S K£<Al’l),
and |Byi(h) — fi-j(1,0,...,0)'| < KE(Ah).
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Proof. The result is immediate from Lemma S2.4, the fact that |T,,(k)~!|| and ||T,(h)~!| are
bounded uniformly over small enough / (which follows from Lemma S2.4 and invertibility of M)
and fact that the function that takes I' and v to I' !y is Lipschitz over T and -y with ! and v
bounded. O

Note that, since a () is made up of the first component of each of the g, ;(h) and B ;(h)
vectors, the above lemma also implies that |a(h) — «(0)| < K¢(Ah) for «(0) defined above. For
convenience, let us also define B,,;(0) and B;;(0) to be the limits of B,;(h) and B ;(h) derived

above.

Lemma S2.6. Under Assumption S2.1, for some constant K and h small enough,

[vu(h) — esM T f L || < KE(AR)
and |lve(h) —esM ! fx || < KE(AR).

Proof. The result is immediate from Lemma S2.4 and the boundedness of || T, (k) || and || T, (k) ~!|]

over small enough h. O

Lemma S2.7. Under Assumption S2.1, for some constant K and h small enough,
|[o(m)p(Wi, 1) — o (0)p(Wi, 0)] k(Xi/h)| < KE(Ah).
Proof. We have

[o(R)p (Wi, ) — o (0)p (Wi, 0)] k(X /)
= Dg(a(h))%(X,', Yl,h)k*(Xl/]’l)
~ [Doan@(O))fic (% = 1)1 = 0) + D (@(0)) fich (% = =) I(X; < 0)] et M p(1X; /)K" (X /)

= Dg(a(h))pu(Xi, Yy, )K" (Xi/ h) — Dy (a(0))hu (Xi, Yi, )K" (X / )

where the first dy columns of $,(X;,Y;, h) are given by e{M~'p(|X;/h|) fx ' (Y; — p)1(X; > 0)
and the remaining dy columns are given by e’lM_lp(|X,-/h\)f§,1_(Yi — u_)I(X; < 0). Note that
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the above expression can be written as

T(Xi/h, Yi,vu(h), ve(h), a(h), {Bujm(h) h<j<ayi<m<rit {Bejm(h) h<j<ay1<m<ri1)

— T(Xi/h,Yi,vu(0),v¢(0),&(0), {Bujym(0) }1<j<dy,1<m<r+1, {Bejm(0) b<j<dy,i<m<r+1)

for a function T that is Lipschitz in its remaining arguments uniformly over X;/h, Y; on bounded

sets. Combining this with the previous lemmas gives the result. O

It follows from Lemmas S2.7 and S1.12 that the conclusion of Lemma S2.7 also holds with
o(h)p(W;, h) replaced by (W, h), so long as the remaining conditions of Lemma S1.12 (those

involving the conditional expectation and variance of (W;, 0)) hold. We have

and

oarly (Wi, 0)[X; = o] = 55 { D (1(0))£(x) Dy (2(0))'fi 2 1(x > 0)

o (@(0))£(x) Dy ((0)) f 2 1(x < 0) }

By the conditions on ji(x) and £(x), it follows that these expressions are left and right continuous
in x at 0 with modulus ¢(x) satisfying the necessary conditions. By this and the conditions on
fx, it follows that the same holds for E[y(W;,0)||X;| = x] and var[yp(W;,0)||X;| = x]. In addition,
the assumptions guarantee that var[p(W;,0)||X;| = x| is bounded away from zero for small x so

that o(0) > 0.
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Thus, for ¥(W;, h) defined above,

nh(6(h) —6(h)) 1 ¢ . .
Vih(@(h) —0(h)) 1 &
S e P SUAAR
N 1 1
Ve -0 - | 75 - 555

By Lemma S2.3, the first term is Op (1 /1/loglog hn1> , and the last term is Op <\/log logh, - \/1‘5%‘5}"11> .

Thus, for (loglogh, )3 /nh, — 0, both terms will be 0p(1//loglogh, ') as required. This com-
pletes the proof of Theorem S2.1.

S2.1 Equivalent Kernels for Local Linear Regression

Thus section computes the equivalent kernels k(u) = e{M~p(|u|)k*(u) for the local linear esti-
mator (r = 1) and the local quadratic estimator (r = 2) for some popular choices of the kernel k*.

