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This supplement contains auxiliary results and proofs of the results in Section 5 of the main

text, as well as tables of the critical values, descriptions of some of the details of our Monte Carlo

study, and additional Monte Carlo simulations.

The following additional notation, which is also used in the appendix in the main text,

is used throughout this supplement. For a sample {Zi}n
i=1 and a function f on the sample

space, En f (Zi) = 1
n ∑n

i=1 f (Zi) denotes the sample mean, and Gn f (Zi) =
√

n(En − E) f (Zi) =
√

n[En f (Zi)− E f (Zi)] denotes the empirical process. We use t ∨ t′ and t ∧ t′ to denote element-

wise maximum and minimum, respectively. We use ek to denote the kth basis vector in Euclidean

space (where the dimension of the space is clear from context).

S1 Auxiliary Results

This section contains auxiliary results that are used in the proof of Theorem 3.1 in Appendix A

of the main text, and in the proofs of the results from Section 5 of the main text given later in

this supplement.

∗email: timothy.armstrong@yale.edu
†email: mkolesar@princeton.edu
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S1.1 Tail Bounds for Empirical Processes

We state some tail bounds based on an inequality of Talagrand (1996) and other empirical process

results. Throughout this section, we consider a class of functions G on the sample space RdZ with

an iid sample of random variables Z1, . . . , Zn. We assume throughout that G has a polynomial

covering number in the sense that, for some B, W, N1(δ, Q,G) ≤ Bε−W for all finitely discrete

probability measures Q, where N1 is defined in, e.g., Pollard (1984), p. 25.

Lemma S1.1. Let G̃ be a subset of G such that, for some envelope function G and constant g, |g(Zi)| ≤

G(Zi) ≤ g a.s. for all g ∈ G̃. Then, for some constant K that depends only on G,

P

(
sup
g∈G̃
|Gng(Zi)| ≥ K

√
E[G(Zi)2] + t

)
≤ K exp

− 1
K

t2

E[G(Zi)2] + g
{√

E[G(Zi)2] + t
}

/
√

n


Proof. We apply a result of Talagrand (1996) as stated in equation (3) of Massart (2000). The

quantity v from that version of the bound is, in our setting, given by v = E supg∈G̃ ∑n
i=1[g(Zi)−

Eg(Zi)]
2 which, as shown in Massart (2000) (p.882), is bounded by n supg∈G̃ E{[g(Zi)−Eg(Zi)]

2}+

32gE supg∈G̃ ∑n
i=1[g(Zi)− Eg(Zi)] (see also Klein and Rio, 2005). By Theorem 2.14.1 in van der

Vaart and Wellner (1996),

E sup
g∈G̃

n

∑
i=1

[g(Zi)− Eg(Zi)] ≤
√

nK1

√
E[G(Zi)]2, (1)

for a constant K1 that depends only on G. Combined with the fact that E{[g(Zi)− Eg(Zi)]
2} ≤

E[G(Zi)
2], this gives the bound

v ≤ nE[G(Zi)
2] + 32gK1

√
n
√

E[G(Zi)]2.
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Applying the bound from equation (3) of Massart (2000) with these quantities gives

P

(
√

n sup
g∈G̃

Gng(Zi) ≥ K1
√

n
√

E[G(Zi)]2 + r

)

≤ P

(
√

n sup
g∈G̃

Gng(Zi) ≥ E sup
g∈G̃

n

∑
i=1

[g(Zi)− Eg(Zi)] + r

)

≤ K2 exp

(
− 1

K2

r2

nE[G(Zi)2] + 32gK1
√

n
√

E[G(Zi)]2 + gr

)

where the first inequality follows from (1). Substituting r =
√

nt gives

P

(
sup
g∈G̃

Gng(Zi) ≥ K1

√
E[G(Zi)]2 + t

)

≤ K2 exp

(
− 1

K2

t2

E[G(Zi)2] + 32gK1
√

E[G(Zi)]2/
√

n + gt/
√

n

)

which gives the result after noting that replacing K1 on the left hand side as well as K2 and

32K1K2 on the right hand side with a larger constant K decreases the left hand side and increases

the right hand side, and applying a symmetric bound to infg∈G̃ Gng(Zi).

The above lemma gives good bounds for t just larger than
√

E[G(Zi)]2, so long as
√

E[G(Zi)]2/
√

n

is small relative to E[G(Zi)]
2 (i.e. so long as E[G(Zi)]

2n is large). We now state a version of this

result that is specialized to this case.

Lemma S1.2. Let G̃ be a subset of G such that, for some envelope function G and constant g, |g(Zi)| ≤

G(Zi) ≤ g a.s. for all g ∈ G̃. Then, for some constant K that depends only on G,

P

(
sup
g∈G̃
|Gng(Zi)| ≥

√
Va

)
≤ K exp

(
− a2

K

)

for all V ≥ E[G(Zi)
2] and a > 0 with a + 1 ≤

√
V
√

n/g.

Proof. Substituting t = rV1/2 into the bound from Lemma S1.1 gives, letting K1 be the constant
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K from that lemma,

P

(
sup
g∈G̃
|Gng(Zi)| ≥ (K1 + r)V1/2

)
≤ K1 exp

(
− 1

K1

r2V
V + g {V1/2 + rV1/2} /

√
n

)
.

For g(1 + r) ≤
√

nV1/2, this is bounded by K1 exp
(
− r2

2K1

)
. Setting a = K1 + r and noting that

K1 exp
(
− (a−K1)

2

2K1

)
≤ K2 exp

(
− a2

K2

)
for a large enough constant K2 (and that g(1 + a) ≤

√
nV1/2

implies g(1 + a− K1) ≤
√

nV1/2) gives the result.

S1.2 Tail Bounds for Kernel Estimators

We specialize some of the results of Section S1.1 to our setting. We are interested in functions of

the form g(x, w) = f (w, h, t)k(x/h), where h varies over positive real numbers and t varies over

some index set T.

We assume throughout the section that k(x) is a bounded kernel function with support

[−A, A], with k(x) ≤ Bk < ∞ for all k. We also assume that Xi is a real valued random vari-

able with with a density fX(x) with fX(x) ≤ f X < ∞ all x.

Lemma S1.3. Suppose that {(x, w) 7→ f (w, h, t)k(x/h)|0 ≤ h ≤ h, t ∈ T} is contained in some larger

class G with polynomial covering number, and that, for some constant B f , | f (Wi, h, t)k(Xi/h)| ≤ B f for

all h ≤ h and t ∈ T with probability one. Then, for some constant K that depends only on G,

P

(
sup

0≤h≤h,t∈T
|Gn f (Wi, h, t)k(Xi/h)| ≥ aB f A1/2 f

1/2
X h

1/2
)
≤ K exp(− a2

K
)

for all a > 0 with a + 1 ≤ A1/2 f
1/2
X h

1/2
n1/2.

Proof. The result follows from Lemma S1.2, since B f I(|Xi| ≤ Ah) is an envelope function for

f (Wi, h, t)k(Xi/h) as h and t vary over this set.

Lemma S1.4. Suppose that the conditions of Lemma S1.3 hold, and let a(h) = 2
√

K log log(1/h) where
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K is the constant from Lemma S1.3. Then, for a constant ε > 0 that depends only on K, A and f X,

P
(
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(h)h1/2B f A1/2 f

1/2
X some (log log n)/(εn) ≤ h ≤ h, t ∈ T

)
≤ K(log 2)−2 ∑

(2h)−1≤2k≤∞

k−2.

Proof. Let Hk = (2−(k+1), 2−k). Applying Lemma S1.3 to this set, we have

P
(
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(h)h1/2B f A1/2 f

1/2
X some h ∈ Hk, t ∈ T

)
≤ P

(
sup

0≤h≤2k ,t∈T
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(2−k)2−(k+1)/2B f A1/2 f

1/2
X

)

≤ K exp
(
− [a(2−k)2−1/2]2

K

)
= K exp

(
−2 log log 2k

)
= K exp (−2 log(k log 2)) = K[k log 2]−2

so long as 2−1/2a(2−k) + 1 ≤ A1/2 f
1/2
X 2−k/2n1/2, where the first inequality follows since a(h) ≥

a(2−k) and h ≥ 2−(k+1) for h ∈ Hk.

Note that 2−1/2a(2−k)+ 1 ≤ A1/2 f
1/2
X 2−k/2n1/2 will hold iff. [2−1/2a(2−k)+ 1]2k/2 ≤ A1/2 f

1/2
X n1/2.

If 2k ≤ εn/ log log n for some ε > 0, we will have a(2−k) ≤ 2
√

K log log[εn/ log log n], so that

[2−1/2a(2−k) + 1]2k/2 ≤ {2−1/2 · 2
√

K log log[εn/ log log n] + 1}
√

εn/ log log n. For large enough

n, this is bounded by 4
√

Kεn, which is less than A1/2 f
1/2
X n1/2 for ε small enough as required.

Thus, for ε defined above,

P
(
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(h)h1/2B f A1/2 f

1/2
X some (log log n)/(εn) ≤ h ≤ h, t ∈ T

)
≤ ∑

(2h)−1≤2k≤2εn/ log log n

P

(
sup

0≤h≤2k ,t∈T
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(2−k)2−(k+1)/2B f A1/2 f

1/2
X

)

≤ K(log 2)−2 ∑
(2h)−1≤2k≤2εn/ log log n

k−2,

which gives the result.

Using these bounds, we obtain the following uniform bound on Gn f (Wi, h, t)k(Xi/h).
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Lemma S1.5. Under the conditions of Lemma S1.4,

sup
(log log n)/(εn)≤h≤h,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2 = OP(1)

Proof. Given ε > 0, we can apply Lemma S1.4 to find a δ > 0 such that

sup
(log log n)/(εn)≤h≤δ,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2 < 2

√
2KB f A1/2 f

1/2
X

with probability at least 1− K(log 2)−2 ∑(2δ)−1≤2k≤∞ k−2 > 1− ε/2. For this choice of δ,

sup
δ≤h≤h,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2 = OP(1)

by Lemma S1.3. Thus, choosing C large enough so that C ≥ 2
√

2KB f A1/2 f
1/2
X and

sup
δ≤h≤h,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2 ≤ C

with probability at least 1− ε/2 asymptotically, we have sup(log log n)/(εn)≤h≤h,t∈T
|Gn f (Wi ,h,t)k(Xi/h)|
(log log h−1)1/2h1/2 ≤

C with probability at least 1− ε asymptotically.

S1.3 Gaussian Approximation

This section proves Theorem A.2 in Appendix A.4, which gives a Gaussian process approximation

for the process Ĥn(h) defined in that section.

For convenience, we repeat the setup here. We show that 1√
h
GnỸik(Xi/h) = 1√

nh ∑n
i=1 Ỹik(Xi/h)

is approximated by a Gaussian process with the same covariance kernel. We consider a general

setup with {(X̃i, Ỹi)}n
i=1 iid, with X̃i ≥ 0 a.s. such that X̃i has a density fX̃(x) on [0, x] for some

x ≥ 0, with fX̃(x) bounded away from zero and infinity on this set. We assume that Ỹi is bounded

almost surely, with E(Ỹi|X̃i) = 0 and var(Ỹi|X̃i = x) = fX̃(x)−1. We assume that the kernel func-

tion k has finite support [0, A] and is differentiable on its support with bounded derivative. For

ease of notation, we assume in this section that
∫

k(u)2 du = 1. The result applies to our setup

with Ỹi given in (11) in Section A of the appendix in the main text and X̃i given by |Xi|.
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Let

Ĥn(h) =
1√
nh

n

∑
i=1

Ỹik(X̃i/h).

Theorem A.2. Under the conditions above, there exists, for each n, a process Hn(h) such that,

conditional on (X̃1, . . . , X̃n), Hn is a Gaussian process with covariance kernel

cov
(
Hn(h), Hn(h′)

)
=

1√
hh′

∫
k(x/h)k(x/h′) dx

and

sup
hn≤h≤x/A

∣∣Ĥn(h)−Hn(h)
∣∣ = OP

(
(nhn)

−1/4[log(nhn)]
1/2
)

for any sequence hn with nhn/ log log h−1
n → ∞.

We now prove the result. Let Ĝ(x) = 1
n ∑X̃i≤x Ỹi. With this notation, we can write the process

Ĥn(h) as

Ĥn(h) =
1√
nh

n

∑
i=1

Ỹik(X̃i/h) =
√

n√
h

∫
k(x/h) dĜ(x).

Let ĝ(x) = 1
n ∑X̃i≤x fX̃(X̃i)

−1. In Lemma S1.6 below, a process Bn(t) is constructed that is a Brow-

nian motion conditional on X̃1, . . . , X̃n such that Bn(nĝ(x)) is, with high probability conditional

on X̃1, . . . , X̃n, close to nĜ(x). By showing that ĝ(x) is close to x with high probability and using

properties of the fluctuation of the Brownian motion, it is then shown that Bn(nĝ(x)) can be ap-

proximated by Bn(nx), so that Ĥn(h) is approximated by the corresponding process with Ĝ(x)

replaced by Bn(nx)/n.

Formally, let Bn(t) be given by the (conditional) Brownian motion in Lemma S1.6 below, and

define

Hn(h) =
1√
nh

∫
k(x/h) dBn(nx).

Note that Hn(h) = 1√
h

∫
k(x/h) dB̃n(x) (where B̃n(x) = Bn(nx)/

√
n is another Brownian motion

conditional on X̃1, . . . , X̃n), so that, conditional on (X̃1, . . . , X̃n), Hn is a Gaussian process with
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the desired covariance kernel.

Let R1,n(x) = nĜ(x)−Bn(nĝ(x)) and R2,n(x) = Bn(nĝ(x))−Bn(nx). Then

Ĥn(h)−Hn(h) =
1√
nh

∫
k(x/h) dR1,n(x) +

1√
nh

∫
k(x/h) dR2,n(x).

Using the integration by parts formula, we have, for j = 1, 2 and Ah ≤ x,

1√
nh

∫
k(x/h) dRj,n(x) =

Rj,n(Ah)k(A)
√

nh
− 1√

nh

∫ Ah

x=0
Rj,n(x)k′(x/h)

1
h

dx

The first term is bounded by |Rj,n(Ah)|k(A)√
nh

, and the second term is bounded by

A√
nh

(
sup

0≤x≤Ah

∣∣Rj,n(x)
∣∣)( sup

0≤u≤A

∣∣k′(u)∣∣)

(see Bickel and Rosenblatt, 1973, for a similar derivation). By boundedness of k′(u), it follows

that both terms are bounded by a constant times 1√
nh

sup0≤x≤Ah

∣∣Rj,n(x)
∣∣, so that

sup
hn≤h≤x/A

∣∣Ĥn(h)−Hn(h)
∣∣ ≤ K sup

hn≤h≤x/A

2

∑
j=1

sup
0≤x≤Ah

∣∣Rj,n(x)
∣∣

√
nh

≤ K
2

∑
j=1

sup
0≤x≤x

∣∣Rj,n(x)
∣∣√

n[(x/A) ∨ hn]
.

for some constant K. Thus, the result will follow if we can show that sup0≤x≤x
|R1,n(x)|√

n(x∨hn)
and

sup0≤x≤x
|R2,n(x)|√

n(x∨hn)
converge to zero at the required rate.

We first construct Bn(t) and show that sup0≤x≤Ax/A
|R1,n(x)|√

n(x∨hn)
converges to zero quickly enough

with this construction, using an approximation of Sakhanenko. Let F̂X̃(x) = 1
n ∑n

i=1 I(X̃i ≤ x) be

the empirical cdf of X̃i, and let X̃(k) be the kth smallest value of X̃i.

Lemma S1.6. Under the conditions of Theorem A.2, one can construct variables Z1, . . . , Zn with Zi|(X̃1, . . . , X̃n) ∼

N(0, fX̃(X̃i)
−1) such that

P

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣ > K log
[
nF̂X̃(x) + 2

]
some 0 ≤ x ≤ x

∣∣∣∣X̃1, . . . , X̃n

 ≤ ε(K)

with probability one, where ε(K) is a deterministic function with ε(K)→ 0 as K → ∞.

Proof. Using a result of Sakhanenko (1985) as stated in Theorem A of Shao (1995), we can con-
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struct Z1, . . . , Zn such that

E exp

λA sup
0≤x≤X̃(k)

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣
∣∣∣∣X̃1, . . . , X̃n

 ≤ 1 + λ ∑
X̃i≤X̃(k)

fX̃(X̃i)
−1

where A is a universal constant and λ is any constant such that λE[exp(λ|Ỹi|)|Ỹi|3|X̃i] ≤ E[Ỹ2
i |X̃i].

Let Y be a bound for Ỹi. Then λE[exp(λ|Ỹi|)|Ỹi|3|X̃i] ≤ λ exp(λY)YE[|Ỹi|2|X̃i], so the inequality

holds for any λ with λ exp(λY)Y ≤ 1. From now on, we fix λ > 0 so that this inequality holds.

Letting f
X̃

be a lower bound for fX̃(x) over 0 ≤ x ≤ x and applying Markov’s inequality, the

above bound gives

P

λA sup
0≤x≤X̃(k)

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣ > t
∣∣∣∣X̃1, . . . , X̃n


≤ exp(−t)E exp

λA sup
0≤x≤X̃(k)

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣
∣∣∣∣X̃1, . . . , X̃n

 ≤ exp(−t)(1 + λ f−1
X̃

k).

Thus,

P

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣ > K log

[
n

∑
i=1

I(X̃i ≤ x) + 2

]
some 0 ≤ x ≤ x

∣∣∣∣X̃1, . . . , X̃n


≤ P

 sup
0≤x≤X̃(k)

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣ > K log k some 2 ≤ k ≤ n
∣∣∣∣X̃1, . . . , X̃n


≤

n

∑
k=2

P

λA sup
0≤x≤X̃(k)

∣∣∣∣∣∣ ∑
X̃i≤x

Zi − ∑
X̃i≤x

Ỹi

∣∣∣∣∣∣ ≥ λAK log k
∣∣∣∣X̃1, . . . , X̃n


≤

n

∑
k=2

k−λAK(1 + λ f−1
X̃

k) ≤
∞

∑
k=2

k−λAK(1 + λ f−1
X̃

k),

which can be made arbitrarily small by making K large.

Embedding ∑X̃i≤x Zi in a Brownian motion, we can restate the above construction as follows:
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with probability at least 1− K(ε) conditional on X̃1, . . . , X̃n,

∣∣nĜ(x)−Bn(nĝ(x))
∣∣ ≤ K log[nF̂X̃(x) + 2] all 0 ≤ x ≤ x

where Bn(t) = Bn(t; X̃1, . . . , X̃n) is a Brownian motion conditional on X̃1, . . . , X̃n. Let f X̃ be an

upper bound for the density of X̃i on [0, x].

Lemma S1.7. Under the conditions of Theorem A.2, for any η > 0,

F̂X̃(x) ≤ f X̃ · (1 + η)(x ∨ hn)

for all 0 ≤ x ≤ x with probability approaching one.

Proof. By Lemma S1.5,

sup
hn≤x≤x

√
n|F̂X̃(x)− FX̃(x)|√

x log log x−1
= OP(1).

Thus,

sup
hn≤x≤x

|F̂X̃(x)− FX̃(x)|
x

= sup
hn≤x≤x

√
n|F̂X̃(x)− FX̃(x)|√

x log log x−1

√
x log log x−1
√

nx

= OP

(
sup

hn≤x≤x

√
log log x−1
√

nx

)
= OP


√

log log h−1
n√

nhn

 = oP(1)

where the last step follows since nhn/ log log h−1
n → ∞. Thus, for any η > 0, we have, with

probability approaching one,

F̂X̃(x) ≤ F̂X̃(x ∨ hn) ≤ FX̃(x ∨ hn) + (η f X̃)(x ∨ hn) ≤ f X̃ · (1 + η)(x ∨ hn)

for all x.
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Combining these two lemmas, we have, for large enough n,

lim sup
n

P
(∣∣nĜ(x)−Bn(nĝ(x))

∣∣ > K log
[
2n f X̃(x ∨ hn) + 2

]
some 0 ≤ x ≤ x

)
≤ ε(K) + lim sup

n
P
(

F̂X̃(x) > f X̃ · 2(x ∨ hn)
)
≤ ε(K).

Since this can be made arbitrarily small by making K large, it follows that

sup
0≤x≤x

∣∣nĜ(x)−Bn(nĝ(x))
∣∣√

n(x ∨ hn)
= OP

 sup
0≤x≤x

log
[
2n f X̃(x ∨ hn) + 2

]
√

n(x ∨ hn)

 = OP

(
log(nhn)√

nhn

)
,

which gives the required rate for R1,n(x).

Define the function LL(x) = log log x for log log x ≥ 1 and LL(x) = 1 otherwise. Given K, let

Bn(K) be the event that

|nĝ(x)− nx| ≤ K
√

n(x ∨ hn)LL(x/hn) all 0 ≤ x ≤ x,

and let Cn(K) be the event that

∣∣Bn(t′)−Bn(t)
∣∣ ≤ K

√
(|t′ − t| ∨ 1) · log(t ∨ t′ ∨ 2) all 0 ≤ t, t′ < ∞.

Lemma S1.8. On the event Bn(K) ∩ Cn(K), for large enough n,

|R2,n(x)|√
n(x ∨ hn)

≤ K3/2[n(x ∨ hn)]
−1/4{LL(x/hn)}1/4 · {log 2 + log[n(x ∨ hn)]}1/2

≤ K3/2(nhn)
−1/4 · {log 2 + log[nhn]}1/2

for all 0 ≤ x ≤ x.
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Proof. On this event, for all 0 ≤ x ≤ x and large enough n,

|R2,n(x)| = |Bn(nĝ(x))−Bn(nx)| ≤ sup
|t−nx|≤K

√
n(x∨hn)LL(x/hn)

|Bn(t)−Bn(nx)|

≤ sup
|t−nx|≤K

√
n(x∨hn)LL(x/hn)

K
√
(|t− nx| ∨ 1) · log[t ∨ (nx) ∨ 2]

≤ K

√
K
√

n(x ∨ hn)LL(x/hn) · log[2n(x ∨ hn)]

= K3/2n1/4(x ∨ hn)
1/4{LL(x/hn)}1/4 · {log 2 + log[n(x ∨ hn)]}1/2.

Lemma S1.9. Under the conditions of Theorem A.2, for any ε > 0, there exists a K such that P(Bn(K)) ≥

1− ε for large enough n.

Proof. Let X k = (2khn, 2k+1hn] ∩ [0, x]. We have, for k ≥ 2,

P
(
|nĝ(x)− nx| > K

√
n(x ∨ hn)LL(x/hn) some x ∈ X k

)
= P

(
|Gn f (X̃i)

−1 I(X̃i ≤ x)| > K
√

x · LL(x/hn) some x ∈ X k
)

≤ P

(
sup
x∈X k
|Gn f (X̃i)

−1 I(X̃i ≤ x)| > K
√

2khn · LL(2k)

)

≤ C exp
(
−K2LL(2k)

C

)
≤ C exp

(
−K2

C
log log(2k)

)
= C[k log 2]−

K2
C

for some constant C by Lemma S1.3. Thus,

P
(
|nĝ(x)− nx| > K

√
n(x ∨ hn)LL(x/hn) some 4hn ≤ x ≤ x

)
≤ C

∞

∑
k=2

[k log 2]−K2/C

which can be made arbitrarily small by making K large. Note also that

P
(
|nĝ(x)− nx| > K

√
n(x ∨ hn)LL(x/hn) some 0 ≤ x ≤ 4hn

)
≤ P

(
sup

0≤x≤4hn

|Gn f (X̃i)
−1 I(X̃i ≤ x)| > K

√
hn

)
,

which can also be made arbitrarily small by choosing K large by Lemma S1.3. Combining these
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bounds gives the result.