For r = 1, we have

-1

. 1 N
M p(u) = Heeo - Hre _ Mrep Pk 1’“!
M1 P2 |ul P 0Mke 2 = e q

For r = 2, we have

B 1
etM ™ 'p(u) = D ((pe bt — Mo ) + (i g e 4 — pae ot 3) 1] + (Mo o — P 1piie 3) U2)

where D = det(M) = g o(pes 2Pke 4 — Fie 3) — Hier 1 (B 11k 4 — P 2P 3) F i 2 (B 1Bk 3 — Hie)-

The moments p: ; for the uniform, triangular, and Epanechnikov kernel are given by

Name Mo M1 M2 M3 M4
; 1 1 1 1 1
Uniform > i 3 T &
; 1 1 1 1 1
Triangular 2 A
; 1 3 1 1 3
Epanechnikov 5 7 17 1% 7
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Plugging these moments into the definitions of equivalent kernels in the two displays above
then yields the definitions of equivalent kernels for local linear and local quadratic regressions.

These definitions are summarized in Table 6.

S3 Applications

This section gives proofs of the results for the applications in the main text.

S3.1 Regression Discontinuity/LATEs for Largest Sets of Compliers

This section proves Theorems 5.1 and 5.2. First, note that the regression discontinuity and LATE
applications can both be written as functions of local polynomial estimators in the above setup,
with dy = 2 and Y; playing the role of Y;; and D; playing the role of Y;,. For the LATE appli-
cation, we define X; = —(Z; —2)I(|Z; —z| < |Z; —z|) + (z— Z)I(|Z; — z| > |Z; —Z|). Both
of these applications fit into the setup of Section S2 with, letting a(h) = (a,(h),ar(h)) =

(ayy(h), ayp(h),apy(h),arp(h)) (where we use the suggestive subscripts “Y” and “D” rather

than 1 and 2), g(a) = ;‘”;:zf; Then, letting Ap = &, p — &y p, we have

D= A

This is Lipschitz continuous and bounded over bounded sets with a, p — &, p bounded away

from zero.

For the last condition (nondegeneracy of the conditional variance), note that Dy ,,(a(0))£ Dy, (2(0))

szr[l/i — g(a(0))D;|X; = 0], which will be nonzero so long as corr(D;, Y;|X; = 04) < 1 and
var(Y;|X; = 04) > 0. A sufficient condition for this is that var(Y;|D; = d, X; = 0) > 0 is nonzero
ford = 0 or d =1, and this (or the corresponding statement with + replaced by —) holds under

the conditions of the theorem.

S$3.2 Trimmed Average Treatment Effects under Unconfoundedness

This section proves Theorem 5.3. We first give an intuitive derivation of the critical value, which

explains why it differs in this setting, and provide the technical details at the end.
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To derive the form of the correction in this case, note that, under the conditions of the theorem,

Vn(0(h)—6(h))

0] will converge to a Gaussian process G(h) with covariance

cov {[¥i —6(WL(X; € ), [% = B0NI(X; € X))
Voar {[Yi — 0(n)]1(X; € i)} var {[Yi — 0(1)]I(X; € Xy)}

cov(G(h),G(K)) =

Let v(h) = var{[Y; — 0(h)]I(X; € X;)} as defined in the statement of the theorem. Note that, for
h>HW,

cov {[¥; - 9<h>11<xi € X,), [T - 9<h'>u<xz- € Xiy)} = E{ —O(W)I(X; € X))

—E{ XGXh}—f— { XGXh)} (h)

where the last step follows since E {[Y; — 6(h)]I(X; € X))} = 0. Note also that v(h) is weakly
decreasing in h, which can be seen by noting that v(h) = inf, E { Y —a] 21X € A }, since 6(h)

is the conditional expectation of Y; given X; € Xj,. Thus,

o(hVI)  o(h) Ao(k)

Voo — Jo(h)o(l

coo(G(h),G(K)) =

so G(h) L IB(UT\/%))) where B is a Brownian motion. Thus, the distribution of sup, ;.5 HW

can be approximated by the distribution of sup, <<, %\/? 4 SUP1 <1<y (k) /0 (i) % Note that

v(h) = o(h)?P(X; € &})?, so that

o J(h)zP(Xi S Xh)z
~ o(h)2P(X; € X;)?