Lemma S1.10. Under the conditions of Theorem A.2, for any ε > 0, there exists a K such that P(Cn(K)|X̃1, . . . , X̃n) ≥

1− ε with probability one for all n.

Proof. We have

1− P(Cn(K)|X̃1, . . . , X̃n) = P
(∣∣Bn(t′)−Bn(t)

∣∣ > K
√
(|t− t′| ∨ 1) · log(t ∨ t′ ∨ 2) some 0 ≤ t, t′ < ∞

)
= P

(
|Bn(t + s)−Bn(t)| > K

√
(s ∨ 1) · log[(t + s) ∨ 2] some 0 ≤ s, t < ∞

)
≤

∞

∑
k=0

∞

∑
`=0

P
(
|Bn(t + s)−Bn(t)| > K

√
(s ∨ 1) · log[(t + s) ∨ 2] some (s, t) ∈ Sk,`

)

where Sk,` = {(s, t)|` ≤ s ≤ `+ 1, (` ∨ 1)k ≤ t ≤ (` ∨ 1)(k + 1)}. Note that

P
(
|Bn(t + s)−Bn(t)| > K

√
(s ∨ 1) · log[(t + s) ∨ 2] some (s, t) ∈ Sk,`

)
≤ P

(
|Bn(t + s)−Bn(t)| > K

√
(` ∨ 1) · log{[(` ∨ 1)k + `] ∨ 2} some (s, t) ∈ Sk,`

)
= P

(
|Bn(t + s)−Bn(t)| > K

√
(` ∨ 1) · log{[(` ∨ 1)k + `] ∨ 2} some (s, t) ∈ S0,`

)
≤ P

(
|Bn(t)| > (K/2)

√
(` ∨ 1) · log{[(` ∨ 1)k + `] ∨ 2} some 0 ≤ t ≤ (` ∨ 1) + `+ 1

)
≤ 4P

(
|Bn((` ∨ 1) + `+ 1)| > (K/2)

√
(` ∨ 1) · log{[(` ∨ 1)k + `] ∨ 2}

)
≤ 4 · 1√

2π
· exp

(
−1

2
(K/2)2(` ∨ 1) · log{[(` ∨ 1)k + `] ∨ 2}

(` ∨ 1) + `+ 1

)
≤ 4 · 1√

2π
· exp

(
− (K/2)2 log{[(` ∨ 1)k + `] ∨ 2}

6

)
= 4 · 1√

2π
· {[(` ∨ 1)k + `] ∨ 2}−K2/24.

The third line follows since Bn(t) has the same distribution as Bn(t + (` ∨ 1)k). The fourth line

follows since, if |Bn(t + s)−Bn(t)| > C for some C and (s, t) ∈ S0,`, we must have |Bn(t)| > C/2

for some 0 ≤ t ≤ (` ∨ 1) + ` + 1. The fifth line follows from the reflection principle for the

Brownian motion (see Theorem 2.21 in Mörters and Peres, 2010). The sixth line uses the fact that

P(Z ≥ x) ≤ 1√
2π

exp(−x2/2) for x ≥ 1 and Z ∼ N(0, 1).
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Thus,

P
(∣∣Bn(t′)−Bn(t)

∣∣ > K
√
(|t− t′| ∨ 1) · log(t ∨ t′ ∨ 1) some 0 ≤ t, t′ < ∞

)
≤

∞

∑
k=0

∞

∑
`=0

4 · 1√
2π
· {[(` ∨ 1)k + `] ∨ 2}−K2/24.

This can be made arbitrarily small by making K large.

Theorem A.2 now follows since, for any constant ε > 0, there is a constant K such that

suphn≤h≤x̄/A |Ĥn(h) −Hn(h)| is less than K{(log nhn)(nhn)
−1/2 + (nhn)

−1/4[log(nhn)]
1/4} with

probability at least 1− ε asymptotically.

S1.4 Calculations for Extreme Value Limit

This section provides the calculations for the asymptotic distribution derived in Theorem A.3 in

Section A.5 of the appendix.

As described in the proof of Theorem A.3, we use Theorem 12.3.5 of Leadbetter, Lindgren,

and Rootzen (1983) applied to the process X(t) = H(et), which is stationary, with, in the case

where k(A) 6= 0, α = 1 and C = Ak(A)2∫
k(u)2 du and, in the case where k(A) = 0, α = 2 and C =∫

[k′(u)u+ 1
2 k(u) du]

2
du

2
∫

k(u)2 du .

In the notation of that theorem, we have

r(t) = cov (X(s), X(s + t)) =
e

1
2 t
∫

k(uet)k(u) du∫
k(u)2 du

.

Since r(t) is bounded by a constant times e
1
2 t · e−t, the condition r(t) log t t→∞→ 0 holds, so it

remains to verify that r(t) = 1− C|t|α + o(|t|α) with α and C given above.

Since k(uet)k(u) has a continuous derivative with respect to t on its support, which is [−Ae−t, Ae−t]

for t ≥ 0, it follows by Leibniz’s rule that, d
dt

∫
k(uet)k(u) du = −2Ae−tk(A)k(Ae−t)+

∫
k′(uet)k(u)uet du
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for t ≥ 0, (here, we also use symmetry of k). Thus, for t ≥ 0,

d
dt+

r(t) =
e

1
2 t d

dt+

∫
k(uet)k(u) du + 1

2 e
1
2 t
∫

k(uet)k(u) du∫
k(u)2 du

=
e

1
2 t [−2Ae−tk(A)k(Ae−t) +

∫
k′(uet)k(u)uet du

]
+ 1

2 e
1
2 t
∫

k(uet)k(u) du∫
k(u)2 du

.

Thus,

d
dt+

r(t)
∣∣∣∣
t=0

=
−2Ak(A)2 +

∫
k′(u)k(u)u du + 1

2

∫
k(u)2 du∫

k(u)2 du
=
−Ak(A)2∫

k(u)2 du

where the last step follows by noting that, applying integration by parts with k(u)u playing the

part of u and k′(u)du playing the part of dv,

∫
k(u)k′(u)u du =

[
k(u)2u

]A
−A −

∫
k(u)[k(u) + k′(u)u] du

= 2k(A)2A−
∫

k(u)2 du−
∫

k(u)k′(u)u du

so that
∫

k(u)k′(u)u du = k(A)2A− 1
2

∫
k(u)2 du. For the case where k(A) 6= 0, it follows from

this and a symmetric argument for t ≤ 0 that r(t) = 1−C|t| − o(|t|) for C = Ak(A)2∫
k(u)2 du as required.

For the case where k(A) = 0, applying Leibniz’s rule as above shows that r(t) is differentiable

with,

r′(t) = e
1
2 t

∫
k′(uet)k(u)uet du + 1

2

∫
k(uet)k(u) du∫

k(u)2 du
.

Thus, r′(0) = 0 (using the integration by parts identity above) and r(t) is twice differentiable

with

r′′(t) = e
1
2 t

d
dt

∫
k′(uet)k(u)uet du + 1

2
d
dt

∫
k(uet)k(u) du∫

k(u)2 du
+

1
2

e
1
2 t

∫
k′(uet)k(u)uet du + 1

2

∫
k(uet)k(u) du∫

k(u)2 du
.

We have

d
dt

∫
k′(uet)k(u)uet du =

d
dt

∫
k′(v)k(ve−t)ve−t dv

=
∫

k′(v)k′(ve−t)(−ve−t)ve−t dv−
∫

k′(v)k(ve−t)ve−t dv
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and d
dt

∫
k(uet)k(u) du =

∫
k′(uet)k(u)uet du, so this gives

r′′(t) =e
1
2 t−

∫
k′(v)k′(ue−t)u2e−2t du− 1

2

∫
k′(uet)k(u)uet du∫

k(u)2 du

+
1
2

e
1
2 t

∫
k′(uet)k(u)uet du + 1

2

∫
k(uet)k(u) du∫

k(u)2 du
.

Thus,

r′′(0) =
−
∫
[k′(u)u]2 du + 1

4

∫
k(u)2 du∫

k(u)2 du
.

Since, by the integration by parts argument above, 1
4

∫
k(u)2 du = 1

2

∫
k(u)2 du− 1

4

∫
k(u)2 du =

−
∫

k(u)k′(u)u du− 1
4

∫
k(u)2 du, this is equal to

−
∫
[k′(u)u]2 du−

∫
k(u)k′(u)u du− 1

4

∫
k(u)2 du∫

k(u)2 du
= −

∫ [
k′(u)u + 1

2 k(u)
]2 du∫

k(u)2 du

which gives the required expansion with C given by one half of the negative of the above display

and α = 2.

S1.5 Delta Method

We state some results that allow us to obtain influence function representations with the necessary

uniform rate for differentiable functions of estimators. These results amount to applying the delta

method to our setting and keeping track of the uniform rates.

Let β̂(h) be an estimator of a parameter β(h) ∈ Rdβ with influence function representation

√
nh(β̂(h)− β(h)) =

1√
nh

n

∑
i=1

ψβ(Wi, h)k(Xi/h) + R1,n(h)

for some function ψβ and a kernel function k, where ψβ(Wi, h)k(Xi/h) has mean zero and

suphn≤h≤h |R1,n(h)| = oP(1/
√

log log h−1
n ). Let g be a function from Rdβ to Rdθ and consider

the parameter θ(h) = g(β(h)) and the estimator θ̂(h) = g(β̂(h)).

Let V̂β(h) be an estimate of Vβ(h) = 1
h Eψβ(Wi, h)ψβ(Wi, h)′k(Xi/h)2, the (pointwise in h)
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asymptotic variance of β̂(h). A natural estimator of the asymptotic variance Vθ(h) of θ̂ is

V̂θ(h) = Dg(β̂(h))′V̂β(h)Dg(β̂(h))′.

Lemma S1.11. Suppose that β(h) is bounded uniformly over h ≤ hn where hn = O(1) and

(i) For large enough n, g is differentiable on an open set containing the range of β(h) over h ≤ hn, with

Lipschitz continuous derivative Dg.

(ii) ψβ and k are bounded, k has finite support, and the class of functions (w, x) 7→ ψβ(w, h)k(x/h) has

polynomial uniform covering number.

(iii) |Xi| has a bounded density on [0, hn] for large enough n.

Then, if nhn/(log log n)3 → ∞,

sup
hn≤h≤hn

∣∣∣∣∣√nh(θ̂(h)− θ(h))− 1√
nh

n

∑
i=1

Dg(β(h))ψβ(Wi, h)k(Xi/h)

∣∣∣∣∣ = oP

(
1
/√

log log h−1
n

)
.

If, in addition, suphn≤h≤hn
‖V̂β(h) − Vβ(h)‖

p→ 0, then, for some constant K and some Rn,2(h) with

suphn≤h≤hn

√
nh√

log log h−1
|Rn,2(h)| = OP(1),

∥∥V̂θ(h)−Vθ(h)
∥∥ ≤ K

∥∥V̂β(h)−Vβ(h)
∥∥+ Rn,2(h)

for all hn ≤ h ≤ hn with probability approaching one.

Proof. By a first order Taylor expansion, we have, for some β∗(h) with ‖β∗(h)− β(h)‖ ≤ ‖β̂(h)−

β(h)‖,

√
nh(θ̂(h)− θ(h)) =

√
nh(g(β̂(h))− g(β(h))) =

√
nhDg(β∗(h))(β̂(h)− β(h))

= Dg(β∗(h))
1√
nh

n

∑
i=1

ψβ(Wi, h)k(Xi/h) + Dg(β∗(h))R1,n(h)

=
1√
nh

n

∑
i=1

Dg(β(h))ψβ(Wi, h)k(Xi/h) + [Dg(β∗(h))− Dg(β(h))]
1√
nh

n

∑
i=1

ψβ(Wi, h)k(Xi/h)

+ Dg(β∗(h))R1,n(h)
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Applying Lemma A.2, β̂(h)− β(h) is OP(
√

log log h−1/
√

nh) uniformly over hn ≤ h ≤ hn and
1√
nh ∑n

i=1 ψβ(Wi, h)k(Xi/h) is OP(
√

log log h−1) uniformly over hn ≤ h ≤ hn. so that, by the

Lipschitz condition on Dg, the second term is OP(log log h−1/
√

nh) uniformly over hn ≤ h ≤ hn,

which is oP(1/
√

log log h−1
n ) uniformly over hn ≤ h ≤ hn since

√
nhn/(log log hn)

3/2 → ∞. The

last term is oP(1/
√

log log h−1
n ) uniformly over hn ≤ h ≤ hn by the conditions on R1,n(h), the

uniform consistency of β̂(h) and the Lipschitz condition on Dg.

For the second claim, note that

V̂θ −Vθ = Dg(β̂(h))V̂β(h)Dg(β̂(h))′ − Dg(β(h))Vβ(h)Dg(β(h))′

= [Dg(β̂(h))− Dg(β(h))]V̂β(h)Dg(β̂(h))′ + Dg(β(h))[V̂β(h)−Vβ(h)]Dg(β̂(h))′

+ Dg(β(h))Vβ(h)[Dg(β̂(h))− Dg(β(h))]′.

The first and last terms converge at a
√

log log h−1/
√

nh rate uniformly over hn ≤ h ≤ hn by

Lemma A.2 and the Lipschitz continuity on Dg. The second term is bounded by a constant times

‖V̂β(h)− V̂β(h)‖ uniformly over hn ≤ h ≤ h with probability approaching one by the uniform

consistency of β̂(h) and the Lipschitz continuity of Dg.

S1.6 Sufficient Conditions Based on Non-normalized Influence Function

In some cases, it will be easier to verify the conditions for an influence function approximation

to
√

nh(θ̂(h)− θ(h)) rather than the normalized version
√

nh(θ̂(h)− θ(h))/σ̂(h). The following

lemma is useful in these cases.

Lemma S1.12. Suppose that the following conditions hold for some ψ̃(Wi, h).

(i) Eψ̃(Wi, h)k(Xi/h) = 0 and k is bounded and symmetric with finite support [−A, A].

(ii) |Xi| has a density f|X| with f|X|(0) > 0, ψ̃(Wi, h)k(Xi/h) is bounded uniformly over h ≤ hn

and, for some deterministic function `(h) with `(h) log log h−1 → 0 as h → 0, the following ex-

pressions are bounded by `(t): | f|X|(t)− f|X|(0)|, |E [ψ̃(Wi, 0)||Xi| = t]− E [ψ̃(Wi, 0)||Xi| = 0] |,

|var [ψ̃(Wi, 0)||Xi| = t]− var [ψ̃(Wi, 0)||Xi| = 0] | and |(ψ̃(Wi, t)− ψ̃(Wi, 0))k(Xi/h)|.
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Let σ2(h) = 1
h var(ψ̃(Wi, h)k(Xi/h)) for h > 0 and σ2(0) = var [ψ̃(Wi, 0)||Xi| = 0] f|X|(0)

∫ ∞
u=0 k(u)2 du.

Let ψ(Wi, h) = ψ̃(Wi, h)/σ(h) so that 1
h var[ψ(Wi, h)k(Xi/h)] = 1. Suppose that var [ψ̃(Wi, 0)||Xi| = 0] >

0. Then the above assumptions hold with ψ̃ replaced by ψ for h small enough and with `(t) possibly rede-

fined.

Proof. First, note that the only condition we need to verify is the one involving |[ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h)|,

since the remaining conditions are only changed by multiplication by a constant when ψ̃ is re-

placed by ψ. Note that

σ2(h)− 1
h

var(ψ̃(Wi, 0)k(Xi/h)) =
1
h

var(ψ̃(Wi, h)k(Xi/h))− 1
h

var(ψ̃(Wi, 0)k(Xi/h))

=
1
h

var{[ψ̃(Wi, h)− ψ̃(Wi, 0)]k(Xi/h)}+ 2
1
h

cov{[ψ̃(Wi, h)− ψ̃(Wi, 0)]k(Xi/h), ψ̃(Wi, 0)k(Xi/h)}.

Since |(ψ̃(Wi, h)− ψ̃(Wi, 0))k(Xi/h)| ≤ `(h)I(|Xi| ≤ Ah) and ψ̃(Wi, h)k(Xi/h) and ψ̃(Wi, 0)k(Xi/h)

are bounded, the last two terms are bounded by a constant times `(h) 1
h EI(|Xi| ≤ Ah), which is

bounded by a constant times `(h) by the assumption on the density of |Xi|.

Thus, let us consider

1
h

var(ψ̃(Wi, 0)k(Xi/h))

=
1
h

∫ ∞

x=0
var [ψ̃(Wi, 0)||Xi| = x] k(x/h)2 f|X|(x) dx +

1
h

var {E [ψ̃(Wi, 0)||Xi|] k(Xi/h)} .

Arguing as in the proof of Lemma A.6 (using the fact that Eψ̃(Wi, h)k(Xi/h) = 0 and taking

limits), it can be seen that E [ψ̃(Wi, 0)||Xi| = 0] = 0 under these conditions. Thus, the last term is

bounded by `(Ah)2 1
h Ek(Xi/h)2. The first term is equal to var [ψ̃(Wi, 0)||Xi| = 0] f|X|(0)

∫ ∞
u=0 k(u)2 du

plus a term that is bounded by a constant times `(Ah).

It follows that, letting σ2(0) = var [ψ̃(Wi, 0)||Xi| = 0] f|X|(0)
∫ ∞

u=0 k(u)2 du as defined above,

we have, for some constant K, |σ2(h)− σ2(0)| ≤ K`(Ah). Thus,

|[ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h)|

≤ 1
σ(0)

|[ψ̃(Wi, h)− ψ̃(Wi, 0)]k(Xi/h)|+ |ψ̃(Wi, h)k(Xi/h)| ·
∣∣∣∣ 1
σ(h)

− 1
σ(0)

∣∣∣∣ .

The first term is bounded by a constant times `(h) by assumption. The last term is bounded by a
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constant times |σ2(h)− σ2(0)|, which is bounded by a constant times `(Ah) as shown above.

S2 Local polynomial estimators: regression discontinuity/estimation

at the boundary

This section gives primitive conditions for smooth functions of estimates based on local polyno-

mial estimates at the boundary, or at a discontinuity in the regression function. The results are

used in Section S3 below to verify the conditions of Theorem 3.1 for the applications in Section

5 in the main text. Throughout this section, we consider a setup with {(Xi, Y′i )
′}n

i=1 iid with Xi

a real valued random variable and Yi taking values in RdY . We consider smooth functions of the

left and right hand limits of the regression function at a point, which we normalize to be zero.

Let (β̂u,j,1(h), β̂u,j,2(h)/h, . . . , β̂u,j,r+1(h)/hr) be the coefficients of an rth order local polyno-

mial estimate of E[Yi,j|Xi = 0+] based on the subsample with Xi ≥ 0 with a kernel function

k∗. Similarly, let (β̂`,j,1(h), β̂`,j,2(h)/h, . . . , β̂`,j,r+1(h)/hr) be the coefficients of an rth order local

polynomial estimate of E[Yi,j|Xi = 0−] based on the subsample with Xi < 0, where the polyno-

mial is taken in |Xi| rather than Xi (this amounts to multiplying even elements of β`,j by −1).

The scaling by powers of h is used to handle the different rates of convergence of the different

coefficients. Let p(x) = (1, x, x2, . . . , xr)′, and define β̂u,j = (β̂u,j,1(h), β̂u,j,2(h), . . . , β̂u,j,r+1(h)) and

β̂`,j = (β̂`,j,1(h), β̂`,j,2(h), . . . , β̂`,j,r+1(h)). Let p(x) = (1, x, x2, . . . , xr)′. Then β̂u,j minimizes

n

∑
i=1

(Yi,j − p(|Xi/h|)′βu,j)
2 I(Xi ≥ 0)k∗(Xi/h)

and β̂`,j minimizes

n

∑
i=1

(Yi,j − p(|Xi/h|)′βu,j)
2 I(Xi < 0)k∗(Xi/h).
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Define

Γu(h) = 1
h Ep(|Xi/h|)p(|Xi/h|)′k∗(Xi/h)I(Xi ≥ 0),

Γ`(h) = 1
h Ep(|Xi/h|)p(|Xi/h|)′k∗(Xi/h)I(Xi < 0),

Γ̂u(h) = 1
nh ∑n

i=1 p(|Xi/h|)p(|Xi/h|)′k∗(Xi/h)I(Xi ≥ 0) and

Γ̂`(h) = 1
nh ∑n

i=1 p(|Xi/h|)p(|Xi/h|)′k∗(Xi/h)I(Xi < 0).

Let µk∗,` =
∫ ∞

0 u`k∗(u) du, and let M be the matrix with i, jth element given by µk∗,i+j−2.

Let α̂u(h) = (β̂1,1,u(h), . . . β̂1,dY ,u(h))′ and α̂`(h) = (β̂1,1,`(h), . . . β̂1,dY ,`(h))′, and similarly for

αu(h) and α`(h) (i.e. αu and α` contain the constant terms in the local polynomial regressions

for each j). Let α̂(h) = (α̂u(h)′, α̂`(h)′) and α(h) = (αu(h)′, α`(h)′). We are interested in θ(h) =

g(α(h)) for a differentiable function g from R2dY to R, and an estimator θ̂(h) = ĝ(α(h)). We

consider standard errors defined by the delta method applied to the robust covariance matrix

formula obtained by treating the local linear regressions as a system of 2dY weighted least squares

regressions. Let νu(h) = e′1Γu(h)−1 and let ν`(h) = e′1Γ`(h)−1. Let ν̂u(h) = e′1Γ̂u(h)−1 and let

ν`(h) = e′1Γ̂`(h)−1. Let ψα(Xi, Yi, h) be the (2dY)× 1 random vector with jth element given by

ψα,j(Xi, Yi, h) =


νu(h)p(|Xi/h|)[Yi,j − p(|Xi/h|)′βu,j(h)]I(Xi ≥ 0) if j = 1, . . . , dY,

ν`(h)p(|Xi/h|)[Yi,j−dY − p(|Xi/h|)′β`,j−dY(h)]I(Xi < 0) if j = dY + 1, . . . , 2dY.

Let ψ̂α(Xi, Yi, h) be defined analogously,

ψ̂α,j(Xi, Yi, h) =


ν̂u(h)p(|Xi/h|)[Yi,j − p(|Xi/h|)′ β̂u,j(h)]I(Xi ≥ 0) if j = 1, . . . , dY,

ν̂`(h)p(|Xi/h|)[Yi,j−dY − p(|Xi/h|)′ β̂`,j−dY(h)]I(Xi < 0) if j = dY + 1, . . . , 2dY.

Let

Vα(h) =
1
h

Eψα(Xi, Yi, h)ψα(Xi, Yi, h)′k∗(Xi/h)2
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and let

V̂α(h) =
1
h

Enψ̂α(Xi, Yi, h)ψ̂α(Xi, Yi, h)′k∗(Xi/h)2.