Thus, f is a consistent estimator for 2 21) ynder the conditions of the theorem.

o(h)
To formalize these arguments, note that, by Theorem 19.5 in van der Vaart (1998), W i)

G(h), taken as processes over h € [k, h] with the supremum norm. By the calculations above,

sup |G(h)| 4 sup
he(hh) he(hh)

where B is a Brownian motion. The result then follows since {t|v(h) = tsome h € [ h]} C
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[0(h),v(k)], and the two sets are equal if v(h) is continuous.

S4 Critical values

Tables S1-S6 give one- and two-sided critical values c;_, (En / hn,k> and Cl—a, (En/ hn,k> for
several kernel functions k, « and a selected of values of &,/ h,.. The Critical values can also be
obtained using our R package bandwidth-snooping, which can be downloaded from https://
github.com/kolesarm/bandwidth-snooping. Tables S1-S2 give one- and two-sided critical values
for local constant (Nadaraya-Watson) regression in the interior of the support of the regressor.
Tables S3-54 give one- and two-sided critical values for local linear regression at a boundary:.
Tables S5-S6 give one- and two-sided critical values for local quadratic regression at a boundary.
Critical values for other choices of 11/h can be obtained using our package bandwidth-snooping,

which can be downloaded from https://github.com/kolesarm/bandwidth-snooping.

S5 Description of variance estimators used in the Monte Carlo study

Given an i.i.d. sample {Y;, X;}\_, the RD estimator is given by the difference between two poly-
nomial linear regressions of order r with the same bandwidth. We consider local linear (r = 1)
and local quadratic estimators (r = 2). To define the estimators, let p(x) = (1,x,...,x") denote a

polynomial expansion of order r. Let

Bu(h) = Tu(i) il(Xi > 0)k* (X:/h)p(|X)Y;
By Y2 10X, < O)K* (X /W)p(IXi) Y
i=1

™
o~
—
=
N—
Il

where k* is a kernel, and

A

Lu(h) =} 1(Xi = 0)k* (Xi/ M)p(1Xi ) p(1Xi])',

Lo(n) = Y} 1(Xi < 0k (Xi/m)p(|Xi)p(I1Xi])"
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Then the estimator is given by

where &, (h) = €| By (h) and &,(h) = e} B(h).

All variance estimators have the form
62 () = nh (37 (d (1)) + 5t (8 (1))

Following the recommendation of Imbens and Lemieux (2008), the plug-in estimator sets

2
(i) = L0 52

fxn(0)
where k is an equivalent kernel, fx;(0) = Y1 I(|X|; < h)/(2nh), and 62 = Y1, 1(0 < |X|; <
h)(Y; — &y (h))?/ Y81 1(0 < |X|; < k). The expression for var(&,(u)) is similar.
The remaining variance estimators all have the form

i=1

oar(dy(h)) = eafu(h)il (iHXi > 0){75<Xi>k*<Xi/h)p(|XiDp(‘XiD,> IAﬂu(h)ilel

2

and similarly for oar(&,(h)), where 6Z(X;) and 67(X;) are some estimators of var(Y; | X;). The

EHW estimator sets 02(X;) = (Y; — X!B,)?. Following the recommendation of Calonico, Cattaneo,

and Titiunik (2014), the NN estimator sets

2
) ] J
on(Xi) =1(X; > O)m (Yi - Zyéu,,-(i)> /

j=1

where £, ;(i) is the jth closest unit to i among {k # i: X; > 0}, and | = 3. Finally, the exact

variance estimator sets 02 (X;) = var(Y; | X;).

S6 Additional Simulations

To examine the effects of heteroscedasticity on the performance of our procedure, we considered

two additional simulation designs. The DGP in both designs corresponds to Design 1 in the
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paper, with the exception that
€ | Xi=x ~ N(0,0%(x)),

where 02(x) = 0.1295%(1 + |x|)? for Design 3, and ¢?(x) = 0.1295%(1 — |x|)? for Design 4. Tables
S9-S10 report empirical coverage of the confidence bands for 6(h) for these two additional de-
signs. Tables S7-S8 report empirical coverage of the confidence bands for 6(0). The results are