Let σ̂(h) = Dg(α̂(h))V̂α(h)Dg(α̂(h))′, and σ(h) = Dg(α(h))Vα(h)Dg(α(h))′, where Dg is the

derivative of g.

We make the following assumption throughout this section. In the following assumption, `(t)

is an arbitrary nondecreasing function satisfying limt↓0 `(t) log log t−1 = 0.

Assumption S2.1. (i) Xi has a density fX(x) with | fX(x)− fX,−| ≤ `(x) for x < 0 and | fX(x)−

fX,+| ≤ `(x) for some fX,+ > 0 and fX,− > 0.

(ii) Yi is bounded and, for some matrices Σ− and Σ+ and vectors µ̃− and µ̃+, Σ̃(x) = var(Yi|Xi = x)

and µ̃(x) = E(Yi|Xi = x) satisfy ‖Σ̃(x)− Σ+‖ ≤ `(x) and ‖µ̃(x)− µ̃+‖ ≤ `(x) for x > 0 and

‖Σ̃(x)− Σ−‖ ≤ `(x) and ‖µ̃(x)− µ̃−‖ ≤ `(x) for x < 0.

(iii) k∗ is symmetric with finite support [−A, A], is bounded with a bounded, uniformly continuous first

derivative on (0, A), and satisfies
∫

k(u) du 6= 0, and the matrix M is invertible.

(iv) Dg is bounded and is Lipschitz continuous on an open set containing the range of α(h) over hn for

n large enough.

(v) Dg,u(α(0))Σ̃+Dg,u(α(0)) > 0 or Dg,`(α(0))Σ̃−Dg,u(`) > 0.

(vi) hn = O(1) and nhn/(log log n)3 → ∞.

We prove the following theorem.

Theorem S2.1. Under Assumption S2.1, Assumptions 3.1 and Assumption 3.2 hold with k(u) =

e′1M−1 p(|u|)k∗(u) and ψ defined below so long as nhn/(log log h−1
n )3 → ∞ and hn is small enough

for large n.

Throughout the following, we assume that hn is small enough so that ‖Γu(h)−1‖ and ‖Γ`(h)−1‖

are bounded uniformly over h ≤ hn for large enough n (this will hold for small enough hn by

Lemma S2.4 below).
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Lemma S2.1. Suppose that Assumption S2.1 holds. Then

sup
hn≤h≤hn

√
nh√

log log h−1

∥∥Γ̂u(h)− Γu(h)
∥∥ = OP(1),

sup
hn≤h≤hn

√
nh√

log log h−1

∥∥∥Γ̂u(h)−1 − Γu(h)−1
∥∥∥ = OP(1),

sup
hn≤h≤hn

nh
log log h−1

∥∥β̂u,j(h)− βu,j(h)

−1
h

EnΓu(h)−1 p(Xi/h)k∗(Xi/h)[Yi − p(Xi/h)′β(h)]I(Xi ≥ 0)
∥∥∥∥ = OP(1),

and

sup
hn≤h≤hn

√
nh√

log log h−1

∥∥β̂u,j(h)− βu,j(h)
∥∥ = OP(1)

for each j. The same holds with I(Xi ≥ 0) replaced by I(Xi < 0), Γu replaced by Γ`, Γ̂u replaced by Γ̂`,

etc.

Proof. The first display follows from Lemma A.2. For the second display, note that Γ̂(h)−1 −

Γ(h)−1 = −Γ̂(h)−1(Γ̂(h)− Γ(h))Γ(h)−1, so ‖Γ̂(h)−1− Γ(h)−1‖ ≤ ‖Γ̂(h)−1‖‖Γ̂(h)− Γ(h)‖‖Γ(h)−1‖.

‖Γ(h)−1‖ is bounded by assumption and ‖Γ̂(h)−1‖ is OP(1) uniformly over hn ≤ h ≤ hn by this

and the first display in the lemma. For the third display, note that

β̂u,j(h)− βu,j(h) = Γ̂u(h)−1 1
h

En p(Xi/h)k∗(Xi/h)[Yi − p(Xi/h)′β(h)]I(Xi ≥ 0).
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Thus,

sup
hn≤h≤hn

nh
log log h−1

∥∥∥∥β̂u,j(h)− βu,j(h)−
1
h

EnΓu(h)−1 p(Xi/h)k∗(Xi/h)[Yi − p(Xi/h)′β(h)]I(Xi ≥ 0)
∥∥∥∥

≤ sup
hn≤h≤hn

√
nh√

log log h−1

∥∥∥Γ̂u(h)−1 − Γu(h)−1
∥∥∥

· sup
hn≤h≤hn

√
nh√

log log h−1

∥∥∥∥1
h

En p(Xi/h)k∗(Xi/h)[Yi − p(Xi/h)′β(h)]I(Xi ≥ 0)
∥∥∥∥ .

The first term is OP(1) by the second display in the lemma. The second term is OP(1) by Lemma

A.2. The last display in the lemma follows from the third display and Lemma A.2.

Applying the above lemma, we obtain the following.

Lemma S2.2. Under Assumption S2.1,

sup
hn≤h≤hn

nh
log log h−1

∥∥∥∥∥α̂(h)− α(h)− 1
nh

n

∑
i=1

ψα(Xi, Yi, h)k∗(Xi/h)

∥∥∥∥∥ = OP(1)

and

sup
hn≤h≤hn

√
nh√

log log h−1

∥∥V̂α(h)−Vα(h)
∥∥ = OP(1).

Proof. The first claim follows by Lemma S2.1. The second claim follows by using the fact that

V̂α(h) is a Lipschitz continuous function of the β̂ and ν̂ terms and terms that can be handled with

Lemma A.2.

Lemma S2.3. Suppose that Assumption S2.1 holds. Then

sup
hn≤h≤hn

√
nh

∥∥∥∥∥θ̂(h)− θ(h)− 1√
nh

n

∑
i=1

Dg(α(h))ψα(Xi, Yi, h)k∗(Xi/h)

∥∥∥∥∥ = oP

(
1/
√

log log h−1
n

)

and

sup
hn≤h≤hn

√
nh√

log log h−1
‖σ̂(h)− σ(h)‖ = OP(1).
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Proof. By Lemma S2.2,

sup
hn≤h≤hn

∥∥∥∥∥√nh (α̂(h)− α(h))− 1√
nh

n

∑
i=1

ψα(Xi, Yi, h)k∗(Xi/h)

∥∥∥∥∥
= OP

(
sup

h≤h≤hn

(log log h−1)/
√

nh

)
= OP

(
(log log h−1

n )/
√

nhn

)
= oP

(
1/
√

log log h−1
n

)

since (log log h−1
n )3/2/

√
nhn → 0. Thus, the result follows by Lemma S1.11.

Let mj(x, h) = p(x/h)′βu,j(h) for x ≥ 0 and mj(x, h) = p(x/h)′β`,j−dY(h) for x < 0. Let Dg,u(α)

be the row vector with the first dY elements of Dg(α), and let Dg,`(α) be the row vector with the

remaining dY elements. With this notation, we have

Dg(α(h))ψα(Xi, Yi, h)

=
{

I(Xi ≥ 0)νu(h)p(|Xi/h|)Dg,u(α(h)) + I(Xi < 0)ν`(h)p(|Xi/h|)Dg,`(α(h))
}
[Yi −m(Xi, h)].

Let γu,j(h) = 1
h EYi,j p(|Xi/h|)k∗(Xi/h)I(Xi ≥ 0) and γu,`(h) = 1

h EYi,j p(|Xi/h|)k∗(Xi/h)I(Xi < 0).

Let γu,j(0) be the (r + 1)× 1 vector with qth element given by fX,+µ̃+,jµk∗,q and let Let γ`,j(0) be

the (r + 1) × 1 vector with qth element given by fX,−µ̃−,jµk∗,q. Let α(0) = (µ̃′+, µ̃′−)
′ (it will be

shown below that limh→0 α(h) = α(0)).

We now verify the conditions of the main result with k(u) = e′1M−1 p(|u|)k∗(u) and

ψ(Wi, h) =
Dg(α(h))ψα(Xi, Yi, h)
e′1M−1 p(|Xi/h|)σ(h)

for h > 0 and

ψ(Wi, 0) =
1

σ(0)

[
Dg,u(α(0)) f−1

X,+(Yi − µ+)I(Xi ≥ 0) + Dg,`(α(0)) f−1
X,−(Yi − µ−)I(Xi < 0)

]
where σ2(0) = limh→0 σ2(h) (this choice of ψ(Wi, 0) will be justified by the calculations below).
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Lemma S2.4. Under Assumption S2.1, for some constant K,

‖Γu(h)− fX,+M‖ ≤ K`(Ah),

‖Γ`(h)− fX,−M‖ ≤ K`(Ah),

‖γu(h)− γu(0)‖ ≤ K`(Ah),

and ‖γ`(h)− γ`(0)‖ ≤ K`(Ah).

Proof. We have

γu,j(h) =
1
h

EYi,j p(|Xi/h|)k∗(Xi/h)I(Xi ≥ 0) =
1
h

∫ ∞

x=0
µ̃j(x)p(x/h)k∗(x/h) fX(x) dx

=
∫ ∞

x=0
µ̃j(uh)p(u)k∗(u) fX(uh) dx.

Thus, by boundedness of k∗, ‖γu,j(h)−γu,j(0)‖ is bounded by a constant times sup0≤x≤Ah |µ̃j(x) fX(x)−

µ̃+,j fX,+|, which is bounded by a constant times `(Ah) by assumption. Similarly,

Γu,j,m(h) =
1
h

E(Xi/h)j+m−2k∗(Xi/h)I(Xi ≥ 0) =
1
h

∫ ∞

x=0
(x/h)j+m−2k∗(x/h) fX(x) dx

=
∫ ∞

x=0
uj+m−2k∗(u) fX(uh) du,

so |Γu,j,m(h)− fX,+Mj,m| is bounded by a constant times sup0≤x≤Ah | fX(x)− fX,+| ≤ `(Ah). The

proof for Γ` and γ` is similar.

Note that βu,j(h) = Γu(h)−1γu,j(h) → µ̃+,j M−1(1, µk∗,1, . . . , µk∗,r)
′ = µ̃+,j(1, 0, . . . , 0)′ as h → 0,

where the last equality follows since M−1(1, µk∗,1, . . . , µk∗,r)
′ is the first column of M−1M = Ir+1

(the second through rth elements of βu,j are given by the corresponding coefficients of the local

polynomial scaled by powers of h, so this is a result of the fact that the coefficients of the local

polynomial do not increase too quickly as h → 0). By these calculations and Lemma S2.4, we

obtain the following.

Lemma S2.5. Under Assumption S2.1, for some constant K and h small enough,

∣∣βu,j(h)− µ̃+,j(1, 0, . . . , 0)′
∣∣ ≤ K`(Ah),

and
∣∣β`,j(h)− µ̃−,j(1, 0, . . . , 0)′

∣∣ ≤ K`(Ah).
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Proof. The result is immediate from Lemma S2.4, the fact that ‖Γu(h)−1‖ and ‖Γ`(h)−1‖ are

bounded uniformly over small enough h (which follows from Lemma S2.4 and invertibility of M)

and fact that the function that takes Γ and γ to Γ−1γ is Lipschitz over Γ and γ with Γ−1 and γ

bounded.

Note that, since α(h) is made up of the first component of each of the βu,j(h) and β`,j(h)

vectors, the above lemma also implies that |α(h)− α(0)| ≤ K`(Ah) for α(0) defined above. For

convenience, let us also define βu,j(0) and β`,j(0) to be the limits of βu,j(h) and β`,j(h) derived

above.