very similar to Design 1 in the paper.
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 129 1.65 234 129 1.65 2.33 129 1.65 2.34
1.2 1.59 195 2.62 134 171 239 136 1.73 240
1.4 1.69 204 270 1.39 175 243 142 178 245
1.6 1.76 210 2.76 142 178 247 146 1.81 249
1.8 1.81 216 2.81 145 1.81 2.49 149 185 251
2.0 1.85 219 284 148 1.84 251 152 1.88 2.54
3.0 197 231 295 1.57 191 2.59 1.61 197 2.63
4.0 204 238 3.01 1.62 197 2.63 1.67 202 2.68
5.0 209 243 3.04 1.65 201 267 1.72 206 2.71
6.0 212 246 3.08 1.68 2.03 2.69 1.75 2.09 273
7.0 215 249 3.10 1.70 2.06 271 1.77 211 275
8.0 217 251 3.12 1.73 208 2.72 1.79 213 2.77
9.0 219 252 314 1.74 209 274 1.81 215 2.78
100 221 254 3.16 1.75 210 2.74 1.82 216 279
200 231 2.63 3.23 1.84 217 281 191 224 287
500 241 271 331 193 226 2.89 200 233 295
100.0 2.47 277 3.36 198 231 293 206 238 299

Table S1: Critical values for one-sided tests with levels a« = 0.1, 0.05, and 0.01, that correspond to
1 — & quantiles of sup;_;, 5, H(h).

Nadaraya-Watson estimator with uniform kernel (k(u) = 3I(|u| < 1)), triangular kernel (k(u) =
(1 — |ul)+), or Epanechnikov kernel (k(u) = 3/4(1 — u?),).
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.64 196 257 1.64 196 258 1.64 196 257
1.2 193 225 2.85 1.70 202 2.64 1.71 2.03 2.65
1.4 2.03 235 294 1.74 206 2.68 177 2.08 2.70
1.6 209 242 3.00 1.78 2.09 2.71 1.81 212 274
1.8 214 246 3.05 1.81 212 273 1.84 216 2.77
2.0 218 250 3.08 1.83 215 275 1.87 218 2.80
3.0 230 261 3.19 191 223 283 196 227 287
4.0 238 267 324 1.96 227 2.87 201 232 292
5.0 242 271 3.28 200 230 2.90 205 236 295
6.0 245 274 331 2.03 233 293 208 239 297
7.0 248 276 3.34 205 235 295 211 241 299
8.0 250 278 3.36 2.07 237 296 213 242 3.01
9.0 252 280 337 208 238 297 214 244 3.03
100 253 281 3.39 2.09 239 298 216 246 3.03
200 262 289 345 217 247 3.04 224 253 3.10
500 271 298 3.52 225 254 3.10 232 260 3.16
100.0 2.77 3.03 3.56 230 258 3.14 237 266 3.20

Table S2: Critical values for two-sided tests with levels « = 0.1, 0.05, and 0.01, that correspond to
1 — a quantiles of sup,_;, .5, [H(h)|.

Nadaraya-Watson estimator with uniform kernel (k(u) = 3I(|u| < 1)), triangular kernel (k(u) =
(1 — |ul)+), or Epanechnikov kernel (k(u) = 3/4(1 — u?),).
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 128 1.65 2.33 128 1.65 2.34 128 1.65 2.33
1.2 1.57 194 261 136 1.73 241 137 174 242
1.4 1.68 2.04 271 141 178 246 144 181 248
1.6 1.75 210 277 146 1.82 249 149 1.85 253
1.8 1.80 215 2.82 149 186 252 153 1.89 2.56
2.0 1.84 219 2.86 152 1.89 2.55 1.56 192 2.58
3.0 197 232 297 1.62 197 2.63 1.67 202 2.68
4.0 205 239 3.02 1.68 2.03 2.68 1.74 2.08 274
5.0 209 243 3.06 1.72 207 271 1.78 212 277
6.0 213 246 3.09 1.75 209 274 1.81 215 2.80
7.0 215 249 3.12 1.78 212 276 1.84 218 281
8.0 218 251 314 1.80 214 277 1.86 220 2.83
9.0 220 253 315 1.81 215 279 1.88 221 285
100 221 254 3.16 1.83 217 281 1.89 223 2.86
200 231 2.63 3.23 191 224 288 198 231 293
500 241 272 331 200 232 294 207 239 3.00
100.0 2.47 277 3.36 206 238 298 213 244 3.04

Table S3: Critical values for one-sided tests with levels « = 0.1, 0.05, and 0.01, that correspond to
1 — & quantiles of sup;_;, 5, H(h).

Local linear regression at a boundary with uniform kernel (k*(u) = 1I(ju| < 1)), triangular
kernel (k*(u) = (1 — |ul)+), or Epanechnikov kernel (k* (1) = 3/4(1 — u?) ).
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.64 196 257 1.64 196 258 1.64 196 257
1.2 193 225 2.86 1.72 2.04 265 1.74 205 2.67
1.4 2.03 234 296 1.77 209 270 1.80 211 273
1.6 210 240 3.01 1.81 212 274 1.84 216 2.77
1.8 215 246 3.06 1.85 216 277 1.88 219 281
2.0 219 249 3.09 1.87 219 2.80 191 222 284
3.0 231 261 3.19 197 228 2.87 201 232 291
4.0 238 268 3.24 202 233 292 207 238 296
5.0 242 272 329 206 236 295 211 241 299
6.0 245 275 331 2.09 239 297 214 244 3.02
7.0 248 277 3.33 211 241 299 217 246 3.03
8.0 250 279 3.35 213 243 3.00 219 248 3.05
9.0 252 281 3.36 215 244 3.01 220 250 3.06
100 254 282 3.37 216 245 3.03 222 251 3.08
200 262 290 344 224 253 3.09 230 258 3.13
500 272 298 3.52 232 260 3.16 239 266 321
100.0 2.77 3.04 3.56 237 265 3.20 244 271 325

Table S4: Critical values for two-sided tests with levels « = 0.1, 0.05, and 0.01, that correspond to
1 — a quantiles of sup,_;, .5, [H(h)|.

Local linear regression at a boundary with uniform kernel (k*(u) = 1I(ju| < 1)), triangular
kernel (k*(u) = (1 — |ul)+), or Epanechnikov kernel (k* (1) = 3/4(1 — u?) ).
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 128 1.65 2.34 129 1.66 2.33 129 1.66 2.32
1.2 1.58 195 261 138 1.75 242 140 176 2.44
1.4 1.69 205 271 144 180 247 147 183 249
1.6 1.76 211 276 149 1.85 252 1.52 1.88 2.54
1.8 1.81 217 2.82 1.53 1.89 255 156 1.92 2.58
2.0 1.85 221 285 1.56 192 258 1.60 195 2.61
3.0 198 232 295 1.66 201 2.67 1.71 206 2.71
4.0 205 239 3.01 1.72 207 271 1.78 212 275
5.0 210 243 3.04 1.76 210 2.74 1.82 216 2.79
6.0 213 247 3.07 1.79 213 2.77 1.85 219 2.82
7.0 216 249 3.09 1.82 216 2.80 1.88 221 2.84
8.0 218 251 312 1.84 217 281 190 223 2.86
9.0 220 253 314 1.86 219 283 192 225 2.88
100 222 254 3.15 1.87 221 2.84 1.93 227 2.89
200 231 2.63 3.23 196 228 2.92 202 234 297
500 240 271 331 204 237 299 211 243 3.04
100.0 246 277 3.36 210 242 3.03 216 248 3.09

Table S5: Critical values for one-sided tests with levels a« = 0.1, 0.05, and 0.01, that correspond to
1 — & quantiles of sup;_;, 5, H(h).

Local quadratic regression at a boundary with uniform kernel (k*(u) = 3I(|u| < 1)), triangular
kernel (k*(u) = (1 — |ul)+), or Epanechnikov kernel (k* (1) = 3/4(1 — u?),).
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Uniform Triangular Epanechnikov
h/h 01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.65 196 2.58 1.65 196 258 1.65 196 2.58
1.2 194 225 2.86 1.74 205 2.67 1.75 2.06 2.68
1.4 2.04 234 294 1.79 211 2.72 1.82 213 2.74
1.6 210 241 3.00 1.84 215 276 1.87 218 2.78
1.8 215 246 3.06 1.88 2.18 2.80 192 223 282
2.0 219 250 3.09 191 222 283 195 225 2.86
3.0 231 261 321 2.00 231 291 205 235 296
4.0 238 2.67 3.26 206 236 295 211 241 3.00
5.0 242 271 3.30 210 240 299 215 244 3.03
6.0 246 274 3.32 212 242 3.01 218 247 3.06
7.0 248 277 3.35 215 244 3.03 220 250 3.08
8.0 250 279 3.37 216 246 3.04 222 251 3.10
9.0 252 280 3.38 218 248 3.05 224 253 311
100 254 282 340 220 249 3.07 225 254 312
200 263 290 345 228 256 3.14 234 262 319
500 271 298 3.53 236 264 321 242 270 3.25
100.0 2.76 3.03 3.56 241 269 324 247 275 3.29