Lemma S2.6. Under Assumption S2.1, for some constant K and h small enough,

‖νu(h)− e′1M−1 f−1
X,+‖ ≤ K`(Ah)

and ‖ν`(h)− e′1M−1 f−1
X,−‖ ≤ K`(Ah).

Proof. The result is immediate from Lemma S2.4 and the boundedness of ‖Γu(h)−1‖ and ‖Γ`(h)−1‖

over small enough h.

Lemma S2.7. Under Assumption S2.1, for some constant K and h small enough,

|[σ(h)ψ(Wi, h)− σ(0)ψ(Wi, 0)] k(Xi/h)| ≤ K`(Ah).

Proof. We have

[σ(h)ψ(Wi, h)− σ(0)ψ(Wi, 0)] k(Xi/h)

= Dg(α(h))ψα(Xi, Yi, h)k∗(Xi/h)

−
[

Dg,u(α(0)) f−1
X,+(Yi − µ+)I(Xi ≥ 0) + Dg,`(α(0)) f−1

X,−(Yi − µ−)I(Xi < 0)
]

e′1M−1 p(|Xi/h|)k∗(Xi/h)

= Dg(α(h))ψα(Xi, Yi, h)k∗(Xi/h)− Dg(α(0))ψ̃α(Xi, Yi, h)k∗(Xi/h)

where the first dY columns of ψ̃α(Xi, Yi, h) are given by e′1M−1 p(|Xi/h|) f−1
X,+(Yi − µ+)I(Xi ≥ 0)

and the remaining dY columns are given by e′1M−1 p(|Xi/h|) f−1
X,−(Yi − µ−)I(Xi < 0). Note that
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the above expression can be written as

T(Xi/h, Yi, νu(h), ν`(h), α(h), {βu,j,m(h)}1≤j≤dY ,1≤m≤r+1, {β`,j,m(h)}1≤j≤dY ,1≤m≤r+1)

− T(Xi/h, Yi, νu(0), ν`(0), α(0), {βu,j,m(0)}1≤j≤dY ,1≤m≤r+1, {β`,j,m(0)}1≤j≤dY ,1≤m≤r+1)

for a function T that is Lipschitz in its remaining arguments uniformly over Xi/h, Yi on bounded

sets. Combining this with the previous lemmas gives the result.

It follows from Lemmas S2.7 and S1.12 that the conclusion of Lemma S2.7 also holds with

σ(h)ψ(Wi, h) replaced by ψ(Wi, h), so long as the remaining conditions of Lemma S1.12 (those

involving the conditional expectation and variance of ψ(Wi, 0)) hold. We have

E[ψ(Wi, 0)|Xi = x]

=
1

σ(0)

{
Dg,u(α(0)) f−1

X,+[µ̃(x)− µ̃+]I(x ≥ 0) + Dg,`(α(0)) f−1
X,−[µ̃(x)− µ̃−]I(x < 0)

}
and

var[ψ(Wi, 0)|Xi = x] =
1

σ2(0)

{
Dg,u(α(0))Σ̃(x)Dg,u(α(0))′ f−2

X,+ I(x ≥ 0)

+Dg,`(α(0))Σ̃(x)Dg,`(α(0))′ f−2
X,− I(x < 0)

}
By the conditions on µ̃(x) and Σ̃(x), it follows that these expressions are left and right continuous

in x at 0 with modulus `(x) satisfying the necessary conditions. By this and the conditions on

fX, it follows that the same holds for E[ψ(Wi, 0)||Xi| = x] and var[ψ(Wi, 0)||Xi| = x]. In addition,

the assumptions guarantee that var[ψ(Wi, 0)||Xi| = x] is bounded away from zero for small x so

that σ(0) > 0.
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Thus, for ψ(Wi, h) defined above,

sup
hn≤h≤hn

∥∥∥∥∥
√

nh(θ̂(h)− θ(h))
σ̂(h)

− 1√
nh

n

∑
i=1

ψ(Wi, h)k(Xi/h)

∥∥∥∥∥
≤ sup

hn≤h≤hn

∥∥∥∥∥
√

nh(θ̂(h)− θ(h))
σ(h)

− 1√
nh

n

∑
i=1

ψ(Wi, h)k(Xi/h)

∥∥∥∥∥
+ sup

hn≤h≤hn

∥∥∥√nh(θ̂(h)− θ(h))
∥∥∥ · ∥∥∥∥ 1

σ(h)
− 1

σ̂(h)

∥∥∥∥ .

By Lemma S2.3, the first term isOP

(
1/
√

log log h−1
n

)
, and the last term isOP

(√
log log h−1

n ·
√

log log h−1
n√

nhn

)
.

Thus, for (log log h−1
n )3/nhn → 0, both terms will be oP(1/

√
log log h−1

n ) as required. This com-

pletes the proof of Theorem S2.1.

S2.1 Equivalent Kernels for Local Linear Regression

Thus section computes the equivalent kernels k(u) = e′1M−1 p(|u|)k∗(u) for the local linear esti-

mator (r = 1) and the local quadratic estimator (r = 2) for some popular choices of the kernel k∗.

For r = 1, we have

e′1M−1 p(u) = e′1

 µk∗,0 µk∗,1

µk∗,1 µk∗,2

−1 1

|u|

 =
µk∗,2 − µk∗,1|u|

µk∗,0µk∗,2 − µ2
k∗,1

.

For r = 2, we have

e1M−1 p(u) =
1
D
((

µk∗,4µk∗,2 − µ2
k∗,3
)
+ (µk∗,1µk∗,4 − µk∗,2µk∗,3) |u|+

(
µ2

k∗,2 − µk∗,1µk∗,3
)

u2) ,

where D = det(M) = µk∗,0(µk∗,2µk∗,4− µ2
k∗,3)− µk∗,1(µk∗,1µk∗,4− µk∗,2µk∗,3) + µk∗,2(µk∗,1µk∗,3− µ2

k∗,2).

The moments µk∗,j for the uniform, triangular, and Epanechnikov kernel are given by

Name µ0 µ1 µ2 µ3 µ4

Uniform 1
2

1
4

1
6

1
8

1
10

Triangular 1
2

1
6

1
12

1
20

1
30

Epanechnikov 1
2

3
16

1
10

1
16

3
70
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Plugging these moments into the definitions of equivalent kernels in the two displays above

then yields the definitions of equivalent kernels for local linear and local quadratic regressions.

These definitions are summarized in Table 6.

S3 Applications

This section gives proofs of the results for the applications in the main text.

S3.1 Regression Discontinuity/LATEs for Largest Sets of Compliers

This section proves Theorems 5.1 and 5.2. First, note that the regression discontinuity and LATE

applications can both be written as functions of local polynomial estimators in the above setup,

with dY = 2 and Yi playing the role of Yi,1 and Di playing the role of Yi,2. For the LATE appli-

cation, we define Xi = −(Zi − z)I(|Zi − z| ≤ |Zi − z|) + (z − Zi)I(|Zi − z| > |Zi − z|). Both

of these applications fit into the setup of Section S2 with, letting α(h) = (αu(h)′, α`(h)′) =

(αu,Y(h), αu,D(h), α`,Y(h), α`,D(h))′ (where we use the suggestive subscripts “Y” and “D” rather

than 1 and 2), g(α) = αu,Y−α`,Y
αu,D−α`,D

. Then, letting ∆D = αu,D − α`,D, we have

Dg(α) =
[

1
∆D

−g(α)
∆D

−1
∆D

g(α)
∆D

]
.

This is Lipschitz continuous and bounded over bounded sets with αu,D − α`,D bounded away

from zero.

For the last condition (nondegeneracy of the conditional variance), note that Dg,u(α(0))Σ̃+Dg,u(α(0)) =
1

∆D(0)2 var[Yi − g(α(0))Di|Xi = 0+], which will be nonzero so long as corr(Di, Yi|Xi = 0+) < 1 and

var(Yi|Xi = 0+) > 0. A sufficient condition for this is that var(Yi|Di = d, Xi = 0+) > 0 is nonzero

for d = 0 or d = 1, and this (or the corresponding statement with + replaced by −) holds under

the conditions of the theorem.

S3.2 Trimmed Average Treatment Effects under Unconfoundedness

This section proves Theorem 5.3. We first give an intuitive derivation of the critical value, which

explains why it differs in this setting, and provide the technical details at the end.

S30



To derive the form of the correction in this case, note that, under the conditions of the theorem,
√

n(θ̂(h)−θ(h))
σ̂(h) will converge to a Gaussian process G(h) with covariance

cov(G(h), G(h′)) =
cov

{
[Ỹi − θ(h)]I(Xi ∈ Xh), [Ỹi − θ(h′)]I(Xi ∈ Xh′)

}√
var

{
[Ỹi − θ(h)]I(Xi ∈ Xh)

}
var

{
[Ỹi − θ(h′)]I(Xi ∈ Xh′)

} .

Let v(h) = var{[Ỹi − θ(h)]I(Xi ∈ Xh)} as defined in the statement of the theorem. Note that, for

h ≥ h′,

cov
{
[Ỹi − θ(h)]I(Xi ∈ Xh), [Ỹi − θ(h′)]I(Xi ∈ Xh′)

}
= E

{
[Ỹi − θ(h)][Ỹi − θ(h′)]I(Xi ∈ Xh)

}
= E

{
[Ỹi − θ(h)]2 I(Xi ∈ Xh)

}
+ [θ(h)− θ(h′)]E

{
[Ỹi − θ(h)]I(Xi ∈ Xh)

}
= v(h)

where the last step follows since E
{
[Ỹi − θ(h)]I(Xi ∈ Xh)

}
= 0. Note also that v(h) is weakly

decreasing in h, which can be seen by noting that v(h) = infa E
{[

Ỹi − a
]2 I(Xi ∈ Xh)

}
, since θ(h)

is the conditional expectation of Ỹi given Xi ∈ Xh. Thus,

cov(G(h), G(h′)) =
v(h ∨ h′)√
v(h)v(h′)

=
v(h) ∧ v(h′)√

v(h)v(h′)
,

so G(h) d
= B(v(h))√

v(h)
where B is a Brownian motion. Thus, the distribution of suph≤h≤h

√
n(θ̂(h)−θ(h))

σ̂(h)

can be approximated by the distribution of supv(h)≤t≤v(h)
B(t)√

t
d
= sup1≤t≤v(h)/v(h)

B(t)√
t

. Note that

v(h) = σ(h)2P(Xi ∈ Xh)
2, so that

v(h)
v(h)

=
σ(h)2P(Xi ∈ Xh)

2

σ(h)2P(Xi ∈ Xh)
2

.

Thus, t̂ is a consistent estimator for v(h)
v(h)

under the conditions of the theorem.

To formalize these arguments, note that, by Theorem 19.5 in van der Vaart (1998),
√

n(θ̂(h)−θ(h))
σ̂(h)

d→

G(h), taken as processes over h ∈ [h, h] with the supremum norm. By the calculations above,

sup
h∈[h,h]

|G(h)| d
= sup

h∈[h,h]

∣∣∣∣∣B(v(h))√
v(h)

∣∣∣∣∣
where B is a Brownian motion. The result then follows since {t|v(h) = t some h ∈ [h, h]} ⊆
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[v(h), v(h)], and the two sets are equal if v(h) is continuous.

S4 Critical values

Tables S1–S6 give one- and two-sided critical values c1−α

(
hn/hn, k

)
and c1−α,|·|

(
hn/hn, k

)
for

several kernel functions k, α and a selected of values of hn/hn. The Critical values can also be

obtained using our R package bandwidth-snooping, which can be downloaded from https://

github.com/kolesarm/bandwidth-snooping. Tables S1–S2 give one- and two-sided critical values

for local constant (Nadaraya-Watson) regression in the interior of the support of the regressor.

Tables S3–S4 give one- and two-sided critical values for local linear regression at a boundary.

Tables S5–S6 give one- and two-sided critical values for local quadratic regression at a boundary.

Critical values for other choices of h/h can be obtained using our package bandwidth-snooping,

which can be downloaded from https://github.com/kolesarm/bandwidth-snooping.

S5 Description of variance estimators used in the Monte Carlo study

Given an i.i.d. sample {Yi, Xi}n
i=1, the RD estimator is given by the difference between two poly-

nomial linear regressions of order r with the same bandwidth. We consider local linear (r = 1)

and local quadratic estimators (r = 2). To define the estimators, let p(x) = (1, x, . . . , xr) denote a

polynomial expansion of order r. Let

β̂u(h) = Γ̂u(h)−1
n

∑
i=1

I(Xi ≥ 0)k∗(Xi/h)p(|Xi|)Yi,

β̂`(h) = Γ̂l(h)−1
n

∑
i=1

I(Xi < 0)k∗(Xi/h)p(|Xi|)Yi,

where k∗ is a kernel, and

Γ̂u(h) = ∑
i

I(Xi ≥ 0)k∗(Xi/h)p(|Xi|)p(|Xi|)′,

Γ̂`(h) = ∑
i

I(Xi < 0)k∗(Xi/h)p(|Xi|)p(|Xi|)′.
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Then the estimator is given by

θ̂(h) = α̂u(h)− α̂`(h),

where α̂u(h) = e′1βu(h) and α̂`(h) = e′1β`(h).

All variance estimators have the form

σ̂2(h) = nh (v̂ar(α̂u(h)) + v̂ar(α̂`(h))) .

Following the recommendation of Imbens and Lemieux (2008), the plug-in estimator sets

v̂ar(α̂u(h)) =

∫
k2(u) du

f̂X,h(0)
σ̂2

u ,

where k is an equivalent kernel, f̂X,h(0) = ∑n
i=1 I(|X|i ≤ h)/(2nh), and σ̂2

u = ∑n
i=1 I(0 ≤ |X|i ≤

h)(Yi − α̂u(h))2/ ∑n
i=1 I(0 ≤ |X|i ≤ h). The expression for v̂ar(α̂`(u)) is similar.

The remaining variance estimators all have the form

v̂ar(α̂u(h)) = e′1Γ̂u(h)−1

(
n

∑
i=1

I(Xi ≥ 0)σ̂2
u(Xi)k∗(Xi/h)p(|Xi|)p(|Xi|)′

)
Γ̂u(h)−1e1

and similarly for v̂ar(α̂u(h)), where σ̂2
u(Xi) and σ̂2

` (Xi) are some estimators of var(Yi | Xi). The

EHW estimator sets σ̂2
u(Xi) = (Yi−X′i β̂u)2. Following the recommendation of Calonico, Cattaneo,

and Titiunik (2014), the NN estimator sets

σ̂2
u(Xi) = I(Xi ≥ 0)

J
J + 1

(
Yi −

J

∑
j=1

Y`u,j(i)

)2

,

where `u,j(i) is the jth closest unit to i among {k 6= i : Xk ≥ 0}, and J = 3. Finally, the exact

variance estimator sets σ̂2
u(Xi) = var(Yi | Xi).

S6 Additional Simulations

To examine the effects of heteroscedasticity on the performance of our procedure, we considered

two additional simulation designs. The DGP in both designs corresponds to Design 1 in the
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paper, with the exception that

εi | Xi = x ∼ N (0, σ2(x)),

where σ2(x) = 0.12952(1 + |x|)2 for Design 3, and σ2(x) = 0.12952(1− |x|)2 for Design 4. Tables

S9–S10 report empirical coverage of the confidence bands for θ(h) for these two additional de-

signs. Tables S7–S8 report empirical coverage of the confidence bands for θ(0). The results are

very similar to Design 1 in the paper.
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.29 1.65 2.34 1.29 1.65 2.33 1.29 1.65 2.34
1.2 1.59 1.95 2.62 1.34 1.71 2.39 1.36 1.73 2.40
1.4 1.69 2.04 2.70 1.39 1.75 2.43 1.42 1.78 2.45
1.6 1.76 2.10 2.76 1.42 1.78 2.47 1.46 1.81 2.49
1.8 1.81 2.16 2.81 1.45 1.81 2.49 1.49 1.85 2.51
2.0 1.85 2.19 2.84 1.48 1.84 2.51 1.52 1.88 2.54
3.0 1.97 2.31 2.95 1.57 1.91 2.59 1.61 1.97 2.63
4.0 2.04 2.38 3.01 1.62 1.97 2.63 1.67 2.02 2.68
5.0 2.09 2.43 3.04 1.65 2.01 2.67 1.72 2.06 2.71
6.0 2.12 2.46 3.08 1.68 2.03 2.69 1.75 2.09 2.73
7.0 2.15 2.49 3.10 1.70 2.06 2.71 1.77 2.11 2.75
8.0 2.17 2.51 3.12 1.73 2.08 2.72 1.79 2.13 2.77
9.0 2.19 2.52 3.14 1.74 2.09 2.74 1.81 2.15 2.78
10.0 2.21 2.54 3.16 1.75 2.10 2.74 1.82 2.16 2.79
20.0 2.31 2.63 3.23 1.84 2.17 2.81 1.91 2.24 2.87
50.0 2.41 2.71 3.31 1.93 2.26 2.89 2.00 2.33 2.95
100.0 2.47 2.77 3.36 1.98 2.31 2.93 2.06 2.38 2.99

Table S1: Critical values for one-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h H(h).
Nadaraya-Watson estimator with uniform kernel (k(u) = 1

2 I(|u| ≤ 1)), triangular kernel (k(u) =
(1− |u|)+), or Epanechnikov kernel (k(u) = 3/4(1− u2)+).
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.64 1.96 2.57 1.64 1.96 2.58 1.64 1.96 2.57
1.2 1.93 2.25 2.85 1.70 2.02 2.64 1.71 2.03 2.65
1.4 2.03 2.35 2.94 1.74 2.06 2.68 1.77 2.08 2.70
1.6 2.09 2.42 3.00 1.78 2.09 2.71 1.81 2.12 2.74
1.8 2.14 2.46 3.05 1.81 2.12 2.73 1.84 2.16 2.77
2.0 2.18 2.50 3.08 1.83 2.15 2.75 1.87 2.18 2.80
3.0 2.30 2.61 3.19 1.91 2.23 2.83 1.96 2.27 2.87
4.0 2.38 2.67 3.24 1.96 2.27 2.87 2.01 2.32 2.92
5.0 2.42 2.71 3.28 2.00 2.30 2.90 2.05 2.36 2.95
6.0 2.45 2.74 3.31 2.03 2.33 2.93 2.08 2.39 2.97
7.0 2.48 2.76 3.34 2.05 2.35 2.95 2.11 2.41 2.99
8.0 2.50 2.78 3.36 2.07 2.37 2.96 2.13 2.42 3.01
9.0 2.52 2.80 3.37 2.08 2.38 2.97 2.14 2.44 3.03
10.0 2.53 2.81 3.39 2.09 2.39 2.98 2.16 2.46 3.03
20.0 2.62 2.89 3.45 2.17 2.47 3.04 2.24 2.53 3.10
50.0 2.71 2.98 3.52 2.25 2.54 3.10 2.32 2.60 3.16
100.0 2.77 3.03 3.56 2.30 2.58 3.14 2.37 2.66 3.20

Table S2: Critical values for two-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h|H(h)|.
Nadaraya-Watson estimator with uniform kernel (k(u) = 1

2 I(|u| ≤ 1)), triangular kernel (k(u) =
(1− |u|)+), or Epanechnikov kernel (k(u) = 3/4(1− u2)+).
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.28 1.65 2.33 1.28 1.65 2.34 1.28 1.65 2.33
1.2 1.57 1.94 2.61 1.36 1.73 2.41 1.37 1.74 2.42
1.4 1.68 2.04 2.71 1.41 1.78 2.46 1.44 1.81 2.48
1.6 1.75 2.10 2.77 1.46 1.82 2.49 1.49 1.85 2.53
1.8 1.80 2.15 2.82 1.49 1.86 2.52 1.53 1.89 2.56
2.0 1.84 2.19 2.86 1.52 1.89 2.55 1.56 1.92 2.58
3.0 1.97 2.32 2.97 1.62 1.97 2.63 1.67 2.02 2.68
4.0 2.05 2.39 3.02 1.68 2.03 2.68 1.74 2.08 2.74
5.0 2.09 2.43 3.06 1.72 2.07 2.71 1.78 2.12 2.77
6.0 2.13 2.46 3.09 1.75 2.09 2.74 1.81 2.15 2.80
7.0 2.15 2.49 3.12 1.78 2.12 2.76 1.84 2.18 2.81
8.0 2.18 2.51 3.14 1.80 2.14 2.77 1.86 2.20 2.83
9.0 2.20 2.53 3.15 1.81 2.15 2.79 1.88 2.21 2.85
10.0 2.21 2.54 3.16 1.83 2.17 2.81 1.89 2.23 2.86
20.0 2.31 2.63 3.23 1.91 2.24 2.88 1.98 2.31 2.93
50.0 2.41 2.72 3.31 2.00 2.32 2.94 2.07 2.39 3.00
100.0 2.47 2.77 3.36 2.06 2.38 2.98 2.13 2.44 3.04

Table S3: Critical values for one-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h H(h).
Local linear regression at a boundary with uniform kernel (k∗(u) = 1

2 I(|u| ≤ 1)), triangular
kernel (k∗(u) = (1− |u|)+), or Epanechnikov kernel (k∗(u) = 3/4(1− u2)+).
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.64 1.96 2.57 1.64 1.96 2.58 1.64 1.96 2.57
1.2 1.93 2.25 2.86 1.72 2.04 2.65 1.74 2.05 2.67
1.4 2.03 2.34 2.96 1.77 2.09 2.70 1.80 2.11 2.73
1.6 2.10 2.40 3.01 1.81 2.12 2.74 1.84 2.16 2.77
1.8 2.15 2.46 3.06 1.85 2.16 2.77 1.88 2.19 2.81
2.0 2.19 2.49 3.09 1.87 2.19 2.80 1.91 2.22 2.84
3.0 2.31 2.61 3.19 1.97 2.28 2.87 2.01 2.32 2.91
4.0 2.38 2.68 3.24 2.02 2.33 2.92 2.07 2.38 2.96
5.0 2.42 2.72 3.29 2.06 2.36 2.95 2.11 2.41 2.99
6.0 2.45 2.75 3.31 2.09 2.39 2.97 2.14 2.44 3.02
7.0 2.48 2.77 3.33 2.11 2.41 2.99 2.17 2.46 3.03
8.0 2.50 2.79 3.35 2.13 2.43 3.00 2.19 2.48 3.05
9.0 2.52 2.81 3.36 2.15 2.44 3.01 2.20 2.50 3.06
10.0 2.54 2.82 3.37 2.16 2.45 3.03 2.22 2.51 3.08
20.0 2.62 2.90 3.44 2.24 2.53 3.09 2.30 2.58 3.13
50.0 2.72 2.98 3.52 2.32 2.60 3.16 2.39 2.66 3.21
100.0 2.77 3.04 3.56 2.37 2.65 3.20 2.44 2.71 3.25

Table S4: Critical values for two-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h|H(h)|.
Local linear regression at a boundary with uniform kernel (k∗(u) = 1