Table S6: Critical values for two-sided tests with levels « = 0.1, 0.05, and 0.01, that correspond to

1 — a quantiles of sup,_;, .5, [H(h)|.

Local quadratic regression at a boundary with uniform kernel (k(u) I(Ju| < 1)), triangular
u

kernel (k(u) = (1 — |u|)4), or Epanechnikov kernel (k(u) = 3/4(1 —

~— N

?).
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Uniform Kernel

Triangular Kernel

(h,h) o(h) Pointwise Naive Adjusted Pointwise Naive Adjusted
Local Linear regression
exact  (78.9,90.7) 63.9 82.6 (80.4,91.0) 76.8 83.5
PN EHW  (779,89.4) 622 81.1 (79.2,89.2) 75.0 81.8
(1/2hix, hix) .
plugin (84.7,92.0) 70.0 86.3 (90.3,93.8) 86.2 90.8
NN  (81.0,91.3) 67.0 842 (82.1,91.5) 788  85.0
exact (78.8,91.1) 54.6 82.7 (80.4,91.0) 719 83.7
A A EHW  (779,90.5) 53.0 81.0 (79.2,89.2) 70.2 81.9
(1/2hik, 2hx) .
plugin (84.7,97.6) 650  87.7 (90.3,983) 852 925
NN (80.9,92.7) 58.7 84.8 (82.1,91.5) 74.8 85.5
exact (91.2,95.0) 824 94.0 (91.4,95.0) 88.7 929
A A EHW 89.8,92.6) 784 91.4 89.7,92.0) 84.8 89.6
(1/4hx, 1/2hx) . ( ) ( :
plugin (92.4,959) 85.7 95.2 (94.1,96.5) 92.0 95.0
NN (91.8,94.6) 83.1 93.9 (91.9,94.1) 88.4 92.3
Local quadratic regression
(1/2h1k, fik) NN  (92.1,95.1) 825  93.6 (91.1,947) 876 922
(1/2h, 2hik) NN (837,951) 602 863 (85.0,94.7) 761  87.1
(1/4hx, 1/2hx) NN (939,94.8) 844 941 (93.1,943) 887 929

Table S7: Monte Carlo study of regression discontinuity. Design 3. Empirical coverage of 6(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.

50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(b, h) o(h) Pointwise Naive Adjusted Pointwise Naive Adjusted
Local Linear regression
exact (70.8,91.8) 639 82.8 (76.1,92.2) 75.0 82.1
A oA EHW  (69.5,90.3) 622 80.8 (74.4,90.2) 729 79.9
(1/2hik, hix) .
plugin  (72.5,90.5) 63.6  80.5 (783,904) 759 819
NN (73.5,92.6) 67.0 84.5 (78.1,92.3) 77.1 83.5
exact  (69.3,91.8) 57.5 83.2 (75.1,92.2) 71.1 82.8
A A EHW  (68.1,90.3) 56.0 81.2 (73.5,90.2) 69.2 80.8
(1/2hik, 2hik) .
plugin (72.1,98.1) 60.2 82.3 (78.3,97.6) 75.3 84.5
NN (72.1,92.6) 61.1 85.0 (77.2,92.3) 73.8 84.4
exact  (92.3,95.2) 85.6 95.5 (92.7,95.2) 90.2 94.1
A A EHW 90.8,92.9) 81.5 92.7 90.6,92.3) 86.2 90.5
(1/4hik, 1/2hx) . ( : ( )
plugin (91.1,95.4) 85.2 94.6 (90.9,95.3) 89.0 92.8
NN (93.0,94.8) 859 947 (92.8,942) 89.7  93.0
Local quadratic regression
(1/2h1x, fik) NN  (93.0,95.3) 869 955 (92.3,94.9) 894  93.6
(1/2hix, 2hik) NN (72.6,95.3) 638  86.6 (78.9,949) 744 856
(1/4hx, 1/2hx) NN (93.6,94.7) 858 945 (93.1,94.3) 89.1  93.2

Table S8: Monte Carlo study of regression discontinuity. Design 4. Empirical coverage of 6(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.

543



Uniform Kernel Triangular Kernel

(b, h) o(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

exact (94.7,95.1) 84.4 95.0
EHW (94.0,94.4) 82.6 93.9
plugin  (96.5,97.6) 90.2 97.2
NN (95.4,959) 859 95.7

94.7,95.1) 91.2 94.7
93.6,94.3) 89.5 93.4
97.4,98.7) 96.1 97.9
95.2,95.8) 919 94.9

exact (91.1,95.1) 72.0 93.2 929,95.1) 86.0 93.6
lresidu (95.1,97.9) 81.5 96.5 94.2,96.5) 87.7 94.3

(
(1/2h1x, hix) E
(
(
(
EHW (90.6,94.4) 69.8 92.0 (92.3,94.3) 84.3 92.3
(
(
(
(
(
(

(1/2h1k, 2h1k)

plugin  (96.5,99.2) 87.7 98.0 97.4,99.7) 95.8 98.4
NN (92.7,95.9) 74.5 93.8 93.9,95.8) 87.6 94.2

exact (95.0,95.3) 86.1 95.9 95.1,95.3) 91.7 95.1
EHW (92.6,94.0) 822 93.3 91.8,93.6) 88.0 92.0
plugin  (96.4,96.6) 90.6 97.4 97.0,97.3) 95.0 97.1
NN (94.7,95.8) 86.3 95.0 94.4,95.2) 91.0 94.0

(1/4h1x, 1/2h1x)

Local quadratic regression

(1/2h1x, hig) NN (949,95.7) 850  95.0 (94.4,953) 90.7  94.3
(1/2hx, 2hik) NN (88.7,96.3) 717 919 (92.9,959) 835 922
(1/4hx, 1/2hx) NN (93.9,95.0) 845 941 (93.1,94.4) 887  93.0

Table S9: Monte Carlo study of regression discontinuity. Design 3. Empirical coverage of 6(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for 5.
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Uniform Kernel Triangular Kernel

(b, h) o(h) Pointwise Naive Adjusted Pointwise Naive Adjusted
Local Linear regression
exact  (94.7,96.1) 89.3 96.8 (94.7,96.0) 929 95.8
A oA EHW  (94.1,95.1) 87.6 95.9 (93.8,94.7) 91.3 94.5
(1/2hik, hix) .
plugin (95.8,96.4) 90.8 97.1 (95.9,96.2) 93.8 96.2
NN (95.1,96.2) 89.8 97.0 (95.0,95.8) 93.0 95.7
exact  (91.2,96.1) 83.2 96.2 (92.7,96.0) 89.5 95.3
A EHW  (90.7,95.1) 816 952 (91.9,947) 879 939
(1/2hx, 2hix) .
plugin (95.6,99.0) 89.0 97.4 (95.9,99.6) 934 96.9
NN (91.3,96.2) 83.1 95.5 (93.1,95.8) 89.3 94.8
exact  (95.3,959) 88.8 96.8 (95.4,95.8) 92.8 95.8
. A EHW  (92.6,94.8) 84.7 94.3 91.9,94.4) 89.0 92.6
(1/4hk, 1/2hk) . ( : ( :
plugin (96.1,96.3) 90.9 97.5 (96.1,96.2) 93.7 96.3
NN (94.6,96.0) 88.1 95.7 (94.1,95.6) 91.4 94.5
Local quadratic regression
(1/2hk, hix) NN (94.7,96.0) 88.7 96.1 (94.4,95.7) 92.0 95.1
(1/2hk, 2hx) NN (89.5,96.5) 81.0 94.9 (90.1,96.1) 85.3 92.5
(1/4hx, 1/2hix) NN (93.7,94.7) 857  94.6 (93.2,94.3) 893 932

Table S10: Monte Carlo study of regression discontinuity. Design 4. Empirical coverage of 6(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Figure S1: Regression Discontinuity. The function 6(h) for designs we consider corresponding to
local quadratic regression.
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Figure S2: Comparison of critical values based on Gassuan approximation and extreme value
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approximation (i.e. asymptotic approximation as i/h — o).
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