2 I(|u| ≤ 1)), triangular
kernel (k∗(u) = (1− |u|)+), or Epanechnikov kernel (k∗(u) = 3/4(1− u2)+).
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.28 1.65 2.34 1.29 1.66 2.33 1.29 1.66 2.32
1.2 1.58 1.95 2.61 1.38 1.75 2.42 1.40 1.76 2.44
1.4 1.69 2.05 2.71 1.44 1.80 2.47 1.47 1.83 2.49
1.6 1.76 2.11 2.76 1.49 1.85 2.52 1.52 1.88 2.54
1.8 1.81 2.17 2.82 1.53 1.89 2.55 1.56 1.92 2.58
2.0 1.85 2.21 2.85 1.56 1.92 2.58 1.60 1.95 2.61
3.0 1.98 2.32 2.95 1.66 2.01 2.67 1.71 2.06 2.71
4.0 2.05 2.39 3.01 1.72 2.07 2.71 1.78 2.12 2.75
5.0 2.10 2.43 3.04 1.76 2.10 2.74 1.82 2.16 2.79
6.0 2.13 2.47 3.07 1.79 2.13 2.77 1.85 2.19 2.82
7.0 2.16 2.49 3.09 1.82 2.16 2.80 1.88 2.21 2.84
8.0 2.18 2.51 3.12 1.84 2.17 2.81 1.90 2.23 2.86
9.0 2.20 2.53 3.14 1.86 2.19 2.83 1.92 2.25 2.88
10.0 2.22 2.54 3.15 1.87 2.21 2.84 1.93 2.27 2.89
20.0 2.31 2.63 3.23 1.96 2.28 2.92 2.02 2.34 2.97
50.0 2.40 2.71 3.31 2.04 2.37 2.99 2.11 2.43 3.04
100.0 2.46 2.77 3.36 2.10 2.42 3.03 2.16 2.48 3.09

Table S5: Critical values for one-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h H(h).
Local quadratic regression at a boundary with uniform kernel (k∗(u) = 1

2 I(|u| ≤ 1)), triangular
kernel (k∗(u) = (1− |u|)+), or Epanechnikov kernel (k∗(u) = 3/4(1− u2)+).
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Uniform Triangular Epanechnikov
h/h 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

1.0 1.65 1.96 2.58 1.65 1.96 2.58 1.65 1.96 2.58
1.2 1.94 2.25 2.86 1.74 2.05 2.67 1.75 2.06 2.68
1.4 2.04 2.34 2.94 1.79 2.11 2.72 1.82 2.13 2.74
1.6 2.10 2.41 3.00 1.84 2.15 2.76 1.87 2.18 2.78
1.8 2.15 2.46 3.06 1.88 2.18 2.80 1.92 2.23 2.82
2.0 2.19 2.50 3.09 1.91 2.22 2.83 1.95 2.25 2.86
3.0 2.31 2.61 3.21 2.00 2.31 2.91 2.05 2.35 2.96
4.0 2.38 2.67 3.26 2.06 2.36 2.95 2.11 2.41 3.00
5.0 2.42 2.71 3.30 2.10 2.40 2.99 2.15 2.44 3.03
6.0 2.46 2.74 3.32 2.12 2.42 3.01 2.18 2.47 3.06
7.0 2.48 2.77 3.35 2.15 2.44 3.03 2.20 2.50 3.08
8.0 2.50 2.79 3.37 2.16 2.46 3.04 2.22 2.51 3.10
9.0 2.52 2.80 3.38 2.18 2.48 3.05 2.24 2.53 3.11
10.0 2.54 2.82 3.40 2.20 2.49 3.07 2.25 2.54 3.12
20.0 2.63 2.90 3.45 2.28 2.56 3.14 2.34 2.62 3.19
50.0 2.71 2.98 3.53 2.36 2.64 3.21 2.42 2.70 3.25
100.0 2.76 3.03 3.56 2.41 2.69 3.24 2.47 2.75 3.29

Table S6: Critical values for two-sided tests with levels α = 0.1, 0.05, and 0.01, that correspond to
1− α quantiles of sup1≤h≤h/h|H(h)|.
Local quadratic regression at a boundary with uniform kernel (k(u) = 1

2 I(|u| ≤ 1)), triangular
kernel (k(u) = (1− |u|)+), or Epanechnikov kernel (k(u) = 3/4(1− u2)+).
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (78.9, 90.7) 63.9 82.6 (80.4, 91.0) 76.8 83.5
EHW (77.9, 89.4) 62.2 81.1 (79.2, 89.2) 75.0 81.8
plugin (84.7, 92.0) 70.0 86.3 (90.3, 93.8) 86.2 90.8
NN (81.0, 91.3) 67.0 84.2 (82.1, 91.5) 78.8 85.0

(1/2ĥIK, 2ĥIK)

exact (78.8, 91.1) 54.6 82.7 (80.4, 91.0) 71.9 83.7
EHW (77.9, 90.5) 53.0 81.0 (79.2, 89.2) 70.2 81.9
plugin (84.7, 97.6) 65.0 87.7 (90.3, 98.3) 85.2 92.5
NN (80.9, 92.7) 58.7 84.8 (82.1, 91.5) 74.8 85.5

(1/4ĥIK, 1/2ĥIK)

exact (91.2, 95.0) 82.4 94.0 (91.4, 95.0) 88.7 92.9
EHW (89.8, 92.6) 78.4 91.4 (89.7, 92.0) 84.8 89.6
plugin (92.4, 95.9) 85.7 95.2 (94.1, 96.5) 92.0 95.0
NN (91.8, 94.6) 83.1 93.9 (91.9, 94.1) 88.4 92.3

Local quadratic regression
(1/2ĥIK, ĥIK) NN (92.1, 95.1) 82.5 93.6 (91.1, 94.7) 87.6 92.2
(1/2ĥIK, 2ĥIK) NN (83.7, 95.1) 60.2 86.3 (85.0, 94.7) 76.1 87.1
(1/4ĥIK, 1/2ĥIK) NN (93.9, 94.8) 84.4 94.1 (93.1, 94.3) 88.7 92.9

Table S7: Monte Carlo study of regression discontinuity. Design 3. Empirical coverage of θ(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (70.8, 91.8) 63.9 82.8 (76.1, 92.2) 75.0 82.1
EHW (69.5, 90.3) 62.2 80.8 (74.4, 90.2) 72.9 79.9
plugin (72.5, 90.5) 63.6 80.5 (78.3, 90.4) 75.9 81.9
NN (73.5, 92.6) 67.0 84.5 (78.1, 92.3) 77.1 83.5

(1/2ĥIK, 2ĥIK)

exact (69.3, 91.8) 57.5 83.2 (75.1, 92.2) 71.1 82.8
EHW (68.1, 90.3) 56.0 81.2 (73.5, 90.2) 69.2 80.8
plugin (72.1, 98.1) 60.2 82.3 (78.3, 97.6) 75.3 84.5
NN (72.1, 92.6) 61.1 85.0 (77.2, 92.3) 73.8 84.4

(1/4ĥIK, 1/2ĥIK)

exact (92.3, 95.2) 85.6 95.5 (92.7, 95.2) 90.2 94.1
EHW (90.8, 92.9) 81.5 92.7 (90.6, 92.3) 86.2 90.5
plugin (91.1, 95.4) 85.2 94.6 (90.9, 95.3) 89.0 92.8
NN (93.0, 94.8) 85.9 94.7 (92.8, 94.2) 89.7 93.0

Local quadratic regression
(1/2ĥIK, ĥIK) NN (93.0, 95.3) 86.9 95.5 (92.3, 94.9) 89.4 93.6
(1/2ĥIK, 2ĥIK) NN (72.6, 95.3) 63.8 86.6 (78.9, 94.9) 74.4 85.6
(1/4ĥIK, 1/2ĥIK) NN (93.6, 94.7) 85.8 94.5 (93.1, 94.3) 89.1 93.2

Table S8: Monte Carlo study of regression discontinuity. Design 4. Empirical coverage of θ(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (94.7, 95.1) 84.4 95.0 (94.7, 95.1) 91.2 94.7
EHW (94.0, 94.4) 82.6 93.9 (93.6, 94.3) 89.5 93.4
plugin (96.5, 97.6) 90.2 97.2 (97.4, 98.7) 96.1 97.9
NN (95.4, 95.9) 85.9 95.7 (95.2, 95.8) 91.9 94.9

(1/2ĥIK, 2ĥIK)

exact (91.1, 95.1) 72.0 93.2 (92.9, 95.1) 86.0 93.6
1residu (95.1, 97.9) 81.5 96.5 (94.2, 96.5) 87.7 94.3
EHW (90.6, 94.4) 69.8 92.0 (92.3, 94.3) 84.3 92.3
plugin (96.5, 99.2) 87.7 98.0 (97.4, 99.7) 95.8 98.4
NN (92.7, 95.9) 74.5 93.8 (93.9, 95.8) 87.6 94.2

(1/4ĥIK, 1/2ĥIK)

exact (95.0, 95.3) 86.1 95.9 (95.1, 95.3) 91.7 95.1
EHW (92.6, 94.0) 82.2 93.3 (91.8, 93.6) 88.0 92.0
plugin (96.4, 96.6) 90.6 97.4 (97.0, 97.3) 95.0 97.1
NN (94.7, 95.8) 86.3 95.0 (94.4, 95.2) 91.0 94.0

Local quadratic regression
(1/2ĥIK, ĥIK) NN (94.9, 95.7) 85.0 95.0 (94.4, 95.3) 90.7 94.3
(1/2ĥIK, 2ĥIK) NN (88.7, 96.3) 71.7 91.9 (92.9, 95.9) 83.5 92.2
(1/4ĥIK, 1/2ĥIK) NN (93.9, 95.0) 84.5 94.1 (93.1, 94.4) 88.7 93.0

Table S9: Monte Carlo study of regression discontinuity. Design 3. Empirical coverage of θ(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (94.7, 96.1) 89.3 96.8 (94.7, 96.0) 92.9 95.8
EHW (94.1, 95.1) 87.6 95.9 (93.8, 94.7) 91.3 94.5
plugin (95.8, 96.4) 90.8 97.1 (95.9, 96.2) 93.8 96.2
NN (95.1, 96.2) 89.8 97.0 (95.0, 95.8) 93.0 95.7

(1/2ĥIK, 2ĥIK)

exact (91.2, 96.1) 83.2 96.2 (92.7, 96.0) 89.5 95.3
EHW (90.7, 95.1) 81.6 95.2 (91.9, 94.7) 87.9 93.9
plugin (95.6, 99.0) 89.0 97.4 (95.9, 99.6) 93.4 96.9
NN (91.3, 96.2) 83.1 95.5 (93.1, 95.8) 89.3 94.8

(1/4ĥIK, 1/2ĥIK)

exact (95.3, 95.9) 88.8 96.8 (95.4, 95.8) 92.8 95.8
EHW (92.6, 94.8) 84.7 94.3 (91.9, 94.4) 89.0 92.6
plugin (96.1, 96.3) 90.9 97.5 (96.1, 96.2) 93.7 96.3
NN (94.6, 96.0) 88.1 95.7 (94.1, 95.6) 91.4 94.5

Local quadratic regression
(1/2ĥIK, ĥIK) NN (94.7, 96.0) 88.7 96.1 (94.4, 95.7) 92.0 95.1
(1/2ĥIK, 2ĥIK) NN (89.5, 96.5) 81.0 94.9 (90.1, 96.1) 85.3 92.5
(1/4ĥIK, 1/2ĥIK) NN (93.7, 94.7) 85.7 94.6 (93.2, 94.3) 89.3 93.2

Table S10: Monte Carlo study of regression discontinuity. Design 4. Empirical coverage of θ(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Figure S1: Regression Discontinuity. The function θ(h) for designs we consider corresponding to
local quadratic regression.
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Figure S2: Comparison of critical values based on Gassuan approximation and extreme value
approximation (i.e. asymptotic approximation as h/h→ ∞).
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